Ed
semana passada
Para entender o que acontece com o volume de um cone quando a altura é dobrada, precisamos lembrar da fórmula do volume do cone, que é: \[ V = \frac{1}{3} \pi r^2 h \] onde \( r \) é o raio da base e \( h \) é a altura. Se a altura \( h \) for dobrada, a nova altura será \( 2h \). Substituindo na fórmula do volume, temos: \[ V' = \frac{1}{3} \pi r^2 (2h) = \frac{2}{3} \pi r^2 h \] Isso significa que o novo volume \( V' \) é o dobro do volume original \( V \). Analisando as alternativas: a) O volume do cone é dobrado. (Correta) b) O volume do cone é multiplicado por 4. (Incorreta) c) O volume do cone é reduzido pela metade. (Incorreta) d) O volume do cone é multiplicado por 8. (Incorreta) Portanto, a alternativa correta é: a) O volume do cone é dobrado.
Mais perguntas desse material