Ed
anteontem
Para determinar a velocidade angular (\( \omega \)) e a frequência (\( f \)) do oscilador massa-mola, podemos usar as seguintes fórmulas: 1. Velocidade angular (\( \omega \)): \[ \omega = \sqrt{\frac{k}{m}} \] onde \( k \) é a constante elástica da mola e \( m \) é a massa. Substituindo os valores: \[ \omega = \sqrt{\frac{60 \, \text{N/m}}{1 \, \text{kg}}} = \sqrt{60} \approx 7,75 \, \text{rad/s} \] 2. Frequência (\( f \)): A frequência está relacionada à velocidade angular pela fórmula: \[ f = \frac{\omega}{2\pi} \] Substituindo o valor de \( \omega \): \[ f = \frac{7,75}{2\pi} \approx \frac{7,75}{6,28} \approx 1,23 \, \text{Hz} \] Portanto, a velocidade angular é aproximadamente \( 7,75 \, \text{rad/s} \) e a frequência é aproximadamente \( 1,23 \, \text{Hz} \).