Prévia do material em texto
PHY 389K Quantum Mechanics, Homework Set 5 Solutions Matthias Ihl 03/03/2008 Note: I will post updated versions of the homework solutions on my home- page: http://zippy.ph.utexas.edu/~msihl/teaching.html 1 Problem 1 Consider a system whose density operator is ρ(t), evolving under the influence of a hamiltonian H(t). Show that the trace of ρ2 does not vary with time. Can the system evolve so as to be successively in a pure state and in a statistical mixture of states? Ans. Let U(t) ≡ U(t, 0) be a time-evolution operator. Then, ρ(t) ≡ ∑ i wi|αi, t〉〈αi, t| = ∑ i wiU(t)|αi, 0〉〈αi, 0|U †(t) = U(t) [ ∑ i wi|αi, 0〉〈αi, 0| ] U †(t) = U(t)ρ0U †(t) Because U is unitary, ρ(t)2 = U(t)ρ0U †(t)U(t)ρ0U †(t) = U(t)ρ2 0 U †(t) and Tr(ρ(t)2) = ∑ j 〈bj , t|ρ(t)2|bj , t〉 = ∑ j 〈bj, 0|U †(t)U(t)ρ20U †(t)U(t)|bj , 0〉 = ∑ j 〈bj , 0|ρ20|bj, 0〉 = Tr(ρ20) 1 Pure states satisfy Tr(ρ2) = 1 and mixed states satisfy Tr(ρ2) < 1. There- fore, the system cannot evolve successively in a pure state and in a mixture state. 2 Problem 2 Compute the propagator K(xf , tf ; xi, ti) for the simple harmonic oscillator. Ans. For the simple harmonic oscillator, S = m 2 ∫ (ẋ2 − ω2x2)dt, and x(t) satisfies the classical eqution ẍ+ ω2x = 0 Assume that u(t) is a classical solution of this equation, and define a new variable X ≡ u−1x. Then, S = m 2 ∫ tf ti [ u2Ẋ2 + d dt (uu̇X2) + ( u̇2 − d dt (uu̇) − ω2u2 ) X2 ] dt = m 2 ( u̇f uf x2f − u̇i ui x2i ) + m 2 ∫ f i u2Ẋ2dt (ẍ+ ω2x = 0) where ui = u(ti), uf = u(tf). Define one more new variable, a new time variable η ≡ ∫ dt u2 Then S = m 2 ( u̇f uf x2f − u̇i ui x2i ) + 1 2 ∫ ηf ηi X ′2(η)η (1) where the prime denotes the derivative with respect to η. From the relation ∆tk = ∫ ηk+1 ηk u2dη = u2(ηk)∆ηk + 1 2 du2 dη ∣ ∣ ηk ∆η2k +O(∆η 3 k) = u2k∆ηkexp [ 1 2u2 du2 dη ∣ ∣ ∣ k ∆ηk ] +O(∆η3k), we get the following relation D[x] = lim N→∞ exp(−1 2 d lnu dτ |0∆η0) ui √ 2πi~∆η0 ΠNk=1 exp(−1 2 d ln u dτ |k∆ηk)u−1k dxk√ 2πi~∆ηk = 1 ui exp [ − 1 2 ∫ ηf ηi d ln u dη dη ] DX = 1√ uiuf D[X] (2) So, using (1) and (2), K(xf , tf ; xi, ti) = 1 √ uiuf exp [mi 2~ ( u̇f uf x2f − u̇i ui x2i )] ∫ D[X]exp (mi 2~ ∫ X ′2dη ) (3) Using the fact of the free particle problem to get the integral over X(Sakurai 2.5.16), ∫ D[X]exp (mi 2~ ∫ X ′2dη ) = √ m 2πi~(ηf − ηi) exp [mi(Xf −Xi)2 2~(ηf − ηi) ] Let’s find an explicit expression for ηf − ηi in terms of the original time t. Let u(t), v(t) be two independent solutions of the classical equation of a harmonic oscillator. Then the Wronskian W ≡ uv̇ − u̇v is contant in time and ηf − ηi = 1 W ∫ tf ti (uv̇ − u̇v u2 ) dt = 1 W ∫ tf ti d dt ( v u )dt = uivf − ufvi Wuiuf If we normalize u, v in such a way that uivf − ufvi = 1, (4) (3) becomes K(xf , tf ; xi, ti) = √ mW 2πi~ exp [mi 2~ (Wui + u̇f uf x2f + Wuf − u̇i ui x2i − 2Wxixf )] Moreover, from the fact that W = uiv̇i − u̇ivi = uf v̇f − u̇fvf , we get K(xf , tf ; xi, ti) = √ mW 2πi~ exp [mi 2~ ((uiv̇f−viu̇f)x2f +(uf v̇i−vf u̇ix2i −2Wxixf ) ] (5) For a harmonic oscillator, the two independent solutions staisfying (4) are u(t) = cosωt√ sinωT , v(t) = sinωt√ sinωT where T = tf − ti. Finally, substituting these solutions in (5), we have K(xf , tf ; xi, ti) = √ mω 2πi~ sinωT exp [ miω 2~ sinωT ((x2f + x 2 i ) cosωT − 2xixf ) ] 3 Problem 3 Consider a harmonic oscillator of mass m and angular frequency ω. At time t = 0, the state of this oscillator is given by: |ψ(0)〉 = ∑ n cn|n〉 where |n〉 are the stationary states with energy ~ω(n + 1 2 ). What is the probability P that a measurement of the oscillator’s energy performed at an arbitrary time t > 0 will yield a result greater than 2~ω? When P = 0, what are the non-zero coefficients cn? Ans. |ψ(t)〉 = U(t)|ψ(0)〉 = exp (−iHt ~ ) |ψ(0)〉 = ∑ n cnexp (−iEnt ~ ) |n〉 ∑ n cnexp ( − iω(n+ 1 2 ) ) |n〉 Therefore, the probability to get ~ω(n+ 1 2 ) equals to |〈n|ψ(t)〉|2 = |cn|2. For n > 2, the energy is greater than 2~ω. Hence, P = ∞ ∑ n=2 |〈n|ψ(t)〉|2 = ∞ ∑ n=2 |cn|2 = 1 − (|c0|2 + |cn|2). • If P = 0, then |c0|2 + |c1|2 = 1. So if we take c0 be real, then c0 = cos θ and c1 = sin θe iφ, φ ∈ R Special thanks to Yoonsang Lee (ylee@math.utexas.edu) for providing these solutions.