Buscar

livro pesquisa operacional

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 304 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 304 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 304 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

ACESSE AQUI O SEU 
LIVRO NA VERSÃO 
DIGITAL!
PROFESSOR
Dr. Fernando Pereira Calderaro
Pesquisa 
Operacional
https://apigame.unicesumar.edu.br/qrcode/1001
FICHA CATALOGRÁFICA
C397 CENTRO UNIVERSITÁRIO DE MARINGÁ. 
Núcleo de Educação a Distância. CALDERARO, Fernando Pereira.
Pesquisa Operacional. 
Fernando Pereira Calderaro.
Maringá - PR.: Unicesumar, 2021. 
304 p.
“Graduação - EaD”. 
1. Pesquisa 2. Operacional 3. Produção. EaD. I. Título. 
CDD - 22 ed. 658.5 
CIP - NBR 12899 - AACR/2
ISBN 978-65-5615-499-2
Impresso por: 
Bibliotecário: João Vivaldo de Souza CRB- 9-1679
Pró Reitoria de Ensino EAD Unicesumar
Diretoria de Design Educacional
NEAD - Núcleo de Educação a Distância
Av. Guedner, 1610, Bloco 4 - Jd. Aclimação - Cep 87050-900 | Maringá - Paraná
www.unicesumar.edu.br | 0800 600 6360
 
 
PRODUÇÃO DE MATERIAIS
DIREÇÃO UNICESUMAR
NEAD - NÚCLEO DE EDUCAÇÃO A DISTÂNCIA
Reitor Wilson de Matos Silva Vice-Reitor Wilson de Matos Silva Filho Pró-Reitor de Administração Wilson de Matos Silva Filho 
Pró-Reitor Executivo de EAD William Victor Kendrick de Matos Silva Pró-Reitor de Ensino de EAD Janes Fidélis Tomelin 
Presidente da Mantenedora Cláudio Ferdinandi
Diretoria Executiva Chrystiano Mincoff, James Prestes, Tiago Stachon Diretoria de Graduação e Pós-graduação Kátia Coelho Diretoria 
de Cursos Híbridos Fabricio Ricardo Lazilha Diretoria de Permanência Leonardo Spaine Head de Graduação Marcia de Souza Head 
de Metodologias Ativas Thuinie Medeiros Vilela Daros Head de Tecnologia e Planejamento Educacional Tania C. Yoshie Fukushima 
Head de Recursos Digitais e Multimídias Franklin Portela Correia Gerência de Planejamento e Design Educacional Jislaine Cristina 
da Silva Gerência de Produção Digital Diogo Ribeiro Garcia Gerência de Recursos Educacionais Digitais Daniel Fuverki Hey 
Supervisora de Design Educacional e Curadoria Yasminn T. Tavares Zagonel Supervisora de Produção Digital Daniele Correia
Coordenador de Conteúdo Crislaine Galan Designer Educacional Aguinaldo Ventura Curadoria Fernanda Brito Revisão 
Textual Ariane Fabreti Editoração Lavignia da Silva Santos; André Morais de Freitas Ilustração Bruno Cesar Pardinho 
Realidade Aumentada Maicon Douglas Curriel; Matheus Alexander de Oliveira Guandalini; César Henrique Seidel 
Fotos Shutterstock.
Tudo isso para honrarmos a 
nossa missão, que é promover 
a educação de qualidade nas 
diferentes áreas do conhecimento, 
formando profissionais 
cidadãos que contribuam para o 
desenvolvimento de uma sociedade 
justa e solidária.
Reitor 
Wilson de Matos Silva
A UniCesumar celebra os seus 30 anos de 
história avançando a cada dia. Agora, enquanto 
Universidade, ampliamos a nossa autonomia 
e trabalhamos diariamente para que nossa 
educação à distância continue como uma das 
melhores do Brasil. Atuamos sobre quatro 
pilares que consolidam a visão abrangente do 
que é o conhecimento para nós: o intelectual, o 
profissional, o emocional e o espiritual.
A nossa missão é a de “Promover a educação de 
qualidade nas diferentes áreas do conhecimento, 
formando profissionais cidadãos que contribuam 
para o desenvolvimento de uma sociedade 
justa e solidária”. Neste sentido, a UniCesumar 
tem um gênio importante para o cumprimento 
integral desta missão: o coletivo. São os nossos 
professores e equipe que produzem a cada dia 
uma inovação, uma transformação na forma 
de pensar e de aprender. É assim que fazemos 
juntos um novo conhecimento diariamente.
São mais de 800 títulos de livros didáticos 
como este produzidos anualmente, com a 
distribuição de mais de 2 milhões de exemplares 
gratuitamente para nossos acadêmicos. Estamos 
presentes em mais de 700 polos EAD e cinco 
campi: Maringá, Curitiba, Londrina, Ponta Grossa 
e Corumbá), o que nos posiciona entre os 10 
maiores grupos educacionais do país.
Aprendemos e escrevemos juntos esta belíssima 
história da jornada do conhecimento. Mário 
Quintana diz que “Livros não mudam o mundo, 
quem muda o mundo são as pessoas. Os 
livros só mudam as pessoas”. Seja bem-vindo à 
oportunidade de fazer a sua mudança! 
Aqui você pode 
conhecer um 
pouco mais sobre 
mim, além das 
informações do 
meu currículo.
Olá, o meu nome é Fernando. Sou engenheiro químico e 
adoro ler livros sobre diversos assuntos. Inclusive, este é 
um de meus hobbies, ler livros com temas diferentes da 
Engenharia, para abrir novos horizontes. Outra ativida-
de que faço é tocar flauta transversal, instrumento que 
aprendi desde criança. Apesar de ser um instrumento 
clássico, gosto tanto de música clássica quanto de rock, 
sou bem eclético. Mas não toco, profissionalmente, é 
apenas um gosto pessoal. Uma paixão recente é a Aro-
materapia, gosto de estudar e criar produtos em casa 
para uso pessoal, envolvendo óleos essenciais e vegetais 
bem como manteigas vegetais e extratos diversos.
https://apigame.unicesumar.edu.br/qrcode/8504
Quando identificar o ícone de QR-CODE, utilize o aplicativo Unicesumar 
Experience para ter acesso aos conteúdos on-line. O download do aplicativo 
está disponível nas plataformas: Google Play App Store
Ao longo do livro, você será convidado(a) a refletir, questionar e transformar. Aproveite 
este momento.
PENSANDO JUNTOS
EU INDICO
Enquanto estuda, você pode acessar conteúdos online que ampliaram a discussão sobre 
os assuntos de maneira interativa usando a tecnologia a seu favor.
Sempre que encontrar esse ícone, esteja conectado à internet e inicie o aplicativo 
Unicesumar Experience. Aproxime seu dispositivo móvel da página indicada e veja os 
recursos em Realidade Aumentada. Explore as ferramentas do App para saber das 
possibilidades de interação de cada objeto.
REALIDADE AUMENTADA
Uma dose extra de conhecimento é sempre bem-vinda. Posicionando seu leitor de QRCode 
sobre o código, você terá acesso aos vídeos que complementam o assunto discutido
PÍLULA DE APRENDIZAGEM
Professores especialistas e convidados, ampliando as discussões sobre os temas.
RODA DE CONVERSA
EXPLORANDO IDEIAS
Com este elemento, você terá a oportunidade de explorar termos e palavras-chave do 
assunto discutido, de forma mais objetiva.
https://apigame.unicesumar.edu.br/qrcode/3881
PESQUISA OPERACIONAL
Imagine que você é um(a) engenheiro(a) de uma fábrica de motores e deve criar um 
plano de produção a dois tipos de motores para veículos populares, um de modelo 1.0 e 
outro 1.4. A fábrica tem disponível quatro etapas do processo: solda, montagem, pintura 
e expedição. Como você acha que deve proceder se os motores utilizam as mesmas 
etapas e têm tempo de trabalho finito por dia? Valerá a pena pensar em produzir os 
motores, com vistas ao maior lucro ou ao menor custo?
Pois saiba que a Pesquisa Operacional permite que você associe as informações 
obtidas em cada etapa desse processo e consiga fazer, utilizando conceitos técnicos, 
o levantamento de quantas unidades de motores devem ser fabricados, diariamente, 
semanalmente, mensalmente, ou, até mesmo, anualmente. 
Assim, você pode definir quanto tempo cada motor consome em cada etapa de pro-
cesso, fazer um levantamento do custo de cada motor e do lucro obtido com a venda 
de cada unidade. E, melhor, você ainda pode analisar, sob diferentes pontos de vista, 
por exemplo, a minimização de custo ou a maximização de lucros.
Agora, faça uma pesquisa dos motores mais utilizados em carros populares, nos 
últimos cinco anos, com uso de gasolina ou etanol. Procure, também, a situação em 
que está o uso de motores elétricos, atualmente. 
Você acha que os carros elétricos substituirão os carros com motores à combustão? 
Se isso ocorrer, quando você entende que será possível adquirir um veículo destes no 
Brasil? Analise esta questão sob aspectos técnicos, econômicos e sociais relacionados 
ao nosso país.
Para entender a dinâmica de solução desse problema, você terá contato com técni-
cas matemáticas que permitirão analisar problemas de produção, logística e finanças, 
transportando-os à linguagem matemática (equações), resolvendoe retornando uma 
solução viável e, muitas vezes, ótima para o problema. Você ouvirá falar de Programa-
ção Linear, Programação Inteira, Programação Binária e Teoria dos Jogos. Dentro de 
cada parte, há grande quantidade de exemplos para que você possa assimilar melhor 
o conhecimento.
Observe que, dentro do problema, inicialmente proposto, você também pôde ana-
lisá-lo sob o ponto de vista do(a) engenheiro(a) projetista, desenvolvendo o motor por 
meio da atribuição dos tempos de processo em cada etapa ou pela modificação. Você 
também pode fazer o planejamento e o controle da produção, estabelecendo a demanda 
de motores de cada modelo que devem ser fabricados ou pode ser o(a) responsável 
pela entrega desses motores às montadoras, analisando os aspectos logísticos de envio.
Agora, elabore um Mapa Mental que associe as disciplinas já vistas nos anos que 
se passaram do curso aos processos produtivos da Pesquisa Operacional. Faça uma 
conexão entre os principais temas vistos, anteriormente, e a forma como a Pesquisa 
Operacional pode lhe ajudar a resolver esse mapa, de acordo com as suas expectativas 
acerca da disciplina. Solte a sua criatividade e tente organizar o seu conhecimento até 
aqui. Então, boa leitura e bons estudos!
APRENDIZAGEM
CAMINHOS DE
1 2
43
5
11
61
37
93
INTRODUÇÃO 
À PESQUISA 
OPERACIONAL
6 159
ANÁLISE DE 
SENSIBILIDADE E 
PÓS-OTIMIZAÇÃO
PROGRAMAÇÃO 
LINEAR E MÉTODO 
SIMPLEX
PROGRAMAÇÃO 
LINEAR
MÉTODO SIMPLEX 
E SOLVER PARA 
MAXIMIZAÇÃO
MÉTODO SIMPLEX 
E SOLVER PARA 
MINIMIZAÇÃO
127
7 187 8 219
TEORIA DOS 
JOGOS – 
PRINCÍPIOS
PROGRAMAÇÃO 
LINEAR INTEIRA
9 247
TEORIA DOS JOGOS
1
Olá, caro(a) estudante, na primeira unidade do livro de Pesqui-
sa Operacional, você terá contato com os conceitos básicos que 
envolvem esta importante área da Engenharia. Você entenderá 
a importância histórica da Pesquisa Operacional para modelar o 
mundo como o conhecemos, além de entender como ela poderá 
ser utilizada em sua jornada profissional. Serão apresentadas, tam-
bém, as etapas do processo de tomada de decisão, principal pilar 
da Pesquisa Operacional.
Introdução 
à Pesquisa 
Operacional
Dr. Fernando Pereira Calderaro
12
UNICESUMAR
Suponha que você tem 250 m2 de madeira de lei e tenha que construir mesas e cadeiras. Sabendo que 
cada mesa utiliza em torno de 5,4 m2 de madeira e cada cadeira 1,5 m2, quantas unidades de mesas 
e cadeiras devem ser produzidas para ter o maior lucro possível? Já pensou em como as empresas 
definem a quantidade de produtos de cada modelo que devem ser produzidos e vendidos? Ou, então, 
como a sua operadora de TV por assinatura define quais canais farão parte de determinado pacote 
de programação?
É interessante como estes problemas se correlacionam. Em relação à produção de móveis citada, 
você deve ter observado um dado importante: os lucros de cada unidade de mesa e cadeira devem 
ser conhecidos bem como o valor de cada tipo de assinatura que a operadora de TV oferece. Quanto 
à produção de mesas e cadeiras, fica claro que ambos os produtos devem ser fabricados partindo da 
mesma matéria-prima, a madeira, e que a sua quantidade é finita (250m2). Será que existe alguma 
técnica para decidir a melhor quantidade produzida ou você terá que decidir por tentativa e erro? 
Tenho uma boa notícia a você: a Pesquisa Operacional tem mais de uma ferramenta disponível 
para calcular a melhor opção de produção. 
Mas, antes de vermos essas técnicas, agora, é com você: crie três cenários possíveis de fabricação de 
mesas e cadeiras apresentadas, anteriormente. Considere que, pelo menos, duas mesas e dez cadeiras 
serão produzidas, considere, também, que o lucro unitário por mesa seja de R$ 230,00 e por cadeira 
de R$ 68,00. Calcule o lucro total para os três cenários que você criou.
Depois de propor três alternativas de produção e calcular os seus respectivos lucros, vamos apro-
fundar, mais um pouco, a nossa análise? Imagine, agora, que, além de madeira, a empresa utilize para-
fusos, verniz, cola, horas trabalhadas na serra, horas trabalhadas na montagem e horas trabalhadas na 
pintura. Pense em como todos estes fatores de produção podem se relacionar e interferir na quantidade 
produzida de mesas e cadeiras. Podemos observar alguns pontos, a saber:
• Levantar quais desses recursos estão sobrando ou 
limitando a capacidade de produção da empresa.
• Conhecer quais desses recursos podem ser ampliados, 
levando maior lucro à empresa.
• Avaliar a demanda necessária de produtos que o 
mercado exige, para definir a melhor quantidade de 
mesas e cadeiras que devem ser produzidas.
13
UNIDADE 1
Observe como podemos tornar o nosso problema mais rico em informações, trazendo-o para a rea-
lidade vivida no dia a dia de uma empresa. Este é o objetivo da Pesquisa Operacional: entender um 
problema da melhor forma possível, buscando a melhor solução para ele. 
Utilize o seu Diário de Bordo para anotar as impressões que você teve sobre a Pesquisa Operacional 
até este ponto do nosso livro. Escreva, livremente, o que entendeu como principais objetivos da Pesquisa 
Operacional, tendo, como base, os exemplos apresentados e os aspectos importantes para a sua solução.
 
Com o objetivo de entender toda a profundidade da Pesquisa Operacional, veremos, nas próximas 
linhas e páginas da Unidade 1, um pouco sobre a história da Pesquisa Operacional e, também, alguns 
conceitos que fundamentarão os nossos estudos ao longo da disciplina.
DIÁRIO DE BORDO
14
UNICESUMAR
Durante a Segunda Guerra Mundial (1939-1945), período em que a disputa entre os Aliados e o 
Eixo foi árdua e muitos esforços de guerra foram empregados neste conflito, diversas indústrias na 
Europa deixaram de produzir bens de consumo para a população, a fim de produzir armamento aos 
seus exércitos. Os Aliados, que, até meados de 1941, tinham, como principais atores, Grã-Bretanha e 
França (vale salientar que a França já tinha, na época, o seu território ocupado pelas forças alemãs), 
sofreram inúmeras baixas em termos de exércitos e território (França) e navios (Grã-Bretanha). O 
Eixo, comandado pela Alemanha e apoiado por Itália e Japão, conseguiu neutralizar os carregamentos 
de suprimentos no mar do Atlântico, afundando diversos navios britânicos. No entanto, em junho de 
1941, a União das Repúblicas Socialistas Soviéticas – URSS juntou-se à Grã-Bretanha e, no final de 
1941, os Estados Unidos da América – EUA também se juntaram, efetivamente, ao lado dos Aliados. 
Esta nova dinâmica permitiu a troca de experiências e tecnologia entre as partes envolvidas no conflito.
Foi neste contexto que surgiu o termo “pesquisa operacional”, vindo do inglês operational resear-
ch. Segundo Hillier e Lieberman (2013), todos os exércitos, na Segunda Guerra, buscaram meios 
de economizar recursos e fazer os melhores ataques possíveis, inclusive, foi com esta intenção que 
os comandos militares britânico e norte-americano convocaram muitos cientistas para resolver os 
problemas táticos e estratégicos de suas operações militares. Como esses cientistas foram destinados 
a realizar pesquisas sobre operações militares, o termo “pesquisa operacional” foi utilizado para dar 
nome ao setor de trabalho deles.
O nascimento da Pesquisa Operacional é em 1936, quando o Ministério do Ar Britânico criou uma 
Estação de Pesquisa em Bawdsey Manor (Suffolk, Reino Unido) para estudar o aproveitamento do radar 
desenvolvido por Robert Watson-Watt, superintendente do Departamento de Rádio do Laboratório 
Nacional de Física. Watson-Watt foi o primeiro diretor da Estação de Pesquisa (GASS; ASSAD, 2005).
Segundo Longaray (2014), em 1938, Albert Percival Rowe utilizou o termo “pesquisa operacional” 
para designar a equipe de trabalho de Watson-Watt. A importância deste grupo foi tão grande que o 
Comitê de Estudos de Defesa Aérea Britânico passou a chamá-lo de Seção de Pesquisa Operacional.
Os primeiros grupos de pesquisa operacional utilizavam muito o pensamento imaginativo para 
resolver problemas complexos,como a utilização adequada do radar, a melhor maneira de usar as 
aeronaves (a maioria delas tinha problemas de autonomia, não atingindo grandes distâncias), a redu-
ção do número de cargueiros afundados pelos submarinos alemães (os aviões de escolta, no início da 
guerra, apresentavam baixa autonomia) e tentar aumentar a acuidade dos bombardeios sobre as cidades 
alemãs. A função primordial desses grupos era coletar o máximo de informações possíveis, analisá-las 
e construir modelos que pudessem representar o problema em questão para fazer as recomendações 
ao comando de guerra (LONGARAY, 2014). É válido ressaltar que essas ações foram fundamentais 
na guerra para que os Aliados conseguissem reverter a superioridade militar dos exércitos do Eixo.
Ao final da Segunda Guerra Mundial, as indústrias precisavam se reerguer, recuperar o seu processo 
produtivo, lidando com a escassez de insumos e matéria-prima, além, é claro, de terem que reerguer 
as suas paredes destruídas pelos bombardeios. Este cenário criou um campo fértil de trabalho aos 
cientistas envolvidos nas operações militares, pois esses profissionais perceberam que os problemas 
enfrentados pelas empresas eram semelhantes aos dos exércitos, porém, em um contexto diferente. 
15
UNIDADE 1
Foi a partir da década de 50 que a Pesquisa Operacional foi utilizada nas empresas e nos órgãos go-
vernamentais bem como passou a integrar o currículo das universidades (LONGARAY, 2014). Hillier e 
Lieberman (2013) e Marins (2011) apontam dois fatores como os principais para o rápido crescimento 
da Pesquisa Operacional. O primeiro deles é o desenvolvimento de técnicas mais específicas, como o 
Método Simplex, desenvolvido por George Dantzig, em 1947, e as tradicionais ferramentas, como a 
programação linear e a teoria das filas. O segundo fator foi a revolução computacional, por meio do 
aparecimento de computadores com mais capacidade de processamento de dados, permitindo que 
cálculos complexos fossem resolvidos em menos tempo.
Dessa maneira, podemos, então, dizer que a Pesquisa Operacional, como a conhecemos hoje, é 
uma área do conhecimento aplicada na solução de problemas que envolvem a condução ou a coor-
denação das operações ou atividades de uma empresa, sendo utilizada, atualmente, em manufatura, 
transportes, área médica e hospitalar, serviços militares e públicos e, até mesmo, no setor financeiro 
(HILLIER; LIEBERMAN, 2013). 
É comum associar a Pesquisa Operacional à Programação Linear, mas a nossa área não se restringe 
a essa técnica. Ao longo de nossa jornada, você terá contato com outras técnicas de solução de proble-
mas, ilustrando a amplitude desta área do conhecimento.
Antes de continuar, ouça um podcast que traz um pouco mais de 
História Antiga. Você poderá ouvir sobre Alexandre, o Grande, um 
general e imperador macedônio que já aplicava, há muito tempo, 
conceitos de Pesquisa Operacional em suas batalhas.
Mas, não se esqueça: a Pesquisa Operacional é uma das engrenagens para o desenvolvimento de um 
processo ou produto, que deve ser associada a outras engrenagens, como o gerenciamento, a inovação, 
o projeto, o planejamento, a estratégia e por que não, o marketing.
Todas essas engrenagens servem para compor o corpo de uma empresa, permitindo que ela tenha 
elementos suficientes para organizar seu dia a dia, planejar as suas ações, definir metas e objetivos, 
além de traçar os caminhos necessários para que as metas sejam atingidas. Todas essas etapas passam 
por processos de tomada de decisão.
Com certeza, você já teve que tomar alguma decisão em sua vida e, na maioria das vezes, há várias 
opções que precisam ser levadas em consideração para que possa escolher aquela que lhe favoreça, 
pelo menos, naquele momento. Algumas decisões podem afetar, apenas, você, porém outras decisões 
podem envolver mais pessoas, principalmente, as que estão ao seu redor, como familiares e amigos.
https://apigame.unicesumar.edu.br/qrcode/8502
16
UNICESUMAR
Na carreira profissional, você também precisa tomar decisões, independentemente do cargo que 
ocupa e, quanto mais alto o cargo, maiores são as responsabilidades e os riscos que se corre ao decidir 
tomar uma atitude. Por este motivo, a Pesquisa Operacional serve de instrumento para ajudar o(a) 
tomador(a) de decisão a escolher a melhor opção à empresa, o que pode afetar todos os funcionários 
e, até mesmo, o mercado consumidor ou a concorrência.
Este processo não é tão simples. Segundo Lachtermacher (2007), quando você precisa escolher uma 
alternativa dentre várias conflitantes ou concorrentes, há dois caminhos a seguir: o primeiro é usar a 
intuição e a experiência, escolhendo a melhor alternativa baseada em sua vivência dentro ou fora da 
empresa. O segundo caminho é elaborar um modelo da situação e realizar exaustivas simulações de 
vários cenários que contemplem as alternativas que deve escolher. Há alguns anos, a primeira opção era 
a escolhida, pois não havia técnicas matemáticas suficientes e avanço computacional que permitissem 
a elaboração de modelos mais sofisticados que fossem resolvidos, facilmente; a carência de dados e 
informações dos processos produtivos das empresas também atrapalhava muito. Porém, atualmente, a 
quantidade de informação disponível, geralmente, é grande, até mesmo um computador simples é capaz 
de rodar um software de cálculo que possa ser utilizado na resolução de um problema matemático. 
De modo geral, o processo de tomada de decisão pode ser resumido como o apresentado na Figura 1.
Descrição da Imagem: na imagem, aparece um retângulo de bordas arredondadas, em que está escrito “Situação 
gerencial”, logo acima desse retângulo está escrito “Mundo Real”. Desse retângulo sai uma seta ligando um retângulo de 
bordas arredondadas, nele está escrito “Modelo”. Desse mesmo retângulo sai uma seta tracejada para baixo conectando 
um retângulo em que há a palavra “Intuição”. Do retângulo “Modelo” parte uma seta conectando a outro retângulo, 
em que se lê “Resultado”. Desse retângulo parte outra seta, conectando um retângulo onde se lê “Decisão”. Acima do 
retângulo “Decisão” está escrito “Mundo Real”. Os retângulos “Modelo” e “Resultado”, que estão no centro da figura, 
encontram-se dentro de outro retângulo maior, em que está escrito “Mundo Simbólico”. Do retângulo “Intuição”, que 
está abaixo da figura, sai uma seta tracejada para cima que se divide em duas, ligando-se aos retângulos “Modelo” e 
“Resultado” e, ainda, do retângulo “Intuição” parte outra seta tracejada, conectando-o ao retângulo “Decisões”. 
Figura 1 - Processo de tomada de decisão / Fonte: adaptada de Lachtermacher (2007).
17
UNIDADE 1
Observe que não basta elaborar o modelo e encontrar uma resposta matemática para ele, é importante 
aplicar os conhecimentos adquiridos com o tempo e utilizar a experiência para tomar a decisão final. 
É importante ter ciência de que é preciso primeiro juntar informações, analisá-las, depurá-las, ou 
seja, eliminar as que não serão úteis, para, então, elaborar um modelo, testá-lo, obter as respostas dele 
e, então, decidir que caminho tomar.
Quando se aplica a Pesquisa Operacional, essas etapas de tomada de decisão devem ser bem claras e de-
finidas. Silva et al. (2010) apresentam uma boa descrição dessas etapas, conforme apresentado na Figura 2.
Descrição da Imagem: na figura, há um retângulo escrito “Formulação do problema”, desse retângulo sai uma seta 
conectando outro retângulo em que está escrito “Construção do modelo do sistema”. Deste último retângulo parte 
uma seta conectando um retângulo no qual se lê “Cálculo da solução por meio do modelo” e, desse retângulo, sai uma 
seta conectando outro, em que se lê “Teste do modelo e da solução”. Deste último retângulo sai uma seta conectando 
um retângulo, em que está escrito “Estabelecimento de controles de solução”, dele sai uma seta conectando o último 
retângulo, no qual se lê “Implementação e acompanhamento”.
Figura 2 - Fases de um estudo em Pesquisa Operacional / Fonte: adaptada deSilva et al. (2010). 
A primeira etapa descrita, dentre as seis apresentadas na Figura 2, aquela que inicia o processo é 
a formulação do problema. Esta, sem dúvida nenhuma, é a etapa mais importante da tomada de 
decisão, pois não há como resolver um problema, corretamente, se ele estiver errado (HILLIER; 
LIEBERMAN, 2013). É necessário que todos os envolvidos na solução do problema troquem in-
formações, coletem dados e os analisem, excluindo aqueles que não serão úteis. Normalmente, o 
problema não tem um enunciado completo, ele é formado por ideias e afirmações que devem ser 
unidas para formar algo compreensível.
Diferentemente de quando estudamos os conceitos e as disciplinas no curso de graduação, onde 
os problemas são postos para que se desenvolva o raciocínio lógico daquela situação ou daquele caso 
apresentado, na realidade, na maioria das vezes, você dispõe de conjuntos de dados, questionamen-
tos e sugestões apresentadas em torno de um problema central. Cabe a você, como engenheiro(a), 
organizar as ideias, juntar mais informações, analisar os dados, separando aqueles, realmente, rele-
vantes, descartando os que não têm significância à solução do problema, para, então, interpretando 
a situação, descrevê-la com o máximo de detalhes possível.
18
UNICESUMAR
Por exemplo, suponha que você precise viajar entre duas cidades e que disponha de duas rotas, 
uma mais curta com pedágio e outra cerca de 10km mais longa, sem pedágio. Se esse for o seu pro-
blema, você deve descrevê-lo, corretamente, para escolher a melhor alternativa. Há vários fatores 
que podem ser considerados:
Estas são algumas situações que você poderia analisar na escolha da melhor rota para aquele dia. Note 
que, ao analisar se há combustível suficiente para a viagem ou dinheiro para pagar o pedágio, você 
está colocando restrições ao seu problema, pois, se não tiver dinheiro destinado ao pedágio, então, 
restará, apenas, um caminho a escolher. Por outro lado, se você tiver o dinheiro do pedágio, mas não 
tiver pressa para chegar ao destino, poderá, também, escolher a rota mais longa.
No processo de formulação do problema, as restrições devem ser consideradas, no caso de uma 
indústria, elas podem ser a quantidade de matéria-prima ou mão de obra disponível. Se for uma apli-
cação financeira, uma das restrições poderia ser a quantidade de dinheiro que você tem a aplicar. No 
problema apresentado, anteriormente, sobre produção de mesas e cadeiras, a quantidade de madeira 
disponível (250m2) torna-se uma restrição do problema, pois não é possível fazer mesas e cadeiras em 
quantidades infinitas, mas respeitar a quantidade máxima de madeira disponível.
Portanto, nessa etapa, se concentre em descrever, com o máximo de detalhes possível, o seu problema 
e os fatores envolvidos nele. Não se deve esquecer do objetivo a ser atingido com o problema: pode 
ter foco em minimização de custo ou maximização de lucro, por exemplo. No caso da viagem com 
pedágio, para avaliar o menor custo, seria possível comparar o preço pago pelo pedágio no caminho 
mais curto com o custo de combustível ao percorrer 10 km a mais no caminho mais longo que não 
tem pedágio. Por outro lado, se o objetivo for buscar o caminho mais rápido, a estrada pedagiada pode 
ser a melhor alternativa. Veja como um mesmo problema pode ser visto sob diferentes óticas. Por este 
motivo, uma boa definição do problema é, sem dúvida nenhuma, ponto importantíssimo para que o 
seu processo de solução se inicie de maneira correta.
• Tanque cheio e sem dinheiro para o pedágio.
• Tanque cheio e com dinheiro para o pedágio.
• Necessidade de chegar mais rápido.
• Não há pressa para chegar ao destino.
• A estrada mais longa é esburacada e, provavel-
mente, você demorará 40 min. a mais na viagem.
19
UNIDADE 1
Após a formulação adequada do problema, descrevendo todas as limitações e possibilidades da 
situação estudada e definido o objetivo principal que se deseja atingir, pode-se partir para a modela-
gem matemática do problema. 
Segundo Marins (2011), o modelo é uma representação simplificada de algo real e tem muita 
utilidade, pois estabelece uma relação entre as variáveis determinando as mais importantes para o 
problema, além de apontar os dados relevantes e permitir a visualização de vários cenários, sem afetar 
o funcionamento do sistema estudado. Os modelos apresentam diversas formas e classificações, posso 
citar para você alguns, tais como: os modelos físicos, como as maquetes de um edifício; os modelos 
analógicos, como os organogramas; e os modelos matemáticos. São, justamente, os modelos matemá-
ticos aqueles utilizados para representar os problemas em Pesquisa Operacional, pois, neles, você pode 
colocar as variáveis de decisão ou controladas, as variáveis não controladas bem como as restrições 
impostas ao seu problema.
É nesta etapa que você transforma o seu problema que foi descrito, na forma de um texto corrido, 
em uma relação matemática. Nela, poderão ser utilizadas diversas técnicas do cálculo e de otimização 
para resolver o problema. 
Um exemplo bem simples de modelo matemático é a equação de reta. Em algum momento de seu 
curso, ou, até mesmo, no Ensino Médio, você deve ter feito um gráfico de equação de reta e, para isso, 
utilizou uma equação matemática, atribuindo valores à variável independente x, obtendo respostas à 
variável dependente y. Observe que se estabeleceu uma relação entre as variáveis, dessa forma, você 
pôde aplicar valores diferentes para a variável x e obter o respectivo resultado para y.
Em Pesquisa Operacional, o objetivo da modelagem é relacionar as variáveis escolhidas para re-
presentar o problema de maneira que o modelo reproduza o sistema real e você possa estudar o seu 
comportamento em diferentes circunstâncias. Como o foco da Pesquisa Operacional é a otimização, o 
modelo será utilizado para encontrar não todas as soluções possíveis, mas aquela considerada a melhor 
de todas. Obviamente, é possível testar diferentes circunstâncias com o modelo descrito, mesmo que 
não seja a condição ótima.
Com o problema descrito e o modelo elaborado basta resolvê-lo. Com certeza, nem sempre é uma 
tarefa fácil selecionar o melhor método de solução para o modelo criado. Mas você verá que, dependen-
do do tipo de modelo escolhido dentro da Pesquisa Operacional para resolver um problema, algumas 
técnicas são características e apresentam excelentes resultados em sua aplicação.
Logo, esta etapa da tomada de decisão é caracterizada pelo método utilizado para resolver o modelo. 
Taha (2008) afirma que não existe apenas uma técnica para resolver todos os tipos de modelos matemá-
ticos, mas o que determina qual técnica deve ser empregada é, justamente, o grau de complexidade do 
modelo. Dentre as técnicas existentes, pode-se dizer que a Programação Linear é a mais utilizada dentro 
da Pesquisa Operacional, sendo aplicada quando as equações que compõem o modelo são lineares. A 
programação inteira é aplicada quando as variáveis assumem valores inteiros, já a programação dinâ-
mica é útil quando você pode decompor o problema em situações mais simples, facilitando a solução.
20
UNICESUMAR
Grande parte desses modelos se baseiam em métodos numéricos que apresentam soluções apro-
ximadas, muitas vezes, devido à impossibilidade de determinar uma solução exata. No entanto os 
métodos que utilizam soluções aproximadas são validados e apresentam respostas satisfatórias e 
muito próximas do que seria a solução real. Outros modelos se baseiam no comportamento dos da-
dos, trazendo conceitos de estatística, como as distribuições de probabilidade e o seu comportamento 
aleatório de ocorrência.
Uma expressiva vantagem dessas técnicas para resolver problemas de Pesquisa Operacional é que 
são construídas como algoritmos, que são regras fixas determinadas pelo usuário do modelo para 
resolver o problema, permitindo que o modelo seja resolvido, por inúmeras vezes, em processos ite-
rativos, alcançando assim, a melhor resposta.
Outro fator relevantena solução de modelos matemáticos é a disponibilidade de softwares já com 
algoritmos clássicos instalados, o que permite resolver problemas complexos com facilidade e segu-
rança. Antes do advento da computação, esses modelos eram resolvidos de forma demorada e, algumas 
vezes, por equipes de pesquisadores, cientistas e engenheiros que se debruçavam sobre os problemas e 
aplicavam os métodos iterativos centenas de vezes até atingir o valor ótimo desejado. Como todas as 
técnicas de solução de problemas em Pesquisa Operacional foram embasadas em métodos matemáti-
cos bem estabelecidos, com etapas bem definidas (algoritmos), o surgimento dos softwares de cálculo 
permitiu que tais métodos fossem programados e acelerassem o processo. Então, quando você executar 
um programa e obter a resposta em segundos, não se esqueça: há uma gama de etapas programadas 
no software que lhe permitiram encontrar a solução, rapidamente. Alguns exemplos desses softwares 
e pacotes computacionais são o Solver, do Excel®, que será abordado em um de nossos ciclos de apren-
dizagem, o LINDO®, o CPLEX®, os quais são úteis para resolver problemas de Programação Linear e 
Não-Linear, além do PROMODEL® e do ARENA®, aplicados para simulação dos modelos analisados 
(MARINS, 2011). 
Silva et al. (2010) lembram que, além de resolver o modelo, é muito importante testá-lo com dados 
históricos do problema, se houverem. Dessa maneira, você pode comparar a resposta do modelo com 
o que, realmente, ocorreu, observando o desvio entre essa resposta e o valor real. Caso o desvio seja 
muito alto e inaceitável, o modelo deve ser reformulado e, novamente, resolvido para ser testado. Ele 
pode representar o problema e será utilizado em simulações se os desvios forem pequenos.
Note a diferença entre essa etapa e a anterior: na etapa de solução do modelo, a finalidade é definir 
o melhor método para resolvê-lo, já nesta etapa, de teste do modelo, após a escolha do método, o mo-
delo é resolvido para dados cujas respostas são conhecidas e os valores encontrados são comparados 
aos já existentes.
Apesar de essa etapa ocorrer depois do modelo escrito e da seleção do método de solução, ela é 
fundamental para que você tenha mais segurança ao executá-lo. Lá na etapa de modelagem, dissemos 
que a criação do modelo acontece pela relação entre as variáveis escolhidas para representar o proble-
ma real, escolha esta que foi realizada na etapa de formulação do problema. Sendo assim, esta etapa 
de verificação e validação do modelo faz você avaliar se as variáveis escolhidas, bem como as relações 
estabelecidas são, de fato, suficientes para que você atinja o objetivo de solucionar o problema.
21
UNIDADE 1
Como o modelo é uma representação da realidade, não é desejável que ele seja, extremamente, 
simples, a ponto de não conseguir representar o fenômeno real, mas também não deve ter um grau de 
complexidade tão elevado, com inúmeras variáveis que tornem o seu processo de cálculo dificultoso, 
trabalhoso e custoso, até mesmo para os softwares de cálculo. Quanto mais variáveis você tiver em seu 
modelo, maior será a quantidade de possibilidades de variação da situação real estudada, no entanto isso 
pode criar tantas possibilidades de solução que, por excesso de informação, pode levar a uma decisão 
dificultada. Por este motivo, escolha sim, sempre que possível, um modelo simples, o qual represente 
o problema real, o que pode ser verificado nesta etapa de validação do modelo.
Como o modelo é construído com base em dados de uma situação-problema, é inevitável fazer 
a constante verificação dos dados do problema, para que, se houver alguma modificação, uma nova 
solução seja testada, ou, até mesmo, um novo modelo seja elaborado (SILVA et al., 2010). Por exemplo, 
se você elaborou um problema para determinar a quantidade de matéria-prima a ser utilizada na ela-
boração de uma liga de aço com 1% de carbono e, durante o processo, modificou a composição para 
2% de carbono, o modelo deve ser refeito.
Deve ficar claro que o modelo é particular a cada problema. Podemos ter, sim, problemas similares 
que tenham modelos com formatos parecidos, mas, provavelmente, os seus parâmetros serão diferentes, 
resultando em um modelo distinto.
O que ocorre, com frequência, é termos algumas estruturas de modelo que se adaptam melhor a 
certos tipos de problema, o que você verificará quando estudar a Programação Linear e observar que, 
para problemas de mix de produção ou logística, há formas mais adequadas de representar o proble-
ma e de seguir uma linha de raciocínio que favoreça a sua solução. A própria Teoria das Filas, a qual 
citaremos mais adiante e que é assunto de Simulação de Processos, tem os seus modelos característicos 
para cada tipo de sistema de fila.
É importante, também, entender que, ao alterar apenas um número do modelo, este já pode ser 
considerado novo, pois a sua faixa de ação pode ser ampliada ou reduzida. Então, se o modelo está 
pronto e validado, é hora de executá-lo nas condições desejadas, ou, simplesmente, buscar a sua solu-
ção, no caso da Programação Linear, e analisar a solução obtida buscando a implementação. É neste 
ponto que a decisão deve ser tomada. Considerando a elaboração do problema, a criação do modelo, 
a sua resposta e análise, o responsável por tomar a decisão deve escolher qual solução adotar e, então, 
o modelo deve ser implementado (MARINS, 2011).
Para uma aplicação de sucesso do modelo, toda a equipe envolvida no estudo deve participar para 
treinar e acompanhar as pessoas que executarão as ações, dessa forma, é possível observar se há neces-
sidade de corrigir algum desvio do modelo que pode persistir ao ser aplicado às condições reais de um 
processo produtivo. Todas as fases do estudo devem ser bem documentadas para que tenha reprodu-
tibilidade, além de facilitar mudanças do modelo ao longo do tempo (HILLIER; LIEBERMAN, 2013).
Caro(a) estudante, é muito importante entender que esse processo não é estático, ou seja, quando 
você define um problema e elabora um modelo, este é válido para o problema que você quer resolver, 
nas condições estabelecidas no mesmo. Havendo qualquer alteração no problema, o modelo deve ser 
corrigido, para que permaneça tendo validade ao longo do tempo.
22
UNICESUMAR
Estas são as fases principais de um estudo desenvolvido em Pesquisa Operacional. Tendo conhe-
cimento da sequência que você precisa seguir para preparar o problema à solução, ficará mais fácil 
entender quais informações são necessárias na utilização das técnicas de solução de problemas em 
Pesquisa Operacional. 
• Pesquisa Operacional: área da Engenharia responsável por analisar problemas e opor-
tunidades, buscando a melhor solução.
• Função objetivo: representa o que se deseja otimizar, ou seja, maximizar ou minimizar. 
Por exemplo, maximizar um lucro e minimizar um custo.
• Restrição: equação que representa as limitações do processo estudado. Geralmente, 
limitações de recursos, como matéria-prima e horas disponíveis de trabalho.
Agora, falaremos, um pouco, sobre os principais métodos utilizados para resolver problemas dentro 
do contexto da Pesquisa Operacional.
Você já deve ter observado que a Pesquisa Operacional tem, com fundamento, analisar um proble-
ma e buscar uma solução para ele, portanto, você lidará com uma gama grande de tipos diferentes de 
problema. Apresentarei a você, em linhas gerais, algumas técnicas utilizadas na Pesquisa Operacional 
para, nos próximos ciclos de aprendizagem, detalharmos algumas delas.
Programação Linear (PL)
A Pesquisa Operacional tem, como principal vertente, a Programação Linear e, como método de solu-
ção, o chamado Método Simplex. Na Programação Linear, os problemas são tratados como conjunto 
de equações e inequações lineares que devem ser, simultaneamente, resolvidas. É definida uma função 
objetivo que será maximizada ou minimizada.
É, sem dúvida, um dos métodos mais clássicos e utilizados em problemas de Pesquisa Operacional 
e você verá que não é à toa,pois a sua aplicabilidade é bem extensa e a capacidade de tratar problemas 
simples e complexos a torna favorita, em muitos casos. Você aprenderá a escrever modelos de Pro-
gramação Linear e a resolvê-los. É importante dizer que, dentro das Engenharias, é um dos métodos 
preferidos quando se trata de otimização de sistemas.
23
UNIDADE 1
Programação Linear Inteira (PLI)
A diferença entre a Programação Linear e a Programação Linear Inteira é o resultado aceitável para 
as variáveis do problema, que devem ser, estritamente, inteiras. Pensando no problema da fabricação 
de mesas e cadeiras, você não pode fabricar 8,5 cadeiras ou 3,3 mesas, ou serão 8 ou 9 cadeiras ou 3 
ou 4 mesas. A lógica de solução é a mesma da Programação Linear, no entanto, devemos informar 
que as variáveis devem ser inteiras. Uma particularidade deste tipo de problema é a Programação 
Linear Inteira Binária (PLIB) cujas soluções de suas variáveis são, apenas, os números 0 e 1. A PLIB é, 
normalmente, utilizada quando há intenção de calcular se deve (1) ou não (0) escolher determinada 
variável do problema. Mais detalhes sobre esse tipo de programação serão vistos adiante.
Programação Linear Inteira Mista (PLIM)
Neste tipo de Programação Linear, algumas das variáveis buscadas podem ser números fracionários, 
enquanto outras precisam ser, estritamente, inteiras. É um caso em que o seu problema pode ter um 
grau de complexidade um pouco maior e há a necessidade de determinar a solução do modelo condi-
cionando algumas das respostas a números inteiros, permitindo que outras respostas sejam números 
decimais. As técnicas utilizadas para resolver estes tipos de problema são as mesmas empregadas na 
Programação Linear convencional.
Programação Não-Linear (PNL)
A Programação Não-Linear apresenta as suas equações em formato não linear, ou seja, há potências, 
exponenciais, logaritmos, multiplicação ou quociente entre variáveis. O que definirá este tipo de progra-
mação é, realmente, o tipo de equação utilizada para representar alguma restrição ou função objetivo. 
Esta técnica se torna útil quando o seu problema não pode ser representado por uma equação linear, 
que tem proporcionalidade direta entre as variáveis do sistema estudado. Neste caso, o método simplex 
utilizado na solução de problemas de Programação Linear não pode ser empregado, outros métodos 
mais específicos para sistemas não-lineares devem ser escolhidos como Método do Tipo Gradiente, 
Método da Seção Áurea, Método de Armijo e Método de Newton.
Teoria dos Jogos
A Teoria dos Jogos estabelece uma relação competitiva entre dois jogadores, o que, para as Engenharias, 
se traduz na competitividade entre empresas. Na Teoria dos Jogos, são avaliadas as recompensas que 
cada “jogador” conquistará ao adotar determinada estratégia, tendo, como base, a interação entre as 
estratégias de cada jogador. Dentro do livro de Pesquisa Operacional, teremos algumas unidades que 
tratam desta teoria. Você aprenderá como representar os jogos e como analisá-los sob o ponto de vista 
dos jogadores envolvidos. O interessante da teoria é que ela pode ser associada à Programação Linear 
e o modelo criado de jogo é resolvido com vistas à otimização do modelo de jogo gerado.
24
UNICESUMAR
Teoria das Filas
Outra maneira importante de analisar problemas na Pesquisa Operacional é utilizar a chamada Teoria 
das Filas, a qual estuda o comportamento de filas em sistemas produtivos. Devido à íntima relação da 
Teoria das Filas com a Simulação de Processos Produtivos, tal conteúdo é, muitas vezes, abordado junto 
à simulação e ao trabalho com simuladores de processo. As filas podem ser desenvolvidas em sistemas 
corriqueiros e conhecidos como bancos e supermercados, mas também podem ser encontradas em 
processos produtivos quando são analisadas as filas formadas entre equipamentos. Por ser base da 
Simulação, não trabalharemos com ela neste livro, mas você poderá estudá-la, com mais detalhes, em 
Simulação de Processos Produtivos, e verá como ela também ajuda a otimizar sistemas que pode ter 
foco na redução de custos.
Aqui, foram apresentadas, apenas, algumas das técnicas que podem ser utilizadas em Pesquisa 
Operacional, portanto, entenda que esta belíssima área das Engenharias tem uma gama grande de 
aplicações e técnicas que fundamentam a solução desses problemas. Recomendo que você busque ler 
mais sobre o assunto e passe a testar novos tipos de problema com vistas à solução ótima.
Para que você visualize onde a Pesquisa Operacional pode ser aplicada, preparei alguns exemplos 
com uma breve discussão sobre o que se busca em cada tipo de problema.
Problema da Dieta
Neste tipo de problema, o objetivo é avaliar o quanto deve ser ingerido de alimento para que o corpo 
tenha o aporte de macronutrientes (carboidratos, lipídios e proteínas), micronutrientes e vitaminas, 
respeitando um limite de calorias (kcal) diárias. Tal análise pode ser expandida na fabricação de ra-
ções, cuja dose diária deve ser calculada para que o animal (seja ele de criação ou de corte) tenha a 
nutrição adequada.
Este tipo de problema exige que você defina quais são as necessidades de nutrientes e energia, ou 
seja, valores máximos e/ou mínimos que podem ser acompanhados de custos de aquisição de ma-
téria-prima, quantidade presente em insumos que podem ser misturados, enfim, pode-se ter grande 
quantidade de situações envolvendo o problema da dieta. Neste caso, você pode minimizar o custo 
de aquisição de insumos para preparar uma ração, por exemplo, ou minimizar o total energético da 
mistura mantendo os níveis adequados de nutrientes.
Observe que você pode, até mesmo, otimizar as suas refeições, definindo a quantidade de nutrientes 
que quer ou precisa ingerir e definir um limite energético para que isso não leve ao ganho de peso, por 
exemplo. E, ainda melhor, buscando gastar o menos possível com a aquisição de alimentos.
25
UNIDADE 1
Problema do Mix de Produção
Quando uma empresa fabrica mais de um produto, utilizando os mesmos recursos, é importante definir 
a quantidade de cada tipo de produto que deve ser fabricado para ter o maior lucro ou a maior receita ou 
reduzir o custo, respeitando a quantidade mínima a ser produzida bem como as restrições da quantidade 
de insumos disponível. É o tipo de problema clássico para estudar e entender a Programação Linear.
Provavelmente é o tipo de problema que você mais verá como representante da Programação Linear, 
principalmente, dentro das engenharias de processo, como a Engenharia de Produção. Neste tipo de 
problema, as limitações são os recursos disponíveis, os que podem ser representados por quantidade 
de materiais ou horas disponibilizadas, seja de mão de obra, seja de maquinários. Muitas vezes, o foco é 
maximizar os lucros ou minimizar os custos de fabricação. Há variações deste problema que envolvem, 
junto à produção, uma análise logística de distribuição dos produtos acabados.
Problema de Transporte
Aplicado a problemas de logística, tem, como objetivo, reduzir os custos de transporte, que pode ser 
calculado pela menor distância total percorrida, seleção do melhor caminho ou escolha das rotas mais 
adequadas. É comum associar o custo de transporte ao volume transportado de mercadoria, seja em 
massa (quilogramas ou toneladas), seja em volume (litros ou metros cúbicos).
É interessante notar, aqui, que os problemas de transporte não cabem, unicamente, ao transporte 
rodoviário, pois podem ser aplicados a modais ferroviários, hidroviários, aéreos e, até mesmo, duto-
viários. Tais problemas podem apresentar uma modelagem com algumas modificações, comparados 
aos dois problemas anteriores de mix de produção e de dieta.
Há alguns algoritmos específicos para resolver tais tipos de problema, principalmente, quando há 
entrepostos que costumam ser chamados de “nós”, nesta modelagem. No entanto é um tipo de problema 
que costuma ser modelado com Programação Linear e, muitas vezes, o desenvolvimento do modelo 
é bem intuitivo, bastando algum conhecimentosobre fluxo de materiais.
Problema do Orçamento de Capital
 Quando há um capital disponível para investimento, uma empresa ou pessoa pode definir quais são 
as melhores aplicações financeiras, ou seja, aquelas que apresentam mais retorno financeiro. A solução 
deste problema permite definir o quanto do capital que deve ser investido em cada aplicação financeira.
Observe que este tipo de problema parece se aplicar mais à área da Economia do que da Engenharia, 
no entanto, você, como engenheiro(a), além de poder atuar em diversas áreas do conhecimento, como 
análise e viabilidade de projetos e instituições bancárias, pode, também, utilizar uma análise financeira 
para justificar o investimento de uma empresa em um processo melhor, novos equipamentos, novas 
tecnologias e, até mesmo, para a instalação de uma planta nova. Assim, você pode comparar o retorno 
financeiro de executar o projeto com o retorno financeiro de deixar o dinheiro aplicado em algum 
investimento ou em um conjunto de investimentos. 
26
UNICESUMAR
Problema de Fluxo na Indústria de Processo
Com o objetivo de determinar a quantidade de produtos fabricados, este problema toma, como base 
de suas restrições, a capacidade de processamento de cada etapa de produção e os princípios de con-
servação de massa. É comum adotar, como função objetivo, o lucro obtido pela venda dos produtos 
fabricados, buscando, obviamente, o maior lucro possível.
O modelo desenvolvido neste tipo de problema também se baseia na Programação Linear ou em 
suas variações, como a Programação Inteira ou Inteira Mista. O princípio de conservação de massa, 
aqui, citado é uma das considerações, também, utilizadas para criar as restrições de alguns tipos de 
problemas de transporte. Neste princípio, se considera que tudo o que entra sai de determinado ponto, 
ou seja, a soma de todas as correntes de entrada é igual à soma das correntes de saída. Se houver algum 
acúmulo no ponto estudado, esse valor também deve ser considerado, adotando a seguinte lógica: o 
que entra menos o que sai é igual ao que se acumula.
Quando você estudar este tipo de problema, na Unidade 4 do livro, entenderá melhor o princípio 
de conservação das massas. 
Problema da Interação Estratégica entre Agentes
Este tipo de problema é analisado pela Teoria dos Jogos, que, como dito, anteriormente, prevê a análise 
da relação entre a tomada de decisão de empresas, ou seja, as recompensas obtidas quando duas empre-
sas tomam as suas decisões. Um exemplo comum é o de organizações que competem em um mesmo 
mercado e devem decidir se ampliam o investimento em seus processos produtivos ou se mantêm os 
processos nas condições atuais. Também é aplicado quando uma empresa decide se entra ou não em 
um mercado novo dominado por outra.
Na Teoria dos Jogos, são estudados os Jogos Simultâneos, em que se considera que todos os jogadores 
tomam as decisões ao mesmo tempo, de maneira que nenhum sabe, exatamente, o que o outro esco-
lherá, mas tem, apenas, um vislumbre das possibilidades de escolha de cada um. Há, também, os Jogos 
Sequenciais. Nestes, um jogador inicia o movimento escolhendo uma estratégia e o outro jogador adota 
uma escolha já conhecendo a opção inicial de seu oponente. Os Jogos Sequenciais podem ter mais de 
uma rodada, havendo, então, alternância de escolhas de estratégias entre os jogadores, um após o outro.
Em ambos os casos, pode-se analisar, de antemão, as melhores opções para você e o seu oponente. 
É nisso que se baseia a Teoria dos Jogos, tentar prever a estratégia escolhida pelo adversário para se 
antecipar a ela ou escolher a que menor prejuízo trará, pois, muitas vezes, a estratégia que traz o melhor 
resultado também pode levar ao maior prejuízo. 
É importante dizer que, independentemente do resultado que a Teoria dos Jogos forneça, sugerindo 
uma estratégia como a mais adequada, nada impede que o jogador (empresa) escolha um caminho 
mais arriscado, o qual poderá levar a resultados muito melhores. 
A Teoria dos Jogos pode ser combinada com a Programação Linear para atender ao objetivo de 
otimizar a escolha, e você terá a oportunidade de aprender a combinar as duas na Unidade 9, ao final 
do nosso livro, depois de dominar a Programação Linear.
27
UNIDADE 1
Problema de Formação de Fila em Processos
A presença de gargalos na indústria é algo comum, geralmente, se há uma máquina ou etapa do pro-
cesso mais lenta do que as demais e, por este motivo, dita o ritmo de todo o ciclo. Quando isso ocorre, 
pode haver formação de filas em etapas intermediárias e, com informações sobre o comportamento 
da fila, você consegue avaliar a capacidade produtiva, os custos envolvidos na execução da atividade 
e, também, os custos associados à própria fila, muitas vezes, chamado de “custo de espera”. Uma apli-
cação importante da análise da fila é a simulação de processos, o que permite propor mudanças no 
sistema produtivo no campo virtual, para avaliar as consequências da modificação proposta antes de 
ser implantada, assim, haverá mais segurança na condução do processo.
Na Teoria das Filas, o ponto forte é a análise dos dados que são coletados para representar a dinâmica 
de funcionamento da fila e de atendimento aos clientes que chegam nela. Os modelos desenvolvidos 
na Teoria das Filas são baseados em distribuições de probabilidade, ou seja, utilizam os conhecimentos 
da estatística. Considera-se que os dados obtidos possuem comportamento aleatório, sem tendência 
específica e que a sua ocorrência segue alguma distribuição de probabilidade, tais como: Exponencial, 
Poison, Erlang, Gama, Beta e tantas outras.
Como já mencionei, a Teoria das Filas será estudada na disciplina de Simulação de Processos Pro-
dutivos. Lá, você terá a oportunidade de entender como funciona a análise desses dados, como ajustar 
uma distribuição de probabilidade a eles e selecionar o modelo de fila mais adequado para o sistema 
que você está estudando e, também, aplicá-lo a softwares de simulação, analisando sistemas reais sob 
diferentes condições, sem a necessidade de modificar o sistema real gastando dinheiro para isso.
Mas, então, por que apresentar a Teoria das Filas, aqui, em Pesquisa Operacional, se ela será utilizada 
em Simulação de Processos? Simples: pois o conhecimento é integrado, ambas as áreas da Engenharia 
têm o objetivo de otimizar um sistema e ajudar a resolver um problema. Além de que ambas estão, 
intimamente, interligadas, chegando ao ponto de podermos dizer que a Simulação de Processos é uma 
etapa mais refinada da Pesquisa Operacional que permite avaliar, de forma dinâmica, o comportamento 
de um sistema em diferentes condições.
Estas são algumas aplicações da Pesquisa Operacional para que você entenda a importância des-
sa área nas Engenharias e o potencial de aplicabilidade que ela apresenta. De agora em diante, nos 
debruçaremos com mais detalhes, sobre a Programação Linear, com o intuito de fundamentar os 
conhecimentos básicos da área e começarmos a resolver problemas.
Independentemente da técnica utilizada, o principal objetivo na vida do engenheiro(a) é otimizar. 
Sempre que ele(a) consegue atingir tal meta, há redução de custos, elevação dos lucros e, ao 
menos, um problema resolvido.
28
UNICESUMAR
A Programação Linear é apontada como uma das bases da Pesquisa Operacional. Grande parte dos 
problemas encontrados nas Engenharias podem ser representados por equações lineares. A partir 
de agora, é importante que você comece a se familiarizar com alguns termos: equações e inequações, 
função objetivo, variáveis de decisão, variáveis de folga e restrições.
Para que você possa iniciar a segunda unidade mais tranquilamente, trago para você algumas de-
finições desses termos. 
As equações lineares são representações com sinal de igualdade. Veja, por exemplo:
3 8 251 2� � � �x x (1)
j á as inequações lineares possuem sinal de desigualdade como maior ou igual (≥) ou menor ou igual (≤).
3 8 251 2� � � �x x (2)
3 8 251 2� � � �x x (3)
independentementede ser uma equação ou inequação, elas apresentam comportamento linear, o 
qual pode ser identificado pela multiplicação de um número (chamado de coeficiente) pela variável. 
Observe que as variáveis x1 e x2, nas equações apresentadas, anteriormente, não estão multiplicando 
ou dividindo outra variável, não estão elevadas a nenhuma potência nem como expoente de uma 
função exponencial, não pertencem a uma função logarítmica ou trigonométrica. Estas condições 
garantem o comportamento linear das equações, a base principal para a representação dos modelos 
de Programação Linear.
Mesmo excluindo as formas de função citadas no parágrafo anterior, as equações lineares têm muita 
representatividade em inúmeros tipos de problema estudados na Engenharia. Essas equações costumam 
fazer parte das restrições do modelo, aquelas equações que representam as limitações do seu sistema. 
Quando utiliza sinal de igualdade, você trava a equação, ou seja, está buscando valores para x1 e x2 
que satisfaçam, exatamente, ao resultado apresentado do lado direito da equação. As inequações dão 
mais liberdade ao resultado de x1 e x2, pois são aceitos valores para essas variáveis que satisfazem à 
desigualdade da equação, ou seja, permitem que os valores calculados dos lados esquerdo dela sejam 
maiores ou menores do que o valor apresentado do lado direito da desigualdade. 
A função objetivo é aquela a qual se deseja calcular o maior ou menor valor para a mesma. Utili-
zamos, geralmente, a simbologia max para maximização e min para minimização:
max( )Z x x� � � �3 81 2 (4)
min( )Z x x� � � �3 81 2 (5)
assim como as equações que são utilizadas como restrição do problema, a função objetivo também 
tem comportamento linear, escrita da mesma forma que as equações ou inequações que serão utiliza-
29
UNIDADE 1
das nas restrições, a diferença é que a função objetivo não tem um resultado específico, na verdade, é, 
justamente, o valor dela que você quer descobrir, em conjunto com os resultados para x1 e x2.
Observe que, em todas as equações, apareceram as variáveis x1 e x2, estas são conhecidas como variá-
veis de decisão e os valores são buscados para que a função objetivo atinja o seu valor ótimo, máximo 
ou mínimo, dependendo do problema. Todas as equações que fazem parte do modelo de Programação 
Linear devem, obrigatoriamente, ser escritas em função dessas variáveis. Não há necessidade de que 
todas as equações tenham todas as variáveis, podemos ter equações com apenas uma delas, mas todas 
as equações escritas devem possuir, ao menos uma das variáveis cujos valores se quer encontrar.
Podemos dizer que os problemas de Programação Linear buscam encontrar os valores das variá-
veis de decisão que levem a função objetivo ao seu estado ótimo, o qual será de maximização ou de 
minimização, dependendo do significado da função objetivo.
Você verá que alguns problemas terão grande quantidade de variáveis de decisão, mais de 12, 20, 30 
variáveis, mas o uso de softwares de cálculo que resolvem problemas de Programação Linear tornará 
nosso trabalho muito mais dinâmico. 
Na Unidade 4 do livro de Pesquisa Operacional, você aprenderá a utilizar o suplemento Solver do 
Excel para resolver os problemas de Programação Linear e, assim, poderemos resolver tipos de pro-
blemas com grau de complexidade muito maior, sem sofrimentos.
Na próxima unidade, veremos, com mais detalhes, essas equações e as demais variáveis citadas.
Para finalizar a nossa unidade, discutiremos, um pouco, as possibilidades de resposta para o pro-
blema proposto no início, o da produção de mesas e cadeiras. Lembre que você tem 250m2 de madeira 
para construir mesas que consomem 5,4m2 de madeira cada unidade, além de cadeiras com 1,5m2 de 
consumo de madeira por unidade. No problema proposto, você deve calcular quantas mesas e cadeiras 
devem ser produzidas para não exceder a quantidade de material disponível e, ao mesmo tempo, buscar 
o maior lucro. O lucro unitário para a mesa é de R$ 230,00, para cadeira é de R$ 68,00 e as quantidades 
mínimas especificadas foram de duas mesas e dez cadeiras. Então, vamos explorar três cenários.
Cenário 1: produção de apenas 20 mesas e o restante de cadeiras.
Se cada mesa consome 5,4m2 de madeira e cada cadeira consome 1,5m2 de madeira, podemos calcular 
o consumo total de madeira para a produção de duas mesas e descontar do total disponível de madeira 
para avaliar a quantidade que sobra à fabricação de cadeiras.
Consumo de madeira mesas m
Sobra de madeira m
� � �
� �
20 5 4 108
250 108
2
2
,
mm m2 2142�
assim, 20 mesas consumirão 108m2 de madeira, sobrando 142m2 para fabricar cadeiras. Se dividirmos 
esta quantidade de madeira que sobra pelo consumo unitário da mesma por cadeira, teremos:
30
UNICESUMAR
Quantidade decadeiras cadeiras cadeiras� � �142
1 5
94 67 94
,
,
logo, encontraremos 94,67, ou seja, 94 cadeiras podem ser fabricadas. Assim, a nossa produção seria 
de 20 mesas e 94 cadeiras, com um lucro de:
Lucro R1 230 20 68 94 10 992 10 992 00� � � � � �. $ . ,
o lucro para este mix de produção seria de R$ 10.992,00.
Cenário 2: produção de apenas 10 cadeiras e o restante, mesas:
A análise se assemelha ao que fizemos no Cenário 1. Calculamos o consumo de madeira para a produ-
ção de 10 cadeiras e descontamos do total de madeira disponível para identificar a sobra de madeira 
destinada à fabricação de mesas.
Consumo de madeira cadeiras m
Sobra de madeira m
� � �
� �
10 1 5 15
250 1
2
2
,
55 2352 2m m�
então, 10 cadeiras consumirão 15m2 de madeira, sobrando 235m2 para fabricar as mesas. Dividindo a 
sobra de madeira pelo consumo unitário das mesas, teremos:
Quantidade de mesas mesas mesas� � �235
5 4
43 52 43
,
,
serão produzidas, então, 43,52, ou seja, 43 mesas. Isto retornará um lucro de:
Lucro R2 230 43 68 10 10 570 10 570 00� � � � � �. $ . ,
o lucro previsto, nesta condição, é de R$ 10.570,00.
Cenário 3: produção de 40 mesas e o restante, cadeiras:
Inicialmente, calcularemos o consumo de madeira para 40 mesas. Descontaremos da quantidade total 
de madeira para identificar a sobra destinada à fabricação de cadeiras.
Consumo de madeira mesas m
Sobra de madeira m
� � �
� �
40 5 4 216
250 216
2
2
,
mm m2 234�
31
UNIDADE 1
verifica-se, então, que 40 mesas consumirão 216m2 de madeira, sobrando 34m2 para a produção de 
cadeiras. Ao dividir esta sobra pela quantidade consumida por cadeira, obtemos:
Quantidade decadeiras cadeiras cadeiras� � �34
1 5
22 67 22
,
,
assim, poderemos produzir 22,67, ou seja, 22 cadeiras. Esta combinação de produção retornará um 
lucro de:
Lucro R3 230 40 68 22 10 696 10 696 00� � � � � �. $ . ,
o lucro para este terceiro cenário é de R$ 10.696,00.
Observe que o cenário 1 apresentou o maior lucro se comparado aos cenários 2 e 3, para a produção de 
20 mesas e 94 cadeiras. Mas será que não há outra combinação de quantidades entre mesas e cadeiras 
que forneça um resultado melhor ainda? Seria, apenas, o Cenário 1 o que apresenta o lucro ótimo, ou 
seja, o maior possível? É provável, ainda, que você tenha testado outros cenários diferentes. Veja, por 
exemplo, um quarto cenário.
Cenário 4: produção de 10 mesas e o restante, cadeiras:
Calculemos, inicialmente, o consumo de madeira para 10 mesas e descontemos da quantidade total 
de madeira para identificar a sobra para a fabricação de cadeiras.
Consumo de madeira mesas m
Sobra de madeira m m
� � �
� �
10 5 4 54
250 54
2
2 2
,
��196 2m
verifica-se, então, que 10 mesas consumirão 54m2 de madeira, sobrando 196m2 para a produção de 
cadeiras. Ao dividir esta sobra de madeira pela quantidade consumida por cadeira, obtemos:
Quantidade decadeiras cadeiras cadeiras� � �196
1 5
130 67 130
,
,
assim, poderemos produzir 130,67, ou seja, 130 cadeiras. Esta combinação de produção retornará um 
lucro de:
Lucro R3 230 10 68 130 11 140 11 140 00� � � � � �. $ . ,
o lucro para este quarto cenário é de R$ 11.140,00.
32
UNICESUMAR
Veja que este cenário apresenta lucro maiorainda se comparado aos três anteriores. 
O que fizemos, aqui, foi uma técnica muito conhecida há milênios, chamada tentativa 
e erro. Obviamente, você pode testar qualquer quantidade de mesas e cadeiras, desde 
que a restrição de quantidade de madeira disponível seja respeitada. No entanto não 
é aconselhável buscar, dessa forma, a melhor solução para um problema, principal-
mente, se ele apresentar uma quantidade maior de variáveis (aqui, são, apenas, duas).
Em seu dia a dia, você precisará dedicar o seu tempo para coletar as informações 
mais adequadas à solução do problema e elaborar o modelo matemático. Por este 
motivo, conhecer as técnicas de solução de problemas em Programação Linear é 
fundamental. Dessa maneira, você conseguirá trabalhar em áreas da empresa res-
ponsáveis por fornecer informações de qualidade para o planejamento estratégico.
É isso que estudaremos nas próximas unidades: como encontrar, de maneira 
quantitativa, a melhor solução para este e muitos outros problemas.
33
M
A
P
A
 M
EN
TA
L
Na primeira unidade, você já se deparou com uma grande quantidade de informações e, para 
organizá-las, da melhor forma possível, você tem um Mapa Mental que permite resumir, de ma-
neira rápida, as principais delas. Termine de preenchê-lo e, se necessário, retorne a leitura das 
páginas anteriores, mas não deixe de fazê-lo. Tenho certeza de que, com esse mapa preenchido, 
os seus estudos serão otimizados.
Descrição da Imagem: na figura, há um retângulo central, onde está escrito: “Pesquisa Operacional”. Desse re-
tângulo saem três linhas comunicando-se cada uma com um retângulo. Acima, está o retângulo “Metodologias 
utilizadas”, à esquerda, o retângulo “Aplicações”, e, abaixo, o retângulo “Processo de Tomada de Decisão”. Saindo 
de “Metodologias utilizadas” há seis retângulos conectados, no primeiro, da esquerda para a direita, está escrito: 
“Programação Linear Inteira”, no terceiro, “Programação Linear”, e, no quinto, “Teoria dos Jogos”, o segundo, quarto 
e sexto retângulos estão em branco para preenchimento. De “Aplicações” saem sete retângulos conectados e, no 
primeiro deles, está escrito: “Problema da dieta”, todos os demais estão em branco para preenchimento do aluno. 
De “Processo de tomada de decisão” saem seis retângulos, e está escrito no primeiro: “Formulação do Problema”, 
no sexto: “Implementação e acompanhamento”, do segundo ao quinto retângulo, não há nada escrito para que o 
aluno faça o preenchimento.
34
A
G
O
R
A
 É
 C
O
M
 V
O
C
Ê
1. Observe a Figura 1 apresentada na unidade, nela, você verifica uma relação entre 
Mundo Real e Mundo Simbólico, setas conectando o modelo com os resultados, situa-
ção gerencial com decisões. As setas possuem duplo sentido, induzindo a uma visão 
de mão dupla. Discuta, brevemente, as impressões que você teve, lendo a unidade e 
observando a Figura 1 sobre as relações entre o campo quantitativo da Engenharia 
(modelo, soluções) e os aspectos qualitativos (intuição, situação gerencial e decisões). 
2. O processo de tomada de decisão foi subdividido em seis etapas sequenciais, cada uma 
com suas atividades e importância. Quando estamos levantando dados do problema 
e conhecendo-o ou quando estamos comparando as respostas do modelo com dados 
históricos, contemplamos as seguintes etapas:
a) Construção do modelo e cálculo da solução por meio do modelo.
b) Formulação do problema e cálculo da solução por meio do modelo.
c) Formulação do problema e teste do modelo.
d) Construção do modelo e teste do modelo.
e) Estabelecimento dos controles da solução e implementação do modelo.
3. A LuxLumi fabrica tintas para pintura de equipamentos industriais. São dois os principais 
tipos de tinta fabricados: a Hotpint para cobertura de superfícies quentes e a Coldpint 
para superfícies submetidas a temperaturas, extremamente, baixas. O lucro, ao vender 
100 L da Hotpint, é de R$ 1.525,00 e para vender 100 L da Coldpint é de R$1.975. Um 
dos recursos limitantes desta produção é o tempo gasto no misturador e sabe-se que 
a mistura é feita de 100 em 100 L e cada 100 L da Hotpint consome 25 min. da mistura 
e, da Coldpint, 35 min. Em uma semana, a empresa tem 45 h disponível para a etapa 
de mistura. Se a produção mínima de Hotpint é de 1.000 L e de Coldpint é de 1.500 L, 
elabore três cenários para o cálculo do lucro total semanal. No Cenário 1, considere a 
produção mínima de Hotpint e o restante de Coldpint. No Cenário 2, considere a pro-
dução mínima de Coldpint e o restante de Hotpint, no Cenário 3, adote uma produção 
de 2.500 L de Coldpint e o restante, Hotpint. Compare os resultados obtidos. 
4. Uma indústria de materiais náuticos produz três tipos de motores para embarcações de 
pequeno porte: um motor de 2 HP, outro de 6,5 HP e um mais potente, com 15 HP. O 
preço de venda desses motores é de R$ 850,00 para o motor de 2 HP, R$ 1.980,00 para 
o motor de 6,5 HP e R$ 10.200,00 para o motor de 15 HP. O último levantamento da 
empresa aponta um custo de produção de R$ 320,00 para o motor de 2 HP, R$ 1.150,00 
para o motor de 6,5 HP e R$ 7.320,00 para o motor de 15 HP. Todos os motores passam 
pelo mesmo processo de montagem e acabamento, sendo que o de 2 HP consome, em 
média, 25 min. da linha de produção para ficar pronto, o de 6,5 HP consome 110 min. 
e o de 15 HP consome 360 min. Toda a linha tem disponibilidade mensal de 11.500 
min. e, devido a alguns contratos, a empresa deve fabricar, ao menos, 10 unidades de 
35
A
G
O
R
A
 É
 C
O
M
 V
O
C
Ê
cada motor para atender a seus clientes. Nestas condições, assumindo que o objetivo 
é avaliar a melhor quantidade a ser produzida, com a finalidade de aumentar os lucros, 
analise as seguintes situações:
Caso 1: produção mínima de motores de 2 HP, 20 unidades de motores de 6,5 HP e 
o restante de motores de 15 HP.
Caso 2: produção mínima de motores de 6,5 HP, produção de 80 unidades de motores 
de 2 HP e o restante de motores de 15 HP.
Caso 3: produção mínima de motores de 15 HP, 60 unidades de motores de 6,5 HP e 
o restante de motores de 2 HP.
Nos três casos, informe o lucro obtido e a quantidade de motores que serão produzidos. Qual 
deles apresenta o melhor resultado?
5. Como já discutido nesta unidade, a Pesquisa Operacional pode ser aplicada a proble-
mas de logística que envolvam cálculos de minimização de custo para sistemas de 
distribuição. Considere o seguinte problema; uma empresa utiliza duas pedreiras para 
abastecer três depósitos com brita comum, sendo a capacidade de cada caminhão 
basculante de transportar 12 m3 de pedra por viagem. Cada depósito apresenta uma 
necessidade semanal de pedra e há um custo de envio entre as pedreiras e os depó-
sitos. Para facilitar a análise, foi criada uma tabela com os custos de envio por viagem 
do caminhão (considerando ida e volta) entre as pedreiras e os depósitos: 
Depósito 1 (D1) Depósito 2 (D2) Depósito 3 (D3)
Pedreira 1 (P1) R$ 85,00 R$ 93,00 R$ 88,00
Pedreira 2 (P2) R$ 81,00 R$ 95,00 R$ 85,00
Tabela 1 - Custos de envio para uma viagem do caminhão entre as pedreiras e os depósitos / Fonte: o autor.
As demandas semanais dos depósitos são de 240 m3 para o Depósito 1, 180 m3 para o Depósito 
2 e 204 m3 para o Depósito 3. Utilizando estas informações, analise:
a) Encontre as rotas mais adequadas para transportar, com o menor custo possível, a 
pedra das pedreiras aos depósitos. Apresente a quantidade de viagens para cada 
rota e o custo total semanal de transporte encontrado. Admita que a capacidade das 
pedreiras é suficiente para atender a toda demanda com folga.
b) Se a Pedreira 1 tiver capacidade de envio semanal de 360 m3 de pedras e a Pedreira 
2, a capacidade de 270 m3 de pedras, encontre a melhor maneira de enviá-las até os 
depósitos, apresentando a quantidade de viagens de cada rota e o custo total semanal 
de transporte. Quanto aumentará o custo comparado ao item A desta questão?
36
M
EU
 E
SP
A
Ç
O
2
Na Unidade 2, você entrará em contato com a Programação Linear 
(PL), uma das ferramentasmais importantes da Pesquisa Opera-
cional. Nesta unidade, serão apresentados os conceitos básicos 
que servirão de alicerce para os seus conhecimentos em PL. Você 
aprenderá como são criados os modelos de Pesquisa Operacional 
no formato de PL, além de resolvê-los utilizando o Método Simplex, 
uma poderosa ferramenta para encontrar a solução dos problemas 
que trabalharemos.
Programação Linear
Dr. Fernando Pereira Calderaro
38
UNICESUMAR
Já imaginou a quantidade de informações que são necessárias para definir a fabricação de um produto? 
Você está prestes a se tornar um(a) profissional e pode ficar responsável pelo processo produtivo de uma 
empresa. Vamos resgatar o problema apresentado na Unidade 1: você precisa decidir quantas mesas 
e cadeiras produzirá, mensalmente, mas, agora, a empresa passou por uma reestruturação e, além de 
mesas e cadeiras, ela também produz aparadores e balcões com portas. Foi ampliada a disponibilidade 
de madeira para 1.500 m2 mensais e você conhece o consumo de madeira, as horas gastas na etapa 
de corte, na etapa de montagem e de pintura de cada um dos produtos bem como a disponibilidade 
de tempo disponível em cada setor. Com o intuito de facilitar a organização dos dados, a Tabela 1 foi 
elaborada para lhe auxiliar.
Produto Madeira (m2) Corte (h) Montagem (h) Pintura (h)
Mesa 5,4 0,7 0,5 0,2
Cadeira 1,5 0,5 0,9 0,3
Aparador 3,8 0,8 0,6 0,4
Balcão 6,9 1,2 1,8 0,6
Disponibilidade 1.500 160 180 150
Tabela 1 - Consumo de recursos por produto fabricado / Fonte: o autor.
Se o lucro unitário para cada mesa vendida for de R$ 230,00, para cada cadeira, R$ 68,00, para o apa-
rador, R$ 175,00, e o balcão, R$ 310,00, quanto deve ser fabricado de cada item?
Observe que, neste problema, aumentamos a quantidade de informações significativas para melhor 
representar o sistema real. Este é o objetivo: quando você se depara com um problema e precisa trans-
formá-lo em equações matemáticas, a primeira etapa é a de Definição do Problema, entender como 
todos os meus dados se inter-relacionam e avaliar quais informações são as mais relevantes para a 
solução do problema. Por este motivo, a Pesquisa Operacional é vista como uma área da Engenharia 
que gera conhecimento, pois, para que um problema seja resolvido com acurácia, o bom entendimento 
dele é necessário. Entender como encontrar a quantidade de cada um dos produtos apresentados no 
exemplo anterior permitirá organizar a produção dentro dos limites de tempo e madeira estabelecidos, 
gerando o maior lucro possível.
Vamos fazer alguns testes? Considere que você programe a produção de 20 mesas, 150 cadeiras, 30 
aparadores e 40 balcões. Calcule o consumo de todos os recursos, de madeira e horas trabalhadas em 
cada etapa. Levante, também, o lucro obtido e anote todos os valores.
Neste ponto da unidade, você deve ter percebido que não há possibilidade de escolher, aleatoriamente, 
a quantidade de bens que devem ser produzidos em uma empresa. De acordo com o exemplo apresentado, 
há restrições quanto ao uso de recursos, por este motivo, é necessário observar alguns itens, tais como:
39
UNIDADE 2
• Disponibilidade máxima de todos os recursos.
• Sobra de recursos.
• Se há alguma demanda mínima dos produtos já contratada. 
• Possibilidade de ampliação da disponibilidade de recursos.
É importante começar a pensar nestes pontos apresentados, uma vez que eles farão parte do nosso 
processo de tomada de decisão. Anote, em seu Diário de Bordo, quais dos pontos, anteriormente, 
apresentados são importantes para resolver, de forma adequada, o problema proposto. 
Chegou a hora de começarmos a formatar todo esse conhecimento que estamos buscando para 
solucionar tal problema. Iniciaremos com a Programação Linear: entenderemos o que é esta técnica, 
como criar os nossos modelos de Programação Linear e resolvê-los.
DIÁRIO DE BORDO
40
UNICESUMAR
A Programação Linear se baseia na construção de modelos matemáticos, gerando um sistema de equa-
ções que deve ser resolvido, simultaneamente, com o intuito de encontrar o melhor valor à determinada 
função (função objetivo). Esta técnica de solução de problema faz parte da área de Matemática Aplicada, a 
qual, apesar de ser uma ciência sólida desde o século XVIII, ganhou notoriedade, após a Segunda Guerra 
Mundial, por meio de George B. Dantzig (1914-2005), que trabalhou no Pentágono, entre 1941 e 1945, 
como especialista em planejamento e programação de atividades militares (COLIN, 2018).
Dantzig foi o responsável pela criação do Método Simplex, uma maneira de resolver os sistemas de 
equações de Programação Linear que podia ser programada e automatizada. A primeira aplicação não 
militar da Programação Linear ocorreu em 1952, para a mistura ótima de gasolina, tendo o primeiro 
código computacional comercial apresentado em 1954, pela Rand Corporation (COLIN, 2018).
Segundo Hillier e Lieberman (2013), o problema genérico base da Programação Linear é o de alocação 
de recursos limitativos da produção entre atividades que competem por eles. O objetivo é encontrar o nível 
de atividade de cada recurso, ou seja, a quantidade de cada recurso que deve ser alocada a cada um dos 
produtos que devem ser fabricados e, assim, tentar atingir o ponto ótimo para uma função de referência. 
Do nome “Programação Linear”, o termo “linear” se refere à característica das equações que formam o 
modelo, sendo todas lineares. Já o termo “programação”, neste contexto, é sinônimo de planejamento, 
logo, a Programação Linear envolve o planejamento das atividades para obter um resultado ótimo.
Já nos cabe, aqui, uma consideração a respeito do termo “ótimo”. Quando a função de referência 
(função objetivo) for um lucro, por exemplo, o ótimo da função é o resultado que dá maior lucro (ma-
ximização). Quando essa função de referência for um custo, o seu ótimo será o resultado que fornece o 
menor custo (minimização). 
Já vimos, na Unidade 1 e no início desta unidade, que as equações matemáticas utilizadas formam 
um sistema de equação que chamamos de modelo. Um modelo matemático, em linhas gerais, é a repre-
sentação matemática de um comportamento real, portanto, não é a realidade, mas uma aproximação do 
real. O modelo pode ser mais ou menos próximo da realidade, depende de seu formato, da quantidade 
de variáveis e equações que o formam. É por este motivo que, antes de começarmos a resolver os nossos 
problemas com Programação Linear, precisamos entender como esses modelos são criados, pois também 
será uma função que você deverá exercer em suas atividades.
Entender, um pouco, os modelos matemáticos ajuda muito nestas horas, por este motivo, falaremos 
um pouco sobre eles.
Segundo Longaray (2014), costuma-se subdividir os modelos utilizados em Pesquisa Operacional 
em dois tipos: o modelo de otimização e o modelo de simulação.
O modelo de otimização é o mais utilizado em Pesquisa Operacional, principalmente, com a Progra-
mação Linear e, tem, como objetivo, encontrar a melhor resposta possível para a decisão que deve ser 
tomada. Geralmente, este modelo é aplicado em problemas de maximização ou minimização. Se você 
quer aumentar os seus lucros ou a sua receita, então, o problema é de maximização, se quer reduzir os 
custos de produção, o seu problema é de minimização.
O modelo de simulação estabelece um conjunto de respostas que representa um sistema físico ope-
rado em diferentes situações. Pensando em uma lavoura de milho, se você elaborar um modelo para a 
41
UNIDADE 2
produtividade da cultura e variar a quantidade de terra disponível e de sementes plantadas, a dosagem 
do fertilizante e, até mesmo, a disponibilidade de água, poderá encontrar diferentes produções em cada 
caso, obtendo diversos cenários de produção, de maneira que você possa trabalhar para aumentar a 
quantidade colhida, com base nestas simulações.
As simulações também podem ser feitas utilizando a Teoria das Filas, muito comum na Simulação 
de Processos Produtivos. Neste livro, em Pesquisa Operacional, você se dedicará

Outros materiais