Buscar

Unidade I - Aspectos astronômicos, sistemas de coordenadas e escalas

Prévia do material em texto

Geografia e 
Cartografia
Aspectos astronômicos, sistemas de coordenadas e escalas
Material Teórico
Responsável pelo Conteúdo:
Prof. Ms. Carlos Eduardo Martins 
Revisão Textual:
Prof. Ms. Claudio Brites
5
Trataremos a seguir dos aspectos astronômicos, dos sistemas de coordenadas e das escalas, 
você terá acesso a diversos recursos.
Não deixe de baixar o arquivo em PDF do material teórico, assim você poderá ter acesso às 
nossas discussões onde quer que esteja.
Veja o mapa mental que sintetiza a estrutura do assunto tratado neste módulo.
Fique atento aos prazos das atividades que serão colocadas no ar.
Recorra sempre que possível às videoaulas e à apresentação de slides narrada para tirar 
eventuais dúvidas sobre o conteúdo textual.
Participe do fórum de discussão proposto para o tema.
No seu tempo livre, procure pesquisar as fontes do material complementar.
Além disso, procure pesquisar o máximo que puder sobre o tema aspectos astronômicos, 
sistemas de coordenadas e escalas. Há inúmeros conteúdos na internet que são bastante 
úteis para o seu estudo e para a sua formação profissional
Convidamos você para dar início aos estudos sobre cartografia sistemática.
Neste unidade, trataremos de seus aspectos astronômicos, dos sistemas 
de coordenadas e das escalas, por meio dos quais será possível a você 
perceber a significância dos assuntos abordados na atividade profissional 
de Tecnologia em Gestão Ambiental.
Aspectos astronômicos, sistemas de 
coordenadas e escalas
 · Introdução
 · Sistema de Coordenadas Cartesianas
 · Sistema de Coordenadas Geográficas
 · O Greenwich Mean Time – GMT, ou Hora Média de Greenwich
6
Unidade: Aspectos astronômicos, sistemas de coordenadas e escalas
Contextualização
 
 Explore
Confira a charge no link abaixo
http://4.bp.blogspot.com/-YhHlDj8bUCE/T8En7G6DS2I/AAAAAAAAB0o/5Zg3zgDfTd0/s1600/
Fuso+hor%C3%A1rio.jpg
7
Introdução
Vivemos a era da informação. Dos diversos mecanismos de comunicação disponíveis, a 
Cartografia está entre os mais relevantes. Seu papel na sociedade atual é o de registrar, relacionar 
e ordenar os diversos aspectos do mundo real que podem ser representados do ponto de vista 
gráfico, entre eles a própria Terra.
Consideramos que, atualmente, a Terra dispõe de diversos parâmetros aceitos como referência 
para a confecção dos mapas da Cartografia.
O grande problema está no fato de que representamos a Terra com base em modelos 
geométricos de referência e isso acaba gerando certa heterogeneidade de formas. Para uma 
conceituação inicial, adotemos alguns valores mais gerais.
A superfície total do planeta é da ordem de 510,1 km². Entretanto, não estamos tratando 
de uma esfera perfeita. Enquanto a circunferência equatorial é de 40.075 km, a do círculo que 
passa pelos polos é de 40.008 km. Geometricamente, podemos afirmar que a Terra é um sólido 
elipsoidal, assim como afirmava Newton, com achatamento polar. 
A superfície terrestre também é caracterizada por uma irregularidade na qual o extremo de 
altitude máxima em terras emersas é o Monte Everest com seus 8.848 metros de altitude sobre 
o nível do mar. A maior depressão emersa está nas bordas do Mar Morto, entre Israel, Jordânia 
e Cisjordânia, onde temos a altitude de -395 metros. 
Se considerarmos a superfície como um todo, incluindo aquelas áreas sob o nível dos oceanos, 
a maior depressão é a Fossa das Marianas, no Pacífico nordeste, com profundidades de –11.022 
metros em relação ao nível do mar.
Outro aspecto a ser levado em conta em Cartografia são os movimentos terrestres. 
Excetuando-se os mais relativos, como a Tectônica de Placas que chega a mover algumas 
porções da superfície em até 10 centímetros por ano, temos dois movimentos astronômicos de 
grande relevância, que apresentamos a seguir.
A Rotação ou Revolução é o movimento que a Terra faz ao redor de si, no sentido Oeste-
Leste. Esse movimento tem uma velocidade de 1.674 km/h. Uma volta completa da Terra leva 
23 horas, 56 minutos e 4,09 segundos, tempo chamado de Dia Sideral.
Outro movimento importante que a Terra faz é a Translação, ao orbitar ao redor do Sol. Esse 
movimento tem uma velocidade média de 107.208 km/h. Uma volta completa da Terra ao 
redor do Sol é efetuada em 365 dias, 5 horas, 48 minutos e 45,97 segundos, tempo conhecido 
como Ano Sideral. 
Ao contrário do que os números atribuídos à órbita ao redor do Sol poderiam indicar, esse não 
ocorre sempre na mesma velocidade, pois o movimento de Translação não é um círculo perfeito, 
mas de uma órbita elíptica, descoberta por Johannes Kepler (1571 – 1630). O movimento como 
um todo pode ser subdividido em duas situações:
8
Unidade: Aspectos astronômicos, sistemas de coordenadas e escalas
 » No Afélio, em julho, a Terra assume a maior distância em relação ao Sol, que é de 152,1 
milhões de km;
 » Já no Periélio, em Janeiro, a Terra encontra-se a menor distância possível em relação ao 
Sol, que é de 147,1 milhões de km.
O conjunto do movimento e os estágios mais importantes estão registrados na Figura 1.
Figura 1. Esquema do movimento orbital da Terra
dan-scientia.blogspot.com
.br
É claro que nas duas situações opostas da órbita a velocidade do movimento também muda, 
tornando-se mais lenta no Afélio e mais rápida no Periélio. Apesar de ambos os movimentos 
serem independentes e ocorrerem a velocidades distintas, há uma consideração de grande 
importância que devemos levar em conta: não percebemos nenhum deles por meio dos sentidos. 
Ao contrário do que se afirma a respeito do movimento Leste-Oeste – ou do nascente ao 
poente –, do Sol, em verdade, é a Terra que gira na direção inversa. A nossa perspectiva sensorial 
inverte a ordem do movimento, pois estamos nos movendo junto com a Terra. Imagine-se 
dentro de um veículo observando a paisagem a partir da janela. Admitir que o Sol move-se no 
sentido Leste-Oeste seria mais ou menos equivalente a admitir que os objetos vistos da janela 
do veículo estão se movendo, e não o contrário.
O nascer, o percurso no céu e o por do Sol que se apresentam à perspectiva de um observador 
na superfície terrestre são, na verdade, a progressão do movimento de Rotação da Terra.
Além das informações anteriores, devemos considerar também as implicações que causa a 
combinação dos movimentos de Rotação e da Elíptica aos elementos que compõem a superfície 
terrestre – e que serão representados nos mapas. 
Ao contrário do que se pensa, não é exatamente essa a razão das variações climáticas 
chamadas de “mudança das estações”, sazonalmente observadas a cada três meses. O que 
determina as variações térmicas na superfície terrestre são as oscilações na radiação solar sobre 
a superfície, promovida pela mudança de posição da Terra em relação ao eixo da Elíptica e pela 
manutenção da inclinação do eixo de Rotação em relação àquele (Figura 2).
9
Figura 2. Relação geométrica entre os ângulos do movimento de rotação e da Órbita da Terra 
ao redor do Sol.
A
daptado de Varejão (2006)
Note na Figura 2 que entre o eixo da Rotação e o da Elíptica há uma diferença de 23°27’ (vinte 
e três graus e vinte e sete minutos). Essa diferença de ângulo reflete uma série de fatores ambientais 
na superfície terrestre, incluindo as mudanças climáticas entre as estações do ano, a definição de 
diversos aspectos socioculturais, referências no calendário mundial, entre outros aspectos.
Se compararmos as figuras 1 e 2, podemos constatar que essa diferença é responsável pela 
oscilação da intensidade da radiação solar entre os hemisférios. É justamente essa oscilação da 
radiação em relação aos hemisférios que promove as mudanças das estações nas datas abaixo, 
correspondentes ao esquema da Figura 1.
 » Solstício de Verão (21 de Dezembro) - radiação perpendicular ao Trópico de Capricórnio 
(23°27’ Sul);
 »Equinócio de Outono (21 de Março) – radiação solar perpendicular ao Equador (0°);
 » Solstício de Inverno (21 de Junho) – radiação solar perpendicular ao Trópico de Câncer 
(23°27’ Norte); e
 » Equinócio de Primavera (23 de Outubro) – radiação solar perpendicular ao Equador (0°).
Para exemplificar o significado de cada uma dessas datas, observe a Figura 3. Nela 
simplificamos a relação Terra-Sol em um dado instante dos movimentos de Rotação e da Elíptica 
da Terra, que corresponderia, hipoteticamente, ao dia 21 de Dezembro, isto é, o Solstício de 
Verão no Hemisfério Sul.
Figura 3. Correlação entre os movimentos de rotação e da Elíptica da Terra em um dado 
instante no dia 21 de Dezembro (sem escala).
A
daptado de: educacional.com
.br
Fizemos um destaque na imagem (retângulo cinza) e o posicionamos ao lado, na horizontal 
do observador. Note que, na data mencionada anteriormente, a radiação solar forma uma 
linha perpendicular à superfície sobre a linha do Trópico de Capricórnio, em um ângulo de 90° 
representado pelo triângulo vermelho. 
10
Unidade: Aspectos astronômicos, sistemas de coordenadas e escalas
É importante salientar que como a Terra tem sua forma arredondada e o seu eixo de Rotação 
é inclinado 23°27’ em relação ao eixo da Elíptica, enquanto o dia 21 de Dezembro demarca 
a entrada do Solstício de Verão para todo o Hemisfério Sul, ao mesmo tempo ele significa a 
entrada do Solstício de Inverno no Hemisfério Norte. 
O esquema da Figura 3 é o nosso modelo de referência utilizado para demarcar a entrada do 
Verão para o Hemisfério Sul. Esse mesmo esquema pode ser considerado para o Solstício de 
Inverno e para os Equinócios. Assim, utilizando a Figura 1, podemos considerar que a radiação 
solar varia de intensidade entre os trópicos ao longo do ano, alterando o comportamento das 
pessoas e da natureza como um todo, pois precisam se ajustar às características que a mobilidade 
astronômica da Terra apresenta.
Vendo
Apartamento em ótimo estado, 75 m² de área útil, três dormitórios, dois 
banheiros, uma vaga de garagem, FRENTE NORTE.
O anúncio hipotético que acabamos de observar acima chama a atenção do público para 
um detalhe da oferta, a expressão “FRENTE NORTE”. O setor imobiliário trabalha com uma 
informação astronômica importante, que é a posição do imóvel em relação à radiação solar. 
Aparentemente, os imóveis parecem ser construídos respeitando a espacialidade dos lotes. 
Entretanto, os imóveis “Frente Norte” são mais valorizados que os que têm a frente voltada para 
outras direções.
A Figura 4 representa como esse imóvel ao Sul da linha do Trópico de Capricórnio está 
posicionado em relação aos movimentos que a radiação solar apresenta ao longo do ano.
Figura 4. A posição da radiação solar em datas de mudança de estação em uma residência 
ao Sul do Trópico de Capricórnio.
E
laborado por C
arlos 
E
duardo M
artins
Observe que, na Figura 4, o direcionamento da radiação solar, independentemente da 
estação do ano, é favorável ao imóvel, que tem suas janelas e portas posicionadas na direção 
Norte. Assim, a residência é aquecida o ano inteiro, desde o nascer até o por do Sol.
Construções que têm janelas e portas voltadas para outras direções serão iluminadas em 
porções menores do dia, ou mesmo iluminadas apenas indiretamente – como seria o caso de 
um edifício com as janelas voltadas para a direção oposta à do nosso exemplo da Figura 4.
No próximo item, vamos relacionar as informações vistas até aqui com o Sistema de 
Coordenadas desenvolvido por René Descartes (1596-1650).
Nesse sistema, as informações do mundo real e a sua localização são convertidas em 
coordenadas pela Geometria Analítica.
Quando posicionamos um ponto em relação a um sistema de referências bidimensional ou 
tridimensional qualquer, nada mais fazemos do que atribuir coordenadas ao mesmo.
11
Sistema de Coordenadas Cartesianas
Este sistema baseia-se na escolha (arbitrária) de dois eixos (ortogonais) perpendiculares cujo 
cruzamento é a origem, que é estabelecida como base para a localização de qualquer ponto em 
uma superfície plana hipotética.
Nesse sistema de coordenadas (Figura 5), um ponto é representado por dois números reais: um 
correspondente à projeção sobre um eixo “x” (coordenada horizontal), chamado de abscissa, e o 
outro correspondente à projeção sobre um eixo “y” (coordenada vertical), chamado de ordenada.
Figura 5. Sistema de Coordenadas Cartesianas
E
laborado por C
arlos E
duardo M
artins
No exemplo hipotético da Figura 6, a localização do ponto “A”, assim como recomenda 
Descartes, depende dos pares de valores atribuídos ao ponto no espaço entre zero, origem do 
sistema, e o valor final arbitrado. No caso exemplar para “A”, suas coordenadas são: “4” para o 
eixo y, ou ordenada, e “3” para o eixo x, ou abscissa. 
Figura 6. Localização de um ponto no Sistema de Coordenadas Cartesianas
E
laborado por C
arlos E
duardo M
artins
Observe na Figura 6 que a coordenada da origem é o zero para ambos os eixos. Análises 
espaço-temporais de diversas variáveis e de diversos temas – como taxas de natalidade, 
chuvas mensais e até o PIB – podem ser representados por meio dessa ferramenta. Para 
tanto, é necessário inserir uma unidade de medida qualitativa no eixo y e uma unidade de 
tempo no eixo x.
12
Unidade: Aspectos astronômicos, sistemas de coordenadas e escalas
É importante dizer que, como o Sistema de Coordenadas Cartesianas trabalha com a álgebra, 
os valores considerados são infinitos positiva e negativamente – isso auxilia a localização de um 
ponto segundo as múltiplas direções a partir de uma origem arbitrada.
Na Figura 7, temos um exemplo de Sistema de Coordenadas Cartesianas no qual a origem 
serve de referência para pontos com valores numéricos positivos e negativos, nos quatro 
quadrantes do sistema.
Figura 7. Sistema de Coordenadas Cartesianas positivas e negativas
W
ikim
edia C
om
m
ons
Sistema de Coordenadas Geográficas
No Sistema de Coordenadas Geográficas, os parâmetros sugeridos por Descartes são basicamente 
os mesmos. Inicialmente, trataremos da incorporação do método para o modelo esférico.
Círculos paralelos
No Sistema de Coordenadas Geográficas substituímos os eixos “x”, ou abscissas, por paralelos, 
ou círculos cujo plano é perpendicular ao eixo dos polos do modelo da Terra (Figura 8).
Figura 8.
astrosurf.com
13
O Equador é o paralelo que divide o modelo da Terra em dois hemisférios (Norte e Sul) e é 
considerado como o paralelo de origem (0°) do Sistema de Coordenadas Geográficas.
Do Equador em direção aos polos temos infinitos planos paralelos a ele, chamados de 
Latitudes, cujas circunferências vão diminuindo até que se reduzam a pontos nos polos Norte 
(+90°) e Sul (-90°). 
A Latitude de um ponto ou lugar é medida em graus desde a origem 0° ou o Equador até 
90°, ao Norte, ou -90°, ao Sul.
É comum vermos nos textos de Geografia expressões como “baixas latitudes”, “altas latitudes” 
e “médias latitudes”. Essas expressões se referem à distância do Equador. 
Emprega-se a expressão “baixa latitude” a áreas em que as latitudes giram em torno de 5 a 
29°; as regiões entre 30 e 59° são as “médias latitudes”; e, finalmente, as áreas entre 60 e 90° 
podem ser consideradas de “altas latitudes”. Não há muita rigidez e nem um parâmetro fixo 
para o uso dessas expressões, ficando a cargo do autor definir o motivo de as usar.
Círculos meridionais ou polares
Os meridianos são círculos de 360° cujos planos cruzam o eixo de rotação, ou seja, o eixo dos 
polos Norte e Sul da Terra.
O Meridiano que passa pelo antigo observatório britânico de Greenwich, próximo a Londres, 
foi arbitrariamente considerado como o de origem (0°) das Longitudes sobre a superfície terrestre, 
dividindo o globo em dois hemisférios: ocidental e oriental.
Figura9
 astrosurf.com
Considerando a definição da origem em Greenwich, ou 0° (zero grau) de Longitude, a 
Longitude de um ponto qualquer na superfície terrestre marca sua localização medida em graus, 
de 0° (zero grau) até -180°, para Leste, ou 180°, para Oeste.
14
Unidade: Aspectos astronômicos, sistemas de coordenadas e escalas
Aplicado ao modelo da superfície da Terra (Figura 10), cada ponto é localizado na intersecção 
de um meridiano (y) com um paralelo (x).
Figura 10
astrosurf.com
Ao contrário do Sistema de Coordenadas Cartesianas em que os valores são infinitos, no Sistema 
de Coordenadas Geográficas as latitudes e as Longitudes dividem-se em Graus, esses são subdivididos 
em 60 minutos que, por sua vez, são fracionados em 60 segundos, e esses ao infinitésimo. 
As coordenadas de um ponto como o da Figura 10 são representadas da seguinte forma:
 » Latitude: 23° 27’ 59,98” Norte (se estiver no hemisfério oposto é “Sul”);
 » Longitude: 46° 59’ 59,98” Leste (se estiver no hemisfério oposto é “Oeste”).
O Sistema de Coordenadas Geográficas é complementado pelo sistema de orientação. A 
orientação leva em conta a utilização do sistema de navegação por bússola que utiliza o Norte 
Magnético como origem, e atualmente pelo sistema digital que utiliza o Norte Geográfico, ou o 
que coincide com o eixo da rotação, como referência.
Na Figura 11, podemos observar que há uma diferença de alguns graus a Oeste entre o Norte 
Magnético e o Norte Geográfico.
Figura 11. Comparação entre o sistema magnético e o geográfico.
sailingissues.com
15
Basicamente, tanto em um quanto em outro, as direções são definidas a partir da subdivisão do 
círculo em 360°. A Figura 12 representa três níveis de subdivisão e suas denominações específicas.
Figura 12. Bússola ou compasso com a denominação dos pontos cardeais, colaterais e subcolaterais
Como é possível observar na imagem da Figura 12, as direções estão associadas a graus relativos 
ao Norte Magnético, aos quais denominamos Azimutes. A subdivisão segue a seguinte lógica:
• Pontos cardeais:
 » (N) norte (0°)
 » (S) sul (180°)
 » (E ou L) este ou leste (90°)
 » (W ou O) oeste (270°)
• Pontos Colaterais:
 » (NE) nordeste (45°)
 » (SE) sudeste (135°)
 » (NO ou NW) noroeste (315°) 
 » (SO ou SW) sudoeste (225°)
• Pontos subcolaterais:
 » (NNE) nor-nordeste (22,5°)
 » (ENE) és-nordeste (67,5°)
 » (ESE) és-sudeste (112,5°)
 » (SSE) su-sudeste (157,5°)
 » (SSO ou SSW) su-sudoeste (202,5°)
 » (OSO ou WSW) oés-sudoeste (247,5°) 
 » (ONO ou WNW) oés-noroeste (292,5°)
 » (NNO ou NNW) nor-noroeste (337,5°)
16
Unidade: Aspectos astronômicos, sistemas de coordenadas e escalas
O Greenwich Mean Time – GMT, ou Hora Média de Greenwich
Realizada em 1884, em Washington D. C., Estados Unidos, a Conferência Internacional do 
Primeiro Meridiano padronizou a hora legal mundial com a determinação do Greenwich Mean 
Time – GMT, ou Hora Média de Greenwich (Figura 13).
Figura 13. Mapa do Greenwich Mean Time – GMT, ou Hora Média de G,reenwich
ibge.gov.br
No sistema GMT, como a linha de origem e a de mudança de data são o Meridiano de 
Greenwich e o antimeridiano 180°, na prática, a figura geométrica de 360° da superfície 
é dividida em duas porções de 180° subdivididas em 12 faixas, ou fusos, de 15 graus de 
Longitude, sendo que cada uma delas equivale a 1 (uma) hora a mais para Leste e 1 hora a 
menos para Oeste.
Assim, temos a superfície dividida em 24 fusos de 15 graus cada, como mostra a Figura 13.
O chamado fuso horário é uma linha que fica exatamente no meio da faixa de 15°, a partir 
da qual contamos a mesma hora tanto para um lado quanto para o outro. Tecnicamente, se em 
Greenwich são 12h00min, isso significa que todos os pontos que estiverem a 7°30’ a oeste e a 
leste da linha meridiana estão dentro da mesma faixa de hora.
Essa divisão não é tão rígida, afinal, muitos fusos dividiriam áreas político-administrativas de 
países e até mesmo alguns países ao meio se fossem consideradas de forma linear. Assim, os 
fusos são bastante irregulares para não afetarem a autonomia dos territórios. 
Como é possível observar na Figura 13, além da irregularidade dos fusos, temos diversos territórios 
descontínuos que apresentam o mesmo fuso do território contínuo do país a que pertencem.
O Brasil utiliza e faz parte do calendário e do GMT, como podemos observar na Figura 14. 
O Brasil, dada a sua grande extensão longitudinal de pouco mais de 4.325 km, compreende do 
segundo (utilizado nos arquipélagos de soberania brasileira) ao quinto fuso horário negativo a 
partir de Greenwich. 
Quando os relógios em Greenwich marcam 12h00min, no arquipélago de São Pedro e 
em São Paulo são 10h00min; em Brasília, e em boa parte da faixa oriental do território, 
temos 09h00min; na faixa ocidental do território, 08h00min; e no Acre e no Oeste do 
Amazonas, 07h00min.
17
A Figura 14 apresenta a distribuição dos fusos no território brasileiro e as unidades da 
federação abrangidas por cada faixa. 
Figura 14. Fusos horários no Brasil
ibge.gov.br
Escala Cartográfica
Escala é a relação entre as medidas de um objeto ou lugar representadas cartograficamente 
e sua medida homóloga real.
Por meio do desenho geométrico obtemos figuras semelhantes às do terreno, porém reduzidas 
proporcionalmente até a sua representação cartográfica.
Assim, temos:
 » D = como o comprimento ou dimensão tomada no terreno;
 » d = o comprimento ou a dimensão homóloga na representação cartográfica;
 » E = a escala cartográfica ou a relação entre dimensão real e representada.
Como as linhas do terreno e as do desenho são homólogas, o desenho que representa o 
terreno é uma figura semelhante a ele em escala.
A relação pode ser maior, igual ou menor que a unidade, dando lugar à classificação das 
escalas quanto a sua natureza. Na Escala Cartográfica, a dimensão (d) é menor que a sua 
homóloga real (D).
18
Unidade: Aspectos astronômicos, sistemas de coordenadas e escalas
Grandezas numéricas e escala cartográfica
Em Escala Cartográfica, trabalhamos com as reduções proporcionais. Assim, é necessária 
uma transição entre as unidades de medidas reais para as unidades de medidas representadas. 
Para medir grandes extensões, usamos como unidade de comprimento um dos múltiplos do 
metro: decâmetro, hectômetros e quilômetros. Já para medir pequenas extensões, representadas 
cartograficamente, utilizamos unidades submúltiplas do metro: decímetro, centímetro e milímetro.
Unidades superiores ou inferiores às apresentadas no parágrafo anterior fogem da abrangência 
da Cartografia. O Quadro 1, a seguir, apresenta as unidades de medida mais utilizadas.
Quadro 1. Unidades de medidas métricas
Unidade Símbolo Proporção
1 quilômetro km 1.000 metros
1 hectômetro hm 100 metros
1 decâmetro dam 10 metros
1 metro m 100 centímetros
1 decímetro dm 10 centímetros
1 centímetro cm 10 milímetros
1 milímetro mm Infinitésimo
Escala Numérica 
A escala numérica é sempre expressa em centímetros. Ela indica os valores da relação entre 
a extensão de uma linha na carta e a extensão correspondente no terreno.
Por exemplo:
 » 1:25.000 (Lê-se: um por vinte e cinco mil) – significa que 1 cm no mapa corresponde 
a 25.000 cm ou 250 m, no real. 
Em outros casos, temos:
 » 1:300.000 → 1 cm no mapa = 300.000 cm ou 3 (três) km no real;
 » 1:20.000.000 → 1 cm no mapa = 20.000.000 cm ou 200 km no real;
 » 1:154.000.000 → 1 cm no mapa = 154.000.000 cm ou 1.540 km no real;
 » 1:100 → 1 cm no mapa = 100 cm ou 0,001 km no real.
Uma escala é tanto maior quanto menor for o denominador, ou seja, o valor ao lado direito 
dos dois pontos (:).
19
Por exemplo: 
A escala 1:50.000 é maior que a escala 1:100.000.
Escala Gráfica
A escala gráfica pode ser expressa em outras grandezas (metros, quilômetros, etc.).
Cada tipo de escalaé constituído de um segmento à direita da referência zero, conhecida 
como escala primária, e de um segmento à esquerda da origem, denominado de Talão ou 
escala de fracionamento, esse é dividido em submúltiplos da unidade escolhida graduados da 
direita para a esquerda.
Por exemplo:
Veja no Quadro 2 a seguir alguns exemplos de aplicações de mapas de diferentes escalas.
Quadro 2. Escalas e suas aplicações
Aplicação Escala
Detalhes de terrenos urbanos 1:50
Planta de pequenos lotes e edificios 1:100 e 1:20
Planta de arruamentos e loteamentos urbanos 1:500 e 1:1000
Planta de propriedades rurais
1:1000 
1:2000 
1:5000
Planta cadastral de cidades e grandes propriedades 
rurais ou indutriais
1:5000 
1:10 000 
1:25 000
Cartas de municípios 1:50 000 1:100 000
Mapas de estados, países, continentes, etc. 1:200 000 a 1:10 000 000
Fonte: adaptado de http://www.gpeas.ufc.br/disc/topo/apost01.pdf. Acessado em: 21/10/2014
A Figura 16 é uma representação de uma unidade de território em duas escalas distintas.
Figura 16. O Estado do Rio de Janeiro em diferentes escalas
grupoescolar.com
20
Unidade: Aspectos astronômicos, sistemas de coordenadas e escalas
Quanto maior a escala de um mapa, maior é a possibilidade de se observar os detalhes do 
terreno. Por sua vez, mapas de escala pequena abrangem áreas maiores.
Na Figura 16, por exemplo, os limites municipais do Estado do Rio de Janeiro são bem mais 
visíveis na escala 1:4.000.000, maior do que na escala 1:25.000.000, menor que a anterior.
Por outro lado, na mesma Figura 16, o mapa do Brasil em escala 1:25.000.000 permite 
contextualizar a posição do Estado do Rio de Janeiro no âmbito geográfico nacional, 
conjuntamente às outras unidades da federação.
Alternar entre escala, dimensão real e dimensão representada no mapa é uma tarefa que 
requer treino.
Observe nos exemplos a seguir uma situação problema que exige a conversão de dimensões 
representadas em dimensões reais.
Caso 1
Se em um mapa de escala (E) 1:250.000, as localidades A e B estão separadas por 4 cm (d), 
qual a distância real (D) em km entre essas localidades?
Resolução:
1 cm = 2,5 km
D = E.d
1 cm (d) 4 = 
250.00 cm 
cm
D
D = 250.000 cm x 4 cm (d)
D = 1.000.000 cm
D = 10 Km
Caso 2
Ao realizar uma pesquisa pela dimensão representada no mapa de uma dimensão real, 
podemos problematizar a situação da seguinte forma:
No mesmo mapa de escala (E) 1:250.000, queremos localizar uma outra localidade C situada 
a 3 km (D) a norte da localidade A. Qual a distância em centímetros entre C e A no mapa (d)?
Resolução:
3 km = 300.000 cm
d = D/E
1 cm x (d) = 
250.00 cm 300.000 cm (D)
250.000 cm 300.000 cm (D)
d = 300.000 : 250.000
d = 1,2 cm
21
Caso 3
Caso queiramos saber a escala que corresponde à redução de uma dimensão real, podemos 
problematizar da seguinte forma:
Se em uma planta de uma sala as janelas, que na realidade têm 3 metros de comprimento 
(D), estão representadas com espaços de 1 cm (d) na planta, qual a escala dessa representação?
Resolução:
3 m = 300 cm
E = D/d
1 cm 1 (d) = 
300 cm x
E = 300 : 1 = 300
E = 1:300 
Escala Cartográfica X Escala Geográfica
Ao contrário da Escala Cartográfica, a Escala Geográfica corresponde à amplitude da 
área geográfica estudada. Esse conceito estabelece que quanto maior a extensão da área, 
maior será a Escala Geográfica associada.
O antagonismo entre os dois conceitos está no fato de que: quanto maior a Escala Geográfica, 
menor será a Escala Cartográfica aplicada.
22
Unidade: Aspectos astronômicos, sistemas de coordenadas e escalas
Material Complementar
• Medindo a velocidade da Rotação sem sair de casa:
http://www.sbfisica.org.br/fne/Vol10/Num2/a09.pdf
• Site do Departamento de Astronomia da UFRGS:
http://astro.if.ufrgs.br/index.htm
23
Referências
LIBAULT, A. Geocartografia. São Paulo: EDUSP, 1975.
MOURÃO, R. R. F. Dicionário Enciclopédico de Astronomia e Astronáutica. Rio de 
Janeiro: Editora Nova Fronteira, 1997.
SILVA, M. A. V. Meteorologia e Climatologia. INMET, 2005. (Versão eletrônica)
24
Unidade: Aspectos astronômicos, sistemas de coordenadas e escalas
Anotações

Continue navegando