Prévia do material em texto
Universidade Federal do Recôncavo da Bahia GCET823 - Física III Lista 1 (Atualizada em novembro de 2021) Carga elétrica e Lei de Coulomb 1. Duas esferas condutoras iguais, mantidas fixas, se atraem mutuamente com uma força eletrostática de 0,108 N quando a distância entre os centros é de 50,0 cm. As esferas são ligadas por um fio condutor de diâmetro desprezível. Quando o fio é removido, as esferas se repelem com uma força de 0,0360 N. Supondo que a carga total das esferas era inicialmente positiva, determine: (a) a carga negativa inicial de uma das esferas; (b) A carga positiva inicial da outra esfera. 2. Três partículas são mantidas fixas sobre um eixo 𝑥. A partícula 1, de carga 𝑞!, está em 𝑥 = −𝑎; a partícula 2, de carga 𝑞", está em 𝑥 = +𝑎. Determine a razão 𝑞!/𝑞" para que a força eletrostática a que está submetida a partícula 3 seja nula: (a) se a partícula 3 estiver no ponto 𝑥 = +0,500𝑎; (b) Se a partícula 3 estiver no ponto 𝑥 = +1,50𝑎. 3. A figura mostra quatro esferas condutoras iguais, que estão separadas por grandes distâncias. A esfera 𝑊 (que estava inicialmente neutra) é colocada em contato com a esfera 𝐴 e depois as esferas são novamente separadas. Em seguida a esfera 𝑊 é colocada em contato com a esfera 𝐵 (que possuía inicialmente uma carga de −21𝑒) e depois as esferas são novamente separadas. Finalmente, a esfera 𝑊 é colocada em contato com a esfera 𝐶 (que possuía inicialmente uma carga de +48𝑒), e depois as esferas são novamente separadas. A carga final da esfera 𝑊 é +18𝑒. Qual era a carga inicial da esfera 𝐴? 4. Na figura, a partícula 1, de carga +1µC, e a particula 2, de carga −3µC, são mantidas a uma distância 𝐿 = 10,0 cm uma da outra sobre o eixo 𝑥. Determine (a) a coordenada 𝑥 (b) a coordenada 𝑦 de uma partícula 3 de carga desconhecida 𝑞# para que a força total exercida sobre ela pelas particulas 1 e 2 seja nula. 5. Uma casca esférica não-condutora, com raio interno de 4,0 cm e um raio externo de 6,0 cm, possui uma distribuição de cargas não-homogênea. A densidade volumétrica de carga 𝜌 é a carga por unidade de volume, medida em coulombs por metro cúbico. No caso dessa casca, 𝜌 = 𝑏/𝑟 , onde 𝑟 é a distância em metros a partir do centro da casca e 𝑏 = 3,0 µC/m². Qual é a carga total da casca? 6. Calcule o número de coulombs de carga positiva que estão presentes em 250 cm³ de água (neutra). (Sugestão: um átomo de hidrogênio contém um próton; um átomo de oxigênio contém oito prótons.) 7. Na figura, duas pequenas esferas condutoras de mesma massa 𝑚 e mesma carga 𝑞 estão penduradas em fios não condutores de comprimento 𝐿. Suponha que o ângulo 𝜃 é tão pequeno que a aproximação tan𝜃 ≈ sen 𝜃 pode ser usada. (a) Mostre que a distância de equilíbrio entre as esferas é dada por 𝑥 = C 𝑞"𝐿 2𝜋ɛ$𝑚𝑔 G !/# (b) Se 𝐿 = 120 cm, 𝑚 = 10 g e 𝑥 = 5.0 cm, qual é o valor de |𝑞| ? 8. Três cargas pontuais estão localizadas em um arco de círculo, como mostra a figura. Determine a força elétrica que seria exercida sobre uma carga pontual de −5,00 nC posicionada em 𝑃. 9. Quatro partículas carregadas estão localizadas nos vértices de um quadrado de lado 𝑎, conforme mostra a figura. Determine a força exercida sobre a partícula 𝑞. 10. Uma carga de 𝑞! = −1,0 µC está na origem. Uma segunda carga, de 𝑞" = 2,0 µC, está em 𝑥 = 0 e 𝑦 = 0,10 m e uma terceira, de 𝑞# = 4,0 µC, está em 𝑥 = 0,20 m e 𝑦 = 0. Determine as forças que atuam sobre cada uma das cargas. Respostas 1. (a) −1,00 𝜇C; (b) 3,00 𝜇C 2. (a) 9; (b) 25 3. −6𝑒 4. (a) −14 cm; (b) 0 5. 3,8 × 10&' C 6. (a) 1,3 × 10( C 7. (b) 2,4 × 10&' C 8. 8, 98 × 10&) N à esquerda 9. *+ ! ,! (3,06�̂� + 5,06𝚥)̂ 10. �⃗�! = (0,90𝚤̂ + 1,8𝚥̂) N; �⃗�" = (−1,3�̂� − 1,2𝚥̂) N; �⃗�# = (0,39𝚤̂ − 0,64�̂�) N 718 Chapter 23 Electric Fields 27. Two equal positively charged particles are at opposite corners of a trap- ezoid as shown in Figure P23.27. Find symbolic expressions for the total electric field at (a) the point P and (b) the point P 9. 28. Consider n equal positively charged particles each of magnitude Q /n placed symmetrically around a circle of radius a. (a) Calculate the magnitude of the elec- tric field at a point a distance x from the center of the circle and on the line passing through the center and perpendicular to the plane of the circle. (b) Explain why this result is identical to the result of the calcula- tion done in Example 23.8. 29. In Figure P23.29, determine the point (other than infinity) at which the electric field is zero. 1.00 m !2.50 mC 6.00 mC "! Figure P23.29 30. Three charged particles are at the corners of an equi- lateral triangle as shown in Figure P23.15. (a) Calcu- late the electric field at the position of the 2.00-mC charge due to the 7.00-mC and 24.00-mC charges. (b) Use your answer to part (a) to determine the force on the 2.00-mC charge. 31. Three point charges are located on a circular arc as shown in Figure P23.31. (a) What is the total electric field at P, the center of the arc? (b) Find the elec- tric force that would be exerted on a 25.00-nC point charge placed at P. S Q/C M W perpendicular bisector of the two fixed charges a distance x from the midpoint between those charges (Fig. P23.20). (a) Show that if x is small compared with d, the motion of 2Q is simple harmonic along the perpendicu- lar bisector. (b) Determine the period of that motion. (c) How fast will the charge 2Q be mov- ing when it is at the midpoint between the two fixed charges if initially it is released at a distance a ,, d from the midpoint? 21. Two identical conducting small spheres are placed with their centers 0.300 m apart. One is given a charge of 12.0 nC and the other a charge of 218.0 nC. (a) Find the electric force exerted by one sphere on the other. (b) What If? The spheres are connected by a conduct- ing wire. Find the electric force each exerts on the other after they have come to equilibrium. 22. Why is the following situation impossible? Two identical dust particles of mass 1.00 mg are floating in empty space, far from any external sources of large gravi- tational or electric fields, and at rest with respect to each other. Both particles carry electric charges that are identical in magnitude and sign. The gravitational and electric forces between the particles happen to have the same magnitude, so each particle experiences zero net force and the distance between the particles remains constant. Section 23.4 Analysis Model: Particle in a Field (Electric) 23. What are the magnitude and direction of the electric field that will balance the weight of (a) an electron and (b) a proton? (You may use the data in Table 23.1.) 24. A small object of mass 3.80 g and charge 218.0 mC is suspended motionless above the ground when immersed in a uniform electric field perpendicular to the ground. What are the magnitude and direction of the electric field? 25. Four charged particles are at the corners of a square of side a as shown in Figure P23.25. Determine (a) the electric field at the location of charge q and (b) the total electric force exerted on q. " " "" a aa a q 3q 4q 2q Figure P23.25 26. Three point charges lie along a circle of radius r at angles of 308, 1508, and 2708 as shown in Figure P23.26. Find a symbolic expression for the resultant electric field at the center of the circle. W S S "Q "Q2d 45.0#45.0# " " d P P $ Figure P23.27 30° 150° !2q qq r x y 270° " " ! Figure P23.26 "q "q !Q x y x " " ! d 2 d 2 Figure P23.20 " " ! "3.00 nC 4.00 cm 4.00 cm "3.00 nC 30.0# 30.0# !2.00 nC P Figure P23.31 718 Chapter 23 Electric Fields 27. Two equal positively charged particles are at opposite corners of a trap- ezoid as shown in Figure P23.27. Find symbolic expressions for the totalelectric field at (a) the point P and (b) the point P 9. 28. Consider n equal positively charged particles each of magnitude Q /n placed symmetrically around a circle of radius a. (a) Calculate the magnitude of the elec- tric field at a point a distance x from the center of the circle and on the line passing through the center and perpendicular to the plane of the circle. (b) Explain why this result is identical to the result of the calcula- tion done in Example 23.8. 29. In Figure P23.29, determine the point (other than infinity) at which the electric field is zero. 1.00 m !2.50 mC 6.00 mC "! Figure P23.29 30. Three charged particles are at the corners of an equi- lateral triangle as shown in Figure P23.15. (a) Calcu- late the electric field at the position of the 2.00-mC charge due to the 7.00-mC and 24.00-mC charges. (b) Use your answer to part (a) to determine the force on the 2.00-mC charge. 31. Three point charges are located on a circular arc as shown in Figure P23.31. (a) What is the total electric field at P, the center of the arc? (b) Find the elec- tric force that would be exerted on a 25.00-nC point charge placed at P. S Q/C M W perpendicular bisector of the two fixed charges a distance x from the midpoint between those charges (Fig. P23.20). (a) Show that if x is small compared with d, the motion of 2Q is simple harmonic along the perpendicu- lar bisector. (b) Determine the period of that motion. (c) How fast will the charge 2Q be mov- ing when it is at the midpoint between the two fixed charges if initially it is released at a distance a ,, d from the midpoint? 21. Two identical conducting small spheres are placed with their centers 0.300 m apart. One is given a charge of 12.0 nC and the other a charge of 218.0 nC. (a) Find the electric force exerted by one sphere on the other. (b) What If? The spheres are connected by a conduct- ing wire. Find the electric force each exerts on the other after they have come to equilibrium. 22. Why is the following situation impossible? Two identical dust particles of mass 1.00 mg are floating in empty space, far from any external sources of large gravi- tational or electric fields, and at rest with respect to each other. Both particles carry electric charges that are identical in magnitude and sign. The gravitational and electric forces between the particles happen to have the same magnitude, so each particle experiences zero net force and the distance between the particles remains constant. Section 23.4 Analysis Model: Particle in a Field (Electric) 23. What are the magnitude and direction of the electric field that will balance the weight of (a) an electron and (b) a proton? (You may use the data in Table 23.1.) 24. A small object of mass 3.80 g and charge 218.0 mC is suspended motionless above the ground when immersed in a uniform electric field perpendicular to the ground. What are the magnitude and direction of the electric field? 25. Four charged particles are at the corners of a square of side a as shown in Figure P23.25. Determine (a) the electric field at the location of charge q and (b) the total electric force exerted on q. " " "" a aa a q 3q 4q 2q Figure P23.25 26. Three point charges lie along a circle of radius r at angles of 308, 1508, and 2708 as shown in Figure P23.26. Find a symbolic expression for the resultant electric field at the center of the circle. W S S "Q "Q2d 45.0#45.0# " " d P P $ Figure P23.27 30° 150° !2q qq r x y 270° " " ! Figure P23.26 "q "q !Q x y x " " ! d 2 d 2 Figure P23.20 " " ! "3.00 nC 4.00 cm 4.00 cm "3.00 nC 30.0# 30.0# !2.00 nC P Figure P23.31