Prévia do material em texto
1a Questão Acerto: 1,0 / 1,0 Um investidor aplicou R$20.000,00 em um fundo de garantia no regime de capitalização simples, que gera lucro de 5% ao mês. Se o investimento tiver duração de 1 ano, qual será o valor que o investidor receberá ao final desse período? R$21.000,00 R$32.000,00 R$36.000,00 R$40.000,00 R$26.000,00 Respondido em 20/09/2022 21:15:25 Explicação: O valor que o investidor receberá ao final desse período é o montante. Como o juro que incorre é simples, o cálculo do montante é: M = C ( 1 + it ) M = 20.000 ( 1 + (0,05 x 12)), observe que o tempo e a taxa precisam estar na mesma unidade de tempo, logo a taxa foi transformada de ano em meses. M = 20.000 (1 + 0,6) M = 20.000 x 1,6 M = 32.000 2a Questão Acerto: 1,0 / 1,0 Em uma seleção para professor substituto de uma instituição, os candidatos devem fazer uma prova contendo 30 questões, na qual cada acerto vale 5 pontos e em cada erro o candidato perde 3 pontos. Se um candidato totalizou 110 pontos nessa prova, então o seu número de acertos foi de: 25 24 22 21 23 Respondido em 20/09/2022 21:23:47 Explicação: Sabemos que a prova tem 30 questões, logo o número de acertos somado ao de erros é 30. Além disso, cada acerto (a) vale 5 e cada erro (e) perde 3 e a pontuação do candidato em questão foi 110. Temos, então, o sistema de equações: a + e = 30 5a - 3e = 110 Queremos descobrir o número de acertos, logo: e = 30 - a, substituindo e na segunda equação temos: 5a - 3 (30 - a) = 110 5a - 90 + 3a = 110 5a + 3a = 110 + 90 8a = 200 a = 25 questões 3a Questão Acerto: 1,0 / 1,0 Com a finalidade de atrair novos clientes, um banco oferece empréstimos a uma taxa de juro composto de i= 12% ao ano. Se um cliente pedir um empréstimo de R$10.000,00 para quitar tudo ao final de 6 meses, qual será o valor da dívida que o cliente terá que pagar ao final desse período? R$22.425,50 R$19.685,23. R$16.755,30 R$10.615,20 R$13.435,45 Respondido em 20/09/2022 21:15:42 Explicação: Cálculo do montante com juros composto é: M = C (1 + i)tt M = 10.000 (1 + 0,01)66, note que o tempo e a taxa precisam estar na mesma unidade de tempo, foi preciso transformar 12% ao ano em 1% ao mês para seguir com o cálculo. M = 10.000 (1,01)66 M = 10.000 x 1,06152 M = 10.615,20 reais. 4a Questão Acerto: 1,0 / 1,0 No gráfico a seguir, temos o nível da água armazenada em uma barragem, ao longo de três anos. O nível de 40m foi atingido quantas vezes neste período? 3 1 2 5 4 Respondido em 20/09/2022 21:23:00 Explicação: Percebemos que o gráfico possui uma queda acentuada quando o nível da água chega em 10m. É nesta queda que o nível de 40m é atingido pela primeira vez. Logo em seguida o gráfico apresenta uma subida também acentuada e o nível novamente atinge a marca de 40m. Logo a resposta correta é 2 vezes. 5a Questão Acerto: 1,0 / 1,0 No gráfico a seguir tem-se o número de vagas fechadas a cada mês na indústria paulista, no ano de 1998. A partir desse gráfico, conclui-se corretamente que, em relação à indústria paulista no ano de 1998: Durante o primeiro trimestre, a taxa de desemprego diminuiu. No primeiro semestre, foram fechadas mais de 62.000 vagas. No terceiro trimestre, diminuiu o número de desempregados. O número de vagas fechadas no segundo semestre foi menor que 45.000. Em dezembro havia menos desempregados que em janeiro. Respondido em 20/09/2022 21:16:18 Explicação: A resposta correta é “No primeiro semestre, foram fechadas mais de 62.000 vagas.”. De fato, pela análise do primeiro semestre do gráfico é possível concluir isso somando-se aproximadamente o valor de cada um dos 6 primeiros meses do ano de 1998. As outras alternativas estão incorretas. Vale observar que vagas fechadas e taxa de desemprego não são a mesma coisa. 6a Questão Acerto: 1,0 / 1,0 O gráfico mostra o faturamento de duas empresas, A e B, em milhões de reais (eixo y) durante o primeiro semestre do ano (eixo x). A empresa A está representada no gráfico pela linha azul e a empresa B pela linha verde. Das opções apresentadas abaixo, assinale aquela que apresenta um intervalo de faturamento simultâneo das empresas A e B que esteja entre 20 milhões e 30 milhões de reais. [4,2 ; 6] [2,1 ; 4] [4,3 ; 5,8] [0 ; 2] [4,5 ; 5,8] Respondido em 20/09/2022 21:16:28 Explicação: Veja no gráfico que ambas as curvas se apresentam acima da curva dos 20 milhões somente um pouco após o valor de t > 5,4. Então neste caso, dos intervalos descritos nas alternativas, somente o [4,5 ; 5,8] apresenta simultaneamente faturamento entre 20 milhões e 30 milhões. OBS: Veja que cada quadradinho tem lado igual a 0,2. 7a Questão Acerto: 1,0 / 1,0 Seja f:R→Rf:R→R, definida por: f(x)=⎧⎪⎨⎪⎩−x−1,se x≤−1−x2+1,se−1<x<1x−1,se x≥1f(x)={−x−1,se x≤−1−x2+1,se−1<x<1x−1,se x≥1 , o conjunto imagem de ff é dado por: [1,+∞[[1,+∞[ ]−∞,−1]]−∞,−1] [−1,1][−1,1] ]−∞,1]]−∞,1] [0,+∞[[0,+∞[ Respondido em 20/09/2022 21:21:58 Explicação: A resposta correta é: [0,+∞[[0,+∞[ É possível notar que f(x) só poderá assumir valores positivos ou 0. Vamos explorar as possibilidades do enunciado. -x-1, se x <= -1 Vamos pegar como exemplo x =-2, logo, f(-2)=-(-2)-1=2-1=1 Outro exemplo x=-1, logo f(-1)=-(-1)-1=0 Note que f(x) só poderá assumir valores positivos ou 0. -x2+1, se -1 Vamos testar para x=0,5, logo f(0,5)=-(0,5)2+1=-0,25+1=0,75 Note que f(x) só poderá assumir valores positivos. x-1, se x>=1 Escolhendo x=2 temos f(2)=2-1=1 Note que f(x) só poderá assumir valores positivos. 8a Questão Acerto: 1,0 / 1,0 Seja f:R→Rf:R→R, definida f(x)={3x+3,x≤0;x2+4x+3,x>0.f(x)={3x+3,x≤0;x2+4x+3,x>0.. Podemos afirmar que: ff é bijetora e f−1(0)=−2f−1(0)=−2. ff é injetora mas não é sobrejetora. ff é sobrejetora mas não é injetora. ff é bijetora e f−1(3)f−1(3)=0. ff é bijetora e f−1(0)=1f−1(0)=1. Respondido em 20/09/2022 21:20:30 Explicação: Ao desenharmos o gráfico da função pedida notamos que ela é bijetora, ou seja, é uma função que é injetora e sobrejetora ao mesmo tempo. Além disso, pode ser observado no gráfico que f(0)=3, logo f-1(3) = 0. 9a Questão Acerto: 0,0 / 1,0 O lucro referente à produção e venda de q unidades de certo produto é dado por L(q)=- 4q2+1.000q-12.000 reais, para q variando entre 0 e 180 unidades. Segundo tal função, qual é o valor máximo de lucro que pode ser obtido é: R$ 50.000,00 R$50.775,00 R$ 52.625,00 R$ 52.000,00 R$ 50.500,00 Respondido em 20/09/2022 21:19:31 Explicação: Como o lucro é expresso por uma função quadrática com a < 0, ou seja, seu gráfico é uma parábola com concavidade voltada para baixo (⋂⋂), seu valor máximo é a coordenada y do vértice (yv). Portanto, o lucro máximo pode ser obtido da forma a seguir: yv=−Δ4a−Δ4a=−(b2−4ac)4a−(b2−4ac)4a- −[(1.000)2−4∙(−4)∙(−12.000)]4∙(−4)−[(1.000)2−4∙(−4)∙(−12.000)] 4∙(−4)=50.500reais. 10a Questão Acerto: 1,0 / 1,0 Em uma fábrica de caixas, o preço p por caixa de um determinado lote varia de acordo com a quantidade de pedidos em uma venda, pois é oferecido ao cliente, um determinado desconto que é proporcional à quantidade q de caixas compradas. O preço unitário com desconto é então calculado de acordo com a função: p = 16.000 - 2q Um cliente solicitou à fábrica uma compra de 20.000 de caixas. Assumindo que o preço da unidade é dado pela função acima, a fábrica apresentará: Uma receita negativa de R$ 24 milhões. Uma receita negativa de R$ 480 milhões. Uma receita nula. Uma receita positiva de R$ 24 milhões. Uma receita positiva de R$ 480 milhões.Respondido em 20/09/2022 21:18:01 Explicação: Para obter a função receita total em função da quantidade q, devemos, primeiramente, escrever a função preço: p = 16.000 - 2q (*) Substituindo essa expressão na função R = p ⋅ q (receita total) e aplicando a propriedade distributiva, temos: R(q) = (16.000-2q) ⋅ q R(q) = 16.000q - 2q2 (**) Para uma quantidade igual a 20.000 caixas, temos a receita dada por: R(20.000) = 16.000 ∙ 20.000 - 2 ∙ (20.000) 2 = -480.000.000,00 reais. Ou seja, de acordo com essa função, para essa quantidade, a fábrica apresenta prejuízo na sua produção.