Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Prévia do material em texto

MATEMÁTICA FINANCEIRA
PROF. ME. RICARDO DANTAS LOPES
Presidente da Mantenedora
Ricardo Benedito Oliveira
Reitor: 
Dr. Roberto Cezar de Oliveira
Pró-Reitoria Acadêmica
Gisele Colombari Gomes
Diretora de Ensino
Prof.a Dra. Gisele Caroline
Novakowski
PRODUÇÃO DE MATERIAIS
Diagramação:
Alan Michel Bariani
Edson Dias Vieira
Thiago Bruno Peraro
Revisão Textual:
Camila Cristiane Moreschi
Danielly de Oliveira Nascimento
Fernando Sachetti Bomfim
Luana Luciano de Oliveira
Patrícia Garcia Costa
Produção Audiovisual:
Adriano Vieira Marques
Márcio Alexandre Júnior Lara
Osmar da Conceição Calisto
Gestão de Produção: 
Fernando Sachetti Bomfim© Direitos reservados à UNINGÁ - Reprodução Proibida. - Rodovia PR 317 (Av. Morangueira), n° 6114
33WWW.UNINGA.BR
U N I D A D E
01
SUMÁRIO DA UNIDADE
INTRODUÇÃO ................................................................................................................................................................4
1 CONJUNTURA ECONÔMICA BRASILEIRA ...............................................................................................................5
2 MATEMÁTICA COMERCIAL ......................................................................................................................................6
3 REGRA DE TRÊS ........................................................................................................................................................6
3.1 REGRA DE TRÊS SIMPLES ....................................................................................................................................6
3.1.1 DIRETAMENTE PROPORCIONAL.......................................................................................................................6
3.1.2 INVERSAMENTE PROPORCIONAL .................................................................................................................... 7
3.2 REGRA DE TRÊS COMPOSTA ................................................................................................................................9
4 PORCENTAGEM ........................................................................................................................................................ 11
CONSIDERAÇÕES FINAIS ........................................................................................................................................... 12
A ECONOMIA NO BRASIL
E CÁLCULOS BÁSICOS
ENSINO A DISTÂNCIA
DISCIPLINA:
MATEMÁTICA FINANCEIRA
4WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 1
EDUCAÇÃO A DISTÂNCIA
INTRODUÇÃO
Caro(a) aluno(a), compreender a correta utilização dos cálculos financeiros é importante 
para todos que todos que desempenham alguma função de gestão. Em outras palavras, não 
podemos decidir de modo estratégico sem entender as funções da matemática financeira e sua 
relação com os negócios.
Neste material, pretendemos ampliar seus conhecimentos sobre esta área, com a 
compreensão de conceitos básicos, porém essenciais, para entender e aplicar os cálculos 
financeiros como ferramenta aplicada à gestão dos negócios. Começaremos com o estudo dos 
aspectos gerais sobre o mercado financeiro e com os cálculos matemáticos básicos.
O mercado possui variações constantes que precisam ser analisadas com critérios técnicos, 
para evitar decisões equivocadas. Todos esses cálculos e teorias são essenciais para utilização no 
cotidiano, pois fornecem informações que facilitam suas análises e decisões.
Ao falarmos da situação econômica do nosso país, precisamos entender que existe e 
sempre haverá uma variação constante, positiva e negativa. Em outras palavras, a economia passa 
por constantes ciclos de expansão e contração. Esse aspecto, em termos analíticos, deve ser levado 
em conta no processo de tomada de decisão de investimentos ou financiamentos.
Aqui começamos a compreender alguns termos e ferramentas pertinentes ao conteúdo 
de finanças, que devem fazer parte de sua realidade de trabalho, ou seja, juros, parcelamentos, 
descontos, amortizações, entre outros.
Começaremos esta Unidade falando da economia brasileira, na sequência entendendo 
um pouco sobre cálculos comerciais e conceitos da matemática básica.
5WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 1
EDUCAÇÃO A DISTÂNCIA
1 CONJUNTURA ECONÔMICA BRASILEIRA
Em primeiro lugar, devemos entender que a economia pode ser definida como um 
ramo das ciências sociais que estuda “[...] como empregar recursos produtivos escassos frente 
a uma sociedade que tem necessidades ilimitadas por bens e serviços” (SILVA, 2018, p. 21). Em 
outras palavras, a economia está presente em nossa vida. Neste sentido, precisamos entendê-la, 
pois nossas decisões relacionadas ao uso do dinheiro, como investimentos ou financiamentos, 
influenciarão o futuro dos nossos negócios e a perpetuidade da empresa no mercado.
Vamos discutir alguns conceitos básicos. Segundo Raymundo (2006), a alternância do 
dólar frente à nossa moeda, o real, é algo comum e rotineiro no mercado financeiro. Na prática, 
quando o risco do país aumenta, teremos menos dólares disponíveis. Por isso, seu valor tende a 
subir. Por outro lado, quanto menos risco o país oferece, mais dólares são injetados na economia. 
Neste caso, a cotação da moeda americana tende a diminuir de valor frente ao real.
Uma outra questão que merece nossa atenção é que variações no dólar podem causar 
aumento ou diminuição da inflação, mudança na autonomia de compra das pessoas e variação 
dos custos envolvidos em insumos ou outros materiais importados. Por isso, busque conhecer 
mais sobre o mercado de capitais, dólar, sociedades anônimas, pois estes podem ser fontes de 
investimentos e financiamentos para as empresas.
O mercado de capitais, de acordo com Pinheiro (2019, p. 158) pode ser entendido [...]”como 
um conjunto de instituições e de instrumentos que negociam com títulos e valores mobiliários, 
objetivando a canalização dos recursos dos agentes compradores para os agentes vendedores”. Em 
termos práticos, o mercado de capitais no Brasil se mantém ativo, mesmo passando por algumas 
crises na economia mundial. Esse fato demonstra como o mercado é volátil e incerto. Por isso, 
entender o que acontece e como tomar decisões é essencial.
Em relação à política tributária, entendemos que o governo precisa atender as demandas 
e necessidades da população. Para isso, precisa cobrar impostos, tarifas e multas. Essa cobrança 
configura-se na principal fonte de receita do governo, utilizada para financiar suas ações (SILVA, 
2018).
Em termos práticos, no Brasil, temos uma elevada carga tributária. Este aspecto dificulta a 
sobrevivência das empresas, pois eleva o custo dos negócios. Além da carga elevada, a população 
não percebe os benefícios gerados pelos impostos pagos, ou seja, serviços públicos de qualidade. 
Além disso, temos a política de juros básicos da economia, utilizada para resolver problemas de 
inflação ou de crescimento do PIB.
Em resumo, um adequado planejamento passa por uma análise de cada detalhe do 
mercado, principalmente do financeiro, pois a empresa depende de decisões que envolvem 
recursos financeiros.
O site Fundamentus disponibiliza informações financeiras e 
fundamentalistas das empresas com ações listadas na Bovespa. 
Possui um completo banco de dados apresentado de forma 
acessível para auxiliar o investidor a encontrar as melhores opções 
de investimento. Vale a pena conferir. 
Disponível em: https://fundamentus.com.br/.
https://fundamentus.com.br/
6WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 1
EDUCAÇÃO A DISTÂNCIA
2 MATEMÁTICA COMERCIAL
Todos nós, que precisamos ter uma visão estratégica das empresas, temos que conhecer 
os conceitos básicos dos cálculos voltados aos negócios. Essa competência irá contribuir para o 
processo de tomada de decisões, que para ser bem sucedido, precisa de informações adequadas. 
Na visão de Francisco (1999), a atual economia,que é vista como globalizada, exige que 
os profissionais busquem conhecer os aspectos financeiros e comerciais dos cálculos, importantes 
para melhor compreender questões de juros, taxas, impostos e outros assuntos que interferem em 
nosso cotidiano.
Imagine quando você precisa comprar um bem e decide comparar as condições de 
pagamento. A primeira possibilidade é um financiamento em 120 vezes, com determinado valor 
de juros, que resultará em um valor futuro maior. Já a segunda é a compra em dinheiro, com 
desconto. Neste sentido, qual é a melhor opção? Quais são os critérios de escolha e os cálculos 
que precisam ser efetuados?
Em outras palavras, cálculos financeiros oferecem ferramentas para a tomada de decisões 
embasadas em informações corretas. Isso nos dá mais segurança para avaliar como investir ou 
financiar nossos recursos. Castelo Branco (2015) destaca que os cálculos financeiros, ou seja, a 
matemática financeira, contribui para que todos nós possamos exercer nossa cidadania em um 
mundo capitalista.
Por isso, acompanhe todo esse material para compreender as questões financeiras 
e, com isso, estar preparado para tomadas de decisão em um mercado altamente complexo. 
Neste momento, iremos rememorar conceitos essenciais e básicos para, posteriormente, nos 
aprofundarmos nos cálculos financeiros.
3 REGRA DE TRÊS
Na visão de Gremaud (2003), esta regra ajuda a conhecer o valor desconhecido em uma 
proporção. Pode ter duas razões, simples e composta. Além disso, outra característica refere-se 
ao fato de ser direta ou inversa. 
3.1 Regra de Três Simples
Gremaud (2003) enfatiza que ela será simples no momento que avalia duas grandezas 
comparadas, em que são aplicadas de modo diretamente ou inversamente proporcional.
3.1.1 Diretamente proporcional
Gremaud (2003) afirma que essas grandezas serão diretamente proporcionais devido a 
sua ligação feita diretamente. Quando uma diminui, a outra faz a mesma diminuição ou, ainda, 
se uma aumenta a outra também aumenta.
Quem nunca enfrentou dificuldades em cálculos ao menos uma vez na vida? 
Tenha foco para compreender e vencer esses desafios.
7WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 1
EDUCAÇÃO A DISTÂNCIA
Vamos entender através de um exemplo:
1. Imaginemos que é necessário nos prepararmos para uma obra, em que 5 construtores 
fazem 550 metros de reboco por mês. Desta forma, quantos construtores são necessários para 
a produção de 1650 metros de reboco por mês?
As grandezas têm relação direta, ou seja, quanto mais betoneiras, mais lajes produzidas, 
como a seguir:
Essa relação acontece da seguinte maneira: X construtores estão para 1.650 metros de 
reboco, assim como 5 construtores estão para 550 metros de reboco.
Precisamos encontrar o valor de X, em que as razões são proporcionais e utilizando a 
regra com multiplicação cruzada. Veja a resolução a seguir:
Resposta: são necessários 15 construtores. 
3.1.2 Inversamente proporcional
Neste caso, existe uma relação inversa, ou seja, quando uma grandeza diminui a outra 
aumenta, e o contrário também é verdadeiro. Vamos entender isso por meio de um exemplo:
1. A empresa Z contrata 24 operários para erguer um prédio em 48 meses. Quantos 
operários são necessários para erguer esta mesma obra em 36 meses? 
Essa relação é inversa, ou seja, se aumentar o número de operários, diminui o tempo 
necessário para erguer o prédio. Para a resolução deste cálculo, precisamos inverter uma das 
grandezas para utilizar a regra de 3, como apresentado a seguir:
Construtores
X
5
Metros de reboco
1.650
550
X = 1.650
 5 550
X = 5 x 1.650
 550
X = 15
Operários
X
24
Meses
36
48
Operários
X
24
Meses
48
36
8WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 1
EDUCAÇÃO A DISTÂNCIA
Perceba que agora fica fácil fazer o cálculo, como se apresenta na resolução a seguir:
Resposta: são necessários 32 operários. 
2. Pensemos em um avião que, mantendo a velocidade de 256 km/h, faz um percurso 
em 6 horas. Qual deveria ser a velocidade para percorrer essa distância em 4 horas?
 
Aplicando a regra do inversamente proporcional, temos:
Resposta: a velocidade será de 384 Km/h.
X = 48
 24 36
X = 24 x 48
 36
X = 32
Velocidade (Km/h)
X
256
Tempo (horas)
4
6
Velocidade (Km/h)
X
256
Tempo (horas)
6
4
X = 6
 256 4
X = 256 x 6
 4
X = 384
A importância da matemática aplicada a negócios.
Disponível em: https://administradores.com.br/artigos/a-
importancia-da-matematica-aplicada-a-negocios.
https://administradores.com.br/artigos/a-importancia-da-matematica-aplicada-a-negocios
https://administradores.com.br/artigos/a-importancia-da-matematica-aplicada-a-negocios
9WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 1
EDUCAÇÃO A DISTÂNCIA
3.2 Regra de Três Composta
Esta regra de 3 é assim chamada por existirem 3 ou mais grandezas para analisarmos e 
calcularmos, podendo ter as mesmas regras anteriormente vistas, sendo diretas ou inversamente 
proporcionais. Vamos fazer um exemplo para melhor compreender?
1. Uma organização contratada consegue construir, em 90 dias, uma residência com 
200m², utilizando-se de 10 operários. Nesse sentido, quantos dias seriam necessários para 
construir 300m² com 30 operários?
Aqui temos 3 grandezas relacionadas. Com base nas informações fornecidas, vamos 
montar uma tabela para facilitar a compreensão e o cálculo.
Tabela 1 – Regra de 3. 
Dias M2 Número de Operários
X 300 30
90 200 10
Fonte: O autor.
A dúvida aqui é encontrar o número de dias, logo ele será nosso “X”. Lembrando que, 
com mais operários, menos tempo de construção. Porém, quanto mais metros construídos, mais 
tempo de construção. Número de operários e dias são inversamente proporcionais, vamos a 
resolução:
Tabela 2 – Regra de 3.
 Dias M2 Número de Operários
X 300 10
90 200 30
Fonte: O autor.
Agora, da mesma forma que é feito o cálculo com a regra de três simples, é só fazer a 
multiplicação cruzada na qual o numerador é formado pela multiplicação entre o número que 
estiver na coluna do X (no caso, 90) e os que estiverem na linha do X (300 e 10). O divisor é 
formado pela multiplicação dos outros (no caso, 200 e 30) conforme segue:
X = 90 x 30 x 10 / 200 x 30
X = 45
Resposta: seriam necessários 45 dias. 
Será que a inflação afeta nossa vida? Em quais dimensões?
Disponível em: https://g1.globo.com/economia/educacao-
financeira/noticia/o-que-e-inflacao-e-como-ela-afeta-sua-
vida.ghtml.
https://g1.globo.com/economia/educacao-financeira/noticia/o-que-e-inflacao-e-como-ela-afeta-sua-vida.ghtml
https://g1.globo.com/economia/educacao-financeira/noticia/o-que-e-inflacao-e-como-ela-afeta-sua-vida.ghtml
https://g1.globo.com/economia/educacao-financeira/noticia/o-que-e-inflacao-e-como-ela-afeta-sua-vida.ghtml
10WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 1
EDUCAÇÃO A DISTÂNCIA
2. Com 9 operários, determinada empresa executou um buraco de 9 metros de 
comprimento, 5 metros de profundidade e 4,5 metros de largura, em 8 dias de 7 horas de 
trabalho. Em quantos dias esta mesma empresa demoraria tendo 8 trabalhadores, com o 
dobro de poder de trabalho, para abrir um buraco de 6 metros de comprimento, em que a 
dificuldade é o triplo do primeiro buraco?
Tabela 3 – Regra de 3.
DIAS OPERÁRIOS
GRAU DE 
ATIVIDADE
COMPRIMENTO
GRAU DE 
DIFICULDADE
X 8 2 6 3
8 9 1 9 1
 Regra de 3. Fonte: O autor.
Observação: como a atividade não fala a largura e profundidade do buraco levemos em 
consideração as mesmas medidas apresentadas anteriormente.
Primeiro passo: verificar as grandezas que são inversamente proporcionais aos “Dias”.
A quantidade de operários: é inversamente proporcional, pois quanto mais operários 
menos dias. O grau de atividade: é inversamente proporcional, pois quanto mais ativos, menos 
dias se leva para realizar o trabalho.
O comprimento: diretamente proporcional, pois quantomais comprido, mais dias são 
necessários. O grau de dificuldade: é diretamente proporcional, pois quanto mais difícil mais dias 
são necessários.
Segundo passo: vamos inverter as grandezas inversamente proporcionais.
Tabela 04 – Regra de 3.
DIAS OPERÁRIOS
GRAU DE 
ATIVIDADE
COMPRIMENTO
GRAU DE 
DIFICULDADE
X 9 1 6 3
8 8 2 9 1
Fonte: O autor.
Terceiro passo: fazer a multiplicação cruzada.
X = 8x9x1x6x3 / 8x2x9x1
X = 9
Resposta: seriam necessários 9 dias.
A Regra de Três Simples ajuda a encontrar um quarto valor que não conhecemos 
apenas usando outros três valores que temos. É uma ferramenta que pode te 
ajudar em vários cálculos e facilitar sua vida.
11WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 1
EDUCAÇÃO A DISTÂNCIA
4 PORCENTAGEM
De acordo com Castelo Brando (2015, p.2), “quando efetuamos um cálculo de porcentagem, 
na verdade estamos efetuando um simples cálculo de proporção”. Conforme Raymundo (2006), 
dá-se o nome de percentagem à parte calculada sobre uma quantidade de 100 unidades, ou seja, 
é uma parte de 100, ou 0,01 (1÷100).
Toda razão a/b, na qual b = 100, é uma porcentagem e o símbolo que a representa é %. 
Para Puccini (2009), existem vários meios para se resolver um problema que necessite do uso de 
porcentagem como, por exemplo, regra de três simples e o cálculo direto por calculadoras.
Vamos entender, por meio de um exemplo, sobre porcentagem de um número (%).
1. Se um bem é vendido por R$ 200.000,00 e o vendedor tem uma comissão de 5%, 
qual será o valor dessa comissão?
5% de 200.000,00
5 ÷ 100 x 200.000,00
0,05 x 200.000,00
R$ 10.000,00
2. Você acaba de receber R$ 30.000,00 de comissão por vender um imóvel. Sendo sua 
comissão de 6% sobre valor de venda. Mas qual é esse valor de venda?
Aqui você precisa entender a aplicação da regra de 3, veja:
6 está para 100, assim como 30 mil está para X
 6 30.000
100 X
X = 500.000,00
Assim, o valor da venda é R$ 500.000,00 e 6% desse valor é R$ 30.000,00.
500.000,00 x 0,06 = 30.000,00.
Então você poderia, simplesmente, dividir 30.000,00 por 0,06 e chegaria à resposta de R$ 
500.000,00.
O vídeo mostra uma aula de matemática de Marcos Aba, na qual 
ele ensina a calcular porcentagem, dando também ênfase na conta 
de “divisão”.
Para saber mais detalhes, acesse o conteúdo disponível em: https://
www.youtube.com/watch?v=ZZXcTQpbdaE.
https://www.youtube.com/watch?v=ZZXcTQpbdaE
https://www.youtube.com/watch?v=ZZXcTQpbdaE
12WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 1
EDUCAÇÃO A DISTÂNCIA
CONSIDERAÇÕES FINAIS
Percebemos que a matemática financeira não é difícil de entender e aplicar em situações 
reais. Claro que não esgotamos todos os assuntos nessa unidade. No entanto, apresentamos um 
resumo de conceitos básicos úteis no cotidiano do trabalho de um gestor.
Para quem recebe comissões, a porcentagem é algo essencial e usual para os cálculos do 
seu rendimento após uma venda comissionada. Além da regra de três que pode ajudar a encontrar 
valores que não estão explícitos ou que precisam ser encontrados a partir de outros dados.
Segundo Fallet (2011), todas essas ferramentas precisam ser inseridas no contexto da 
realidade econômica brasileira, para que as decisões sejam mais assertivas. A realidade do Brasil 
influencia, diretamente, os juros e o valor de nossa moeda perante outros países.
Esses cálculos que foram apresentados nesta unidade são importantes para melhor 
compreender a matemática financeira, principalmente a forma de lidar com a porcentagem em 
sua forma normal ou transformada em índice.
Para fixar os conteúdos, refaça os exemplos apresentados e faça a atividade de estudo 
proposta na sequência. Isso facilitará o desenvolvimento dos conhecimentos sobre matemática 
financeira. Não tenha medo de crescer, evolua constantemente, pois quem busca alcança e quem 
luta pode chegar à vitória. Quem fica parado começa a andar para trás.
Hirschfeld (2000) enfatiza que aquele que domina as informações pode dominar o 
mercado. Neste sentido, é essencial entender esse assunto, para que sua análise crítica possa ser 
bem mais apurada e possa levá-lo a uma tomada de decisão mais assertiva.
Nos vemos na próxima unidade. Até lá!
1313WWW.UNINGA.BR
U N I D A D E
02
SUMÁRIO DA UNIDADE
INTRODUÇÃO ............................................................................................................................................................... 15
1 CONCEITOS GERAIS ................................................................................................................................................. 16
2 JURO SIMPLES ......................................................................................................................................................... 16
2.1 ENTENDENDO JUROS E TAXA DE JUROS ............................................................................................................ 16
2.2 FÓRMULA PARA CALCULAR O JURO SIMPLES ................................................................................................. 17
3 MÉTODO HAMBURGUÊS .........................................................................................................................................22
4 DESCONTO SIMPLES ..............................................................................................................................................23
4.1 O DESCONTO COMERCIAL SIMPLES ..................................................................................................................23
4.2 DESCONTO RACIONAL SIMPLES ........................................................................................................................24
5 JUROS COMPOSTOS................................................................................................................................................25
5.1 COMPARANDO OS REGIMES DE CAPITALIZAÇÃO ............................................................................................25
JUROS E DESCONTOS
ENSINO A DISTÂNCIA
DISCIPLINA:
MATEMÁTICA FINANCEIRA
1414WWW.UNINGA.BR
EDUCAÇÃO A DISTÂNCIA
5.2 A UTILIZAÇÃO DA CALCULADORA FINANCEIRA HP-12C .................................................................................26
5.3 FÓRMULAS DE JUROS COMPOSTOS..................................................................................................................27
6 EQUIVALÊNCIA ENTRE TAXAS DE JUROS .............................................................................................................29
6.1 CAPITALIZAÇÃO .....................................................................................................................................................29
6.2 DESCAPITALIZAÇÃO .............................................................................................................................................29
6.3 CÁLCULO DO PERÍODO ........................................................................................................................................30
7 DESCONTO COMPOSTO ..........................................................................................................................................30
7.1 DESCONTO COMPOSTO COMERCIAL ................................................................................................................. 31
7.1.1 CÁLCULO DO DESCONTO ................................................................................................................................... 31
7.1.2 CÁLCULO DO VALOR NOMINAL ........................................................................................................................32
7.1.3 CÁLCULO DA TAXA .............................................................................................................................................34
7.1.4 CÁLCULO DO PERÍODO .....................................................................................................................................357.2 DESCONTO COMPOSTO RACIONAL ....................................................................................................................36
7.2.1 CÁLCULO DO VALOR ATUAL ..............................................................................................................................36
7.2.2 CÁLCULO DO DESCONTO ..................................................................................................................................36
7.2.3 CÁLCULO DO VALOR NOMINAL ........................................................................................................................37
7.2.4 CÁLCULO DA TAXA .............................................................................................................................................37
7.2.5 CÁLCULO DO PERÍODO .....................................................................................................................................38
CONSIDERAÇÕES FINAIS ...........................................................................................................................................39
15WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
INTRODUÇÃO
A partir dessa unidade iremos aprofundar nossos estudos nos cálculos financeiros, 
compreendendo sobre os juros e suas influências sobre o capital, além de entender sobre os 
descontos financeiros. Fique atento, pois esses são os cálculos que você vai utilizar com maior 
frequência para a tomada de decisões, pois envolvem juros, descontos, valor presente e futuro do 
dinheiro.
O dinheiro passa por valorização durante o tempo que é investido e precisamos entender 
com clareza, para que consigamos tomar decisões estratégicas envolvendo investimentos. 
Devemos considerar também as práticas de financiamentos, pois precisamos entender o processo 
de cálculo dos juros e da descapitalização das parcelas, caso se decida antecipar o pagamento.
Nosso objetivo é capacitar você no processo de análise das informações e compreender 
os contextos que elas estão inseridas e, com isso, facilitar uma decisão coerente.
Além disso, nesta unidade, ficará mais fácil entender e usar a calculadora financeira 
HP12C, como ferramenta essencial para cálculos financeiros, pois ela facilita sua vida. Em outras 
palavras, você não vai precisar utilizar fórmulas complexas em uma calculadora científica.
Aliás, o que menos queremos é perder tempo com cálculos maçantes e complexos, o que 
acaba por transformar a matemática financeira em algo ruim de estudar. Ao invés disso, aqui 
veremos que é muito simples aplicar os conhecimentos utilizando a calculadora HP12C como 
sua parceira.
Neste momento, abra sua mente e busque compreender cada cálculo e sua importância 
dentro da sua profissão ou, até mesmo, para melhor controlar suas finanças pessoais.
Vamos começar essa unidade com os juros conhecidos como simples e compostos e uma 
breve explicação sobre o uso da HP12C.
16WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
1 CONCEITOS GERAIS
Em primeiro lugar, devemos entender que a matemática financeira, de acordo com Assaf 
Neto (2012, p.1), discute o valor do dinheiro no tempo. “O seu objetivo básico é o de efetuar 
análises e comparações dos vários fluxos de entrada e saída de dinheiro de caixa verificados 
em diferentes momentos”. Outro aspecto relevante está relacionado ao conceito dos juros. Eles 
“efetivamente induzem o adiamento do consumo, permitindo a formação de poupanças e de 
novos investimentos na economia”. Em linhas gerais, os juros devem considerar os seguintes 
aspectos:
• O risco da operação – incerteza;
• Perda do poder de compra do dinheiro – inflação;
• Geração de lucro – compensar o proprietário do capital. 
De acordo com Castelo Branco (2015), os juros podem ser entendidos como a remuneração 
do capital de terceiros e pode ocorrer de duas maneiras: de quem paga (despesa financeira) e de 
quem recebe (receita financeira).
O processo de cálculo e incorporação dos juros ao capital no decorrer do tempo é chamado 
de regime de capitalização. Neste contexto, podem ser utilizados dois métodos de capitalização, 
ou seja, capitalização dos juros simples (ou linear) ou capitalização dos juros compostos (ou 
exponencial) (ASSAF NETO, 2014).
2 JURO SIMPLES
Ao pensar em juros, entendemos que é a valorização de um capital, ou seja, dinheiro 
remunerado. Desta forma, o juro é o retorno sobre um empréstimo durante seu tempo de 
uso, quase como um aluguel. Em outras palavras, de acordo com Hoji (2016, p.14), “é o 
valor correspondente à remuneração do capital cedido, que pode ser pago a cada período de 
capitalização, no vencimento ou antecipadamente”.
2.1 Entendendo Juros e Taxa de Juros
Pensando em juro, ele sempre é visto em forma de valor monetário. Podemos usar 
como exemplo um juro de R$ 50,00 ao mês ou R$ 4.000,00 gerados no final de um período de 
empréstimo. Já na visão de Fallet (2011), a taxa de juro é representada no formato de percentual 
e, dentro das fórmulas, você verá essa taxa com a letra “i”, inclusive na HP-12C.
Podemos ver a taxa através do exemplo a seguir:
• Forma percentual: 12% ao mês, 28% ao ano; 0,7% ao dia.
• Forma unitária: 0,12 ao mês; 0,28 ao ano; 0,007 ao dia.
Para transformar uma taxa percentual em taxa unitária basta dividir por 100. Desta 
forma, 25% é igual a 25 ÷ 100, ou 0,25.
Observação: cuidado com as fórmulas, sempre que for aplicar um cálculo utilizando 
fórmulas, trabalhe no formato unitário. Desta forma, quando a taxa for de 8%, o “i” na fórmula 
será substituído por 0,08 (8÷100). Apenas na HP12C é que utilizamos o valor na forma percentual.
17WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
2.2 Fórmula para Calcular o Juro Simples
Destaca Castelo Branco (2015, p. 29), que o regime de capitalização simples se caracteriza 
pelo fato do percentual de juros incidir somente sobre o valor do capital inicial, ou seja, “sobre os 
juros gerados a cada período não incidirão novos juros”.
Em resumo, quando trabalhamos com juros simples entendemos que não existe a 
capitalização dos juros, ou seja, não é o chamado juros sobre juros (juros compostos). Desta 
forma, temos uma fórmula para calcular os juros simples, da seguinte forma:
J = C x i x n 
onde: 
J = juros expresso em unidades monetárias;
C = Capital, ou seja, valor (em R$) representativo do presente momento; 
i = taxa de juros, expressa em sua forma unitária (decimal);
n = prazo.
Esta é a fórmula básica para o cálculo dos juros. No entanto, existe a possibilidade de 
encontrar outras variáveis:
C = J 
 i x n
i = J 
 C x n
n = J 
 C x i
A taxa de juros simples ou regime de capitalização simples, tem o comportamento de uma 
progressão geométrica. Neste sentido, os juros incidem somente no capital inicial da operação. A 
tabela 1 apresenta o cálculo dos juros simples.
Tabela 01 – Juros simples com taxa de 10% ao período.
N C J Juros Acumulados Montante (M)
0 100,00 - - 100,00
1 100,00 10,00 10,00 110,00
2 100,00 10,00 20,00 120,00
3 100,00 10,00 30,00 130,00
 Fonte: O autor.
Na tabela temos o cálculo dos juros que representam, no final do período, um acréscimo 
de R$ 30,00:
J = C x i x n
J = 100,00 x 0,10 x 3
J = 30,00
18WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
A partir daqui, iremos entender que diversos cálculos podem ser feitos através da 
calculadora HP12C. Pense nela como um facilitador de processos.
Figura 01 - Calculadora HP12C. Fonte: Epx (2017).
Com base no exemplo anterior, podemos calcular utilizando a HP12C, iniciando com 
o zerar de sua memória, teclando em sequência f CLx para zerar todas as suas memórias. Em 
seguida digite, da seguinte forma, na HP12C para obter o resultado:
Tabela 02 – Exemplo na HP-12C
100 CHS PV 120 i 90 n f int R x<>y
 Fonte: O autor.
Observação: éimportante saber que para utilização da HP12C em juros simples, a taxa 
deve ser anual e o período sempre em dias, como a seguir:
Portanto: 10% ao mês = 120% ao ano e 3 meses = 90 dias.
A Calculadora Financeira HP12C foi desenvolvida para facilitar os cálculos 
financeiros, juros, depreciação, valor do dinheiro no tempo, entre outros cálculos. 
Por ser preparada para isso, se torna muito mais eficiente e rápido utilizá-la.
Podemos definir juros como o rendimento de uma aplicação financeira, valor 
referente ao atraso no pagamento de uma prestação ou a quantia paga pelo 
empréstimo de um capital. Atualmente, o sistema financeiro utiliza o regime de 
juros compostos, por ser mais lucrativo. Os juros simples eram utilizados nas 
situações de curto prazo. Hoje não utilizamos a capitalização baseada no regime 
simples, mas, de qualquer forma, vamos entender como ele funciona.
Os juros simples são calculados com base no capital inicial (C), período a período. 
Por isso o valor dos juros simples é constante em cada período de tempo.
19WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
Para melhor entendermos o cálculo dos juros simples, vamos avaliar alguns exemplos, de 
acordo com Mundo Educação (2018):
Exemplo 1
Fernando aplicou R$ 1.200,00 em uma instituição bancária que paga juros simples de 
2,5% ao mês. Quais serão os valores dos juros acumulados e do montante ao final de 10 meses?
O montante do juro simples é dado pela expressão: M = C + J
Fórmula para o cálculo de juros simples: J = C x i x n , em que:
Dados:
J = ?
C = 1.200,00
i = 2,5% = 2,5/100 = 0,025 (taxa unitária ou valor decimal)
n = 10 meses
Resolução:
J = 1.200,00 x 0,025 x 10
J = 300,00
O valor dos juros será R$ 300,00
M = 1.200,00 + 300,00
M = 1.500,00
O montante será de R$1.500,00.
Exemplo 2
Um capital de R$ 2.000,00, aplicado no sistema de juros simples, produziu um montante 
de R$ 2.720,00 após 12 meses de aplicação. Qual foi a taxa de juros?
Dados:
C = 2.000,00
M = 2.720,00
J = M – C = 2.720,00 – 2.000,00 = 720,00
n = 12 meses
i = ?
Resolução:
i = J 
 C x n
i = 720,00 
 2.000,00 x 12
i = 0,03 ou 3% 
A taxa de juros usada foi de 3%.
20WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
Exemplo 3
Um capital de R$ 1.000,00, aplicado a juros simples com uma taxa de 2% ao mês, juros no 
valor de R$ 300,00 após certo tempo. Qual o tempo da aplicação?
Dados:
C = 1.000,00
J = 300
i = 2% = 2/100 = 0,02
n = ?
Resolução:
n = J 
 C x i
n = 300 
 1.000,00 x 0,02
n = 15
O tempo de aplicação foi de 15 meses.
Exemplo 4
João tomou um empréstimo com taxa de juros simples de 6% ao mês durante 9 meses. Ao 
final deste período, calculou em R$ 270.000,00 o total de juros incorridos na operação. Qual é o 
valor do empréstimo?
Dados:
C = ?
i = 0,06 – 6% ao mês
n = 9 meses 
J = 270.000,00
Resolução:
C = J 
 i x n
C = 270.000,00 
 0,06 x 9
C = 500.000,00 
O valor emprestado foi de R$ 500.000,00
21WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
Segundo Assaf Neto (2012), um determinado capital, aplicado por um determinado 
tempo, a uma taxa determinada de juros, produz um valor acumulado, ou seja, montante (M). 
Neste sentido, ele pode ser obtido pela seguinte equação: M = C + J.
Neste sentido, tendo como base a equação geral dos juros simples, ou seja, J = C x i x n, 
podemos trabalhar com outras expressões:
M = C (1 + i x n) ou C = M . 
 (1 + i x n)
Exemplo 5
Uma pessoa aplica R$ 18.000,00 à taxa de 1,5% ao mês durante 8 meses. Determinar o 
valor acumulado ao final deste período.
 Dados:
C = 18.000,00
i = 1,5% ao mês – 0,015
n = 8 meses
M = ?
Resolução:
M = C (1 + i x n)
M = 18.000,00 (1 + 0,015 x 8)
M = 20.160,00
O valor acumulado é R$ 20.160,00.
Exemplo 6
Uma dívida de R$ 900.000,00 irá vencer em 4 meses. O banco está oferecendo um 
desconto de 7% ao mês caso o devedor decida antecipar o pagamento para hoje. Qual seria o 
valor do pagamento nessas condições?
Dados:
M = 900.000,00
n = 4 meses
i = 7% ao mês – 0,07
C = ?
Resolução:
C = M 
 (1 + i x n)
C = 900.000,00 
 ( 1 + 0,07 x 4)
C = 703.125,00
O valor antecipado da dívida será de R$ 703.125,00.
22WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
Finalmente, segundo Assaf Neto (2012, p. 8), temos que garantir que para o uso correto 
das fórmulas de juros simples, a taxa de capitalização e o período precisam ser expressos em 
uma mesma unidade de tempo. Quando os períodos não estão iguais, "ou transforma-se o prazo 
específico da taxa para o de capitalização ou, de maneira inversa, o período de capitalização passa 
a ser expresso na unidade de tempo da taxa de juros". A tabela 3 destaca essas relações:
Tabela 3 - taxas proporcionais.
Taxa ao período
1% a.m. (ano mês) 3% a.t. (ano trimestre) 6% a.s. (ano semestre) 12% a.a. (ano ano)
Pe
rí
od
o
Mês 1% a.m. x 1 = 1% a.m. 3% a.t. / 3 = 1% a.m. 6% a.s. / 6 = 1% a.m. 12% a.a. / 12 = 1% a.m.
Trimestre 1% a.m. x 3 = 3% a.t. 3% a.t. x 1 = 3% a.t. 6% a.s. / 2 = 3% a.t. 12% a.a. / 4 = 3% a.t.
Semestre 1% a.m. x 6 = 6% a.s. 3% a.t. x 2 = 6% a.s. 6% a.s. x 1 = 6% a.s. 12% a.a. / 2 = 6% a.s.
Ano 1% a.m. x 12 = 12% a.a. 3% a.t. x 4 = 12% a.a. 6% a.s. x 2 = 12% a.a. 12% a.a. x 1 = 12% a.a.
Fonte: Hoji (2016).
Em resumo, os cálculos são exemplificados a seguir e as proporções simples valem para 
quaisquer outros períodos de tempo.
 ◦ 1% ao mês equivale a 12% ao ano.
 ◦ 24% ao ano equivale a 2 % ao mês.
 ◦ 12 meses equivale a 1 ano.
 ◦ 24 meses equivale a 12 bimestres.
3 MÉTODO HAMBURGUÊS
Neste método percebemos a utilização da cobrança de juros através do regime de juros 
simples para créditos rotativos bancários, segundo Gremaud (2003). Isso é aplicado em limites de 
contas bancárias e cheques especiais que tem cálculos de juros diários e apresentados ao final de 
cada mês, gerando um montante.
Desta forma, precisamos avaliar quantos dias determinado valor ficou sendo utilizado 
no limite e, assim, encontrar, ao final do mês, o saldo médio que, multiplicado pela taxa de juros 
diária, resulta no saldo devedor diário, como o exemplo a seguir:
1) Através do Método Hamburguês, encontre e calcule o juro que o banco irá cobrar no 
mês, com uma taxa de 6% ao mês sobre a utilização do limite da conta. 
Tabela 04 - Cálculo do saldo médio devedor pelo Método Hamburguês.
DATA Depósitos Cheques Saldo Saldo(D) x nº de dias
01/11 0,00
02/11 2.000,00(D) 2.000,00(D) x 10 20.000,00
12/11 4.000,00(C) 1.800,00(D) 200,00(C) - -
15/11 1.200,00(C) 4.500,00(D) 3.100,00(D) x 11 34.100,00
26/11 200,00(C) 2.600,00(D) 5.500,00(D) x 4 22.000,00
= ∑ 76.100,00
∑/30 2.536,67
Fonte: O autor.
23WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
Observação: perceba que as letras D = Débito (ou saldo negativo) e C = Crédito (ou 
saldo positivo).
Cálculo:
J = C x i x n
Na qual:
J = é o juro do período 
C = é a somatória sempre dividida por 30, porque o mês comercial tem 30 dias (76.100,00/30 
= 2.536,67), ou seja, é a média diária do saldo devedor.
I = 6% a.m.
N = como é um só período (um mês) = 1
J = 2.536,67 × 0,06 × 1 
J = 152,20
Através do cálculo, descobrimos que o juro que será cobrado no mês pela utilização do 
limite da conta, conforme a Tabela 3 é de R$ 152,20 com taxa de 6% ao mês.
4 DESCONTO SIMPLES
Segundo Hirschfeld (2000), o desconto é visto como o abatimento sobre um valor que 
será pago de forma antecipada, ou seja, retirando o juro pelo adiantamento do pagamento. Nessa 
mesma linha de pensamento, Castelo Branco (2015, p. 107) destaca que o "desconto é o abatimento 
feito no valor nominal de uma dívida, quando ela é negociada antes do seu vencimento".
A fórmula do desconto simplesé similar a dos juros simples, apenas com alterações de 
nomenclatura, ou seja:
 ◦ Valor Nominal (VN) é o valor referente ao vencimento do pagamento.
 ◦ Valor atual (VA) é o valor pela antecipação, sem juros.
Com isso temos a seguinte fórmula para o cálculo: 
 
 D = VN - VA
 
Existem dois tipos de descontos simples, o Desconto Comercial Simples e o Desconto 
Racional Simples. Veremos cada um a seguir.
4.1 O Desconto Comercial Simples
É conhecido como Bancário ou "por fora", é o desconto mais usado pelos bancos ou pelo 
comércio. Para Assaf Neto (2012, p. 42),
(...) o valor desse desconto, genericamente denominado ‘por fora’ (Df), no regime 
de juros simples é determinado pelo produto do valor nominal no título (N), da 
taxa de desconto periódica "por fora" contratada na operação (d) e do prazo de 
antecipação definido para o desconto (n). Isto é: Df = N x d x n.
24WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
Para Hirschifeld (2000), esse desconto deve ser aplicado com o seguinte cálculo:
VAcs= VN [1 – (i x n )]
Onde: VAcs = Valor Atual com desconto comercial simples.
Neste caso, destaca Puccini (2009), que a unidade referencial da taxa de desconto deve ser 
a mesma da unidade de tempo utilizada para definir o número de períodos.
Vamos aplicar em um exemplo:
Temos uma duplicata no valor de R$ 100,00 que teve uma quitação antecipada em 
3 meses antes do seu vencimento. Se a taxa de juros cobrada é de 10% ao mês, qual será o 
desconto pela antecipação? 
VAcs = VN [1 – (i . n)]
VAcs = 100 [1 – (0,10 . 3)]
VAcs = 100 (1 – 0,30)
VAcs = 100 (0,70) = 70,00
Ela foi quitada por R$ 70,00. Seu desconto foi de R$ 30,00 (100,00 – 70,00).
Perceba que o valor do desconto é o valor nominal menos o valor atual.
D = VN – VA
D = 100 – 70 = 30,00
4.2 Desconto Racional Simples
Para Assaf Neto (2012, p. 40), "[...] o desconto racional, também denominado de desconto 
'por dentro', incorpora os conceitos e relações básicas de juros simples". Seu cálculo se dá com 
base no Valor Atual (VA):
Onde: VArs é o Valor Atual com desconto racional simples.
Vejamos sua aplicação: 
Em um desconto racional simples, de uma duplicata de R$ 100,00, a taxa de 10% ao 
mês, antecipado 3 meses, qual o novo valor a ser pago?
As empresas que querem fazer boas negociações precisam estar prontas para 
conceder descontos ou parcelamentos diferenciados? Qual será o valor máximo 
do desconto? 
25WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
VArs = 76,92
Para calcular de forma direta, também é possível utilizar a seguinte fórmula:
Com base nos dados do exemplo:
Drs = 23,08
5 JUROS COMPOSTOS
Assaf Neto (2012, p.18) salienta que:
[...] o regime de juros compostos considera que os juros formados em cada 
período são acrescidos ao capital formando o montante (capital mais juros) do 
período. Esse montante, por sua vez, passará a render juros no período seguinte 
formando um novo montante (ASSAF NETO, 2012, p.18). 
Nos juros compostos, ou capitalização composta, todos os juros são capitalizados a cada período. 
Desta forma, temos a formação do conhecido "juros sobre juros", na visão de Raymundo (2006).
5.1 Comparando os Regimes de Capitalização
Para entendermos as diferenças entre juros simples e juros compostos, vamos aplicar um 
exemplo e simular suas diferenças.
Se temos um capital de R$ 1.000,00, que será aplicado com juros de 10% ao mês, 
durante 3 meses, teremos os seguintes resultados em comparação:
Tabela 5 - Comparação entre juros simples e composto. 
 Capitalização simples ou linear Capitalização Composta
Período Juros Montante Período Juros Montante
1º mês 100,00 1.100,00 1º mês 100,00 1.100,00
2º mês 100,00 1.200,00 2º mês 110,00 1.210,00
3º mês 100,00 1.300,00 3º mês 121,00 1.331,00
 Fonte: O autor.
Com base neste exemplo percebemos que, ao fim do período, temos uma diferença de 
R$ 31,00 a mais na capitalização composta, o que reflete a formação dos juros através dos juros 
sobre juros.
26WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
5.2 A Utilização da Calculadora Financeira Hp-12c
A calculadora HP-12C é possivelmente a máquina financeira mais popular no mundo das 
finanças. Ela possui até três funções por tecla: brancas, laranjas e azuis.
As funções brancas são automáticas, ou seja, apertando-se a tecla esta função será ativada 
e as amarelas e azuis aparecem acima e abaixo das teclas. Para ativar estas outras é necessário que 
se pressione, antes, a tecla (f) para ativar as funções laranjas e (g) para as funções azuis.
Algumas operações básicas na HP-12C:
• Ligar e desligar a calculadora: on.
• Apagar o que tem no visor: CLX.
• Apagar o conteúdo de todos os registros: (f) REG.
• Apagar o conteúdo das memórias financeiras: (f) FIN.
• Introduzir um número: número + ENTER.
• Operações básicas: (número) ENTER (número) operação; Ex.: 12 ENTER 43 + = 55.
• Potenciação: (número) ENTER (potência) (yx); Ex: 5 elevado a 3,5 ENTER 3 yx 125.
• Raiz – qualquer raiz pode ser transformada em uma potência de índice fracionário: 
(número) ENTER (número) (1/x) (yx); Ex.: raiz sétima de 2.187 > 2187 ENTER 7 (1/X) 
(YX) 3.
• Armazenar um número na memória: (número) ENTER (número da memória onde 
quer armazenar de 0 a 9 ou ainda de .0 a .9).
• Buscar um número na memória: (RCL) (número da memória onde foi armazenado).
• Fixar quantidade de casas decimais: (f) (número de casas decimais desejadas).
Figura 02 - Funções e teclas da HP12C. Fonte: Google Store (2018).
27WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
5.3 Fórmulas de Juros Compostos
Nos juros compostos teremos uma forma diferente de calcular o montante, que veremos 
a seguir:
Onde:
FV = valor futuro ou montante
PV = Valor presente ou capital
n = períodos
i = taxa de juros.
Exemplo: Calcule o montante de uma aplicação de R$ 100,00, a uma taxa de 10% ao 
mês, durante um período de 4 meses.
 
Tabela 06 – Cálculo do montante.
Número de 
períodos (n)
Capital (C) Juros (J)
Juros 
acumulados
Montante (M)
0 R$ 100,00 - - R$ 100,00
1 R$ 100,00 R$ 10,00 R$ 10,00 R$ 110,00
2 R$ 110,00 R$ 11,00 R$ 21,00 R$ 121,00
3 R$ 121,00 R$ 12,10 R$ 33,10 R$ 133,10
Fonte: O autor.
Com isso, percebemos que a taxa de 10% gera juros a cada período, formando um 
montante de R$ 133,10.
Para esse cálculo não podemos esquecer, porém, que a taxa e o período precisam estar 
em uma mesma medida de tempo, em que se a taxa estiver ao mês o período também deve ser 
ao mês.
Exemplo: calcule o valor futuro de um valor de R$ 100,00 aplicados durante 3 meses 
com uma taxa de 10% ao mês.
VF = VP x (1+ i)n
VF = 100,00 x (1+ 0,10)3
VF = 133,10
Como seriam esses cálculos com o uso da HP12c. Vamos verificar?
28WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
Calcular o montante de um capital de R$ 5.000,00, aplicado à taxa de 4% ao mês, 
durante 5 meses.
No fim de dois anos, o Sr. Roberto da Silva deverá efetuar um pagamento de R$ 2.000,00, 
referente ao valor de um empréstimo contratado na data de hoje, mais os juros devidos, 
correspondente a uma taxa de 4% ao mês. 
Qual é o valor emprestado?
Em que prazo de um empréstimo de R$ 24.248,43 pode ser liquidado em um único 
pagamento de R$ 41.524,33, sabendo-se que a taxa contratada é de 3% ao mês?
A loja Arrisca Tudo financia a venda de uma máquina no valor de R$ 10.210,72, sem 
entrada, para pagamento em uma única prestação de R$ 14.520,68 no fim de 276 dias. Qual é a 
taxa mensal cobrada pela loja?
29WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
6 EQUIVALÊNCIA ENTRE TAXAS DE JUROS
Em juros compostos existem as questões relacionadas às taxas equivalentes, em que um 
capital que é aplicado em certo tempo gerarámontantes equivalentes, mesmo com variação de 
tempo.
6.1 Capitalização
Nos juros compostos a equivalência de taxas dependerá do período de capitalização. 
Desta forma, quando temos uma taxa de capitalização em um período menor e buscamos a 
equivalência no período maior, ou seja, temos ao mês e queremos encontrar ao ano, utilizamos 
a seguinte fórmula:
Na qual: 
q = número de períodos de capitalização de juros. 
Vejamos o exemplo: uma taxa de 1% ao mês equivale a qual taxa em um ano? 
Com a Hp 12c 
1 ENTER 0,01 +
12 yx
1 - 
100 x 
6.2 Descapitalização
Neste caso, temos uma taxa que foi capitalização em um período maior e queremos 
encontrar o período menor. Aqui, a fórmula tem uma pequena mudança:
Veja o exemplo: Temos uma taxa de 12% ao ano, encontre a taxa equivalente ao mês.
Na HP12C, utilizamos as seguintes funções:
1 ENTER 0,12 +
12 1⁄x yx 
1 –
100 x 
30WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
6.3 Cálculo do Período
A letra "n" representa o período de aplicação de um capital, esse período pode ser 
encontrado tendo o capital (valor presente), o montante (valor futuro) gerado e a taxa. Desta 
forma, podemos utilizar a seguinte fórmula:
 
 n = ou n = 
 
Vamos entender essa aplicação através do exemplo: para obter um montante de R$ 
133,10, a uma taxa de 10% ao mês e um capital de R$ 100,00, quanto tempo esse capital deve 
ser aplicado?
n = 
 
n =
n = 
 
n = 3
Resposta: 3 meses, pois a taxa está expressa em meses.
Na HP12C esse cálculo se torna mais simples, sendo da seguinte forma:
100 CHS PV 
133,10 FV 
10 i 
n (Resposta, 3)
Importante: o exemplo gerou um resultado 3, um número inteiro, quando acontecer de 
gerar um número fracionado a HP arredonda automaticamente para o número superior. 
7 DESCONTO COMPOSTO
Como vimos no estudo dos juros simples, o desconto é visto como a redução do valor 
dos juros devido a um pagamento antecipado, o que muda é a forma de calcular isso nos juros 
compostos, pois os juros são capitalizados período a período.
Com isso encontramos dois tipos de descontos compostos, a saber:
a) o comercial, também chamado de bancário ou "por fora".
b) o racional, também chamado de real ou "por dentro".
31WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
7.1 Desconto Composto Comercial
De acordo com Assaf Neto (2012), o desconto composto é usado, de modo geral, em 
operações de longo prazo. Da mesma maneira que o desconto simples, pode ser dividido em dois 
tipos, ou seja, desconto racional ou "por dentro" e desconto "por fora" (comercial). Esse desconto 
é calculado sobre o valor nominal, também conhecido como desconto bancário.
Para encontrar o valor atual vamos aplicar um exemplo: uma duplicata no valor de R$ 
100,00 foi paga 3 meses antes da data de vencimento, tendo como taxa de desconto 10% ao mês. 
Calcule o valor a ser pago.
Este valor pode ser calculado com a aplicação da fórmula a seguir:
VAcc= VN . (1 – i)n
Onde:
VAcc = valor atual com o desconto comercial composto, é o valor do pagamento com 
abatimento devido à antecipação.
VN = valor nominal, valor escrito no título. É o valor no seu vencimento.
VAcc = 100,00(1- 0,10)3
VAcc = 100,00 (0,90)3
VAcc = 100,00 . 0,729 = 72,90
 
Lembre-se que na HP12C, esse cálculo torna-se mais fácil e rápido, ou seja, apenas 
informando a taxa de forma negativa para que o desconto seja aplicado ao valor do montante e 
gere o novo valor. Para isso basta seguir os passos a seguir:
f REG f 2
100,00 CHS PV (VN negativo = - 100,00)
10 CHS i ( taxa negativa = - 10%) 
3 n FV (VA ou valor atual = 72,90)
Perceba que estas fórmulas não são diferentes das dos juros compostos, o que muda é 
apenas os nomes, porém a lógica é a mesma.
7.1.1 Cálculo do desconto
O valor do desconto é a diferença entre o valor nominal e o valor atual.
D = VN – VA
D = 100,00 – 72,90 = 27,10
Pode ser calculado com a fórmula:
32WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
Usando o mesmo exemplo:
Dcc = 100,00[1-(1-0,10)3]
Dcc = 100,00[1-(0,90)3]
Dcc = 100,00 (1-0,729)
Dcc = 100,00 . 0,271 
Dcc = 27,10
Com a HP12c:
100,00 CHS PV 
10 CHS i (taxa negativa = - 10%) 
3 n FV RCL PV + 
7.1.2 Cálculo do valor nominal
O valor nominal (VN) é o valor expresso no título. Se forem informadas as outras variáveis, 
é possível calculá-lo com a seguinte fórmula:
Exemplo: encontre o valor nominal de uma duplicata que foi antecipada em 3 meses, 
sendo pago R$ 72,90, onde a taxa de desconto comercial composto é de 10% ao mês.
Com a HP12c:
72,90 CHS FV 
10 CHS i (taxa negativa = - 10%) 
3 n PV
Desconto Comercial ou Racional? Qual a diferença e como calcular
Saber o que são o desconto racional e o desconto comercial é importante para 
quem precisa saber matemática financeira e também muito útil na prática, no dia 
a dia de quem faz negócios – quem não faz?
Aparentemente difícil de entender, a diferença entre desconto racional e desconto 
comercial na verdade é bastante simples – pode ser compreendida para “nunca 
mais” ser esquecida.
Para quem ainda não conhece ou nunca ouviu falar, desconto racional e desconto 
comercial são simplesmente duas formas usuais – bem diferentes entre si 
– de calcular um desconto, um abatimento, sobre um valor a ser liquidado 
antecipadamente.
33WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
Mais importante que saber seus nomes ou definições (ver no fim do artigo) é 
ter toda a atenção e cuidado ao usá-los, ao fazer cálculos de “desconto” para 
pagamentos ou recebimentos antecipados – a diferença entre os critérios pode 
ser a diferença entre o lucro e o prejuízo.
Muito bem. Vamos ver e entender como calcular os dois tipos e avaliar a diferença 
entre eles. De uma só vez, com um só exemplo:
Você tem uma conta de R$ 100,00 para pagar daqui a 60 dias. Sabendo que ela 
foi calculada com juros de 10% a.m. Qual o valor “certo” para pagá-la já? - Não 
responda ainda.
Seu credor informa que calcula usando o “desconto racional” e propõe R$ 83,33. 
Você está de acordo? Aceita?
Você pede um tempo para analisar:
Raciocínio 1: 10% de 100 é 10. Dois meses seriam 20. Eu deveria pagar 80,00. 
Porque não?
Raciocínio 2: qual o valor que tomado hoje a 10% a.m. daria 100 daqui a 60 dias? 
Fácil, é só calcular qual o valor que com 20% de juros dá 100. Você faz a conta ( 
100 / 1,20 ) e encontra exatamente os 83,33.
Raciocínio 3: você pensa um pouco mais e verifica que 83,33 daqui a um mês já 
seria 91,67.
(83,33 x 1,10) e com mais um mês 100,83. Confere as contas dividindo 100,83 por 
1,10 duas vezes e bate com o 83,33. Verifica de outra forma, agora dividindo 100 
por 1,10 também duas vezes, e encontra 82,64.
80,00 ou 83,33 ou 82,64? Qual o “certo”?
Na prática, os 3 modos de calcular são usados. O “certo” será o “negociado” e 
aceito pelas partes. 
Só falta saber o nome de cada um:
Desconto Comercial: é o “raciocínio” 1.
Desconto Racional: é o “raciocínio” 2.
Desconto Racional Composto: “raciocínio” 3.
Diferença entre o Comercial e o Racional
Desconto Comercial é calculado sobre o valor nominal e Desconto Racional é 
calculado sobre o valor atual.
Qual usar? Você escolhe, negocia – decide.
Para quem precisa ou quer saber, seguem as definições:
Definições e Fórmulas:
Desconto: é a diferença entre o valor nominal (Vn = valor indicado no título ou 
valor no vencimento) e o valor atual (Va = valor do título calculado para antes do 
vencimento).
D = Vn – Va
34WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
7.1.3 Cálculo da taxa 
Para encontrar a taxa, siga a seguinte fórmula:
Exemplo: Qual é a taxa de desconto de um título de R$ 100,00 que, na antecipação, 
ficou por R$ 72,90, sendoessa antecipação de 3 meses?
i = 1- (72,90/100,00)1/3
i = 1- (0,7290)0,3333
i = 1 – 0,90 = 0,10 ou 10% ao mês.
Com a HP12c: 
f REG f 2 
100,00 CHS PV 
72,90 FV 
3 n 
i
Resposta: –10 ou 10% ao mês negativo, porque esse é o percentual retirado do valor 
nominal.
Desconto Racional: é o equivalente ao juro simples produzido pelo valor atual no 
período correspondente. Também chamado de “desconto por dentro”.
Dr = Vn – Va = Vn - Vn / ( 1 + i . n ) = Vn . i . n / ( 1 + i . n )
Desconto Comercial: é o equivalente ao juro simples produzido pelo valor nominal 
no período correspondente. Também chamado de “desconto por fora”. Alguns o 
chamam de “desconto irracional”.
Dc = Vn . i . n
Desconto Racional Composto: é o Desconto Racional calculado com juro 
composto.
Drc = Vn - Vn / ( 1 + i ) ^ n
Sendo “i” a taxa de desconto (ou taxa de juro), “n” o número de períodos antes do 
vencimento e “^” o símbolo de potência).
Charbel Atalla Antonio ([2017], on-line).
35WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
7.1.4 Cálculo do período 
Para encontrar o período do desconto basta utilizar a fórmula a seguir:
Exemplo: Qual foi o período de antecipação de um título de R$ 100,00, com taxa de 
10% ao mês que gerou um valor com desconto de R$ 72,90?
Resposta: 3 meses, pois a taxa está expressa em mês.
Com a HP12c:
f REG f 2 
100,00 CHS PV 
72,90 FV 
10 CHS i 
N
A obra Matemática Financeira e suas Aplicações, te ajudará a 
aprofunda-se ainda mais em seus estudos, trazendo ainda uma 
visão diferenciada da matemática financeira.
Título: Matemática Financeira e Suas Aplicações. Neto. A, N. 
Atlas. 2019.
36WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
7.2 Desconto Composto Racional
Esse tipo de desconto é conhecido como "real" e é baseado no valor atual. Nele temos a 
equivalência com a capitalização composta, em que temos apenas mudanças de nomes dos itens 
na fórmula, porém mantendo a forma de cálculo.
7.2.1 Cálculo do valor atual
Exemplo: Uma duplicata com valor de R$ 100,00, tendo sido paga 3 meses antes de 
vencer, em um desconto racional, com taxa de 10% ao mês, gera qual valor para pagamento?
Neste caso, utilizamos a fórmula a seguir para seu cálculo:
Onde:
VArc = valor atual com desconto racional composto, é o valor do pagamento com desconto 
pela antecipação. Pode ser considerado como o Capital.
VN = valor nominal, valor que está escrito no título. É o valor do seu vencimento. Nesse 
caso, também pode ser entendido como o montante.
Com a HP12c:
f REG f 2 
100,00 CHS FV 
10 i 
3 n 
PV 
7.2.2 Cálculo do desconto
O desconto nada mais é do que o valor nominal menos o valor atual.
D = VN – VA
D = 100,00 – 75,13 = 24,87
Neste caso podemos utilizar a seguinte fórmula:
37WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
Usando o exemplo anterior:
Com a HP12c:
100,00 FV 
3 n 
10 i 
PV RCL FV + 
Resposta = 24,87
7.2.3 Cálculo do valor nominal
O valor nominal nada mais é do que o valor que se encontra em uma duplicata, a partir 
desse dado, e com a fórmula a seguir, podemos encontrar esse valor nominal, tendo as outras 
informações para aplicação do cálculo:
VNrc= VA (1+i)n
Exemplo: Calcule o valor nominal de uma duplicata paga 3 meses antes de seu 
vencimento pelo valor de R$ 75,13, tendo uma taxa de desconto racional de 10% ao mês.
VNrc = 75,13 (1,1)3
VNrc = 100,00
Com a HP12c:
f REG f 2
75,13 CHS PV
10 i
3 n
FV (Resposta 100,00)
7.2.4 Cálculo da taxa
A taxa no desconto racional utiliza a mesma fórmula dos juros compostos, apenas com 
alguns nomes diferentes, veja:
Exemplo: encontre a taxa de desconto racional de um título de R$ 100,00, pago com 
desconto por R$ 75,13, com 3 meses de antecipação.
i = 0,10 ou 10% ao mês
38WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
Com a HP12c:
f REG f 2 
75,13 CHS PV 
100,00 FV 
3 n 
i (resposta 10% ao mês) 
7.2.5 Cálculo do período
O cálculo do período do desconto racional composto também é feito com a mesma 
fórmula do período dos juros compostos:
Exemplo: Calcule o tempo que foi antecipado um título com valor nominal de R$ 
100,00, com pagamento de antecipação de 10% ao mês, gerando um valor de R$ 75,13.
n = 3 (três meses, pois a taxa está expressa em meses)
Com a HP12c:
f REG f 2 
75,13 CHS PV 
100,00 FV 
10 i 
n (resposta 3)
Lembre-se da dica: a HP12C é uma ferramenta importantíssima para facilitar todos esses 
cálculos, como já foi demonstrado. Por isso, indico a aquisição de uma, como forma de melhorar 
a sua visão de finanças.
Aqui, você verá dicas importantes sobre o cálculo dos juros simples 
e do juro composto. Ótima para prática a aplicação dos conceitos 
e das fórmulas.
Acesse o conteúdo disponível em: https://www.youtube.com/
watch?v=fBqfutC1MmY.
https://www.youtube.com/watch?v=fBqfutC1MmY
https://www.youtube.com/watch?v=fBqfutC1MmY
39WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 2
EDUCAÇÃO A DISTÂNCIA
CONSIDERAÇÕES FINAIS
Não se limite apenas a esses estudos, a internet possui vários exemplos para que você 
possa praticar e desenvolver, ainda mais, seus conhecimentos em matemática financeira.
Além disso, com a aplicação do método hamburguês, você poderá ter uma previsão de 
quanto pagará se precisar usar o limite de sua conta. Tomara que nunca precise, mas isso o ajudará 
a se preparar e evitar surpresas.
Perceba que cada teoria apresentada contribui para seu entendimento em relação 
ao uso do dinheiro e sua variação ao longo do tempo. Isso é algo que todos nós deveríamos 
compreender, pois, nos ajudaria muito a controlar nosso dinheiro e não permitir que paguemos 
juros desnecessários por falta de controle.
Apenas um lembrete: fuja das fórmulas, use a HP como sua aliada, é bem mais fácil e 
simples após compreender como ela funciona. A matemática financeira não é do mal, apenas 
incompreendida pela cultura de não valorizar as questões que envolvem valores e cálculos. A 
questão é que sem esse conhecimento não teremos uma vida financeira controlada, chegando até 
a gerar endividamentos por desconhecer essa realidade.
Faça e refaça as atividades para fixar o conhecimento, não há uma maneira de aprender 
sobre juros e descontos mais efetiva do que usar a prática a seu favor.
Esperamos que tenha gostado do conteúdo.
Nos vemos na próxima Unidade!
4040WWW.UNINGA.BR
U N I D A D E
03
SUMÁRIO DA UNIDADE
INTRODUÇÃO ............................................................................................................................................................... 41
1 RENDAS OU ANUIDADES .........................................................................................................................................42
1.1 CALCULANDO A RENDA: VALOR ATUAL .............................................................................................................43
2 RENDA PERPÉTUA ...................................................................................................................................................44
2.1 VALOR ATUAL DA RENDA PERPÉTUA .................................................................................................................44
2.2 CÁLCULO DA TAXA DE UMA RENDA PERPÉTUA ...............................................................................................44
3 INFLAÇÃO, DEFLAÇÃO E ÍNDICES DE PREÇO .......................................................................................................46
3.1 ÍNDICE DE PREÇOS – IGP - M ..............................................................................................................................47
4 EMPRÉSTIMOS E SISTEMAS DE AMORTIZAÇÃO ................................................................................................48
5 SAC (SISTEMA DE AMORTIZAÇÃO CONSTANTE) ................................................................................................495.1 SISTEMA PRICE OU SISTEMA FRANCÊS DE AMORTIZAÇÃO .......................................................................... 51
CONSIDERAÇÕES FINAIS ...........................................................................................................................................56
RENDAS E EMPRÉSTIMOS
ENSINO A DISTÂNCIA
DISCIPLINA:
MATEMÁTICA FINANCEIRA
41WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 3
EDUCAÇÃO A DISTÂNCIA
INTRODUÇÃO
Nesta unidade, veremos a importância de compreender o tema renda e como ele é utilizado 
para gerar montantes para retirada futura, como é o caso das aposentadorias, aluguéis etc.
Além disso, passaremos por um tema mais delicado e que impacta nossas finanças, a 
INFLAÇÃO. Compreender seu funcionamento é essencial para perceber seu impacto em nosso 
dinheiro. Aliás, veremos como ela é calculada e com base em que é gerada.
Outro assunto que abordaremos são as taxas de juros, parcelas e empréstimos, tema que é 
comum no meio empresarial, principalmente para os financiamentos que envolvem valores altos 
e parcelas por um longo período de tempo.
Por isso, quando dizemos que iremos parcelar algo com juros, por um longo período, 
precisamos compreender que para a dívida ser liquidada é necessário amortizar o débito após o 
pagamento de cada parcela. Isso nos leva a buscar entender os tipos de amortizações existentes e 
como são aplicadas.
Termos complexos? Por isso, iremos compreendê-los nesta unidade e veremos como 
aplicar cada teoria na prática. Mais uma vez, veremos que a complexidade está mais no medo 
da disciplina e iremos perceber que esse medo não está de acordo com a realidade. Falaremos de 
renda, juros, amortização, empréstimos e inflação de maneira simples e didática.
42WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 3
EDUCAÇÃO A DISTÂNCIA
1 RENDAS OU ANUIDADES
Ao pensar em rendas, temos que entender que elas servem para dois objetivos:
a) o pagamento de uma dívida parcelada ou a compra de um bem em prestações.
b) a constituição de um montante em dinheiro no futuro como, por exemplo, uma série de 
depósitos em caderneta de poupança que é capitalizada.
Figura 1 - Classificação das rendas. Fonte: Adaptado de Francisco (1999).
Para Castelo Branco (2015), rendas ou série de pagamentos podem ser classificados da 
seguinte maneira:
• Quanto ao tempo: temporária (número limitado de pagamentos) ou perpétua (número 
infinito de pagamentos).
• Quanto à periodicidade: periódica (pagamentos em intervalos de tempo iguais) e não 
periódicas (pagamentos em intervalos de tempo variáveis).
• Quanto ao valor dos pagamentos: constantes (pagamentos iguais) e variáveis (pagamentos 
diferentes).
• Quanto ao vencimento do primeiro pagamento: imediata (pagamento ocorre no primeiro 
período) ou diferidas (pagamento não ocorre no primeiro período).
• Quanto ao momento dos pagamentos: antecipadas (primeiro pagamento ocorre no 
momento zero da série de pagamentos) ou postecipadas (quando os pagamentos ocorrem 
no fim dos períodos).
Se em algum momento da sua vida você realizou uma compra parcelada ou guardou 
dinheiro em poupança, você está diante de uma anuidade ou renda certa. Quando nosso objetivo 
é constituir um capital em uma data futura, temos um processo de capitalização. Se, por outro 
lado, nosso objetivo é pagar uma dívida, temos um processo de amortização. Veja que a discussão 
gira em torno de entradas e saídas de recursos de forma sucessiva, que é a característica principal 
desse assunto, ou seja, o processo de repetição de um pagamento ou recebimento.
Veremos adiante os principais tópicos do tema e suas aplicações. O tópico a ser abordado 
agora tratará das rendas certas ou anuidades, que representam uma importante aplicação da 
Matemática Financeira e que percebemos facilmente no nosso cotidiano, desde o pagamento dos 
aluguéis até as compras parceladas.
43WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 3
EDUCAÇÃO A DISTÂNCIA
1.1 Calculando a Renda: Valor Atual 
A atualidade do valor de uma renda pode ser encontrada através da aplicação de algumas 
fórmulas, como veremos a seguir:
a) Quando as parcelas ou pagamentos são feitos sem entrada, também chamados de 
postecipados:
Nesta fórmula temos: 
Ap: que é o valor nas parcelas postecipadas, visto como Capital.
PMT: é o valor de cada parcela ou prestação.
Vejamos um exemplo de aplicação:
Para achar o valor na atualidade de uma dívida, que foi adquirida em 7 pagamentos 
mensais, postecipados, a um valor de R$ 500,00, e a taxa sendo de 4,5% ao mês, faremos da 
seguinte forma:
b) Quando as parcelas ou pagamentos são feitos com uma entrada, também conhecidos 
como antecipados. 
 
Neste caso o Aa são as parcelas que serão quitadas de forma antecipada.
Vejamos o exemplo:
Encontre o valor atualizado de uma pendência financeira, paga em 7 meses, de forma 
antecipada, com o valor de R$ 500,00 a uma taxa de 4,5% ao mês.
44WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 3
EDUCAÇÃO A DISTÂNCIA
2 RENDA PERPÉTUA
Esta renda leva esse nome, pois não existe uma previsão para seu término, ou seja, é 
considerado um número de parcelas ou pagamentos infinitos. Temos como exemplo os aluguéis, 
condomínio, Netflix, internet etc. As parcelas ou prestações utilizam a função PMT (Periodic 
Payment Amount).
2.1 Valor Atual da Renda Perpétua
Utilizamos a seguinte fórmula para seu cálculo:
Na qual:
VArp = valor atual de uma renda perpétua
PMT = Valor das parcelas
Exemplo: 
Se temos uma taxa de 1,2% ao mês e uma renda perpétua de R$ 100,00, qual será o 
valor atual dessa renda perpétua?
Seria a mesma coisa de perguntar qual o valor que preciso para sacar R$ 100,00 por mês 
com uma taxa de 1,2% ao mês.
2.2 Cálculo da Taxa de uma Renda Perpétua
A taxa pode ser encontrada da seguinte forma:
 
1) Um bem que tem seu valor estimado em R$ 60.000,00 e um aluguel no valor de R$ 
900,00, tem qual taxa correspondente?
i = 0,015 ou 1,5% (taxa ao mês considerando que o aluguel seja mensal)
45WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 3
EDUCAÇÃO A DISTÂNCIA
2) Veja esse exemplo: Se você quer se aposentar daqui 25 anos e ter uma renda perpétua 
de R$ 1.500,00, qual deve ser o valor dos depósitos e qual o montante necessário (postecipado), 
sabendo que a taxa de juro é de 1,5% ao mês?
a) Primeiro Passo: é preciso encontrar quanto você precisa daqui a 25 anos para conseguir 
uma renda perpétua de R$ 1.500,00? 
Ela precisará de R$ 100.000,00.
b) Segundo Passo: qual o valor dos depósitos mensais nos próximos 25 anos (n = 300 
meses) para juntar os R$ 100.000,00?
Com os depósitos postecipados (sem entrada)
100.000,00 = 5.737,25 . PMT
PMT = 100.000
 5.737,25
PMT = 17,43
Com a HP12c:
G 8 (Para cálculo dos pagamentos sem entrada ou postecipados)
f CLX f 2 
100.000 CHS FV 
1,5 i 
300 n 
PMT (Resposta 17,43)
Veja que as rendas ou anuidades são formas de pensar no futuro, como o dinheiro pode 
gerar benefícios ao longo do tempo, e isso o ajuda a planejar seu futuro de sua aposentadoria 
dentro de um mercado financeiro.
46WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 3
EDUCAÇÃO A DISTÂNCIA
3 INFLAÇÃO, DEFLAÇÃO E ÍNDICES DE PREÇO
Na visão de Gremaud (2003), a inflação é vista como o aumento dos preços de diversos 
itens dentro de um determinado tempo. Porém, não podemos dizer que se um único produto sofre 
aumento, temos uma inflação. Na mesma perspectiva, para Silva e Silva (2018, p. 23) a inflação 
pode ser medida por vários institutos e metodologias diferentes. Os principais indicadores são:
INPC - IBGE (Índice Nacional de Preços ao Consumidor - Instituto Brasileiro 
de Geografia e Estatística), muito usado em negociações salariais, IPCA - IBGE 
(Índice de Preços ao Consumidor Amplo), usado pelo Banco Central do Brasil 
como principal indicador de inflação, IGPM - FGV (ÍndiceGeral de Preços do 
Mercado - Fundação Getúlio Vargas), que é muito utilizado para correção de 
aluguéis de imóveis (SILVA; SILVA, 2018, p. 23).
Já a deflação acontece quando os preços se reduzem de forma generalizada, ou seja, os 
juros não ocorrem. Isso pode acontecer devido ao excesso de produtos no mercado ou falta de 
consumidores.
Na visão de Gremaud (2003, p. 54) temos os seguintes tipos clássicos e inflação:
• A inflação de demanda, devido ao excesso de procura em relação à produção.
• A inflação de custos, resultante do aumento dos custos de produção, como salários e 
matéria-prima, que podem ter sido elevados por pressões de sindicatos ou de grupos 
econômicos ou, ainda, pela inflação de demanda preexistente.
• A inflação inercial, causada pela indexação ou correção monetária, regida pela ideia de 
que simplesmente porque houve inflação no período atual, no período seguinte também 
haverá.
• A inflação estruturalista, sobretudo nos países em desenvolvimento, nos quais as condições 
econômicas são deficientes e há conflitos distributivos de renda.
• A inflação causada pela desvalorização cambial, que eleva o custo das importações que 
deve ser repassado ao produto final.
Índices de preço
Como a inflação deve ser medida de forma contínua e generalizada, é necessária 
a elaboração de índices desses aumentos. No Brasil, são vários esses medidores, 
os quais serão citados o INPC e o IGP-M.
O INPC – Índice Nacional de Preços ao Consumidor – é elaborado pelo Instituto 
Brasileiro de Geografia e Estatística (IBGE) e considera a variação do custo de vida 
dos assalariados que recebem de 1 a 8 salários mínimos por mês, nas seguintes 
regiões metropolitanas: Rio de Janeiro, Porto Alegre, Belo Horizonte, Curitiba, 
Salvador, Fortaleza, Belém, São Paulo, Recife, Brasília e Goiânia. O período é o 
mês calendário.
O IGP-M – Índice Geral de Preços de Mercado – é medido pela Fundação Getúlio 
Vargas e considera a média ponderada de outros três índices: o Índice de Preços 
por Atacado – Disponibilidade Interna, o Índice de Preços ao Consumidor e o 
47WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 3
EDUCAÇÃO A DISTÂNCIA
3.1 Índice de Preços – IGP - M
Segundo Hazzan e Pompeo (2010), o Índice Geral de Preços de Mercado (IGP-M) é um 
dos mais populares indicadores de inflação utilizado no Brasil, calculado pela Fundação Getúlio 
Vargas (FGV) e publicado mensalmente na revista Conjuntura Econômica.
O IGP-M é calculado da seguinte maneira:
• IPA (Índice de preços por atacado, isto é, um indicador que mede as variações de preços 
de produtos em transações feitas no atacado) com peso 0,6.
• IPC (Índice de preço ao consumidor, que mede as variações dos preços dos produtos de 
consumo e famílias) do Rio de Janeiro (local onde fica a FGV) com peso 0,3.
• INCC (Índice Nacional do Custo da Construção) com peso 0,1.
O IGP-M foi concebido no final de 1940 para ser uma medida abrangente do movimento 
de preços. Entendia-se por abrangente um índice que englobasse não apenas diferentes atividades, 
como também etapas distintas do processo produtivo.
Construído dessa forma, o IGP poderia ser usado como deflator do índice de evolução 
dos negócios, daí resultando um indicador mensal do nível de atividade econômica.
Veja sua utilização através da Tabela 1:
Tabela 1 - Simulação de IGP-M. 
Mês IGP-M
janeiro 1.092,1834
fevereiro 1.103,1052
março 1.109,9445
abril 1.114,9392
maio 1.119,7334
Fonte: O autor.
Vamos usar os dados da tabela para calcularmos a inflação do mês de fevereiro, março e 
abril.
Inflação = (Mês atual ÷ Mês anterior) – 1
fevereiro = inflação = (1.103,1052 ÷ 1.092,1834) -1 = 0,009999 = 0,9999%
março = inflação = (1.109,9445 ÷ 1.103,1052) -1 = - 0,006200 = 0,6200%
abril = inflação = (1.114,9392 ÷ 1.109,9445) -1 = - 0,004494 = 0,4494%
Índice Nacional do Custo da Construção. O período da pesquisa compreende do 
dia 21 do mês anterior ao dia 20 do referido mês. 
O INCC – Índice Nacional do Custo da Construção – também é elaborado 
pela Fundação Getúlio Vargas e mede a evolução dos custos de construções 
habitacionais. Ele é mensal e envolve 18 capitais: Aracaju, Belém, Belo Horizonte, 
Brasília, Campo Grande, Curitiba, Florianópolis, Fortaleza, Goiânia, João Pessoa, 
Maceió, Manaus, Porto Alegre, Recife, Rio de Janeiro, Salvador, São Paulo e Vitória.
( Instituto Brasileiro de Economia (2018)).
48WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 3
EDUCAÇÃO A DISTÂNCIA
Se quisermos calcular a taxa acumulada trimestral de fevereiro, março e abril teremos que 
fazer a soma das infrações:
Inflação acumulada = 0,9999 + 0,6200 + 0,4494 = 2,069% ao período.
4 EMPRÉSTIMOS E SISTEMAS DE AMORTIZAÇÃO
Provavelmente que, em algum momento da sua vida, você já tenha realizado alguma 
operação de empréstimo. Senão, vejamos o seguinte: você tem cartão de crédito? Caso tenha, é 
provável que você já tenha emprestado dinheiro à operadora do seu cartão de crédito, objetivando 
devolvê-lo na data do pagamento da fatura. Então estas operações nos acompanham muito mais 
do que podemos imaginar.
Neste tópico, veremos as modalidades e os conceitos sobre a temática. O empréstimo 
é uma modalidade de dívida e surge quando uma determinada quantia é emprestada por um 
período de tempo determinado.
Quem contraiu a dívida é obrigado a devolver (restituir) o valor tomado (principal) 
acrescidos dos juros devidos. Os empréstimos podem ser de curto, médio ou longo prazo. As 
formas de cálculo são, na maioria das vezes, semelhantes, mas, nas operações de longo prazo, 
temos algumas características específicas que os diferenciam das características de curto e médio 
prazo.
O principal tópico de diferença entre os prazos dos empréstimos reside na forma de 
reembolso adotado e na forma de determinação dos juros efetivamente cobrados nos empréstimos 
de longo prazo. Vale ressaltar que tratamos aqui de juros compostos e os juros sempre serão 
calculados sobre o saldo devedor.
Nesta perspectiva, de acordo com Assaf Neto (2012, p. 205), “os sistemas de amortização 
são desenvolvidos basicamente para operações de empréstimos e financiamentos de longo prazo, 
envolvendo desembolsos periódicos do principal e encargos financeiros”.
Por fim, é importante ressaltar que os juros sempre serão calculados sobre o saldo devedor.
Vejamos alguns termos importantes que precisamos conhecer:
• Credor: pessoa ou instituição que fornece o empréstimo.
• Devedor: pessoa ou instituição que recebe o empréstimo.
• Encargos Financeiros: custo da operação (juros) para o devedor que retorna para o 
credor.
O Índice de Preços no Consumidor (IPC) é um índice que quantifica o custo de 
um determinado cabaz fixo de bens de consumo em diferentes momentos. Este 
cabaz é constituído por diversos tipos de bens, sendo atribuído aos respectivos 
preços uma determinada ponderação de acordo com os hábitos de consumo da 
população.
A utilidade do IPC reside no fato de ser através dele que é calculada a taxa de 
inflação: algebricamente, a taxa de inflação é calculada como a taxa de variação 
do IPC entre dois períodos. ( Knoow [2017], on-line). 
49WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 3
EDUCAÇÃO A DISTÂNCIA
• Amortização: pagamento do principal (capital emprestado), geralmente por meio de 
parcelas periódicas.
• IOF: Imposto sobre Operações Financeiras.
• Saldo Devedor: valor da dívida em um determinado momento, depois de deduzido o 
valor já pago ao credor a título de amortização.
• Prestação: é composta pela soma do valor da amortização mais os encargos financeiros 
devidos em determinado período.
• Carência: é o período concedido ao credor para início do pagamento do principal. Pode 
também ser utilizada para postergar o início do pagamento dos juros.
5 SAC (SISTEMA DE AMORTIZAÇÃO CONSTANTE)
Segundo Assaf Neto (2012), o sistema de amortização constante (SAC) possui amortizações 
do principal sempre constante em todo prazo da operação. Neste sentido, como osjuros incidem 
sobre o saldo devedor, que decresce após o pagamento das amortizações, assumem valores 
decrescentes. Em resumo, as parcelas de amortização são iguais, como sugere sua denominação. 
Os juros são decrescentes, visto que incidem sobre o saldo devedor – restante a amortizar – e, 
consequentemente, as parcelas são decrescentes.
O cálculo do valor das amortizações é simples: basta dividir o valor principal – empréstimo, 
valor financiado ou aplicação – pelo número de prestações. No cálculo dos juros, leva-se em conta 
sempre o saldo devedor do período imediatamente anterior. Podemos representar o sistema SAC 
graficamente da seguinte forma:
Figura 2 – Sistema SAC. Fonte: O autor.
Observe este exemplo do SAC sem carência:
Um valor emprestado de R$ 24.000,00 foi feito através do sistema SAC. O pagamento 
será feito em 4 anos (n), sendo um pagamento por ano, a uma taxa de 8% ao ano. Desenvolva 
a planilha que mostre as amortizações.
50WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 3
EDUCAÇÃO A DISTÂNCIA
1º passo: antes da elaboração da planilha, é necessário calcular as amortizações, dividindo 
o valor do empréstimo pelo número de períodos, como segue:
R$: 24.000,00 ÷ 4 = 6.000,00 por ano
2º Passo: para preencher a tabela SAC a seguir, no tempo 0 (zero), representa-se o 
empréstimo adquirido.
3º Passo: no tempo 1 (um), representa-se:
 ◦ Os juros do período que é o valor do empréstimo: 
(R$: 24.000,00) x taxa 8% (0,08) = R$ 1.920,00.
 ◦ O saldo corrigido que é dado pelo saldo devedor: 
(R$ 24.000,00) + os juros do período (R$ 1.920,00) = R$ 25.920,00.
 ◦ Prestação é a soma da amortização: 
(R$ 6.000,00) + os juros do período (R$1.920,00) = R$ 7.920,00.
 ◦ Saldo devedor é obtido pelo saldo corrigido: 
(R$ 25.920,00) - a prestação (R$ 7.920,00) = R$18.000,00; ou 
o saldo devedor (R$24.000,00) menos a amortização (R$ 6.000,00).
4º Passo: Refazem-se as mesmas operações do tempo 1 para os demais tempos até o 
término. Veja a Tabela 2:
Tabela 2 - Cálculo da tabela SAC. 
ANO
(Final)
Juros do 
Período
Saldo 
Corrigido
Amortização 
Constante
Prestação
(Amort. + Juro)
Saldo 
Devedor
0 24.000,00
1 1.920,00 25.920,00 6.000 7.920,00 18.000,00
2 1.440,00 19.440,00 6.000 7.440,00 12.000,00
3 960,00 12.960,00 6.000 6.960,00 6.000,00
4 480,00 6.480,00 6.000 6.480,00 0,00
Fonte: O autor.
Para reforçar, segue um esquema de como calcular e aplicar a tabela SAC:
1º passo: antes da elaboração da planilha, é necessário calcular as Amortizações: 
Empréstimo ÷ período = amortização constante.
2º Passo: para preencher a tabela SAC a seguir, no tempo 0 (zero), representa-se o 
empréstimo adquirido no saldo devedor.
3º Passo: no tempo 1 (um), representa-se: 
 ◦ Os juros do período que é o valor do empréstimo x taxa. 
 ◦ O saldo corrigido que é dado pelo saldo devedor + juros do período. 
 ◦ Prestação é a soma da amortização mais os juros do período. 
 ◦ Saldo devedor é obtido pelo saldo corrigido menos a prestação.
4º Passo: Refazem-se as mesmas operações do tempo 1 para os demais tempos até o término.
Quando houver carência, é preciso corrigir o saldo, para depois aplicar a tabela, como 
vimos em rendas diferidas.
51WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 3
EDUCAÇÃO A DISTÂNCIA
5.1 Sistema Price ou Sistema Francês de Amortização
De acordo com Assaf Neto (2012, p. 211), o sistema de amortização francês (SAF) ou 
prestação constante (SPC), “estipula, ao contrário do SAC, que as prestações devem ser iguais, 
periódicas e sucessivas”. Os juros são decrescentes, pois incidem sobre o saldo devedor. Já o valor 
das amortizações é crescente. “Em outras palavras, no SPC os juros decrescem e as amortizações 
crescem ao longo do tempo. A soma dessas parcelas permanece sempre igual ao valor da prestação”. 
Em termos práticos, este sistema de amortização tem como característica principal o 
valor constante das parcelas em termos nominais. Durante o período de pagamentos, o devedor 
desembolsa o mesmo valor da prestação, sabendo que na composição do valor da parcela temos 
a amortização e os juros. Durante a vigência da série de pagamentos, o devedor paga o mesmo 
valor da parcela, mas cabe ressaltar que esta parcela é composta por amortização e juros. Então, 
devemos observar que sua participação muda conforme o andamento da série de pagamentos.
Assim, apesar de o valor da parcela ser o mesmo, os percentuais de juros e de amortização 
se alternam.
Conhecer como o dinheiro trabalha com os juros e é amortizado para encerrar uma 
dívida nos mostra como os financiamentos funcionam. Ter esse conhecimento 
pode te ajudar a se tornar um profissional mais perspicaz?
Conheça um pouco mais sobre a forma de amortização pela Tabela 
Price.
Acessando o conteúdo disponível em: https://www.youtube.com/
watch?v=Tta2X7tW4Yw&t=10s.
Livro sobre Matemática Financeira, de Adriano Leal Bruni
Introdução à Matemática Financeira, 2019.
https://www.youtube.com/watch?v=Tta2X7tW4Yw&t=10s
https://www.youtube.com/watch?v=Tta2X7tW4Yw&t=10s
52WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 3
EDUCAÇÃO A DISTÂNCIA
Figura 4 – Sistema Price. Fonte: O autor.
Veja pelo gráfico na Figura 3 que o valor da parcela permanece inalterado (R$ 100,00) mais 
os valores referentes a juros e amortizações vão se alterando durante o período de pagamentos.
Para a presente modalidade de amortização, o valor dos juros é decrescente, o que implica 
dizer que a amortização é crescente em ordem progressiva. As principais utilizações desse sistema 
são: financiamentos imobiliários, CDC e empréstimos.
Tabela 3 - Notações da HP12c para cálculos pelo Sistema Price.
Elementos Notação Na HP12c
Capital / Valor presente / Valor atual C PV
Valor da prestação PMT PMT
Taxa i I
Períodos / Número de termos n N
Juros ( das parcelas ) J 1 f AMORT
Amortização ( das parcela ) A x < > y
Saldo Devedor s d RCL PV
Fonte: O autor.
Vamos ver um exemplo de aplicação:
Determinada empresa emprestou o valor de R$ 75.000,00 para investimento em 
equipamentos, devendo ser pago em 10 bimestres com parcelas iguais e consecutivas, sem 
entrada, à taxa de 5% ao bimestre. Construa a planilha demonstrando as amortizações.
Porém, antes de se montar a planilha, deve-se calcular as prestações constantes. Para 
encontrar esse valor, utiliza-se a seguinte fórmula.
53WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 3
EDUCAÇÃO A DISTÂNCIA
Ou de forma mais fácil na HP12C:
75.000 CHS PV
10 n
5 i
PMT = 9.712,88
Também é possível seguir um esquema para facilitar a aplicação da tabela, como 
demonstrado a seguir:
1º passo: antes de se montar a planilha, deve-se calcular as prestações constantes pela HP:
75.000 CHS PV
10 n
5 i
PMT = 9.712,88
2º Passo: para preencher a tabela PRICE a seguir, no tempo 0 (zero), representa-se o 
empréstimo adquirido no saldo devedor.
3º Passo: no tempo 1 (um), representa-se: 
Os juros do período que é o valor do empréstimo x taxa. 
O saldo corrigido que é dado pelo saldo devedor + juros do período. 
A amortização é a prestação menos os juros do período. 
O saldo devedor é obtido pelo saldo corrigido menos a prestação.
4º Passo: Refazem-se as mesmas operações do tempo 1 para os demais tempos até o 
término.
Tabela 4 - Cálculo pelo sistema Price.
ANO
(Final)
Juros do 
Período
Saldo 
Corrigido
Prestação 
Constante
Amortização
(Prest. - Juro)
Saldo Devedor
0 75.000,00
1 3.750,00 78.750,00 9.712,88 5.962,88 69.037,12
2 3.451,86 72.488,98 9.712,88 6.261,02 62.776,10
3 3.138,81 65.914,91 9.712,88 6.574,07 56.202,03
4 2.810,10 59.012,13 9.712,88 6.902,78 49.299,25
5 2.464,96 51.764,21 9.712,88 7.247,92 42.051,33
6 2.102,57 44.153,90 9.712,88 7.610,31 34.441,02
7 1.722,05 36.163,07 9.712,88 7.990,83 26.450,20
8 1.322,51 27.772,71 9.712,88 8.390,37 18.059,83
9 903,00 18.962,83 9.712,88 8.809,88 9.249,95
10 462,50 9.712,44 9.712,88 9.250,38 0,43*
Fonte: O autor.
54WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |U
NI
DA
DE
 3
EDUCAÇÃO A DISTÂNCIA
Tabela 5 - Cálculo pelo Sistema Price com HP12c (Sem Begin, Teclar g END). 
Passos Dígitos Visor  
1º F REG f 2 0 Limpa a HP 12 –C
2º 75.000,00 CHS PV -75.000,00 Valor do bem
3º 10 n 10 Períodos
4º 5 i 5 Taxa
5º PMT 9.712,84 Valor da prestação
6º 1 f ( AMORT) 3.750,00 Juros
7º X < > Y 5.962,84 Amortização
8º RCL PV -69.037,16 Saldo devedor
9º CHS 69.037,16  
10º 1 f ( AMORT) 3.451,86 Juros
11º X < > Y 6.260,98 Amortização
12º RCL PV -62.776,18 Saldo devedor
13º CHS 62.776,18  
14º 1 f ( AMORT) 3.138,81 Juros
15º X < > Y 6.574,03 Amortização
16º RCL PV -56.202,15 Saldo devedor
17º CHS 56.202,15  
18º 1 f ( AMORT) 2.810,11 Juros
19º X < > Y 6.902,73 Amortização
20º RCL PV -49299,42 Saldo devedor
21º CHS 49.299,42  
22º 1 f ( AMORT) 2.464,97 Juros
23º X < > Y 7.247,87 Amortização
24º RCL PV -42.051,55 Saldo devedor
25º CHS 42.051,55  
26º 1 f ( AMORT) 2.102,58 Juros
27º X < > Y 7.610,26 Amortização
28º RCL PV -34.441,29 Saldo devedor
29º CHS 34.441,29  
30º 1 f ( AMORT) 1.722,06 Juros
31º X < > Y 7.990,78 Amortização
32º RCL PV -26.450,51 Saldo devedor
33º CHS 26.450,51  
34º 1 f ( AMORT) 1.322,53 Juros
35º X < > Y 8.390,31 Amortização
36º RCL PV -18.060,20 Saldo devedor
37º CHS 18.060,20  
38º 1 f ( AMORT) 903,01 Juros
39º X < > Y 8.809,83 Amortização
40º RCL PV -9.250,37 Saldo devedor
41º CHS 9.250,37  
42º 1 f ( AMORT) 462,52 Juros
43º X < > Y 9.250,32 Amortização
44º RCL PV -0,05 Saldo devedor
45º CHS 0,05  
Fonte: O autor.
55WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 3
EDUCAÇÃO A DISTÂNCIA
Em resumo, nessa etapa estudamos os processos dos sistemas de amortização mais 
utilizados em empréstimos e financiamentos. Também, o modo de calcular o valor das prestações. 
O Valor do dinheiro no tempo
Este texto trás uma visão diferenciada do dinheiro no transcorrer 
do tempo, sendo que apresenta uma noção diferenciada do que 
realmente significa o poder de compra do dinheiro em relação ao 
fator tempo.
Analisando o sentimento de que o dinheiro do passado não 
compra o mesmo produto no presente e que o dinheiro de hoje não 
comprará o mesmo produto no futuro está diretamente ligado ao assunto desse 
post: valor do dinheiro no tempo.
Disponível em: https://www.brunocunha.com/blog/financas/valor-dinheiro-no-
tempo/.
https://www.brunocunha.com/blog/financas/valor-dinheiro-no-tempo/
https://www.brunocunha.com/blog/financas/valor-dinheiro-no-tempo/
56WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 3
EDUCAÇÃO A DISTÂNCIA
CONSIDERAÇÕES FINAIS
A tentativa, até aqui, foi explicar os conteúdos da maneira mais didática possível, para que 
você possa colocar em prática cada assunto. Ficou claro durante esta unidade que o uso da HP-
12C facilita muito os cálculos financeiros, pois as fórmulas acabam sendo longas e podem induzir 
ao erro, por exigirem várias informações e esquemas.
Foi apresentado uma padronização das teclas com as fórmulas para evitar confusões na 
compreensão e aplicação dos cálculos. Vimos que “PV” serve para valor presente, “FV” para 
valor futuro, “PMT” para parcelas, “I” para taxas e “N” para períodos. Lembrando disso, basta 
informar para a HP o que você tem de informação e perguntar o que você não tem.
Foi possível perceber que os financiamentos utilizam dois métodos principais, que é o 
Price e o SAC. No SAC você terá a amortização constante e o que diminui é a parcela mais utilizada 
para financiamentos de longo prazo. Já no Price, o que é fixo é a parcela, mas a amortização 
aumenta com o passar do tempo, muito utilizado para financiamento de curto e médio prazos.
Todos esses conteúdos são essenciais para quem trabalha com parcelamentos e 
financiamentos, pois auxilia no cálculo e a avaliar qual a melhor forma de parcelar um bem ou 
um item.
Por isso, sempre que possível refaça as atividades e exemplos para reforçar o conhecimento 
e a aprendizagem sobre os assuntos e cálculos que foram aqui apresentados. Perceba que conhecer 
como trabalhar com valores e dinheiro é essencial para termos uma melhor compreensão e 
tomada de decisão.
Até a próxima Unidade!
5757WWW.UNINGA.BR
U N I D A D E
04
SUMÁRIO DA UNIDADE
INTRODUÇÃO ...............................................................................................................................................................59
1 FINANÇAS E EMPREENDEDORISMO .....................................................................................................................60
2 EMPREENDEDOR OU ADMINISTRADOR? .............................................................................................................60
3 PLANO DE NEGÓCIOS E PLANO FINANCEIRO ...................................................................................................... 61
4 ESTRUTURA DE UM PLANO DE NEGÓCIOS .......................................................................................................... 61
4.1 CAPA: INFORMAÇÕES NECESSÁRIAS E PERTINENTES ...................................................................................63
4.2 ANEXOS .................................................................................................................................................................63
5 PLANEJAMENTO FINANCEIRO ...............................................................................................................................64
5.1 E COMO FAZER O PLANO FINANCEIRO NO PLANO DE NEGÓCIOS? ...............................................................64
5.1.1 PASSO 1: DEFINA O INVESTIMENTO INICIAL NECESSÁRIO..........................................................................64
5.1.2 PASSO 2: FAÇA UMA PROJEÇÃO DE DESPESAS E RECEITAS .......................................................................64
VIABILIDADE DE PROJETOS 
E EMPREENDEDORISMO
ENSINO A DISTÂNCIA
DISCIPLINA:
MATEMÁTICA FINANCEIRA
5858WWW.UNINGA.BR
EDUCAÇÃO A DISTÂNCIA
5.1.3 PASSO 3: ANÁLISE DOS PRINCIPAIS INDICADORES DE VIABILIDADE .......................................................65
5.2 PLANEJAMENTO E PLANO DE NEGÓCIOS .........................................................................................................66
6 MÉTODOS DE AVALIAÇÃO DOS INVESTIMENTOS ...............................................................................................66
6.1 PERÍODO DE PAYBACK .........................................................................................................................................66
6.2 VALOR PRESENTE LÍQUIDO (VPL)......................................................................................................................68
6.3 TAXA INTERNA DE RETORNO (TIR) ....................................................................................................................69
CONSIDERAÇÕES FINAIS ........................................................................................................................................... 71
59WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 4
EDUCAÇÃO A DISTÂNCIA
INTRODUÇÃO
Empreendedorismo é um neologismo derivado da livre tradução da palavra 
entrepreneurship e utilizado para designar os estudos relativos ao empreendedor, seu perfil, suas 
origens, seu sistema de atividades, seu universo de atuação. A palavra empreendedor, de emprego 
amplo, é utilizada para designar principalmente as atividades de quem se dedica à geração de 
riquezas, seja na transformação de conhecimento em produtos ou serviços, na geração do próprio 
conhecimento ou na inovação em área como marketing, produção, organização entre outros.
Não se pode dissociar o empreendedor da empresa que ele criou. Ambos fazem parte 
do mesmo conjunto e devem ser percebidos de forma holística: a empresa tem a cara do dono. 
O empreendedor é alguém capaz de desenvolver uma visão, mas não só deve saber persuadir 
terceiros, sócios, colaboradores, investidores, convencê-los de que sua visão poderá levar todos a 
umasituação confortável no futuro. O empreendedor é alguém que acredita que pode colocar a 
sorte a seu favor, por entender que ela é produto do trabalho duro.
Um dos principais atributos do empreendedor é identificar oportunidades e agarrá-las 
e buscar os recursos para transformá-las em negócios lucrativos. Não é indispensável que ele 
possua os meios necessários à criação de sua empresa. Mas deve ser capaz de atrair tais recursos, 
demonstrando o valor do seu projeto e comprovando que tem condições de torná-lo realidade. O 
dinheiro é visto pelo empreendedor como uma medida de desempenho, como meio para realizar 
os seus objetivos, mas raramente como objetivo em si mesmo.
Aqui entenderemos um pouco sobre a relação entre empreendedor e mundo financeiro.
60WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 4
EDUCAÇÃO A DISTÂNCIA
1 FINANÇAS E EMPREENDEDORISMO
Empreendedorismo é o envolvimento de pessoas e processos que, em conjunto, levam à 
transformação de ideias em oportunidades.
Segundo Timmons (apud DOLABELA, 2006), “[...] o empreendedorismo é uma revolução 
silenciosa, que será para o século 21 mais do que a revolução industrial foi para o século 20”, ao 
comparar com a revolução industrial, a grande responsável por radicais mudanças no século 20, 
demonstra o grau de importância para a sociedade do tema empreendedorismo.
Uma outra definição interessante é a de Schumpeter (apud FILION,1999, p. 7), que expõe 
que:
[...] empreendedorismo está na percepção e aproveitamento das novas 
oportunidades no âmbito dos negócios [...] sempre tem a ver com criar uma 
nova forma de uso dos recursos nacionais, em que eles sejam deslocados de 
seu emprego tradicional e sujeitos a novas combinações (SCHUMPETER apud 
FILION,1999, p. 7).
Segundo o Serviço Brasileiro de Apoio às Micro e Pequenas Empresas – SEBRAE 
(2009), o empreendedor tem como característica básica o espírito criativo e pesquisador. Ele 
está constantemente buscando novos caminhos e novas soluções, sempre tendo em vista as 
necessidades das pessoas.
A essência do empresário de sucesso é a busca de novos negócios e oportunidades e a 
preocupação sempre presente com a melhoria do produto. Enquanto a maior parte das pessoas 
tende a enxergar apenas dificuldades e insucessos, o empreendedor deve ser otimista e buscar o 
sucesso, apesar das dificuldades.
2 EMPREENDEDOR OU ADMINISTRADOR?
Todo empreendedor, necessariamente, deve ser um bom administrador para obter 
sucesso, mas nem todo administrador é um bom empreendedor. O trabalho do administrador 
seria o ato de planejar, organizar, dirigir e controlar (PODC). As demandas especificam o que 
deve ser feito e restrições são os fatores internos e externos da organização que limitam o que o 
responsável pelo trabalho administrativo pode fazer.
Segundo Hampton (1991), os administradores se diferem por ocupar um nível na 
hierarquia que define como os processos administrativos são alcançados, e o conhecimento que 
tem no geral da empresa. O trabalho administrativo pode ser identificado como de supervisão 
médio e alto.
Os supervisores tratam de operações de uma unidade específica, como uma seção ou 
departamento. Os administradores médios ficam entre os mais baixos e os mais altos níveis da 
hierarquia em uma organização. Já os administradores de alto nível são aqueles que têm a mais 
alta responsabilidade e a mais abrangente rede de interações.
Lembremos que o empreendedor tem algo a mais: características e atitudes que o 
diferenciam do administrador tradicional e que, para ter sucesso, possui características extras, 
além do atributo do administrador, e alguns atributos pessoais que, somados a características 
sociológicas e ambientais, permitem o nascimento de uma nova empresa dando uma ideia, 
surgindo uma inovação e, desta, uma nova empresa.
61WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 4
EDUCAÇÃO A DISTÂNCIA
Os empreendedores de sucesso são visionários, sabem tomar decisões, são indivíduos que 
fazem a diferença, sabem explorar ao máximo as oportunidades, são determinados e dinâmicos, 
dedicados, otimistas, independentes, ficam ricos, são líderes, organizados, sabem planejar, 
possuem conhecimento, assumem riscos e criam valor para a sociedade.
3 PLANO DE NEGÓCIOS E PLANO FINANCEIRO
Um plano de negócio é um documento que descreve os objetivos de um negócio e quais 
passos devem ser dados para que esses objetivos sejam alcançados, diminuindo os riscos e as 
incertezas. Um plano de negócio permite identificar e restringir seus erros no papel, ao invés de 
cometê-los no mercado.
Lembremos ainda que a preparação de um plano de negócio não é uma tarefa fácil, pois 
exige persistência, comprometimento, pesquisa, trabalho duro e muita criatividade. Existe um 
velho ditado que diz: “se quiser que algo seja bem-feito, faça você mesmo”. Nada mais certo do que 
essa expressão popular, principalmente quando se trata da elaboração de um plano de negócio.
Elaborando pessoalmente o seu plano de negócio, você tem a oportunidade de preparar 
um plano sob medida, baseado em informações que você mesmo levantou e nas quais pode 
depositar mais confiança. Quanto mais você conhecer sobre o mercado e sobre o ramo que 
pretende atuar, mais bem-feito será seu plano.
Tão importante quanto o Plano de Negócios, o Plano Financeiro é aquele que deve 
apresentar, em números, todas as ações planejadas de sua empresa e as comprovações, através 
de projeções futuras (quanto precisa de capital, quando e com que propósito). Deve conter itens 
como fluxo de caixa, balanço, ponto de equilíbrio, necessidades de investimento, lucratividade 
prevista, prazo de retorno sobre investimentos entre outros.
4 ESTRUTURA DE UM PLANO DE NEGÓCIOS
Existem alguns tipos de estrutura de Plano de Negócios, que variam, conforme o autor, 
o tipo de empresa e objetivo a que ele se destina. Seguem alguns tipos diferentes de estrutura de 
plano de negócios. 
Chiavenato (2009) apresenta a seguinte estrutura:
1. Sumário executivo
2. Descrição da empresa
3. Definição do Negócio
4. Plano de marketing
5. Aspectos de Recursos Humanos
O empreendedor é alguém que realiza suas visões e seus sonhos, tudo isso por 
meio de planejamento, pesquisa e foco em direção ao que se deseja. Nada deve 
ser feito por impulso ou sem análise, é necessário planejamento.
62WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 4
EDUCAÇÃO A DISTÂNCIA
6. Aspectos Operacionais
7. Aspectos Econômico-Financeiros
Dornelas (2005) sugere a seguinte estrutura de plano de negócios para pequenas empresas 
prestadoras de serviço:
1. Capa
2. Sumário
3. Sumário Executivo
4. O Negócio
a) Descrição do Negócio
b) Descrição dos Serviços
c) Mercado
d) Localização
e) Competidores (concorrência)
f) Equipe Gerencial
g) Estrutura Funcional
5. Dados Financeiros
a) Fontes de Recursos Financeiros
b) Investimentos Necessários
c) Balanço Patrimonial (projeto para três anos)
d) Análise do Ponto de Equilíbrio
e) Demonstrativo de Resultados (projetado para três anos)
f) Projeção de Fluxo de Caixa (horizonte de três anos)
g) Análise de Rentabilidade
6. Anexos
Quantas empresas falidas e falindo, quantos prejuízos a todos os envolvidos. Por 
quê? Não seria por falta de análise? Vale a pena refletir sobre isso!
63WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 4
EDUCAÇÃO A DISTÂNCIA
4.1 Capa: Informações Necessárias e Pertinentes
Uma capa é simplesmente uma capa, nela você escreve o título do seu documento e 
pronto, correto? Não, muito pelo contrário.
A capa de um plano de negócios é o cartão de visitas da sua empresa. Essa capa deve ser 
visualmente agradável e deve passar as informações certas para que a pessoa que receber o plano 
de negócios, independente dos objetivos do recebimento por parte dela, sinta-se atraída a lê-lo. 
A capa, apesar de não parecer, é uma das partes mais importantes do Plano de Negócio, pois é a 
primeira coisa que é visualizadapor quem o lê portanto, é necessário que seja feita de maneira 
limpa, objetiva e com as informações pertinentes.
Se sua empresa já existe, provavelmente ela tem uma marca, portanto seria ótimo incluir 
essa marca na capa do seu plano de negócios, dessa forma, quem for ler saberá a origem desse 
plano e se lhe interessa ou não.
Se sua empresa não existe ainda e não tem uma marca, essa seria uma ótima hora para 
encontrar algo que represente a ideia por trás dessa empresa, não precisa necessariamente ser a 
marca final dessa empresa, mas algo que transcreva visualmente essa empresa.
Juntamente com a marca da empresa, você terá o título do documento, que 
impreterivelmente deverá constar: “Plano de Negócios”, pois a pessoa que receber tal documento 
deverá, de pronto entender do que se trata, ou seja deverá saber tão logo o receba que se trata de 
um plano de negócios da empresa cuja marca está estampada nele.
Caso isso não seja possível você poderá incluir um subtítulo com uma frase curta sobre o 
que essa empresa faz, por exemplo, algo do tipo “Desenvolvimento de Sistemas para Web”.
Além desses itens, essa capa deverá ter um rodapé no qual vão estar os dados de contato 
da empresa, pois não adianta nada um investidor receber seu plano de negócios, achar a ideia 
ótima, ter milhões de dólares para investir nela, mas não conseguir encontrá-lo para dar essa 
maravilhosa notícia.
Esses dados de contato devem incluir site, e-mail, telefone e endereço, caso todos existam. 
Além disso, no rodapé deverá conter o nome de quem o escreveu e seu cargo na empresa, seguido 
da data de criação, a informação de versão desse documento (algo do tipo versão 1 ou versão 2), 
e o número de cópias desse documento (no formato “Cópia X de X”).
4.2 Anexos
Essa seção deve conter todas as informações que você julgar relevantes para o melhor 
entendimento de seu Plano de Negócio. Por isso, não há um limite de páginas ou exigências 
a serem seguidas. A única informação que você não pode esquecer de incluir é a relação dos 
curriculum vitae dos sócios da empresa. Poderão ser anexadas, ainda, informações como fotos 
de produtos, plantas da localização, roteiro e resultados completos das pesquisas de mercado 
realizadas, material de divulgação de negócio, folders, catálogos, estatutos, contrato social da 
empresa, planilhas financeiras detalhadas e muito mais.
Finanças sem controle levam você e seu negócio à ruína, não concorda?
64WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 4
EDUCAÇÃO A DISTÂNCIA
5 PLANEJAMENTO FINANCEIRO
Para fazer um plano de negócios, deve-se ter em mente que uma das partes mais 
importantes é o planejamento financeiro. Isto porque, no final das contas, “não importa” qual é 
o produto, segmento de mercado que pretende alcançar ou mesmo a maneira como vai colocar 
tudo isso em prática, se não tiver previsão de receitas suficientes que permitam o negócio ou que 
sejam atraentes para potenciais investidores.
Obviamente não se consegue chegar em um plano financeiro de um plano de negócios 
bem feito sem muitas outras informações, mas pensar nele, planejar e ter em mente como ele vai 
se concretizar é essencial.
É preciso ter em mente que um dos principais motivos de falência de novas empresas é a 
falta de visão empresarial para a criação de uma boa estrutura financeira, planejada e direcionada 
para o desenvolvimento da empresa.
5.1 E como Fazer o Plano Financeiro no Plano de Negócios?
Para se fazer um bom planejamento financeiro não é necessário ser um economista. 
Basta identificar os detalhes do novo negócio, estabelecer metas, considerar os recursos a serem 
aplicados em cada caso e convertê-los em realidade. Veja um passo a passo para chegar nesse 
resultado:
5.1.1 Passo 1: defina o investimento inicial necessário
Você deve analisar friamente o investimento inicial necessário e verificar todas as 
despesas para implantação do negócio como, por exemplo, os gastos com instalação, suprimentos, 
equipamentos eletrônicos, sede física, mobiliário e tudo o mais que for necessário para montar o 
seu empreendimento.
Vamos supor que um empreendedor precise de R$30.000 para iniciar o seu negócio, mas 
tem apenas R$10.000.
Ter essa noção vai permitir que ele saiba exatamente o que fazer antes de entrar de cabeça 
no negócio. Nesse caso, o empreendedor teria três opções:
• pedir um empréstimo/investimento com uma grande preocupação em como os juros 
iriam afetar os resultados não operacionais do negócio;
• refazer o plano financeiro analisando reduções de custo e como isso afetaria o resultado 
final;
• desistir da ideia, por ter menos dinheiro do que o necessário.
Pode até parecer cruel, mas a vida dos negócios é assim. Ou você fica atento e toma 
decisões difíceis logo no primeiro passo ou estará fadado ao fracasso.
5.1.2 Passo 2: faça uma projeção de despesas e receitas
Se você tem o capital necessário para o passo inicial, precisa verificar qual é o custo do 
negócio girando normalmente e isso envolve projeções de despesas e receitas. É preciso calcular 
atentamente todos os demais custos exigidos e o quanto você pode e conseguirá vender ao longo 
desse processo.
65WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 4
EDUCAÇÃO A DISTÂNCIA
 Analisemos a Tabela 01 como exemplo:
Tabela 1 – Projeção de despesas. 
Fonte: O autor.
Um grande problema é a impressionante quantidade de empreendedores que tendem 
a ser extremamente otimistas ao fazer suas projeções. Se você quiser fugir desse risco, tente 
abordagens nas quais você já tenha informações do seu negócio funcionando, mesmo que de 
maneira embrionária, em versão beta ou com capacidade inferior ao seu objetivo final.
5.1.3 Passo 3: análise dos principais indicadores de viabilidade
Os indicadores são produzidos tendo como base os valores anteriormente calculados, 
com o objetivo de acompanhar o desenvolvimento e crescimento do seu negócio. Veja quais são 
os principais indicadores:
• VPL – Valor presente líquido;
• TIR – Taxa interna de retorno;
• Payback – Tempo para recuperar investimento feito no negócio.
Dependendo do investidor, pode ser que outros indicadores possam ser solicitados, mas 
de maneira geral, caso a empresa tenha esses três já se terá uma boa noção.
Um exercício interessante de se fazer nesses momentos é o de calcular um possível 
valuation, já que isso te daria uma boa noção de quanto pedir em troca de que porcentagem das 
suas ações em casos de investimentos.
Um empreendedor de sucesso nunca se acomoda, para não perder a capacidade de fazer 
com que simples ideias se concretizem em negócios efetivos. Manter-se sempre dinâmico e 
cultivar certo inconformismo diante da rotina é um de seus lemas preferidos.
O otimismo é uma característica das pessoas que enxergam o sucesso, em vez de imaginar 
o fracasso. Capaz de enfrentar obstáculos, o empresário de sucesso sabe olhar além e acima das 
dificuldades.
66WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 4
EDUCAÇÃO A DISTÂNCIA
5.2 Planejamento e Plano de Negócios
Liderar é saber definir objetivos, orientar tarefas, combinar métodos e procedimentos 
práticos, estimular as pessoas no rumo das metas traçadas e favorecer relações equilibradas 
dentro da equipe de trabalho, em torno do empreendimento.
Dentro e fora da empresa, a pessoa que lida com negócios faz contatos. Seja com clientes, 
fornecedores ou empregados. Assim, a liderança tem que ser uma qualidade sempre presente.
Existe uma importante ação que somente o próprio empreendedor pode e deve fazer 
pelo seu empreendimento: planejar, planejar e planejar. No entanto, é notória a falta de cultura 
de planejamento do brasileiro, que, por outro lado, é sempre admirado pela sua criatividade e 
persistência.
Os fatos devem ser encarados de maneira objetiva. Não basta apenas sonhar, deve-se 
transformar o sonho em ações concretas, reais, mensuráveis. Para isso, existe uma simples, porém, 
para muitos, tediosa, técnica de transformarsonhos em realidade: o planejamento.
6 MÉTODOS DE AVALIAÇÃO DOS INVESTIMENTOS
Segundo Camloffski (2014, p.65), as principais técnicas de investimentos são “[...] o 
payback descontado, o valor presente líquido (VPL), a taxa interna de retorno (TIR), o valor 
presente líquido anualizado (VPLA), o índice benefício-custo (IBC) e o retorno adicionado ao 
investimento (ROIA)”. Para Samanez (2007, p.19) a análise de investimentos necessita de “[...] 
um grau justo de raciocínio econômico e projeção das condições futuras, o que vai além do 
uso das demonstrações financeiras normais”. Com esse fim, existem várias “técnicas, métodos, 
convenções e critérios” utilizados na avaliação e posterior tomada de decisão. 
6.1 Período de Payback
A primeira ferramenta que pode ser utilizada para a avaliação de investimentos é o cálculo 
do payback. Para Souza e Clemente (2008), este cálculo pode ser considerado como o número de 
períodos necessários para a recuperação do investimento inicial, por meio das entradas de caixa. 
Camloffski (2014, p.65) salienta que quanto menor o período de recuperação, “maior a liquidez 
do projeto e, portanto, menor o seu risco”.
Com tudo que vemos na atualidade sobre gestão estratégica e educação 
corporativa começamos a perceber a real necessidade da correta gestão de 
pessoas com foco em gerir e direcionar os colaboradores ao objetivo e metas da 
empresa ou organização. Chiavenato (1999) ensina que o foco de uma correta 
gestão de pessoas é alinhar todos os processos e pessoas com as estratégias da 
organização.
Assim, o treinamento e desenvolvimento dos colaboradores está atrelado a um 
modelo de gestão com foco na educação contínua e na valorização das pessoas 
como diferencial competitivo da organização, ou seja, isso é uma mudança 
completa de cultura organizacional com foco em inovação e conhecimento.
67WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 4
EDUCAÇÃO A DISTÂNCIA
Para o mesmo autor, o payback descontado é o cálculo inicial do período de recuperação 
após o cálculo do valor presente das entradas de caixa previstos. Assaf Neto e Lima (2014, p.395) 
diz que o payback descontado “traz todos os fluxos de caixa ao mesmo momento de tempo (a 
valor presente), incorporando o conceito de valor do dinheiro no tempo”.
Em termos de análise o período de payback deve ser comparado com um tempo máximo 
de recuperação do investimento, que pode ser definido pela analista ou empresa. Esse período 
também pode ser avaliado como um índice de nível de risco, ou seja, em épocas de incertezas, 
o período máximo aceitável pode ser reduzido (ASSAF NETO E LIMA, 2014). A tabela a seguir 
apresenta um exemplo de payback descontado a uma taxa de 20% ao ano.
Tabela 2 - Payback descontado.
 Fonte: Assaf Neto e Lima (2014).
De acordo com Assaf Neto e Lima (2014), o cálculo é definido da seguinte forma:
• Ano 1: Investimento + Fluxo de caixa descontado1 = (145,00) + 59,17 = (85,83);
• Ano 2: Resultado do ano 1 + Fluxo de caixa descontado2 = (85,83) + 51,39 = (34,44);
Como o resultado do ano 2 é inferior ao resultado do ano 3, o projeto será recuperado 
entre o segundo e o terceiro ano. Neste sentido, segue o último passo para o período de payback:
• Ano 3: Resultado do ano 2 / Fluxo de caixa descontado3 = 34,44 / 46,30 = 0,74. Nesse 
caso, o período de payback será de 2,74 anos.
Neste link você pode saber um pouco mais sobre os três elementos 
básicos do empreendedorismo.
Acesse o material disponível em: https://www.youtube.com/
watch?v=o5I9cx2Tb64.
https://www.youtube.com/watch?v=o5I9cx2Tb64
https://www.youtube.com/watch?v=o5I9cx2Tb64
68WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 4
EDUCAÇÃO A DISTÂNCIA
6.2 Valor Presente Líquido (VPL)
Para Casarotto Filho e Kopittke (2010), o VPL é obtido por meio da diferença entre o 
cálculo do valor presente das entradas futuras de caixa com o investimento inicial. O melhor 
projeto é aquele que apresenta o maior VPL. Souza e Clemente (2009, p. 74), “o valor presente, 
como o próprio nome indica, nada mais é do que a concentração de todos os valores esperados 
de um fluxo de caixa na data zero. Para tal, usa-se como taxa de desconto a taxa mínima de 
atratividade da empresa (TMA)”.
Em termos de análise para avaliar os projetos de investimento, tendo como base o VPL, 
deve-se aceitar projetos com VPL igual ou maior que zero e rejeitar os projetos com VPL negativo. 
Em termos gerais, as orientações são as seguintes (ASSAF NETO E LIMA, 2014, p.396).
Critério de Decisão com o NPV (neste caso, NPV = VPL):
NPV > $ 0 → Projeto cria valor econômico. Aumenta a riqueza dos acionistas.
NPV = $ 0 → Projeto não cria valor econômico. Remunera somente o custo de 
oportunidade. Não altera a riqueza dos acionistas.
NPV < $ 0 → Projeto destrói valor econômico. Reduz a riqueza dos acionistas. 
(ASSAF NETO E LIMA, 2014, p.396).
 
O Quadro 2 destaca o cálculo do VPL com o uso de uma calculadora financeira:
 Quadro 2 - Valor Presente Líquido. Fonte: Assaf Neto e Lima (2014).
Neste caso, o projeto de investimento não deveria ser aceito por VPL é negativo, ou seja, 
o valor presente das entradas de caixa é menor que o investimento inicial. 
69WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 4
EDUCAÇÃO A DISTÂNCIA
6.3 Taxa Interna de Retorno (TIR)
De acordo com Gitman e Zutter (2017) a taxa interna de retorno que iguala o valor do 
VPL ao valor do investimento inicial, ou seja, VPL = 0. Para Lemes Júnior, Cherobim e Rigo 
(2018, p.195):
[...] a TIR calculada é confrontada com o custo de capital da empresa. Se a TIR 
for maior, indica viabilidade do projeto. Se for menor, sinaliza sua inviabilidade, 
pois o projeto não estaria gerando rentabilidade suficiente para remunerar de 
forma adequada o investimento (CHEROBIM; RIGO, 2018, p.195).
O Quadro 3 apresenta o cálculo da Taxa Interna de Retorno com o uso de uma calculadora 
financeira. 
Quadro 3 - Taxa Interna de Retorno. Fonte: Assaf Neto e Lima (2014).
No caso apresentado no quadro 3, nota-se que a TIR é igual a 33,09%. Neste sentido, o 
projeto deve ser aceito se a taxa de desconto foi igual ou menor que o valor encontrado. Quanto 
mais próxima estiver a TIR da taxa de desconto utilizada, ou seja, a TMA, maior será o risco do 
projeto de investimento. O sucesso é apenas uma questão de fazer as escolhas certas pautadas em 
valorizar a educação e o conhecimento.
O que é empreendedorismo?
Empreendedores questionam a realidade e fazem acontecer a 
evolução todos os dias, em todas as partes do Brasil e do mundo. 
Ao inovar e solucionar problemas de outras pessoas, de outras 
empresas ou de toda a sociedade, um empreendedor e seu novo 
negócio promovem um grande desenvolvimento.
O artigo com este título poderá te ajudar a aprofundar ainda mais 
os conhecimentos a respeito do tema. Boa leitura!
Disponível em: https://endeavor.org.br/desenvolvimento-pessoal/o-que-e-
empreendedorismo-da-inspiracao-a-pratica/. 
https://endeavor.org.br/desenvolvimento-pessoal/o-que-e-empreendedorismo-da-inspiracao-a-pratica/
https://endeavor.org.br/desenvolvimento-pessoal/o-que-e-empreendedorismo-da-inspiracao-a-pratica/
70WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 4
EDUCAÇÃO A DISTÂNCIA
A obra “ Gestão da Inovação e Empreendedorismo”, traz uma 
abordagem nova na medida em que reúne, em um único material, 
os conteúdos relacionados à inovação e empreendedorismo.
O principal diferencial é a consolidação de cinco grandes 
blocos de assuntos: inovação, empreendedorismo, propriedade 
intelectual, transferência de tecnologia e elaboração de 
projetos de P&D&I, discutidos em uma linguagem voltada 
para pesquisadores e empreendedores de negócios de base 
tecnológica.
Desta forma, constitui-se em um material fundamental para gestores de empresas, 
integrantes de órgãos de fomento e de Núcleos de Inovação Tecnológica (NIT), 
além de empreendedores individuais e pesquisadores de áreas tecnológicas quedesejam abrir suas empresas.
71WWW.UNINGA.BR
M
AT
EM
ÁT
IC
A 
FI
NA
NC
EI
RA
 |
 U
NI
DA
DE
 4
EDUCAÇÃO A DISTÂNCIA
CONSIDERAÇÕES FINAIS
Perceba que entender de empreendedorismo e mercado é essencial para sermos 
profissionais completos e com comportamentos voltados a desenvolver o ambiente onde estivemos 
atuando.
Ser empreendedor não é apenas abrir uma empresa e sim agir com visão de crescimento 
e com foco em atingir objetivos estratégicos. Mas, para tanto, se faz necessário a busca de 
conhecimento, através de cursos, projetos, cursos superiores, pós-graduações que o levarão a 
aprimorar essa visão de maneira eficiente e objetiva.
Todo empreendimento precisa ser planejado e verificar a viabilidade de execução desse 
projeto, pois envolverá dinheiro, recursos humanos, equipamentos e outros fatores que exigem 
um planejamento apurado e detalhado.
Por isso, precisamos compreender que não existe sucesso sem conhecimento e 
planejamento. Se você quer abrir uma empresa, o primeiro passo é entender o mercado e suas 
variações, além de levantar quais serão os custos e investimentos necessários para que seu 
empreendimento tenha saúde.
Lembre-se, tudo precisa de planejamento, você não faz uma viagem sem planejar, logo, 
um empreendimento não será diferente, principalmente se você quer que ele tenha uma vida 
longa e saudável em um mercado competitivo e exigente. Ser empreendedor exige cuidados, 
por isso, não devemos fazer as coisas só porque achamos interessante. Primeiramente, devemos 
avaliar e pesquisar. Mais adiante entenderemos como funciona um plano de negócios para somar 
com os conhecimentos até aqui explanados e discutidos.
Até a próxima!
72WWW.UNINGA.BR
ENSINO A DISTÂNCIA
REFERÊNCIAS
ANTONIO, C. A. Desconto comercial ou racional? Qual a diferença e com calcular. Disponível 
em: http://operandobien.blogspot.com.br/2007/10/desconto-comercial-ou-racional-qual.html. 
Acesso em 14 jul. 2018.
ASSAF, N. A. Matemática financeira e suas aplicações. 12. ed. São Paulo: Atlas, 2012.
ASSAF, N. A.; LIMA, F. G.. Curso de Administração Financeira. São Paulo: Atlas, 2014.
CAMLOFFSKI, R. Análise de investimentos e viabilidade financeira das empresas. São Paulo: 
Atlas, 2014.
CASAROTTO, F. N; KOPITTKE. B. H.  Análise de investimentos:  matemática financeira, 
engenharia econômica, tomada de decisão, estratégia empresarial. 11. ed. São Paulo: Atlas, 2010.
CASTELO, B. Matemática financeira aplicada: método algébrico, HP12C e Microsoft Excel. São 
Paulo: Cengage Learning, 2015.
CHIAVENATO, I. Empreendedorismo, dando asas ao espírito empreendedor. São Paulo: 
Saraiva, 2009.
CUNHA, B. O valor do dinheiro no tempo. Disponível em: http://www.brunocunha.com/blog/
financas/valor-dinheiro-no-tempo/. Acesso em: 20 jul. 2021.
DOLABELA, F. O segredo de Luísa. São Paulo: Cultura editores associados, 2006.
ENDEAVOR. Cuidado! Empreendedorismo é contagioso. Disponível em: https://endeavor.org.
br/tudo-sobre/empreendedorismo/. Acesso em 21 jul. 2017.
EPX. Calculadora HP12C. 2017. Disponível em: https://epxx.co/ctb/hp12c.html. Acesso em 13 
jul. 2021.
FALLET, J. BC surpreende e reduz Selic, mas Brasil ainda tem juros mais altos do mundo. 
Disponível em: http://www.bbc.co.uk/portuguese/noticias/2011/09/110831selicanalisejf.shtml. 
Acesso em: 13 fev. 2021.
FRANCISCO, W. D. Matemática financeira. 7ª ed. 6ª tiragem. São Paulo: Atlas, 1999.
FUNDAMENTUS. Invista consciente. Disponível em: www.fundamentus.com.br. Acesso em: 
20 jul. 2018.
GITMAN, L. J.; ZUTTER, Chad J. Princípios de Administração Financeira. 14. ed. São Paulo: 
Pearson Education do Brasil, 2017.
https://epxx.co/ctb/hp12c.html
http://www.bbc.co.uk/portuguese/noticias/2011/09/110831selicanalisejf.shtml
73WWW.UNINGA.BR
ENSINO A DISTÂNCIA
REFERÊNCIAS
GOOGLESTORE. HP 12c financial calculator. 2018. Disponível em: https://play.google.com/
store/apps/details?id=com.hp.hp12c. Acesso em 24 jul. 2021.
HAZZAN, S.; POMPEO, J. N. Matemática financeira. São Paulo: Saraiva, 2004.
HIRSCHFELD, H. Engenharia econômica e análise de custos. São Paulo: Atlas, 2000.
HOJI, M. Matemática financeira: didática, objetiva e prática. 1. ed. São Paulo: Atlas, 2016.
KNOOW. Enciclopédia temática. Disponível em: http://knoow.net/cienceconempr/economia/
indice-precos-no-consumidor-ipc/. Acesso em: 27 jun. 2021.
PORTO, G et al. Gestão da Inovação e empreendedorismo. Rio de Janeiro. GEN Atlas. 2013.
PORTO, G et al. Gestão da Inovação e empreendedorismo. 1 Figura. 2013.
PUCCINI, A. L. 1 Figura. Matemática financeira, objetiva e aplicada. São Paulo: Saraiva, 2009.
SAMANEZ, C. P. Gestão de investimentos e geração de valor. São Paulo: Pearson, 2007.
SILVA, D. F. Fundamentos da economia. Porto Alegre: SAGAH, 2018.
SILVA, D. F; SILVA, R. A. Fundamentos da economia. Porto Alegre: SAGAH, 2018.
SOUZA, A; CLEMENTE, A.  Decisões financeiras e análise de investimentos:  fundamentos, 
técnicas e aplicações. 6. ed. São Paulo: Atlas, 2009.
RAYMUNDO, P. J.; FRANZIN, N. A. O valor do dinheiro no tempo: matemática comercial e 
financeira. 2. ed. Maringá: Editora Clichetec, 2006.

Mais conteúdos dessa disciplina