Buscar

Via Permanente - Superestrutura

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 101 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 101 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 101 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Porf. Rodrigo de Alvarenga Rosa 12/04/2011
1
1Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Prof. Dr. Rodrigo de Alvarenga Rosa
rodrigoalvarengarosa@gmail.com
(27) 9941-3300
Departamento de Eng. Produção
Estradas de Ferro
Via Permanente - Superestrutura
2Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• A superestrutura é a parte da VP que recebe os impactos 
diretos da composição ferroviária
• Os principais elementos constitutivos da superestrutura são:
– Trilho
– Dormente
– Lastro e Sublastro
– Acessórios de fixação
– Aparelho de mudança de via
Superestrutura
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
2
3Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura
4Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Os trilhos são apoiados e fixados em dormentes, que são 
regularmente espaçados e são assentados, na maioria dos 
casos, sobre um colchão amortecedor de material granular, o 
lastro
• O lastro absorve os esforços vindos dos dormentes e 
transmite ao solo as pressões correspondentes às cargas 
suportadas pelos trilhos, distribuindo-as, com taxa 
compatível à sua capacidade de suporte, para o terrapleno
Superestrutura
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
3
5Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura
6Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
4
7Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• O trilho é o elemento da superestrutura que constitui a 
superfície de rolamento e guias para as rodas dos veículos
• Perfil do tipo Vignole
Superestrutura - Trilhos
8Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Classificação quanto ao comprimento do trilho
• Trilho padrão
– 12 ou 18 metros
• Trilho longo 
– trilhos padrão soldados, de 250 a 350 metros
Superestrutura - Trilhos
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
5
9Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Trilho
Perfil
Vignole
Superestrutura
10Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Trilho
Superestrutura - Trilhos
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
6
11Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Geralmente o material empregado é o aço-carbono
• Composição
– Ferro
• 98% da composição do trilho
– Carbono
• proporciona maior dureza ao aço
• Uma maior quantidade torna o aço quebradiço, 
principalmente se não reduzir o percentual de fósforo
Superestrutura - Trilhos
12Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Composição
– Manganês
• proporciona maior dureza ao aço
• Pode produzir fragilidade junto ao carbono
– Silício
• aumenta a resistência a ruptura sem sacrificar a dutilidade 
ou tenacidade do aço
– Fósforo
• é um elemento indesejável, pois torno o aço quebradiço
• seu efeito é menor quanto menos carbono tiver no aço
– Enxofre
• é um elemento indesejável, pois torno o aço quebradiço
• Combina com o ferro e tira suas principais qualidades
• forma as chamadas segregações
Superestrutura - Trilhos
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
7
13Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Composição química do aço-carbono
– Tabela usada nos Estados Unidos
Superestrutura - Trilhos
14Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Fabricação dos trilhos
– O aço é levado a lingoteiras
– Os fenômenos físico-químicos que ocorrem nas lingoteiras 
durante o processo de solidificação do aço pode dar origem a 
diversas imperfeições do aço
– Cada corrida geralmente gera três lingotes A, B e C e cada um 
dará origem a um trilho
– Os trilhos são laminados a quente a partir dos lingotes
• é passado em diversos cilindros que vão dando a forma de 
um perfil Vignole
Superestrutura - Trilhos
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
8
15Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Especificações para recebimento dos trilhos
– Normas para recebimento dos trilhos
• UIC (União Internacional das Estradas de Ferro), Europa
• ASTM (American Society for Testing Material) , americana
• AREA (American Railway Engineering), americana
– Características dimensões e peso
• Trilhos de 12 ou 18 m, tolerância no comprimento é +- 3mm
• Tolerância nas dimensões da seção transversal é +- 5mm
• Tolerância na pesagem é 2% de cada lote de 50 trilhos 
desde que o total não ultrapasse 1%
Superestrutura - Trilhos
16Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Especificações para recebimento dos trilhos
– Prova de choque
• Realizada por uma máquina que permite que um peso de 
2.000 lb (907,2 kg) caia livremente de uma altura 
especificada conforme tabela
• Deve ter um vão de 0,91 a 1,42 m ajustável
• Martelo sobre o boleto
• Em temperatura de 38º C
Superestrutura - Trilhos
Peso do Trilho em kg/m Altura da queda em m
24,8 a 29,8 4,88
29,9 a 39,7 5,18
39,8 a 44,6 5,49
44,7 a 49,6 5,79
49,7 a 59,5 6,10
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
9
17Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Especificações para recebimento dos trilhos
– Ensaio de tração
• Do boleto do trilho da prova de choque retiram-se corpos 
de prova a frio para a máquina de ensaio de tração
– Carga de ruptura: 70 a 85 kg/mm2
– Limite de elasticidade: 35 a 40 kg/mm2
– Alongamento em 200mm: 10 a 12%
- Se 10% do material não satisfizer às especificações, a 
corrida será rejeitada
Superestrutura - Trilhos
18Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Especificações para recebimento dos trilhos
– Ensaio de Resiliência
• Aplicado em 2% dos trilhos e serve como índice de 
fragilidade do aço
• Corpos de prova de 55 x 10 x 10 mm onde se faz um 
entalhe com ferro redondo de 2mm
• Submete a choques sucessivos até a fratura
• Se o trabalho de choque foi de τ kg m então a resiliência é 
dada por: 
• Onde S é a seção da fratura
• ρ >= 3 kg m / cm2
• Não leva a resultados conclusivos, mas é importante a 
título de registro
Superestrutura - Trilhos
S
τρ =
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
10
19Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Especificações para recebimento dos trilhos
– Ensaio de Dureza Brinell
• Utiliza-se uma esfera de 10 mm de diâmetro e um esforço 
de 3.000kg, durante alguns segundos
onde 
• DB >= 210kg/mm2
Superestrutura - Trilhos
SS
PDB 3000== )(
2
222 dDDDS −−= pi
D
d
20Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Especificações para recebimento dos trilhos
– Ensaio de Dureza Brinell
• Da Dureza Brinell pode se deduzir o valor aproximado da 
resistência a ruptura em kg/mm2 
• A dureza do trilho é uma das mais importantes propriedades 
do trilho
• Vai determinar o desgaste provocado pelo atrito das rodas 
dos veículos, principalmente curvas
Superestrutura - Trilhos
DBR 35,0=
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
11
21Curso deEngenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Especificações para recebimento dos trilhos
– Ensaio micrográfico
• Atacar a superfície interna do trilho com iodo em solução 
alcoólica ou com ácido pícrico em álcool 
• Permite caracterizar
– as inclusões (matérias estranhas)
– zonas de diferentes concentrações de carbono
– Fissuras superficiais
– Ensaio macrográfico
• Atacar a superfície externa do trilho com reativo
• É feito exame de corrosão com uma simples observação 
visual
• Usa-se reativo de Heyn (cloreto duplo de cobre e amônio em 
água destilada) ou reativo de Bauman (brometo de prata)
Superestrutura - Trilhos
22Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Especificações para recebimento dos trilhos
– Ensaio de entalhe e fratura
• Um corpo de prova representativo do topo do trilho que 
passou pela Prova de Choque é entalhado e fraturado
• Se a fratura apresentar trincas, esfoliações, cavidades, 
matéria estranha interposta, estrutura brilhante ou granulação 
fina, o trilho do Corpo de Prova é classificado como “X”
Superestrutura - Trilhos
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
12
23Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Classificação dos trilhos
– A ASTM (American Society for Testing Materials) estabelece o 
seguinte critério
• Trilho no 1 - trilho isento de qualquer defeito
• Trilho X - trilho que ensaio de entalhe e fratura apresentou 
algum problema
• Trilho no 2 - trilho que contém poucos imperfeições e o 
inspetor por sua análise o aceita
Superestrutura - Trilhos
24Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Marcas de classificação
– Servem para identificar os trilhos quanto à sua qualidade e 
comparação das possíveis avarias
• Na alma dos trilhos
– Um lado: Marca da usina, país, indicação de que o 
resfriamento foi controlado (RC), o tipo do forno de aço 
referente à fabricação (T-Thomas, B-Bessemer, M-Martin, 
E-Elétrico, SM-Siemens-Martin), o tipo do trilho (quanto 
ao peso) e o ano e mês de fabricação
» Exemplo: CSN - Brasil - RC - SM - TR-68 - 2010 - IIII 
(abril)
– Do outro lado é identificado o número da corrida, a letra 
indicativa da posição do trilho no lingote por ordem de 
lingotamento
» Exemplo: 380177 - C - 15 (C significa terceiro lingote)
Superestrutura - Trilhos
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
13
25Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Trilhos especiais
– As ferrovias estão demandando cada vez mais demandando 
locomotivas maiores e mais pesadas e o mesmo para vagões
– Principalmente nas ferrovias de minério (EFVM, EFC e MRS)
– Desgaste principalmente em curvas se torna muito acentuado 
nestes casos
– Existem dois métodos para aumentar a vida útil dos trilhos
• Fazer um tratamento térmico 
• Aços especiais (aço-liga)
Superestrutura - Trilhos
26Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Trilhos especiais com tratamento térmico
– A têmpera do aço é conseguida pelo tempo de resfriamento do 
aço
• Tempos de resfriamento muito rápidos levam a aços mais 
duros e mais frágeis
– Percebeu-se que caso fosse o “recozimento” após a têmpera 
obtêm-se um aço de grande dureza e tenacidade
• Conhecido como recozimento após têmpera
Superestrutura - Trilhos
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
14
27Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Trilhos especiais - Aços especiais (aço-liga)
– Os aços-carbono comuns não são apenas ligas de ferro e 
carbono, eles contém outros elementos que melhoram e pioram a 
qualidade do aço
– Os aços liga contém maior quantidade dos elementos que 
efetivamente melhoram a qualidade do aço
• Cromo
• Manganês
• Silício
Superestrutura - Trilhos
28Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Defeitos nos trilhos
– Defeitos de fabricação
• Vazios (bolsa de contração)
• Segregações
• Inclusões
• Fissuras transversais
• Defeitos de laminação
Superestrutura - Trilhos
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
15
29Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Defeitos nos trilhos
– Defeitos originados de serviço
• Deformação das pontas
• Deformação das pontas
• Autotêmpera superficial
• Escoamento do metal na superfície do boleto
• Ataque da alma e do patim por corrosão atmosférica
• Desgaste por atrito, principalmente nos trechos em 
curva
• Desgaste ondulatório
• Fissuras transversais e trincas de fadiga que têm início 
no boleto e progridem até o trilho sofrer ruptura
Superestrutura - Trilhos
30Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Escoamento do Boleto
Desgaste por atrito (patinação)
Superestrutura -
Trilhos
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
16
31Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Desgaste Lateral
Por atrito
Superestrutura - Trilhos
32Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• São classificados pelo seu peso por metro (kg/metro)
– Os tipos mais comuns são: TR25, TR32, TR37, TR40, TR45, 
TR50, TR57, TR68. 
• O número que identifica o tipo significa quanto pesa um metro do 
trilho
– TR68 - 68 quilos por cada metro linear
• As dimensões dos trilhos variam dependendo do tipo
Superestrutura - Trilhos
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
17
33Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura - Trilhos
34Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
TR 57
Superestrutura - Trilhos
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
18
35Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Pré-dimensionamento de trilhos
– Determinação da Carga de Cálculo
– Sendo 
• P - carga por eixo
• Cd - coeficiente dinâmico ou de impacto
• V - velocidade do trem (km/h)
• n = Kg / m de aço do trilho
Superestrutura - Trilhos
cálculo
d
dcálculo
Pn
hkmVVC
CPP
2
)/100(
30000
1
2
=
<+=
=
36Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Supondo um tráfego que suportará um trem com uma locomotiva de 
peso máximo por eixo de 20 toneladas, com velocidade de 80 km/h, 
pergunta-se: Qual o perfil de trilho que deverá ser usado?
Superestrutura - Trilhos
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
19
37Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Supondo um tráfego que suportará um trem com uma locomotiva de 
peso máximo por eixo de 20 toneladas, com velocidade de 80 km/h, 
pergunta-se: Qual o perfil de trilho que deverá ser usado?
• P - carga por eixo
• Cd - coeficiente dinâmico ou de impacto
• V - velocidade do trem (km/h)
• n = Kg / m de aço do trilho
• Análise do efeito da velocidade no perfil do trilho: Quanto maior a 
velocidade, maior será o perfil do trilho
Superestrutura - Trilhos
504,482,242
2,2421,120
21,1
30000
801
2
TRxn
P
C
cálculo
d
→==
==
=+=
38Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Seção Transversal dos Trilhos
– O trilho é colocado inclinado de 1:20 ou 1:40 sobre a vertical
• Reduz desgaste do trilho e do aro
Superestrutura - Trilhos
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
20
39Cursode Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Seção Transversal dos Trilhos
– O ângulo ββββ do friso da roda é 
geralmente de 60º 
• Se ββββ > 60º há mais facilidade das 
rodas subirem nas juntas
• Se ββββ < 60º e houver discordância no 
alinhamento das pontas do trilho há 
mais facilidade das rodas subirem 
nas juntas
• Ambas situações provocam o 
descarrilamento
Superestrutura - Trilhos
40Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• O boleto do trilho está sujeito a desgaste lateral e vertical
– A largura c e altura e são estabelecidas para atender aos 
esforços horizontal e vertical que o trilho está submetido
– O desgaste da altura e pode atingir até 12 mm em vias 
principais e 15 mm em vias secundárias
– A largura do boleto c deve guardar com a altura e uma 
relação tal que o desgaste lateral não obrigue a 
substituição do trilho
•
Superestrutura - Trilhos
8,16,1 a
e
c
≈
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
21
41Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• O desgaste do boleto deve ocorrer no mesmo 
tempo que o desgaste por oxidação da alma e do 
patim
• É importante a relação entre a altura do trilho h e 
a largura do patim l
– Esta relação é importante para responder 
ao esforço vertical P e a força lateral Ft 
– O momento de reviramento que é 
combatido pelo fixação do trilho mais o 
momento 
– A relação ideal é 
Superestrutura - Trilhos
1,10,1 al
h
≈
hxFt
2
lxP
42Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Coeficiente de utilidade
– onde
• c - coeficiente de utilidade
• w - módulo resistente à flexão onde 
S é a área da seção transversal do trilho e h a altura
• p - peso do trilho em kg/m
• Serve para comparar dois perfis diferentes de trilho
– O que tiver maior valor é o mais econômico 
– Pois terá menor peso para o mesmo valor do módulo 
resistente à flexão w
Superestrutura - Trilhos
p
wc =
hSaw 27,025,0=
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
22
43Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• A durabilidade dos trilhos define os limites de uso do trilho
– Até quando um trilho pode ser usado sem comprometer a 
segurança da circulação
– É de extrema importância, pois afeta diretamente os 
custos de manutenção da via permanente
• Várias indicações podem ser usadas para estabelecer este 
limite (mas deve ser analisado em cada ferrovia!)
Superestrutura - Trilhos
44Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Limite de 12 mm de desgaste vertical do boleto para as linhas 
principais
• Limite de 15 a 20 mm de desgaste vertical do boleto para as 
linhas secundárias
• A perda de peso admitida é de 10% para trilhos até TR45 e 15 
a 20% para trilhos maiores
• Limite de 25% da perda de área do boleto
Superestrutura - Trilhos
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
23
45Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Desgaste lateral do boleto
– Ângulo de desgaste ΘΘΘΘ pode atingir no máximo 32º a 34º
– É medido a partir da extremidade superior do boleto
Superestrutura - Trilhos
46Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Pode-se relacionar estatisticamente a perda de peso dos 
trilhos em função do número de toneladas que circulam sobre 
os mesmos
– Pode-se então prever qual será a vida útil do trilho
• Perda de peso em kg/m (Essa perda refere-se à passagem de 
9.072.000 toneladas métricas de carga
– Em função do raio , sendo R o raio da curva 
em metros
– Em função da área do boleto , sendo P o peso 
do trilho em kg/m e S a área do perfil do trilho em cm2 e ∆∆∆∆S
a perda de área do boleto
Superestrutura - Trilhos
Rp
433
=∆
S
S
Pp ∆=∆
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
24
47Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Admitindo como limite máximo o desgaste de 25% da área do 
boleto
– Onde Sb é a área do boleto
Superestrutura - Trilhos
p
p
T
R
pS
S
Pp b
∆
∆
=
=∆=∆
max
max
000.072.9
43325,0
48Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Indicação da AREMA (American Railroad Association)
– onde Ts toneladas brutas que o trilho 
suporta em short-ton para transformar em tonelada 
métrica ; W peso do trilho em lb/jd e D a 
densidade anual de tráfego em milhões de toneladas 
brutas
• Então a vida útil do trilho será
Superestrutura - Trilhos
505,0545,0 DWTs =
1,1
sTT =
D
Tn =
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
25
49Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• A expressão é válida para tangentes ou curvas com raios 
superiores a 1.800m.
• Para raios inferiores a este limite deve-se aplicar uma redução 
na vida útil com base nas estatísticas americanas
Superestrutura - Trilhos
50Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Para melhorar a vida útil pode-se fazer:
– Lubrificação dos trilhos pela parte lateral interna do boleto
– Lubrificação constante dos pratos peão dos vagões e 
locomotivas para atacarem menos o trilho
Superestrutura - Trilhos
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
26
51Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• A vida útil de um trilho é de aproximadamente 550 milhões de 
toneladas de tráfego. Aproximadamente, 9 mil toneladas de 
tráfego por hora, durante 7 anos. Em linhas secundárias, os 
trilhos podem durar até 60 anos.
Superestrutura - Trilhos
52Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Acessórios de trilho
– A tala de junção é o material metálico que apertado contra 
as laterais das extremidades do trilho por parafusos com 
porcas e arruelas de pressão, garante sua continuidade
– Pode ser substituída pela solda dos dois trilhos
Superestrutura - Trilhos
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
27
53Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Gancho de via
– Quando existe dilatação dos trilhos em demasia gerando o 
deslocamento dos mesmos e da própria grade da via
Superestrutura - Trilhos
54Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Tala de Junção
Superestrutura – Acessório de Trilhos (tala de junção)
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
28
55Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Tala de Junção
Superestrutura – Acessório de Trilhos (tala de junção)
56Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Acessórios de trilho
– A tala de junção pode ser substituída por solda
– Aluminotérmica
– Elétrica 
Superestrutura - Trilhos
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
29
57Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura – Trilhos (solda)
58Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura – Trilhos (solda)
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
30
59Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigode Alvarenga Rosa
Superestrutura – Trilhos (solda)
1 2
3 4
60Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura – Trilhos (solda)
Solda Elétrica
C:\DadosRodrigo\MinhasFoto
s\SoldaEletrica.avi
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
31
61Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Acessórios de fixação 
– Os acessórios de fixação são os elementos que têm por 
função fixar os trilhos nos dormentes. 
Superestrutura – Acessório de Fixação
62Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Placa de 
apoio
Superestrutura – Acessório de Fixação
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
32
63Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Placa de 
apoio em 
perfil
Parte de 
dentro da 
bitola
1:20
64Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Placa 
de 
apoio
Superestrutura – Acessório de Fixação
Galocha
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
33
65Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Fixação
Denick
Superestrutura – Acessório de Fixação
66Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Fixação
Denick
Superestrutura – Acessório de Fixação
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
34
67Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura – Acessório de Fixação
1 2 3
4 5
68Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Fixação
Pandrol
Superestrutura – Acessório de Fixação
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
35
69Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Fixação
Pandrol
Superestrutura – Acessório de Fixação
Tirefond
Mola aperto
Placa de apoio
70Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Fixação
Pandrol
Superestrutura – Acessório de Fixação
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
36
71Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Fixação
Pandrol
72Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Prego de
Linha
Superestrutura – Acessório de Fixação
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
37
73Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Retensor
Superestrutura – Acessório de Fixação
74Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Retensor
Superestrutura – Acessório de Fixação
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
38
75Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Retensor
Superestrutura – Acessório de Fixação
76Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Retensor
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
39
77Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Tirefond
Placa de
apoio
Superestrutura – Acessório de Fixação
78Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura – Acessório de Fixação
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
40
79Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• O dormente é o elemento que fixa os trilhos e mantém a bitola 
da via
• Transmite ao lastro os esforços recebidos dos trilhos
• Características necessárias aos dormentes
– A espessura de a necessária rigidez, porém com alguma 
elasticidade
– Que tenha resistência aos esforços que esteja submetido
– Que permita com relativa facilidade o nivelamento do 
lastro, socaria, na sua base
– Que resista aos deslocamentos longitudinais e 
transversais da via
– Que tenha durabilidade 
Superestrutura – Dormente
80Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura – Dormente
• Taxa de dormentação - Número médio de dormentes por 
quilômetro de via permanente 
Bitola larga (1,60m)
Linhas quantidade por km espaçamento (cm)
Tronco Valores 1820 55
Limites 1667 60
Subsidiárias Valores 1540 65
Limites 1430 70
Bitola métrica (1,00m)
Linhas quantidade por km espaçamento (cm)
Tronco Valores 1667 60
Limites 1667 60
Subsidiárias Valores 1540 65
Limites 1667 70
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
41
81Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Os dormentes podem ser confeccionados nos seguintes 
materiais:
– Madeira
– Aço
– Concreto
– Material sintético
Superestrutura – Dormente
82Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Dormentes de Madeira
• A madeira reúne quase todas as qualidades exigidas para o 
dormente. 
• Até o presente, o principal tipo de dormente. 
• A introdução dormente de concreto e o de aço visam substituí-lo 
devido a fatores como a escassez, reflorestamento deficiente e o 
uso de madeiras de boa qualidade para fins mais nobre e preços 
mais elevados.
• Os de madeira de lei, difícil de achar hoje em dia, de sucupira 
chegam a durar 30 anos.
• Relativamente leves: 70kg
Superestrutura – Dormente
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
42
83Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Dormente 
de 
Madeira
Superestrutura – Dormente
84Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Durabilidade dos dormentes de madeira
– Clima;
– Drenagem da Via;
– Peso e velocidade dos trens;
– Época do ano em que a madeira foi cortada ;
– Grau de secagem;
– Tipo de fixação do trilho;
– Tipo de lastro;
– Tipo de placa de apoio do trilho do dormente .
Superestrutura – Dormente
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
43
85Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• A vida útil do dormente da madeira é em função de
– da resistência ao apodrecimento
– desgaste mecânico. 
• O ponto mais vulnerável do dormente é o local de fixação do trilho.
• A escolha do dormente de madeira está, portanto, condicionada a 
estes fatores:
– Pela sua resistência à destruição mecânica – pela dureza e 
coesão da madeira;
– Pela sua resistência ao apodrecimento (ação de fungos);
– Pela maior ou menor facilidade de obtenção;
– Por razões de ordem econômica.
• Atualmente, só para manutenção tem escolhido o dormente 
de madeira. Questões ambientais forçam as novas ferrovias a 
optar pelo de concreto ou o de aço!!!!
Superestrutura – Dormente
86Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Vantagens dos dormentes de madeira
– leves e de fácil manuseio; 
– serragem, furação e entalhamento fácil; 
– fixação fácil dos trilhos e placas de apoio; 
– são pouco afetados pelas severas condições de manuseio e 
de transporte; 
– não são atacados por resíduos industriais poluidores da 
atmosfera; 
– possuem valor residual. 
Superestrutura – Dormente
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
44
87Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa• Desvantagens dos dormentes de madeira
– menor vida útil; 
– são suscetíveis a ação de fungos, insetos e fogo; 
– permitem gradual abertura da bitola e queda das condições da 
linha pela afrouxamento das fixações com o conseqüente 
desgaste da via; 
– os dormentes especiais para os AMV’s são de preço elevado e 
de difícil aquisição; 
– exigem maior área de armazenagem e secagem quando 
tratados. 
Superestrutura – Dormente
88Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Fatores que condicionam a escolha do dormente de madeira
– resistência a destruição mecânica (dureza e coesão da 
madeira);
– resistência ao apodrecimento; 
– maior ou menor facilidade de obtenção (razões 
econômicas e ambientais). 
Superestrutura – Dormente
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
45
89Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura – Dormente
Propriedade Relação com a densidade D
Madeira verde (30% Seca ao ar (12% de
umidade) umidade)
FLEXÃO ESTÁTICA
Tensão no limite de proporcionalidade (kg/cm2) 717D1,25 1170D1,25
Tensão de ruptura (kg/cm2) 1240D1,25 1800D1,25
FLEXÃO DINÂMICA
COMPRESSÃO PARALELA ÀS FIBRAS
Tensão no limite de proporcionalidade (kg/cm2) 370D 615D
Tensão de ruptura (kg/cm2) 470D 850D
COMPRESSÃO PERPENDICULAR ÀS 
FIBRAS
Tensão no limite de proporcionalidade (kg/cm2) 210D2,25 326D2,25
DUREZA
No topo (kg) 1360D2,25 2180D2,25
Lateral (kg) 1550D2,25 1710D2,25
90Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Zona de fixação nos dormentes de madeira
– Nos dormentes utilizados em ferrovias de bitola larga é a 
região que se estende em 50 cm a partir de 60cm do 
meio do dormente;
– •nos dormentes utilizados em ferrovias de bitola métrica, 
a região que se estende em 40 cm a partir de 35 cm do 
meio do dormente.
Superestrutura – Dormente
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
46
91Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura – Dormente
92Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Propriedades da madeira utilizada
• a madeira a ser empregada na fabricação deve vir de
árvores sadias, abatidas vivas, sendo o corte realizado nos 
meses secos. A madeira deve ser de boa qualidade, de 
fibras duras e sem excesso de alburno (parte que envolve o 
cerne);
• os dormentes devem ser isentos de infecção por fungos ou 
insetos, rachaduras nos topos, fendas nas faces, cavidades, 
nós cariados ou perfurados e cascas.
Superestrutura – Dormente
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
47
93Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Condições de fabricação dos dormentes de 
madeira
• as faces dos dormentes poderão ser lavradas ou serradas, 
admitindo-se reentrâncias de até 15mm de profundidade; 
• as faces verticais deverão cortar uma das faces horizontais 
(a face inferior) segundo um ângulo reto; 
• a face inferior deverá apresentar largura constante e arestas 
vivas; 
• poderão ser tolerados desquinados (arestas mortas) na face 
superior desde que fiquem asseguradas as medidas d e r
mínimas. 
Superestrutura – Dormente
94Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• As dimensões dos dormentes variam conforme a bitola
Superestrutura – Dormente
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
48
95Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• As dimensões dos dormentes variam conforme a bitola 
• (NBR 7511)
Superestrutura – Dormente
comprimento (m) largura (m) altura (m)
bitola
min max min max min max
1,000 1,90 2,00
1,435 2,55 2,65 0,22 0,24 0,16 0,17
1,600 2,65 2,80
tolerâncias 0,05 0,01 0,015
96Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Arestas
Superestrutura – Dormente
Na zona de fixação Fora da zona de fixação
bitola 1,60m bitola 1,00m bitola 1,60m bitola 1,00m
d 22 cm d 17 cm d 17 cm d 14 cm
r 15 cm r 14 cm r 10 cm r 8 cm
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
49
97Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Tolerâncias para os dormentes de madeira
• são tolerados fendilhamentos no topo com 25cm no máximo de 
comprimento, desde que corrigidos ou contidos pela aplicação de 
grampos ou cintas anti-rachadura; 
• são admitidos nós desde que os mesmos não ultrapassem 2cm de 
diâmetro e 8cm de profundidade e não se localizem na zona de 
fixação; 
• curvaturas simples e regulares, no plano horizontal, são toleradas 
desde que as flechas medidas ao longo do comprimento não 
ultrapassem 6cm. Duplas curvaturas no plano horizontal só serão 
admitidas se qualquer flecha não ultrapassar 4cm;
Superestrutura – Dormente
98Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Tolerâncias para os dormentes de madeira
• são admitidos dormentes com curvaturas no plano vertical, desde 
que qualquer flecha medida ao longo do seu comprimento não 
ultrapasse 1cm;
• a diferença de altura entre dois pontos quaisquer das faces 
horizontais não deverá ser superior a 1,5cm.
Superestrutura – Dormente
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
50
99Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Dormente de aço
• Perfil em U
• Considerado um dormente de material misto, aço e brita
• Relativamente leve, 70kg
• Vantagens:
– material perfeitamente homogêneo;
– longa vida útil;
– boa resistência aos esforços transversais.
• Desvantagens:
– maior dificuldade para socaria e nivelamento;
– falta de isolamento elétrico em linhas sinalizadas;
– necessidade de linha com alto padrão de lastro e isenta de 
impactos na superfície de rolamento.
Superestrutura – Dormente
100Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Dormente 
de Aço
Superestrutura – Dormente
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
51
101Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Dormente 
de Aço
Superestrutura – Dormente
102Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Dormente 
de aço
Superestrutura – Dormente
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
52
103Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Dormente de aço
Superestrutura – Dormente
104Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Dormente 
de aço
Superestrutura – Dormente
Dificuldade 
de socaria
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
53
105Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Dormente de concreto
• Relativamente pesados de 240kg a 300kg
• Demanda máquinas para assentamento e manutenção
• O concreto e o aço utilizados obedecem as especificações 
correntes para esses materiais e a fabricação, cura e manuseio 
das peças são as mesmas dos artefatos de concreto em geral.
Superestrutura – Dormente
106Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Dormente de Concreto
• Vantagens:
– longa vida útil;
– peso elevado, proporcionando mais elasticidade à via;
– resistência aos agentes atmosféricos;
– características físicas e mecânicas uniformes;
– redução dos custos de manutenção da via.
• Desvantagens:
– necessidadede processo de fabricação apurado;
– dificuldade de transporte e manuseio devido ao peso elevado;
– dificuldade de fixação eficaz;
– necessidade de linha com alto padrão de lastro e nivelamento;
– perda total em caso de acidente.
Superestrutura – Dormente
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
54
107Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Dormente de concreto
• Podem ser de três tipos
– Concreto protendido (mais usado em ferrovias de carga)
– Mistos ou polibloco 
– Bi-bloco
Superestrutura – Dormente
108Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura – Dormente
Dormente 
de 
Concreto
Protendido
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
55
109Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura – Dormente
Dormente 
de 
Concreto
110Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura – Dormente
Dormente 
de 
Concreto
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
56
111Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura – Dormente
Dormente de Concreto bi-bloco
112Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Dormente de Plástico
• podem ser confeccionados a partir de material reciclado; 
• possui o mesmo formato dos dormentes de madeira e podem ser 
usados de modo conjunto na mesma linha; 
• produção e aplicação ainda em escala inicial. 
Superestrutura – Dormente
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
57
113Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Dormente de Plástico
Superestrutura – Dormente
114Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Dormente de Plástico
Superestrutura – Dormente
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
58
115Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Dormente de Plástico
• Vantagens dos dormentes de plástico
– vida útil estimada em mais de 50 anos; 
– mais leve do que o dormente de madeira; 
– não racha, nem trinca; 
– eletricamente não condutivo; 
– mantém suas propriedades físicas sem deterioração; 
– utiliza mesma fixação dos dormentes existentes; 
– absorve vibrações preservando o material rodante e a geometria da 
via; 
– impermeável a água; 
– impermeável a efeitos biológicos; 
– resistente a óleo Diesel, óleo mineral e graxa; 
– livre de produtos químicos tóxicos; 
– 100% reciclável. 
Superestrutura – Dormente
116Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Dormente de Plástico
• `Desvantagens dos dormentes de plástico
– é destruído pela ação do fogo ou contato com objetos de 
temperatura elevada; 
– pode sofrer concorrência direta dos dormentes de madeira em 
países com reservas florestais abundantes; 
– material feito a partir do petróleo (fonte não renovável) cujo preço 
está sujeito a elevações significativas no mercado internacional; 
– tecnologia em desenvolvimento e consolidação no mercado 
ferroviário. 
Superestrutura – Dormente
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
59
117Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• A Grade da ferrovia é formada pelo dormente mais o trilho e 
os elementos de fixação
• Ela é preparada antes de se colocar o lastro
– Depois de pronta ela é levantada e coloca-se o lastro e 
procede-se a socaria
Superestrutura – Grade
118Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Grade da 
Ferrovia
Desguarnece-
dora
de lastro
Superestrutura – Grade
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
60
119Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• a superfície final da infraestrutura constitui a chamada plataforma, 
a qual é formada por solos naturais ou tratados, no caso dos 
cortes e aterros, ou então por estruturas quaisquer no caso de 
obras de arte especiais; 
• na ferrovia a plataforma é o suporte da estrutura da via e que 
recebe, através do lastro, as pressões devidas à circulação dos 
trens; 
• a plataforma fornece também espaço para as demais instalações 
necessárias a operação ferroviária como postes de rede aérea de 
comunicação, alimentação ou ainda para instalação superficial ou 
subterrânea de cabos condutores. 
Superestrutura – (Relembrando Infraestrutura)
120Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• a plataforma tem como função básica proporcionar apoio a 
superestrutura da via de modo que não sofra deformações que 
impeçam ou influam negativamente na operação, sob as 
condições de tráfego que determina o traçado da linha; 
• para que o apoio não sofra deformações ou não influa 
negativamente na operação da ferrovia, é necessário que a 
plataforma tenha certas características de resistência; 
• assim como no caso das rodovias, as características físicas dos 
solos nas ferrovias são determinados a partir de métodos tais 
como: identificação visual, granulômetria, sedimentação, limites de 
Attenberg (limite de liquidez, limite de plasticidade, índice de 
plasticidade), CBR, etc.
Superestrutura – (Relembrando Infraestrutura)
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
61
121Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Em solo natural:
– pode ser usada quando o valor de resistência é atendido; 
– os serviços preliminares consistem na roçada, remoção da camada 
de solo orgânico, regularização; 
– se necessário substituição dos materiais das camadas inferiores. 
• Em cortes:
– se após a escavação as características geomecânicas atenderem 
as exigências de resistência e capacidade de deformação, esta será 
incorporada a plataforma; 
– se necessário realizar a substituição dos materiais; 
– rocha não é considerada bom material para camadas de lastro 
inferiores a 30cm; 
– plataformas muito rígidas podem conduzir a destruição do lastro, 
especialmente se o tráfego for predominantemente de vagões 
pesados. 
Superestrutura – (Relembrando Infraestrutura)
122Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Em solo natural:
– pode ser usada quando o valor de resistência é atendido; 
– os serviços preliminares consistem na roçada, remoção da camada 
de solo orgânico, regularização; 
– se necessário substituição dos materiais das camadas inferiores. 
• Em cortes:
– se após a escavação as características geomecânicas atenderem 
as exigências de resistência e capacidade de deformação, esta será 
incorporada a plataforma; 
– se necessário realizar a substituição dos materiais; 
– rocha não é considerada bom material para camadas de lastro 
inferiores a 30cm; 
– plataformas muito rígidas podem conduzir a destruição do lastro, 
especialmente se o tráfego for predominantemente de vagões 
pesados. 
Superestrutura – (Relembrando Infraestrutura)
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
62
123Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• O sublastro é o material granular regularmente distribuído 
entre o lastro e o terrapleno, com a finalidade de 
– melhorar a capacidade de suporte da plataforma
– Evitar a penetração do lastro na plataforma
– Aumentar a resistência do leito à erosão e a penetração 
de água, concorrendo para uma boa drenagem da via
– Permitir relativaelasticidade ao apoio do lastro para que a 
via permanente não seja rígida
• Material mais barato que o lastro, o que reduz os custos de 
construção da VP
Superestrutura – Sublastro
124Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Material para o sublastro
– IG (Índice de Grupo) = 0 (zero)
– LL (Limite de Liquidez) = máximo de 35
– IP (Índice de Plasticidade) = máximo de 6
– Expansão máxima de 1%
– CBR (Índice de suporte Califórnia) - mínimo de 30
Superestrutura – sublastro
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
63
125Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• O sublastro deverá ser compactado de modo a obter-se peso 
específico aparente correspondente a 100% do ensaio de 
proctor.
• O sublastro usualmente tem altura de 20cm, mas deveria ser 
calculado para absorver as pressões vindas do lastro e 
chegar na plataforma com uma taxa de trabalho compatível 
com o solo da plataforma
Superestrutura – sublastro
126Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• material que se enquadre, de preferência, no grupo A1 de
classificação de solos HRB (Highway Research Board):
• A1 Solo bem graduado constituído principalmente de 
pedregulho e areia, mas contendo pequena quantidade de 
finos.
• Os solos argilosos (A4 a A7) estão sujeitos a amplas 
variações na resistência durante os ciclos de secagem e 
umedecimento, são portanto indesejáveis. 
• Os solos mal graduados, como areias finas (A3), são difíceis 
de serem compactados para alcançar altas densidades 
Superestrutura – sublastro
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
64
127Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura – sublastro
128Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• É o elemento da superestrutura situado entre os dormentes e a 
plataforma
• Para a escolha do tipo do lastro deve-se observar
– Fluxo da carga, o tipo de carga, a velocidade do trem e o custo 
de aquisição
• Deve-se observar também os critérios técnicos para um bom lastro
– Resistência; Durabilidade; Estabilidade; Drenabilidade; 
Limpeza; Trabalhabilidade; Disponibilidade; Custo
• Consome-se em média 1,5 m3 de lastro por metro corrente de via 
bitola métrica
Superestrutura – Lastro
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
65
129Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• O lastro tem as seguintes funções:
– Distribuir de forma uniforme sobre a plataforma os esforços 
resultantes das cargas dos veículos, produzindo uma taxa de 
trabalho menor na plataforma;
– Impedir os deslocamentos dos dormentes, vertical como 
horizontalmente;
– Formar um suporte, até certo limite elástico, atenuando as 
trepidações resultantes da passagens dos veículos rodantes;
– Sobrepondo-se a plataforma, suprimir suas irregularidades, formando 
uma superfície contínua e uniforme para os dormentes e trilhos;
– Impedir os deslocamentos os deslocamentos dos dormentes, quer no 
sentido longitudinal e no transversal
– Facilitar a drenagem da superestrutura
Superestrutura – Lastro
130Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Para desempenhar tais funções, o lastro deve ter as seguintes 
qualidades:
– Suficiente resistência aos esforços transmitidos pelos 
dormentes;
– Possuir elasticidade limitada para abrandar os choques;
– Ter dimensões que permitam sua interposição entre os 
dormentes e abaixo dos mesmos;
– Ser resistente aos agentes atmosféricos;
– Não produzir pó, prejudicial ao material rodante;
– Deve ser francamente permeável para uma boa drenagem.
Superestrutura – Lastro
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
66
131Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Soca ou socaria
– É o processo de se compactar o lastro por meio manual ou por 
meio mecanizado.
Superestrutura – Lastro
132Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Soca ou socaria
Superestrutura – Lastro
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
67
133Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Soca ou socaria
C:\DadosRodrigo\MinhasFotos\CefetCariacica\VisitaFundao20062007\
Fundao 064
C:\DadosRodrigo\MinhasFotos\CefetCariacica\VisitaFundao20062007\
Fundao 070
Superestrutura – Lastro
134Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• O material utilizado como lastro pode ser:
– Brita (o melhor!!)
– Escória de alto forno/aciaria (A EFVM utilizou 
bastante mas teve muito problema)
– Terra
– Cascalho
Superestrutura – Lastro
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
68
135Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Brita
Superestrutura – Lastro
136Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Escória de
aciaria
Superestrutura – Lastro
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
69
137Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• As especificações adotadas em nosso país seguem tanto quanto 
possível as especificações da AREMA (AREMA - American 
Railway Engineering and Maintenance-of-Way Association).
• As pedras do lastro não devem ter grandes dimensões, pois nesse 
caso funcionariam como “cunhas” e o nivelamento seria pouco 
durável. 
• Por outro lado, dimensões muito pequenas acarretariam uma 
rápida “colmatagem” do lastro, perdendo este a sua função 
drenante. 
• As especificações modernas determinam que as pedras do lastro 
tenham dimensões entre ¾” e 2½” (2 - 6cm).
Superestrutura – Lastro
138Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• AREMA (AREMA - American Railway Engineering and Maintenance-
of-Way Association).
• Peso específico mínimo: 2,7 
• Resistência à ruptura: 700 kg/cm2 (ensaio: cubos de 5 cm de aresta, 
levados a uma máquina de compressão)
• Solubilidade: A pedra não pode ser solúvel (ensaio: 7dm3 de pedra 
triturada e lavada colocada em um vaso e agitada no período de 48 
horas, durante 5 min, cada 12 horas de intervalo – se houver 
descoloração a pedra é considerada solúvel e imprópria) 
• Absorção: o aumento de peso por absorção de água de uma amostra 
de 230 g, quando mergulhada em água durante certo tempo, não 
deve ultrapassar 1% (pelo método MB 8 da ABNT).
Superestrutura – Lastro
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
70
139Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• AREMA (AREMA - American Railway Engineering and Maintenance-
of-Way Association).
• Substâncias nocivas: a quantidade de substâncias nocivas e torrões 
de argila não deve ultrapassar 1%. 
• Granulometria: pedras do lastro devem ter dimensões entre 2 e 6 cm
Superestrutura – Lastro
Percentagens acumuladas nas peneiras
Graduação 63,5mm 50mm 38mm 25mm 19mm 12,7mm
50mm a 25mm 0 0-5 35-65 85-100 90-100 95-100
140Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Especificações do lastro:
– massa específica ≥ 2,7 g/cm3
– coeficiente de desgaste Los Angeles ≤ 35%
– amostra: 5Kg (limpa e seca); 12 esferas de aço; 30 a 33 rpm; 
500 revoluções
– após, passa-se o material na peneira #12 (1,68 mm) e pesa-se 
a quantidade retida 
sendo P = peso da amostra (5Kg) e Pn = peso do material retido
Superestrutura– Lastro
%100
P
PPCLA n−=
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
71
141Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura – Lastro
142Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura – Lastro
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
72
143Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura – Lastro
• Para preencher o formulário para a análise granulométrica, 
usa-se a porcentagens acumuladas retidas
144Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Altura do Lastro
– Os estudos de Talbot
• diagrama de distribuição de pressões no lastro
• bulbo de distribuição de pressões
• As percentagens representam a pressão média na face 
inferior do dormente em contato com o lastro
Superestrutura – Lastro
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
73
145Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Gráfico de Talbot
Superestrutura – Lastro
146Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Altura do Lastro
– P0 = pressão média na face inferior do dormente (Kg/cm2)
– Ph = pressão a uma profundidade qualquer (Kg/cm2)
Superestrutura – Lastro
100%
o
h
P
P
K =
Po
Ph
h
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
74
147Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura – Lastro
148Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Altura do Lastro
– Segundo Talbot
• Ph = pressão a uma profundidade h (Kg/cm2)
• Po = pressão média na face inferior do dormente (Kg/cm2)
• h = altura do lastro (cm) h ≥ 25 cm
Superestrutura – Lastro
oh Ph
P 25,1
87,53
=
Po
Ph
h
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
75
149Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Altura do Lastro
– Determinação de P0
• Pc = carga a ser considerada sobre o dormente
• b = largura do dormente (cm)
• c = faixa de socaria (cm) - varia de 70 a 80 cm para bitola métrica 
e de 80 a 90 cm, para bitola larga
Superestrutura – Lastro
cxb
P
P co =
Po
Ph
h
Pc
150Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Altura do Lastro
Pr - peso da roda mais pesada, Cd - Coeficiente 
dinâmico
d - distância entre eixos da locomotiva, a - distância
entre centros dos dormentes
V - velocidade em km/h; como esta fórmula foi
definida antigamente, adota-se 1,4 como valor 
mínimo para Cd
Superestrutura – Lastro
d
C
n
P
P rc =
a
d
n =
000.30
1
2VCd +=
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
76
151Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Altura do Lastro
• Tensão admissível no sublastro
Ps - pressão de ruptura do sublastro
cs - coeficiente de segurança que varia entre 5 e 6
Ph - pressão a uma profundidade h (Kg/cm2)
- tensão admissível no sublastro (Kg/cm2)
Superestrutura – Lastro
PPh ≤
s
s
h
c
p
p =
100
70 CBRps =
P
152Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Exemplo do cálculo da altura do lastro
Dimensionar a altura do lastro sabendo-se os seguintes dados:
Peso por eixo - 20 toneladas
Dimensão dos dormentes - 2,00 x 0,20 x 0,16
Coeficiente dinâmico ou coeficiente de impacto - 1,4
Faixa de socaria - 70 cm
Distância entre eixos da locomotiva - 2,20 m
Taxa de dormentação (dormente/km) - 1750 un/km
CBR do sublastro - 20%
Superestrutura – Lastro
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
77
153Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Exemplo do cálculo da altura do lastro
Solução
1) a = distância entre o centro dos dormente = 1000/1750 = 0,57
2) n = distância entre eixo / a
n = 2,20 / 0,57 = 3,86
3)
Pr - peso da roda mais pesada (20 x 1000) / 2 = 10000
dica: 20 ton/eixo, cada eixo 2 rodas, cada ton = 1000kg
Pc = (10000/3,86) x 1,4 = 3.627 kg
Superestrutura – Lastro
d
C
n
P
P rc =
154Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Exemplo do cálculo da altura do lastro
Solução
4) 
b - largura do dormente; c - faixa de socaria
Po = 3627 / (20 x 70) = 2,591 kg/cm2
5) 
ps = 70 x 20 / 100 = 14 kg/cm2
Superestrutura – Lastro
cxb
P
P co =
100
70 CBRps =
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
78
155Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Exemplo do cálculo da altura do lastro
Solução
6) 
= 14 / 5,5 = 2,55 kg/cm2 
7)
= (53,87 / h1,25) . Po
2,55 = (53,87 / h1,25) . 2,591 
h = 24,7 = 25cm
Superestrutura – Lastro
hP
oh Ph
P 25,1
87,53
=
s
s
h
c
p
p =
hp
156Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Exemplo do cálculo da altura do lastro
Outra Solução (pelo gráfico)
Depois do passo 4, com os valores de Ph e Po pode-se calcular K% 
K% = (2,55 / 2,591) x 100 = 98,4%
Entrando no gráfico vê-se que a altura é de aprox. 25 cm.
Observação: é usual, na prática,adotar uma altura nunca inferior a 25 cm
Superestrutura – Lastro
100%
o
h
P
P
K =
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
79
157Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Valor da
pressão
admissível
no sublastro
Superestrutura – Lastro
158Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Exemplo do cálculo da altura do lastro
Solução
Na prática pode-se admitir a distribuição da pressão na plataforma.
supondo uma altura de 20 cm do sublastro.
Tem-se a pressão na plataforma da ferrovia:
Ph = (53,93 / (20 + 25)1,25) x 2,591 = 1,2 kg/cm2
O que é um valor razoável para terrenos compactados a 100%
Superestrutura – Lastro
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
80
159Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Metodologia para dimensionamento da camada de lastro
1. Definir os parâmetros básicos da EF:
– bitola; 
– espaçamento entre dormentes; 
– carga total máxima por veículo; 
– afastamento entre duas rodas consecutivas; 
– velocidade operacional; 
2. Determinar a carga dinâmica (Cd); 
3. Determinar a pressão sob a face inferior do dormente (Po); 
4. Determinar pressão admissível (Ps) para o material a ser utilizado no 
sublastro; 
5. Determinar a altura da camada de lastro. 
6. Fazer os cálculos para a camada de sublastro para ver se a resistência 
de ruptura da plataforma suporta a carga
Superestrutura – Lastro
160Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Processo de distribuição do lastro na ferrovia
• Vídeo: 
C:\DadosRodrigo\MinhasFotos\CefetCariacica\VisitaFundao2006200
7/\Fundao 11.avi
• C:\DadosRodrigo\MinhasFotos\CefetCariacica\VisitaFundao2006200
7/\Fundao 63.avi
Superestrutura – Lastro
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
81
161Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura – Lastro
162Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Limites para dimensionamento da seção
– o lastro não deverá cobrir os dormentes, sendo coroado a 5cm da 
face superior. No caso de dormente de concreto com blocos 
ligados por tirante metálico, olastro deve ficar 2cm abaixo do 
tirante, observando o coroamento de 5cm; 
– a soca deve abranger para cada lado do eixo dos trilhos sob os 
dormentes, no mínimo 40cm para as bitolas larga e normal e 30cm 
para bitola estreita; 
– a faixa central não atingida pela soca terá, pelo menos, 30 a 40cm 
de largura. 
– a capacidade de suporte da plataforma não deverá ser excedida 
pela pressão transmitida pelo lastro, o qual terá espessura 
suficiente para uniformizá-la; 
Superestrutura – Lastro
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
82
163Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Limites para dimensionamento da seção
– a ombreira terá largura adequada a estabilidade da via, 
recomendando-se 30cm para as vias com trilhos longos soldados 
(TLS), 20cm para as vias com alta densidade de tráfego sem TLS e 
15cm para as demais. 
– o talude do lastro não terá inclinação superior a 1:1,5 (altura:base); 
– a altura da camada de lastro sob os dormentes deve variar entre 
40cm e 20cm nas linhas de bitola larga e normal e entre 30cm e 
15cm nas linhas de bitola estreita; 
– em linhas de grande solicitação, seja pela carga ou pela 
velocidade, a espessura poderá ser aumentada até atingir o valor 
do afastamento face a face dos dormentes, usando então uma 
camada de brita graduada (lastro) e uma de sub lastro com material 
de menor granulômetria; 
Superestrutura – Lastro
164Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Limites para dimensionamento da seção
– quando a altura da camada lastro calculada ultrapassar a altura 
recomendada para a classe da linha, pode ser utilizado, por medida 
econômica, material de categoria inferior como sublastro, desde 
que ofereça boa condição de drenagem e tenha capacidade de 
suporte para a pressão que deve ser transmitida. 
Superestrutura – Lastro
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
83
165Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Aspectos construtivos
– a escolha do material para lastro deve obedecer ao critério 
econômico, observados os dispositivos das normas técnicas; 
– o lastro ou sub lastro somente deve ser lançado sobre a plataforma 
devidamente regularizada, nivelada, compactada, abaulada e que 
apresente adequada condição de drenagem; 
– a soca do lastro deve ser executada preferencialmente por 
processo mecânico e ser feita, em qualquer caso em camadas de 
aproximadamente 15cm, sendo recomendado até reduzir este valor 
para 10cm em linhas de grande responsabilidade. 
Superestrutura – Lastro
166Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Uma estrada de ferro com extensão de 200km será construída em bitola 
larga para escoar a produção de minério de ferro. Determine a altura da 
camada de lastro necessária sob os dormentes. Faça também a 
representação da seção tipo e determine o volume de material necessário 
para a execução da obra.
Carga total por vagão= 119000kg Velocidade operacional= 70km/h 
Número de eixos por veículo = 4 Distância entre eixos = 2m
CBR plataforma = 18,5% Coeficiente NS = 5,5
Soca = 40cm para cada lado do eixo dos trilhos Ombreira 30cm
Espaçamento entre dormentes = 55cm = 1820 dorm/km Dimensões do 
dormente 2,8 x 0,24 x 0,17m
Inclinação talude = 1:1,5
Fator majoração sobre a compactação = 10%
Superestrutura – Lastro
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
84
167Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Uma estrada de ferro com extensão de 200km será construída em bitola 
larga para escoar a produção de minério de ferro. Determine a altura da 
camada de lastro necessária sob os dormentes. Faça também a 
representação da seção tipo e determine o volume de material necessário 
para a execução da obra.
Carga total por vagão= 119000kg Velocidade operacional= 70km/h 
Número de eixos por veículo = 4 Distância entre eixos = 2m
CBR plataforma = 18,5% Coeficiente NS = 5,5
Soca = 40cm para cada lado do eixo dos trilhos Ombreira 30cm
Espaçamento entre dormentes = 55cm = 1820 dorm/km Dimensões do 
dormente 2,8 x 0,24 x 0,17m
Inclinação talude = 1:1,5
Fator majoração sobre a compactação = 10%
Superestrutura – Lastro
168Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Determine a altura da camada de lastro para uma ferrovia de bitola 
estreita e 350km de extensão destinada ao transporte de produtos 
agrícolas e carga geral. Represente a seção tipo e determine o volume de 
material necessário.
Carga total por vagão= 90.000kg
Velocidade operacional= 70km/h
Número de eixos por veículo = 4
Distância entre eixos = 1,574m
CBR sublastro = 30%
Coeficiente NS = 5,5
Soca = 30cm para cada lado do eixo dos trilhos
Ombreira 30cm
Espaçamento entre dormentes = 55cm – 1820 dorm/km
Dimensões do dormente 2 x 0,22 x 0,16m
Inclinação talude = 1:1,5
Fator majoração sobre a compactação = 10%
Superestrutura – Lastro
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
85
169Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Determine a altura da camada de lastro para um ramal da ferrovia de 
bitola larga destinada ao tráfego de carga. O trecho tem extensão de 
50km. Represente a seção tipo e determine a quantidade de material para 
o lastro.
Carga total por vagão= 90.000kg
Velocidade operacional= 85km/h
Número de eixos por veículo = 4
Distância entre eixos = 2m
CBR plataforma = 17%
Coeficiente NS = 5,5
Soca = 40cm para cada lado do eixo dos trilhos
Ombreira 30cm
Espaçamento dormentes = 60cm 1667 dorm/km
Dimensões do dormente 2,8 x 0,24 x 0,17m
Inclinação talude = 1:1,5
Fator majoração sobre a compactação = 10%
Superestrutura – Lastro
170Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Os aparelhos de mudança de via são dispositivos metálicos 
que permitem a bifurcação de uma via férrea ou, 
inversamente, a união de duas vias. Esses aparelhos são 
denominados AMV
• Os AMVs podem ser caracterizados quanto à sua geometria 
da seguinte forma:
– Simétrico
– Laterais
– Assimétricos
Superestrutura – AMV
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
86
171Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Os AMVs são compostos pelos seguintes elementos: 
1. Jacaré
2. Contratrilhos
3. Trilhos de ligação
4. Agulhas
Superestrutura – AMV
172Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Detalhe
Friso
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
87
173Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Contra
Trilho
Jacaré
Agulha
Superestrutura – AMV
174Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Jacaré
Superestrutura – AMV
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
88
175Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Agulha
Superestrutura – AMV
176Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Contra
Trilho
Jacaré
Agulha
Superestrutura – AMV
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
89
177Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Jacaré
Agulha
Contra
Trilho
Superestrutura – AMV
Chave
178Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Friso
Roda
Ponta do
Jacaré
Superestrutura – AMV
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
90
179Curso de Engenharia Civil - Estradas deFerro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• JACARÉ: Peça que permite materializar a interseção de dois 
trilhos, permitindo passagem das rodas numa ou noutra linha.
• PONTA DO JACARÉ (PONTA DE ½”) : Extremidade afilada do 
coração em que bifurcam e se separam as duas linhas de bitola da 
reta e do desvio.
• PONTA TEÓRICA DO JACARÉ: Ponto de interseção das linhas 
de bitola que se cruzam no jacaré.
Superestrutura – AMV
180Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura – AMV
Ponta 
do 
Jacaré
Ponta 
Teórica 
do 
Jacaré
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
91
181Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• NÚMERO DO JACARÉ
– Na prática é um número que permite definir o ângulo de 
abertura do jacaré e que varia com o inverso deste ângulo, ou 
seja, quanto maior for o número do jacaré, menor será o 
ângulo de abertura e mais suave a derivação pela linha 
desviada. 
Superestrutura – AMV
ab
cdN=
2
2
1
α
tg
N =
cd
ab
Ponta 
Teórica 
do 
Jacaré
182Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• NÚMERO DO JACARÉ
– A Vale adota para a EFVM
• Na linha principal de circulação n = 20 
• Nos pátios n = 10
Superestrutura – AMV
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
92
183Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• AGULHA: Peça feita de aço fundido ou forjado, ou de trilho 
usinado, destinada a encaminhar as rodas de veículos ferroviários 
de uma para outra linha.
• PONTA DE AGULHA : Extremidade afilada que se junta ao trilho 
de encosto. Pode ser do tipo removível, feita de aço fundido.
• CORPO DA AGULHA : Parte intermediária entre a ponta e o coice 
da agulha. Quando a agulha é feita de trilho poderá ser simples ou 
reforçada na alma, com uma das chapas rebitadas ou 
aparafusadas a esta.
Superestrutura – AMV
184Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• TRILHO DE ENCOSTO: Peça de trilho em que se apóia a agulha, 
denominado esquerdo ou direito, reto ou curvo, em função da sua 
localização. Conforme o tipo de agulha será ou não usinado. 
Também chamado encosto da agulha.
• VÉRTICE: Dobra dada no trilho encosto antes e próximo à ponta 
da agulha, na interseção das linhas de bitola da agulha e do trilho 
de encosto, do lado da curva.
• CALÇO ESPAÇADOR: Peça fixada na parte interna da agulha ou 
interna do trilho de encosto e destinada a limitar a flexão das 
agulhas.
Superestrutura – AMV
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
93
185Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Agulha
Superestrutura – AMV
186Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Ponta da
Agulha
Superestrutura – AMV
Trilho 
De 
Encosto
Detalhe
Trilho
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
94
187Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Friso
Roda
Ponta da
Agulha
Superestrutura – AMV
188Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Superestrutura – AMV
Desgaste da
Ponta da
Agulha
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
95
189Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• AVANÇO DO ENCOSTO DA AGULHA : Parte do trilho de 
encosto compreendida entre a junta inicial da chave e a ponta de 
agulha.
• PLACA BITOLADORA : Placa de deslizamento inteiriça ou com 
ligação intermediária para isolamento, abrangendo os dois trilhos, 
localizada sob a ponta da agulha e do trilho de encosto, calibrando 
a bitola da via. Em agulhas longas poderá haver mais de uma.
– A placa bitoladora pode ser reta nas duas faces ou curva em 
uma das faces. Caso seja curva, a parte convexa deverá estar 
voltada para o lado de dentro do AMV.
Superestrutura – AMV
190Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• ESCORA DO ENCOSTO: Peça geralmente em forma de 
cantoneira (mão francesa) para sustentação do encosto, separada 
ou fazendo parte integrante da placa de deslizamento, fixada na 
parte externa da placa.
• BARRAS DE CONJUGAÇÃO FIXAS: Peças usadas para ligar e 
conjugar as agulhas, tornando-as solidárias. Podem ser isoladas 
ou não. As barras de conjugação fixas não permitem regulagem 
da distância entre agulhas tornando mais difícil a manutenção da 
pressão de vedação das agulhas na medida do surgimento de 
desgastes e folgas.
• BARRAS DE CONJUGAÇÃO AJUSTÁVEL: Peças que ligam e 
conjugam as agulhas, permitindo a regulagem do espaçamento 
entre agulhas.
•
Superestrutura – AMV
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
96
191Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• TIRANTE: Barra ou varão que liga a barra de conjugação e as 
pontas das agulhas com o aparelho de manobra. Pode possuir 
(ou não) dispositivo ajustável para variar seu comprimento e 
facilitar regulagens.
• PUNHOS: Braçadeiras ou placas aparafusadas, fixos ou 
reajustáveis, que ligam as agulhas às barras de conjugação.
• CONTRA-PESO: Peso, regulável ou não, colocado na alavanca 
do aparelho de manobra, destinado a manter as agulhas 
rigidamente pressionadas contra o trilho de encosto.
• TALÃO OU COICE: Parte onde vai ser articulada a agulha, na 
parte oposta à agulha que encontra o contratrilho
Superestrutura – AMV
192Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Placa Bitoladora
Superestrutura – AMV
Barras de Conjugação
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
97
193Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Talão ou
Coice
Superestrutura – AMV
194Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• CHAVE: Parte inicial móvel do AMV constituída de agulhas com 
seus respectivos trilhos de encosto, placas de deslizamento, 
calços, escoras, parafusos, barras de ligação, dormentes 
especiais, fixações e demais acessórios destinados a encaminhar 
veículos ferroviários de uma para outra via.
• APARELHO DE MANOBRA: Aparelho de vários tipos, para 
comando da chave, destinado a colocar as agulhas em posição 
que permita a mudança para a via desejada.
• INDICADOR DE VIA: Dispositivo de Sinalização ligado ao 
aparelho de manobra, com sinalização luminosa ou não, para 
indicar a direção da via franqueada à passagem de veículos.
• TRINCO: Dispositivo de segurança contra a inversão acidental da 
alavanca do aparelho de manobra.
Superestrutura – AMV
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
98
195Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Aparelho 
De
manobra
Superestrutura – AMV
Maromba + 
Contrapeso 
com alça
Tirante
196Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
• Chave do AMV
– Manual
– Acionamento Életrico
– Mola
Superestrutura – AMV
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
99
197Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Chave não feita! Descarrilamento
Chave feita OK!!!
Chave Manual
Superestrutura – AMV
198Curso de Engenharia Civil - Estradas de Ferro – Departamento de Produção - Prof. Dr. Rodrigo de Alvarenga Rosa
Chave do
AMV 
Manual
Superestrutura – AMV
Porf. Rodrigo de Alvarenga Rosa 12/04/2011
100
199Curso de Engenharia Civil - Estradas

Continue navegando