Buscar

1680871519129_eletrotecnica modulo 4

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 35 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 35 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 35 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

01000 – DPR/PD – 216b 
 
Diretoria Adjunta de Gestão de Pessoas 
 
 
 
 
 
ELETROTÉCNICA – MÓDULO IV 
Circuito trifásico 
 
 
 
 
 
 
 
 
Gerência de Provimento e Desenvolvimento de Pessoas 
Sete Lagoas – junho/2020 
01000 – DPR/PD – 216B 
 
Diretoria Adjunta de Gestão de Pessoas 
 
 
 
 
 
ELETROTÉCNICA – MÓDULO IV 
Circuito trifásico 
 
 
 
 
 
 
 
 
 
Gerência de Provimento e Desenvolvimento de Pessoas 
Sete Lagoas – junho/2020 
SUMÁRIO 
 
1 SISTEMAS TRIFÁSICOS ...................................................................................... 4 
1.1 Características do sistema trifásico ....................................................................... 4 
1.2 Geração de tensão trifásica ................................................................................... 4 
1.3 Tensão de fase e tensão de linha .......................................................................... 8 
1.4 Relação entre a tensão de linha e de fase .......................................................... 10 
1.5 Como instalar as cargas em uma rede trifásica ................................................... 10 
2 CIRCUITO ESTRELA .......................................................................................... 12 
2.1 Circuito estrela equilibrado .................................................................................. 12 
2.2 Circuito estrela desequilibrado ............................................................................. 14 
3 CIRCUITO TRIÂNGULO ..................................................................................... 20 
3.1 Circuito triângulo equilibrado ............................................................................... 20 
3.2 Circuito triângulo desequilibrado .......................................................................... 25 
4 POTÊNCIA EM CIRCUITOS ESTRELA ............................................................. 29 
4.1 Potência monofásica (1ø) num circuito estrela .................................................... 29 
4.2 Potência trifásica (3ø) num circuito estrela equilibrado ....................................... 30 
4.3 Potência trifásica ( 3ø ) num circuito estrela desequilibrado ................................ 31 
4.4 Fator de Potência ................................................................................................ 31 
5 POTÊNCIA EM CIRCUITOS TRIÂNGULO ......................................................... 32 
5.1 Potência monofásica (1ø) num circuito triângulo ................................................. 32 
5.2 Potência trifásica (3ø) num circuito triângulo equilibrado .................................... 33 
5.3 Potência trifásica ( 3ø ) num circuito triângulo desequilibrado ............................. 34 
6 REFERÊNCIAS BIBLIOGRÁFICAS ................................................................... 35 
UniverCemig 
4 
1 SISTEMAS TRIFÁSICOS 
1.1 Características do sistema trifásico 
Um sistema trifásico (3Ø) é uma combinação de três sistemas monofásicos (1Ø). Num 
sistema (3Ø) equilibrado, a potência é fornecida por um gerador CA que produz três 
tensões iguais em módulo, mas defasadas entre si de 120º. 
Embora os circuitos monofásicos sejam amplamente usados em sistemas elétricos, a 
maior parte da geração e distribuição da corrente alternada é trifásica. 
 
 Vantagens da utilização de circuitos trifásicos: 
 Os motores, geradores e transformadores trifásicos têm menores dimensões, 
são mais leves e mais eficientes do que seus equivalentes monofásicos. 
 Para determinado peso e custo, uma linha de transmissão trifásica é capaz de 
transmitir mais potência do que uma linha monofásica. 
 Os circuitos trifásicos permitem maior flexibilidade na escolha das tensões e 
podem ser usados na alimentação de cargas trifásicas ou monofásicas. 
 
1.2 Geração de tensão trifásica 
O alternador trifásico possui estator rotor. O estator é formado por três conjuntos de 
enrolamentos (enrolamentos de fase) da armadura estão fisicamente distribuídos a 
cada 120º da periferia interna. É nesses conjuntos de enrolamentos, também 
chamados induzidos, que as três tensões senoidais são geradas. 
No rotor do gerador está o enrolamento de campo denominado por indutor, que 
alimentado por uma fonte de corrente contínua produz um campo magnético. Como o 
rotor é girante, seu campo magnético corta os enrolamentos da armadura, induzindo 
neles as tensões senoidais. Essas tensões têm um valor de pico separado de um terço 
do período, ou separados de 120º, em virtude da disposição espacial de 120º dos 
enrolamentos da armadura. Como resultado, o alternador produz três tensões de 
mesmo valor eficaz (rms), e de mesma frequência (60Hz), mas defasadas de um 
ângulo de fase de 120º. 
 
UniverCemig 
5 
 
Os terminais dos enrolamentos de fase de mesmo índice numérico são terminais de 
mesma polaridade, A1, B1 e C1, assim como A2, B2 e C2. Os terminais A1 e A2 
pertencem ao grupo de enrolamentos da fase A, Os terminais B1 e B2 pertencem ao 
grupo de enrolamentos da fase B e Os terminais C1 e C2 pertencem ao grupo de 
enrolamentos da fase C. 
Para melhor visualizar o defasamento físico das bobinas, na figura 3 representamos 
seus enrolamentos concentrados, em três pontos equidistantes no estator. 
 
Fig. 3 
Em seguida, as três fases do gerador são interligadas para a operação trifásica. 
UniverCemig 
6 
Ligando-se os terminais de mesma polaridade dos três enrolamentos de fase entre si, 
obtém-se um condutor comum, chamado neutro (N), conforme se verifica na próxima 
figura. Diz-se que em tais condições o gerador está ligado em estrela (  ). 
Desta maneira é disponibilizado para o sistema elétrico três condutores de fases 
distintas, ØA, ØB e ØC. Deve existir uma linha conectada ao terminal do neutro, como 
mostrado, nos casos em que existem quatro linhas ou condutores. Se nenhuma linha é 
conectada ao neutro, o circuito é um circuito a três condutores. 
 
 
 
 
 
 
UniverCemig 
7 
As tensões de fase VA, VB e VC podem ser representadas através de um diagrama 
fasorial. Na figura 5, os três fasores estão defasados entre si de 120º, e as tensões 
estão representadas pelo seu valor eficaz (rms). 
 
 
 
 
 
 
 
Como o gerador está ligado em estrela, as tensões em cada fase correspondem às 
tensões entre fase e neutro deste sistema, e a origem da circunferência representa o 
ponto comum da ligação dos enrolamentos, sendo este ponto comum o neutro (N). 
Assim, obtemos as três tensões entre fase e neutro da rede, VAN, VBN e VCN. 
 
 
As tensões mostradas são determinadas em qualquer instante de tempo, pode-se 
observar que a soma das tensões é zero. Esse zero como resultado pode também ser 
verificado pela adição vetorial gráfica dos fasores correspondentes a tais tensões 
conforme mostrado na próxima figura. 
 Fig.5 
 
 
 
UniverCemig 
8 
Esses três fasores são somados conectando o início de VBN, a ponta de VAN e o início 
de VCN, a ponta de VBN. Sendo que a ponta de VCN toca o inicio de VAN, a soma é zero. 
E, como a soma dos fasores de tensão é zero, a soma dos valores instantâneos de 
tensão correspondentes é zero para qualquer instante. 
De uma forma geral, três senóides têm uma soma zero se elas têm a mesma 
frequência, mesmo valor de pico e são defasadas de 120º. Em particular, isto é 
verdadeiro para correntes. 
 
1.3 Tensão de fase e tensão de linha 
Num sistema elétrico alimentado por uma rede trifásica a quatro fios, temos três 
condutores de fase que são, fase A, B e C, e um condutor de neutro (N). 
N 
Ø A 
Ø B 
Ø C 
No sistema elétrico a tensão de fase (VF) ou tensão simples (v) é a tensão medida 
entre cada fase e o neutro, que para rede trifásica são três, VAN, VBN e VCN. 
A tensão de linha (VL) ou tensão composta (V) é a tensão medida entre duas fases 
distintas, que para rede trifásica são três, VAB, VBC e VCA.UniverCemig 
9 
Como a tensão de linha é a diferença de potencial entre duas fases que se encontram 
defasadas entre si de 120º, estas tensões correspondem a diferença vetorial entre 
duas tensões de fase, assim: 
VAB = VAN + (- VBN) 
VBC = VBN + (- VCN) 
VCA = VCN + (- VAN) 
O fasor resultante da diferença vetorial entre duas tensões de fase, é um fasor que une 
as extremidades de dois fasores de fases distintas, como se verifica na figura 1. 
 
No diagrama fasorial abaixo estão representadas as tensões de linha com a origem de 
cada fasor deslocado para a origem da circunferência. Desta forma se verifica que as 
tensões de linha se encontram defasadas entre si de 120º, e que o defasamento 
existente entre a tensão de linha e de fase é de 30º, com a tensão de linha adiantada 
em relação à de fase. 
 
UniverCemig 
10 
 
1.4 Relação entre a tensão de linha e de fase 
A relação entre as tensões de linha (VL) e de fase (VF) num sistema trifásico simétrico, 
com as tensões deslocadas entre si de um ângulo de fase de 120º e de mesmo valor 
eficaz (rms), é igual a 3 , conforme mostrado a seguir. 
 
 
1.5 Como instalar as cargas em uma rede trifásica 
As cargas podem ser instaladas: 
 entre condutor de fase e condutor de neutro; 
 
 entre dois condutores de fase. 
 
 
A escolha da instalação depende da tensão nominal das cargas e das tensões da rede. 
 
 se a tensão nominal das cargas corresponde à tensão de fase da rede, as 
cargas serão instaladas entre condutores de fase e condutor neutro. 
 
 se a tensão nominal das cargas corresponde à tensão de linha da rede, as 
cargas serão instaladas entre condutores de fase. 
 
UniverCemig 
11 
 
 
 
É extremamente desejável operar sistemas de potência em estado de equilíbrio ou bem 
próximo do equilíbrio. As linhas de transmissão são também propriamente equilibradas. 
Por outro lado, os circuitos de distribuição são desequilibrados, resultantes da 
aplicação de cargas monofásicas separadas. 
A ligação estrela ou triângulo é obtida pela ligação de cargas trifásicas, ou pelo 
agrupamento de cargas monofásicas instaladas na rede trifásica. 
 
 
UniverCemig 
12 
2 CIRCUITO ESTRELA 
2.1 Circuito estrela equilibrado 
Na figura abaixo, está representado um circuito que tem uma carga trifásica equilibrada 
ligada em estrela, ou um grupo de cargas monofásicas equilibradas distribuídas 
igualmente entre as fases da rede trifásica formando uma ligação estrela. 
Essas cargas são alimentadas por uma fonte com os enrolamentos conectados em 
estrela. Essa fonte pode ser um gerador, ou o secundário de um transformador 
trifásico. 
A linha de neutro conecta os dois nós neutros. 
 
 Para que um circuito seja estrela equilibrada, ele terá que atender às 
condições de equilíbrio, que são: 
 
 Impedâncias idênticas nas fases 
 Mesmo Ângulo de defasagem entre tensão e corrente nas fases 
 Cargas de natureza iguais nas fases 
A corrente que atravessa cada linha ( IL ) de alimentação de um circuito alimentando 
cargas ligadas em estrela é a mesma que percorre a carga ligada a cada uma das 
fases. A corrente de carga é também denominada por corrente de fase ( IF ), sendo 
assim: 
ILA = IF1 ; ILB = IF2 ; ILC = IF3. 
 
UniverCemig 
13 
 
 Consequências do equilíbrio: 
 As correntes de linha ou correntes de fase são iguais: 
 
IF1 = IF2 = IF3 ou ILA = ILB = ILC 
 Não existe corrente circulando no neutro, pois a soma vetorial das correntes de fase 
é zero: 
 
 Determinação das correntes de fase: 
A correntes de fase podem ser encontradas a partir de: 
 
Como o circuito é equilibrado, as correntes de fase IF1, IF2 e IF3 possuem o mesmo 
módulo, mas defasadas entre si de 120º, conforme determinado pela sequência de 
fase. 
Como já foi verificado, não existe corrente na linha de neutro para um circuito estrela 
equilibrado. A não existência da corrente de neutro é devido às correntes de fase 
possuírem o mesmo módulo e uma diferença de fase de 120º, portanto a soma vetorial 
destas correntes é igual a zero. 
Como exemplo para representação fasorial das correntes de fase, na figura 1, foram 
consideradas as cargas sendo puramente resistivas, e assim, o ângulo (  ) de 
defasagem entre corrente e tensão em cada fase é igual a zero. 
Representação Fasorial das correntes de fase 
 
 
 
; ; 
IN = IF1 + IF2 + IF3 = 0 
UniverCemig 
14 
3
V
V
V
V
V
V
CO
CA
BO
BC
AO
AB 
 
 
 Rompimento do condutor neutro 
Pelo fato de o condutor do neutro não conduzir corrente, ele pode ser eliminado para 
transformar o circuito de quatro condutores em um circuito de três condutores. 
O neutro obtido no ponto comum da ligação estrela é também denominado de neutro 
artificial ou flutuante, sendo representado pela letra O para diferenciá-lo do neutro da 
rede. 
A mais importante consequência da corrente zero no neutro é que os dois nos neutros 
estão no mesmo potencial, mesmo na ausência do condutor neutro da rede. 
VN = VO e VON = 0. 
As tensões aplicadas às cargas após o rompimento do neutro da rede serão VAO, VBO e 
VCO, sendo que estas tensões são iguais em módulo e com o mesmo ângulo de fase 
das tensões VAN, VBN e VCN, assim: 
VAO = VAN ; VBO = VBN ; VCO = VCN 
Na prática, entretanto, é conveniente a presença de um condutor de neutro para 
assegurar o equilíbrio das tensões nas fases no caso de as impedâncias de carga não 
serem exatamente iguais. Em um circuito estrela equilibrado mesmo com o neutro da 
rede rompido, o ângulo de defasagem entre os fasores representativos das tensões de 
linha e de fase permanecem em 30º figura 1, e desta forma a relação entre tensão de 
linha e de fase permanece igual a 3 como: 
 
 
 
 
2.2 Circuito estrela desequilibrado 
Para que um circuito seja estrela desequilibrado, ele terá que atender a uma das 
condições para desequilíbrio ou todas ao mesmo instante que são: 
 
 Impedâncias diferentes nas fases 
 Ângulo de defasagem entre tensão e corrente diferentes nas fases 
 Cargas de natureza diferentes nas fases 
UniverCemig 
15 
 
 
 
 
 Consequências do desequilíbrio: 
 As correntes de linha ou de fase podem ser diferentes em módulo, e os ângulos de 
defasagem entre as correntes podem ser diferentes de 120º, dependendo da 
natureza das cargas e do ângulo de defasagem entre tensão e corrente em cada 
uma das fases. 
 Existe corrente circulando no neutro por ser esta corrente a soma vetorial de IF1, IF2 
e IF3, como se verifica na figura 1. Pelo fato do condutor de neutro conduzir corrente, 
ele não pode ser eliminado. 
 
IN = IF1 + IF2 + IF3  0 
 
 Determinação das correntes de fase: 
As correntes de fase podem ser encontradas a partir de: 
 
Na próxima figura, foi representado um circuito estrela com desequilíbrio entre as três 
fases, sendo que a impedância nas três fases é de natureza resistiva, e o ângulo (φ) de 
defasagem entre tensão e corrente em cada fase é de 0º. 
Sendo a tensão de fase igual a 127V e as impedâncias das cargas, Z1 = 100Ω, Z2 = 50 
Ω e Z3 = 25 Ω, os módulos das correntes de fase ou linha serão iguais a: 
 
 
 
 
Como o circuito é desequilibrado, a soma vetorial das correntes das fases é diferente 
de zero: IF1 + IF2 + IF3 ≠ 0 , no caso do exemplo acima citado: 
 
 
Desta forma, verifica-se que existe corrente circulando no neutro por ser esta corrente 
a soma vetorial de I F1 , I F2 e I F3. 
 
 
 
; ; 
IN = IF1 + IF2 + IF3 = 3,36 A 
UniverCemig 
16 
 
 
Representação Fasorial das correntes de fase e corrente do neutro 
 
 
 
 
UniverCemig 
17 
 
 Rompimento do condutor neutro 
 
Pelo fato de o condutor de neutro conduzir corrente, ele não pode ser eliminado. 
A mais importante consequência da circulação de corrente no neutro é que, caso o 
neutro da rede venha a ser suprimido, os dois nós neutros não estarão no mesmo 
potencial. 
 
Na próxima figura, verifica-se que oneutro (N) da rede está representado na origem da 
circunferência, e que o neutro artificial (O) está deslocado em relação a esta origem, e 
desta forma, existe uma diferença de potencial entre o neutro da rede e o artificial 
denominado por VON, que, para os valores representados na figura , tem valor de: 
 
VON = 48 V 
 
O deslocamento do neutro artificial em relação ao neutro da rede é provocado pela 
condição de que a soma vetorial das correntes de fase tem que ser, 
obrigatoriamente, igual a zero (IF1 + IF2 + IF3 = 0), uma vez que não existe o condutor 
de neutro para que ocorra o retorno da corrente de desequilíbrio. 
UniverCemig 
18 
Desta forma, como não existe a possibilidade de variação das impedâncias das cargas, 
ocorrerá o deslocamento do neutro artificial em relação ao neutro da rede, o que irá 
provocar sobretensão na fase de menor carga e subtensão na fase mais carregada. 
Em consequência da variação das tensões nas cargas, os módulos e os ângulos das 
correntes de fase irão variar para que seja atendida a condição imposta, IF1 + IF2 + IF3 = 
0. Apesar das variações das tensões de fase (VAO , VBO e VCO), o módulo e o ângulo 
das tensões de linha (VAB ,VBC e VCA ) permanecem inalterados. 
Com o neutro da rede rompido, o ângulo de defasagem entre os fasores 
representativos das tensões de linha e de fase (VAO , VBO e VCO) são diferentes de 30º 
e, desta forma, a relação entre tensão de linha e de fase é diferente de 3 , como por 
exemplo: 
 
AO
AB
V
V
 ou 
BO
BC
V
V
 ou 
CO
CA
V
V
 3 
 
 
Os valores das sobretensões e subtensões nas fases após o rompimento do neutro, 
para os valores de impedância de carga e corrente de neutro representado na figura 1, 
serão iguais: 
VAO = 166,21 V ; VBO = 144 V ; VCO = 83,1 V 
UniverCemig 
19 
 
 
 
 
As correntes nas fases após o rompimento do condutor neutro terão os seguintes 
valores: 
 
 
 
 
 
 
 
 
 
 
 
 
UniverCemig 
20 
3 CIRCUITO TRIÂNGULO 
3.1 Circuito triângulo equilibrado 
Na figura, está representado um circuito que tem uma carga trifásica equilibrada ligada 
em triângulo, ou um grupo de cargas monofásicas distribuídas igualmente entre as 
fases da rede trifásica formando uma ligação triângulo equilibrado. 
Estas cargas são alimentadas por uma fonte com os enrolamentos conectados em 
estrela(Y). Esta fonte pode ser um gerador, ou o secundário de um transformador 
trifásico conectado em Y. Não existe, é claro , um condutor de neutro, porque uma 
carga Δ tem apenas três terminais de fase. 
 
 Para que um circuito seja triângulo equilibrado ele terá que atender às 
condições de equilíbrio, que são: 
 
 Impedâncias idênticas nas fases 
 Mesmo Ângulo de defasagem entre tensão e corrente nas fases 
 Cargas de natureza iguais nas fases 
A corrente de cada linha ( IL ) de alimentação de um circuito que esteja alimentando 
cargas ligadas em triângulo é diferente da corrente que percorre a carga. A corrente de 
carga é também denominada por corrente de fase ( IF ), sendo assim têm-se três 
correntes de fase e três correntes de linha que são: 
 
 Correntes de fase: IF1 , IF2 e IF3 
 Correntes de linha: ILA , ILB e ILC 
UniverCemig 
21 
 Consequências do equilíbrio: 
 
 As correntes de linha são iguais: ILA = ILB = ILC 
 As correntes de fase são iguais: IF1 = IF2 = IF3 
Determinação das correntes de fase: 
A correntes de fase podem ser encontradas a partir de: 
 
 
Como o circuito é equilibrado as correntes de fase IF1, IF2 e IF3 possuem o mesmo 
módulo, mas defasadas entre si de 120º, então para encontrar as correntes de fase, 
basta encontrar a corrente em uma das fases e usá-la com a sequência de fase para 
encontrar as outras duas. 
Como exemplo para representação fasorial das correntes de fase, na figura 2, foram 
consideradas as cargas sendo, puramente, resistivas, e assim o ângulo (  ) de 
defasagem entre corrente e tensão em cada fase é igual a zero. Verificamos, então, 
que IF1 está em fase VAB, IF2 com VBC e IF3 com VCA. 
Representação Fasorial das correntes de fase 
 
 
 
 
 ; ; 
UniverCemig 
22 
 
 
 
Sendo a tensão de fase igual a 220V, e as impedâncias das cargas, Z1 = 100 Ω, Z2 = 
100 Ω e Z3 = 100 Ω, os módulos das correntes de fase serão iguais a: 
 
 
 
 
 
 Determinação das correntes de linha: 
A corrente em cada uma das linhas de alimentação é a composição vetorial de duas 
correntes de fase em sentido contrário, o que se verifica na figura 3, e como as 
correntes de fase são equilibradas, as correntes de linha também serão. As correntes 
de linha são determinadas vetorialmente pela expressão: 
 
 
 
 
 
 
ILA = IF1 + (- IF3) ; ILB = IF2 + (- IF1) ; ILC = IF3 + (- IF2) 
UniverCemig 
23 
Para análise vetorial das correntes de linha, foi considerado o circuito resistivo e as 
correntes de fase com valores já mencionados anteriormente, IF1 = 2,2 A, IF2 = 2,2 A 
e IF3= 2,2 A. 
Em relação aos valores das correntes de fase descritos, as correntes de linha terão 
seus módulos iguais a: 
 
 
 
 
Conforme se verifica no diagrama fasorial, o ângulo de defasagem entre a corrente de 
cada uma das linhas e a respectiva corrente de fase para o circuito triângulo 
equilibrado é igual a 30º, e a corrente de fase está adiantada da de linha desde que 
seja acompanhada a sequência de fase positiva A,B e C. Este ângulo de defasagem de 
30º entre as correntes independe do módulo e do ângulo da impedância de carga. As 
correntes de linha ILA , ILB e ILC estão defasadas entre si em 120º e com a mesma 
sequência de fase das correntes de fase. 
 
 
 
ILA = IF1 + (- IF3)  ILA = 3,81 A ; ILB = IF2 + (- IF1)  ILB = 3,81 A 
ILC = IF3 + (- IF2)  ILC = 3,81 A 
 
 
 
 
UniverCemig 
24 
 
 Relação entre corrente de linha e de carga 
Em função do defasamento de 30º entre a corrente de linha IL e de carga IF para um 
circuito Δ equilibrado, o módulo da corrente de linha é 3 vezes o módulo da 
corrente de fase : 
 
 
 
Para valores de corrente de fase exemplificados anteriormente, a corrente de linha é 
igual a : 
 
 
 
Vetorialmente, podemos verificar a relação 3 entre a corrente de linha e a de fase. 
 
 
3.II3
I
I
FL
F
L  
A81,3I3.A2,2I LL  
UniverCemig 
25 
3.2 Circuito triângulo desequilibrado 
Na figura, está representado um circuito que tem uma carga trifásica desequilibrada 
ligada em triângulo, ou um grupo de cargas monofásicas distribuídas entre as fases da 
rede trifásica formando uma ligação triângulo desequilibrado. 
Estas cargas são alimentadas por uma fonte com os enrolamentos conectados em 
estrela(Y). Esta fonte pode ser um gerador, ou o secundário de um transformador 
trifásico conectado em Y. Não existe, é claro, um condutor de neutro, porque uma 
carga ligada em triângulo tem apenas três terminais de fase. 
 
 
 Para que um circuito seja triângulo desequilibrado, basta atender a uma das 
condições de desequilíbrio, que são: 
 Impedâncias diferentes nas fases 
 Ângulo de defasagem entre tensão e corrente diferentes nas fases 
 Cargas de natureza diferentes nas fases 
 
 Consequências do desequilíbrio: 
 
 As correntes de linha são diferentes: 
 As correntes de fase são diferentes: 
As correntes de fase podem ser diferentes em módulo, e os ângulos de defasagem 
entre as correntes podem se diferenciar de 120º, dependendo da natureza das cargas 
e do ângulo de defasagem entre tensão e corrente em cada uma das fases. O mesmo 
acontece com as correntes de linha, por serem a composição de correntes de fase 
desequilibradas. 
UniverCemig 
26 
 
 
 
 
 Determinação das correntes de fase: 
Como o circuito é desequilibrado, as correntes de fase terão que ser calculadas 
individualmente e podem ser encontradas a partir de: 
 
Como exemplopara representação fasorial das correntes de fase, na figura, foram 
consideradas as cargas sendo puramente resistivas, e com os valores das impedâncias 
diferentes nas três fases. Assim, as correntes possuem módulos diferentes, mas o 
ângulo () de defasagem entre corrente e tensão em cada fase é igual a zero. 
Verificamos então que IF1 está em fase VAB, IF2 com VBC e IF3 com VCA. 
Representação Fasorial das correntes de fase 
 
Representamos a seguir um circuito triângulo alimentado por uma fonte trifásica de 
220V / 127V - 60Hz, sendo que as cargas são de natureza resistiva, mas com valores 
de impedâncias diferentes nas fases. As impedâncias das fases são: 
Z1 = 100Ω ; Z2 = 50 Ω ; Z3 = 150 Ω 
As correntes de fase serão iguais a: 
 
 
 
 
 
 
 
 
; ; 
UniverCemig 
27 
 Determinação das correntes de linha: 
A corrente em cada uma das linhas de alimentação é a composição vetorial de duas 
correntes de fase em sentidos contrários, como as correntes de fase são 
desequilibradas, as correntes de linha também serão. As correntes de linha são 
determinadas, vetorialmente, pela expressão: 
 
 
Para análise vetorial das correntes de linha foi considerado o circuito resistivo e as 
correntes de fase com valores já mencionados anteriormente, IF1 = 2,2 A, IF2 = 4,4 A e 
IF3 = 1,47 A. 
Em relação aos valores das correntes de fase descritos, as correntes de linha terão 
seus módulos iguais a: 
 
 
 
 
 
 
 
ILA = IF1 + (- IF3) ; ILB = IF2 + (- IF1) ; ILC = IF3 + (- IF2) 
ILA = IF1 + (- IF3)  ILA = 3,2 A ; ILB = IF2 + (- IF1)  ILB = 5,82 A 
ILC = IF3 + (- IF2)  ILC = 2,93 A 
UniverCemig 
28 
No diagrama fasorial na figura abaixo, estão representadas as correntes de linha 
determinadas através da composição vetorial das correntes de fase, verifica-se pelo 
diagrama fasorial que o ângulo de defasagem entre a corrente de cada uma das linhas 
e a respectiva corrente de fase para o circuito triângulo desequilibrado é diferente de 
30º. 
 
 
 Relação entre corrente de linha e de carga 
 
Em função do defasamento entre a corrente de linha IL e de carga If ser diferente de 
30º para um circuito triângulo desequilibrado, o módulo da corrente de linha é diferente 
de 3 vezes o módulo da corrente de fase: 
 
 
 
 
 IL ≠ 3 . If 
UniverCemig 
29 
4 POTÊNCIA EM CIRCUITOS ESTRELA 
Num circuito estrela equilibrado ou desequilibrado, a tensão na carga é a tensão de 
fase (VF) da rede, e a corrente na carga (IF) é igual a corrente na linha (IL). 
 
O procedimento para cálculo da potência em um circuito estrela será visto a seguir. 
4.1 Potência monofásica (1ø) num circuito estrela 
As expressões abaixo são usadas tanto para o circuito estrela equilibrado, quanto para 
o desequilibrado, no momento do cálculo das potências por fase. 
 
 Potência aparente monofásica: 
S1Ø = VF . IL (VA) 
 
 Potência ativa monofásica: 
P1Ø = VF . IL . cos  (W) 
 
 Potência reativa monofásica: 
Q1Ø = VF . IL . sen  (var) 
UniverCemig 
30 
4.2 Potência trifásica (3ø) num circuito estrela equilibrado 
As expressões para cálculo das potências trifásicas em circuito estrela equilibrado não 
podem ser utilizadas para o circuito estrela desequilibrado. 
 
 Potência aparente trifásica: 
S3Ø = VF . IL . 3 (VA) 
 
Como 
3
V
V LF  , teremos 
 
 
 
 
 
 
 
 
 
 
 
 Potência ativa trifásica: 
P3Ø = S1Ø . cos  . 3  P3Ø = VF . IL . 3 . cos  (W) ou , 
P3Ø = S3Ø . cos   
 
 Potência reativa trifásica: 
Q3Ø = S1Ø . sen  . 3  Q3Ø = VF . IL . 3 . sen  (var) ou , 
Q3Ø = S3Ø. sen   
 
 
 
 
)W(cos.3.I.VP LL3Ø 
 
(var)sen.3.I.VQ LL3Ø 
 
UniverCemig 
31 
4.3 Potência trifásica ( 3ø ) num circuito estrela desequilibrado 
Num circuito estrela equilibrado ou desequilibrado, as potências ativa de cada fase 
podem ser somadas, algebricamente, para se determinar a potência ativa trifásica 
(P3Ø), o mesmo acontece com as potências reativas por fase que podem ser somadas 
para se determinar a potência reativa trifásica (Q3Ø). Porém a potência aparente 
trifásica (S3Ø) para um circuito estrela desequilibrado só pode ser determinada através 
do teorema de Pitágoras. 
 
 Potência ativa trifásica : 
P3Ø = PØA + PØB + PØC (W) 
 
 Potência reativa trifásica : 
Q3Ø = QØA + QØB + QØC (var) 
 
 Potência aparente trifásica : 
S3Ø = 
2
3Ø
2
 3Ø Q P  
 
4.4 Fator de Potência 
 
 Fator de potência monofásico: 
FP1Ø = 
1Ø
1Ø
S
P
 
 
 Fator de potência trifásico: 
FP3Ø = 
3Ø
3Ø
S
P
 
 
 
UniverCemig 
32 
5 POTÊNCIA EM CIRCUITOS TRIÂNGULO 
Em um circuito triângulo equilibrado ou desequilibrado, a tensão na carga (VF) 
corresponde a tensão de linha (VL) da rede. 
Num circuito triângulo equilibrado, a corrente na linha de alimentação (IL) é √3 vezes 
maior que a corrente na carga (IF). Porém, para os circuitos triângulo desequilibrado a 
relação entre a corrente de linha (IL) e a de fase (IF) é diferente de √3. 
 
Para se calcular a potência em um circuito triângulo deve proceder da seguinte forma: 
5.1 Potência monofásica (1ø) num circuito triângulo 
As expressões para cálculo das potências por fase, podem ser utilizadas tanto para o 
circuito triângulo equilibrado quanto para o desequilibrado. Devemos, porém, observar 
que a corrente na carga é chamada de corrente de fase (IF), e que a tensão na carga 
corresponde à tensão de linha (VL) da rede. 
 
 Potência aparente monofásica: 
S1Ø = VL . IF (VA) 
 
 Potência ativa monofásica: 
P1Ø = VL . IF . cos  (W) 
 
 Potência reativa monofásica: 
Q1Ø = VL . IF . sen  (var) 
UniverCemig 
33 
5.2 Potência trifásica (3ø) num circuito triângulo equilibrado 
As expressões para cálculo das potências trifásicas em um circuito triângulo equilibrado 
não podem ser utilizadas para o circuito triângulo desequilibrado. 
 
 Potência aparente trifásica: 
S3Ø = VL . IF . 3 (VA) 
Como 
3
I
I LF  , teremos: 
 
 
 
 
 
 Potência ativa trifásica: 
P3Ø = S1Ø . cos  . 3  P3Ø = VL . IF . 3 . cos  (W) ou , 
 
P3Ø = S3Ø. cos   
 
 Potência reativa trifásica: 
Q3Ø = S1Ø . sen  . 3  Q3Ø = VL . IF . 3 . sen  (var) ou , 
 
Q3Ø = S3Ø. sen   
 
 
 
(var)sen.3.I.VQ LL3Ø 
 
)W(cos.3.I.VP LL3Ø 
 
UniverCemig 
34 
5.3 Potência trifásica ( 3ø ) num circuito triângulo desequilibrado 
Num circuito triângulo equilibrado ou desequilibrado, as potências ativas de cada fase 
podem ser somadas, algebricamente, para se determinar a potência ativa trifásica 
(P3Ø), o mesmo acontece com as potências reativas por fase que podem ser somadas 
para se determinar a potência reativa trifásica (Q3Ø). Porém a potência aparente 
trifásica (S3Ø) para um circuito triângulo desequilibrado só pode ser determinada 
através do teorema de Pitágoras. 
 
 Potência ativa trifásica: 
P3Ø = PØA + PØB + PØC (W) 
 
 Potência reativa trifásica: 
Q3Ø = QØA + QØB + QØC (var) 
 
 Potência aparente trifásica: 
S3Ø = 
2
3Ø
2
 3Ø Q P  
 
Cálculo do fator de potência 
 
 Fator de potência monofásico: 
FP1Ø = 
1Ø
1Ø
S
P
 
 
 Fator de potência trifásico: 
FP3Ø = 
3Ø
3Ø
S
P
 
 
UniverCemig 
35 
6 REFERÊNCIAS BIBLIOGRÁFICAS 
CEMIG. Apostila de eletrotécnica I e II. Sete Lagoas: EFAP, 2000. 
GUSSOW, Milton. Eletricidade básica. São Paulo: Editora McGraw-Hill do Brasil Ltda, 
1985. 
HALLIDAY, David; RESNICK, Robert. Física. Rio de Janeiro: Livros Técnicos e 
Científicos Editora Globo, 1992. 
KERCHNER, Russel M; CORCORAN, George F. Circuitos de corrente alternada. Rio 
deJaneiro: Editora Globo, 1973. 
MARTIGNONI, Alfonso. Eletrotécnica. Rio de Janeiro: Editora Globo, 1969. 
O’MALLEY, John. Análise de circuitos. 2.ed. São Paulo: Editora José Martins Braga, 
1983. 
SAY, M. G. Manual do engenheiro eletricista. São Paulo: Hemus editora Ltda, s/a. 
SENGBERG, Gerhard. Eletricidade e eletromagnetismo t.III. São Paulo: Editora São 
Paulo, 1963. 
VALKENBURGH, Nooger van; NEVILLE, Inc Eletricidade básica. Rio de Janeiro: 
Livraria Freitas Bastos S.A., 1960.

Continue navegando