Buscar

Parte_4_Int_aos_Processos_Quimicos

Prévia do material em texto

1
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
Professor:Professor: Francisco MouraFrancisco Moura
Bibliografia:Bibliografia: HimmelblauHimmelblau, David M. e , David M. e RiggsRiggs, James B.; Engenharia , James B.; Engenharia 
QuQuíímica mica -- PrincPrincíípios e Cpios e Cáálculos, 7lculos, 7aa ed., Editora LTC, 2006.ed., Editora LTC, 2006.
IntroduIntroduçção aos Processos Quão aos Processos Quíímicosmicos
2
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
���� Conceitos e Definições
���� Sistema: É qualquer porção identificável de matéria que pode ser 
isolada por limites bem definidos que possibilite o seu 
estudo.
���� Estado de um sistema: É a condição em que se encontra o 
sistema em um determinado instante (P, T, etc.).
���� Variáveis de estado: 
Extensivas: São propriedades aditivas, i.é, dependem 
da quantidade de matéria (massa, no de moles, etc.). 
Intensivas: São propriedades que independem da 
quantidade de matéria (T, P, viscosidade, etc.).
���� Sistema fechado: Troca energia (calor e trabalho) com o meio. A 
massa permanece constante.
���� Sistema aberto: Troca massa e energia com o meio. 
���� Meio ou vizinhanças: É tudo aquilo que está fora do sistema 
considerado.
4. Balan4. Balançço de Energiao de Energia
3
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
4. Balan4. Balançço de Energiao de Energia
���� Tipos de fronteiras
���� Rígida: volume constante .
���� Diatérmica:permeável à passagem de calor, se houver diferença 
de temperatura entre o sistema e as vizinhanças.
���� Adiabática: impermeável à passagem de calor, mesmo que haja 
diferença de temperatura entre o sistema e as 
vizinhanças.
���� Trabalho: é uma forma de transferência de energia. Há trabalho 
quando um corpo é deslocado contra uma força que se 
opõe ao deslocamento. Tal como, a expansão de um gás 
que empurra um pistão e provoca a elevação de um peso.
���� Calor: é uma forma de transferência de energia. Quando a 
energia de um sistema se altera como resultado de uma 
diferença de temperatura, se diz que a energia foi 
transferida na forma de calor..
���� Energia: é a capacidade de realizar trabalho.
4
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
nc
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
���� Primeira lei da Termodinâmica
“A energia é sempre conservada”
4. Balan4. Balançço de Energiao de Energia
wqdU δ+δ=
wqUUU +=∆=− 12
Quando a passagem do estado 1 para 2 ocorre através de uma 
mudança infinitesimal: 
���� Processos termodinâmicos
���� Volume constante: VV qUouqdU0W =∆δ=⇒=
���� Pressão constante: Vp)VV(pdVpW ex12ex
V
V
ex
2
1
∆⋅−=−⋅−=−= ∫
Da Primeira lei: 
PqHVPUH =∆∴⋅+=
)VV(PqUU 12P12 −−=− ou
Definição de Entalpia:
P1122 q)VPU()VPU( =⋅+−⋅+
5
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
4. Balan4. Balançço de Energiao de Energia
���� Capacidade calorífica
Quanto menor for a alteração de temperatura num corpo, causada 
pela transferência de calor, maior será sua capacidade calorífica. 
Assim, podemos definir capacidade calorífica como:
dT
qC δ=
���� Capacidade calorífica a volume constante: 
O coeficiente angular da tangente a curva 
em cada T é igual a:
AVBV
V
V )C()C(eT
UC >





∂
∂
=
Capacidade calorífica molar 
a volume constante: 



⋅
=










==
Kmol
kJ
mol
K
kJ
n
CC Vm,V
6
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
4. Balan4. Balançço de Energiao de Energia
���� Capacidade calorífica a pressão constante: 
O coeficiente angular da tangente a curva 
em cada T é igual a:
APBP
P
p )C()C(eT
HC >





∂
∂
=
Capacidade calorífica molar 
a pressão constante:




⋅
=












==
Kmol
kJ
mol
K
kJ
n
CC Vm,P
���� Capacidade calorífica específica ou calor específico: 






⋅
=












=
Kg
kJ
g
K
kJ
m
CV
Kg
J4
⋅
Ex.: (água na temperatura ambiente)
7
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
rg
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
4. Balan4. Balançço de Energiao de Energia
Obs.: A capacidade calorífica é tabelada na forma de equações 
empíricas. Por exemplo:
22
P TDTCTBAC −⋅+⋅+⋅+=
���� Calores latentes de substâncias puras
Quando uma substância sofre uma transformação de fase 
(sólido↔Líquido, sólido ↔ gás, líquido ↔ gás ou transformação no 
estado sólido, α ↔ β) não ocorre variação na temperatura, contudo, 
o processo requer uma quantidade finita de energia (calor latente). 
Obs.: O calor latente é determinado calorimetricamente e tabelado.
8
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
4. Balan4. Balançço de Energiao de Energia
���� Calorimetria Uma amostra de massa conhecida é
colocada no cadinho e a bomba 
calorimétrica é preenchida com oxigênio, 
sob pressão, através da válvula. A bomba 
então é colocada em um vaso contendo 
água. Quando a chave elétrica é fechada 
a resistência se aquece, fornecendo a 
energia necessária para iniciar a reação 
de combustão. O calor gerado na 
combustão é absorvido pela água e 
componentes do calorímetro (constante do 
calorímetro). 
Através do aumento da temperatura da água após ignição, o calor de 
combustão da substância no cadinho pode ser calculado.
A constante do calorímetro (C) pode ser calculada eletricamente pela 
passagem de uma corrente elétrica I, de uma fonte de tensão V, durante um 
tempo t. tVIqeTCq ⋅⋅=∆⋅=
T
tVICtVITC
∆
⋅⋅
=∴⋅⋅=∆⋅
9
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
4. Balan4. Balançço de Energiao de Energia
���� Estado Padrão (estado de referência)
O estado padrão costuma ser escolhido como sendo a fase (estrutura 
atômica) mais estável da substância a pressão de 1 bar (100000 Pa) 
na temperatura de interesse. Com o intuito de tabelar as propriedades 
termodinâmicas usa-se a temperatura de 25oC (298K).
-110,5CO(g)
-241,8H2O(g)
-393,5CO2(g)
0H2(g)
-1676Al2O3(s)
0O2(g)
0Sn (branco)
0Al(s)
141,8O3(g)
-2,1Sn (cinza)
Substância
)HH(HHH oCO,fo OH,foCO,foH,for 222 ∆+∆−∆+∆=∆
Ex.: Reação de troca gás-água (water-gas shift reaction). 
CO(g) + H2O(g) → CO2(g) + H2(g)
)]5,110()8,241[()5,393(0Hor −+−−−+=∆
mol
kJo
r 2,41H −=∆
K298a
)(H molkJof∆
Ex.: Transformações de fases
o
)branco(Sn,f
o
)cinza(Sn,f
o
r HHH ∆−∆=∆
01,2Hor −−=∆
mol
kJo
r 1,2H −=∆
Sn(branco)→ Sn(cinza)
∑ ∑ ∆ν−∆ν=∆
odutosPr agentesRe
o
f
o
f
o
r HHH
10
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
4. Balan4. Balançço de Energiao de Energia
���� Variação da Entalpia de reação com a temperatura 
Ex.: Calcular a variação de entalpia da reação: M(l) + ½ O2(g) → MO(l)
na temperatura T.
Dados:
M(s) + ½ O2(g) → MO(s)......
M(s) →M(l)............................
MO(s) → MO(l)......................
Cp[M(s)], Cp[M(l)],Cp[MO(s)], 
Cp[MO(l)] e Cp(O2)
)MO(Hof∆
o
298H∆
)M(Hof∆
∫=∆−∆=∆
2
1
T
T
p12 dTC)P,T(H)P,T(HH
11
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
4. Balan4. Balançço de Energiao de Energia
∫∫
∫
∫
∫∫∫∫
∫∫∫∫
∫
∫∫∫∫
∫∫∫∫
−−+∆+−−+
+∆−−−+∆=∆
+
++∆+++−
−−−∆−−−∆=∆
=
++∆−+∆+++
+++∆+++∆−
T
)MO(T
2ppp
o
f
)MO(T
)M(T
2ppp
o
f
)M(T
298
2ppp
o
298
o
T
)M(T
298
p
)MO(T
)M(T
p
o
f
T
)MO(T
p
T
)MO(T
2p
T
)MO(T
p
)MO(T
)M(T
2p
)MO(T
)M(T
p
o
f
)M(T
298
2p
)M(T
298
p
o
298
o
T
298
)M(T
p
)M(T
)MO(T
p
o
f
)MO(T
T
p
o
T
T
)MO(T
2p
T
)MO(T
p
)MO(T
)M(T
2p
)MO(T
)M(T
p
o
f
)M(T
298
2p
)M(T
298
p
o
298
f
f
f
f
f
f
ffff
f
f
f
f
ff
f
f
f
f
ff
f
f
f
f
ff
dT)}O(C
2
1)]l(M[C)]l(MO[C{)MO(HdT)}O(C
2
1)]l(M[C)]s(MO[C{
)M(HdT)}O(C
2
1)]s(M[C)]s(MO[C{HH
dT)]s(MO[C
dT)]s(MO[C)MO(HdT)]l(MO[CdT)O(C
2
1dT)]l(M[C
dT)O(C
2
1dT)]l(M[C)M(HdT)O(C
2
1dT)]s(M[CHH
0dT)]s(MO[C
dT)]s(MO[C)MO(HdT)]l(MO[CHdT)O(C
2
1dT)]l(M[C
dT)O(C
2
1dT)]l(M[C)M(HdT)O(C
2
1dT)]s(M[CH
12
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
4. Balan4. Balançço de Energiao de Energia
1) O chumbo é usado em um grande número de indústrias. Para prevenir o escape do vapor 
de chumbo das unidades de moldagem, este é forçado a passar por uma unidade de 
resfriamento para condensá-lo. (a) Esquematize graficamente a variação de entalpia versus 
temperatura e (b) qual é a variação de entalpia por kg-mol de chumbo se o vapor entra no 
resfriador a 1850oC e sai como sólido a 280oC. (2 pontos) 
Dados: 
Capacidade calorífica, J/(g-mol.K) Ponto de 
fusão, 
oC 
Ponto de 
Ebulição, 
oC Sólido Líquido Vapor 
Calor de 
fusão, 
kJ/g-mol 
Calor de 
vaporização, 
kJ/g-mol 
327,4 1744 24,1+0,049.T 6,8 20,8 5,121 175,98 
 
13
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
4. Balan4. Balançço de Energiao de Energia
1) O chumbo é usado em um grande número de indústrias. Para prevenir o escape do vapor de chumbo das 
unidades de moldagem, este é forçado a passar por uma unidade de resfriamento para condensá-lo. (a) 
Esquematize graficamente a variação de entalpia versus temperatura e (b) qual é a variação de entalpia 
por kg-mol de chumbo se o vapor entra no resfriador a 1850oC e sai como sólido a 280oC. (2 pontos) 
Dados: 
Capacidade calorífica, J/(g-mol.K) Ponto de 
fusão, 
oC 
Ponto de 
Ebulição, 
oC Sólido Líquido Vapor 
Calor de 
fusão, 
kJ/g-mol 
Calor de 
vaporização, 
kJ/g-mol 
327,4 1744 24,1+0,049.T 6,8 20,8 5,121 175,98 
 a)
b) ∆H
2123
2017
T20.8
⌠

⌡
d 175980−
2017
600.4
T6.8
⌠

⌡
d+ 5121−
600.4
553
T24.1 0.049T⋅+
⌠

⌡
d+






J
mol
⋅:=
∆H 195420− J
mol
=
14
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
rt
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
4. Balan4. Balançço de Energiao de Energia
2) Considerando a reação de formação do óxido de magnésio (MgO), 
apresentada a seguir, (a) faça um desenho esquemático da variação de 
entalpia versus temperatura e (b) calcule a sua entalpia de formação a 
700oC (973K). Observe que a temperatura solicitada é maior que a 
temperatura de fusão (923K) do magnésio metálico. A reação de formação 
do óxido de magnésio é: 
)s(MgO)g(O)s(Mg =+ 22
1
 
Substância ∆H°298 (kJ/mol) Cpmédio (J/mol.K) 
Mg(s) 0 26,0 
Mg(l) 8,5 34,3 
MgO -601,6 45,5 
O2(g) 0 34,6 
 
15
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
4. Balan4. Balançço de Energiao de Energia
2) Considerando a reação de formação do óxido de magnésio (MgO), apresentada a seguir, (a) faça um desenho 
esquemático da variação de entalpia versus temperatura e (b) calcule a sua entalpia de formação a 700oC 
(973K). Observe que a temperatura solicitada é maior que a temperatura de fusão (923K) do magnésio 
metálico. A reação de formação do óxido de magnésio é: 
)s(MgO)g(O)s(Mg =+ 22
1
 
Substância ∆H°298 (kJ/mol) Cpmédio (J/mol.K) 
Mg(s) 0 26,0 
Mg(l) 8,5 34,3 
MgO -601,6 45,5 
O2(g) 0 34,6 
 
 
∆Hf 8500
J
mol
⋅:=
∆H298 601600−
J
mol
⋅:=
∆Cp1 45.5 26−
1
2
34.6−




J
mol K⋅
⋅:=
∆Cp1 2.2
J
mol K⋅
=
∆Cp2 45.5 34.3−
1
2
34.6−




J
mol K⋅
⋅:=
∆Cp2 6.1−
J
mol K⋅
=
∆H973 ∆H298
298 K⋅
923 K⋅
T∆Cp1
⌠

⌡
d+ ∆Hf−
923 K⋅
973 K⋅
T∆Cp2
⌠

⌡
d+:= ∆H973 609030−
J
mol
=
16
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
4. Balan4. Balançço de Energiao de Energia
3) Óxido de zinco e carbono, ambos a 25°C, são alimentados, em quantidades 
estequiométricas, em um reator operado a 1,0 atm, onde ocorre a seguinte 
reação: 
)g(CO)g(Zn)s(C)s(ZnO +=+
 
A reação é completa e os produtos saem do reator a 1,0 atm e 1000°C.
Calcule o calor que é adicionado ou removido do reator, por quilograma de 
zinco. (2,5 pontos) 
 Dados: MZn = 65,4 g/mol 
 
Substância ( )298ofH∆ 
(kJ/mol)
 
Cp médio 
(J/mol. K) 
ZnO(s) -350,5 52,5 
 C(s) 0 19,8 
Zn(g) 130,4 20,9 
CO(g) -110,5 31,6 
 
17
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
ta
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
4. Balan4. Balançço de Energiao de Energia
 
∆HR 130.4 110.5−( )+[ ] 350.5−( )−[ ]
kJ
mole
⋅:= ∆HR 370.4
kJ
mol
=
nZn
1000 gm⋅
65.4 gm
mol
⋅
:= nZn 15.291mol=
∆Hl
298K
1273K
T20.9 J
mol K⋅
⋅
⌠


⌡
d:= ∆Hl 20.4
kJ
mol
=
∆H2
298K
1273K
T31.6 J
mol K⋅
⋅
⌠


⌡
d:= ∆H2 30.8
kJ
mol
=
Q ∆HR ∆Hl+ ∆H2+:= Q 421.59
kJ
mol
=
Calor a ser adicionado por kg de Zn: Q nZn⋅ 6446.3kJ=
3) Óxido de zinco e carbono, ambos a 25°C, são alimentados, em quantidades estequiométricas, em um reator operado a 
1,0 atm, onde ocorre a seguinte reação: 
)g(CO)g(Zn)s(C)s(ZnO +=+
 
A reação é completa e os produtos saem do reator a 1,0 atm e 1000°C. Calcule o calor que é adicionado ou removido 
do reator, por quilograma de zinco. (2,5 pontos) 
 Dados: MZn = 65,4 g/mol 
 Substância ( )298ofH∆ 
(kJ/mol)
 
Cp médio 
(J/mol. K) 
ZnO(s) -350,5 52,5 
 C(s) 0 19,8 
Zn(g) 130,4 20,9 
CO(g) -110,5 31,6 
 
18
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
4. Balan4. Balançço de Energiao de Energia
4) A entalpia de reação padrão a 25oC para a combustão do n-nonano líquido 
formando dióxido de carbono e água é orH∆ =-6124kJ/mol, e para o n-nonano 
gasoso, nas mesmas condições, é orH∆ =-6171 kJ/mol. 
a) Qual o significado da diferença de 47 kJ/mol entre os valores de orH∆ ? 
b) Se 3 moles/s de n-nonano líquido são consumidos e o reagentes e produtos 
estão a 25oC, calcule a taxa de calor em kW. Indique se ele é retirado ou 
fornecido ao sistema. 
19
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
4. Balan4. Balançço de Energiao de Energia
4) A entalpia de reação padrão a 25oC para a combustão do n-nonano líquido 
formando dióxido de carbono e água é orH∆ =-6124kJ/mol, e para o n-nonano 
gasoso, nas mesmas condições, é orH∆ =-6171 kJ/mol. 
a) Qual o significado da diferença de 47 kJ/mol entre os valores de orH∆ ? 
b) Se 3 moles/s de n-nonano líquido são consumidos e o reagentes e produtos 
estão a 25oC, calcule a taxa de calor em kW. Indique se ele é retirado ou 
fornecido ao sistema. 
Calor de vaporização 
do n-nonanoa) ∆HrL 6124− kJmol:= ∆HrG 6171−
kJ
mol
:= ∆HrG ∆HrL− 47−
kJ
mol
=
b) 3 mol
s
∆HrL⋅ 18372− kW=
20
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
al
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
4. Balan4. Balançço de Energiao de Energia
���� Balanço Geral de Energia
O conceito macroscópico do balanço de energia é similar ao de 
massa.
Transferência 
de energia 
para dentro do 
sistema
Energia 
consumida 
dentro do 
sistema
Acúmulo de 
energia 
dentro do 
sistema
- + =
Energia 
gerada 
dentro do 
sistema
-
Transferência 
de energia 
para fora do 
sistema
Entende-se como energia (E):
Energia interna (U)
Energia cinética (K)
Energia potencial (P)
A energia também pode ser transferida como:
Calor (Q)
Trabalho (W)
21
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
4. Balan4. Balançço de Energiao de Energia
Sistema aberto Sistema fechado
Obs.: 1. Sem transferência de massa 
(sistema fechado ou de batelada):
2. Sem transferência de massa e sem acúmulo:
3. Com transferência de massa e sem acúmulo:
WQE +=∆
mPKHWQ ⋅++∆=− )][(
___
WQ =
22
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
4. Balan4. Balançço de Energiao de Energia
���� Calor de mistura
As propriedades físicas de uma mistura ou solução ideal pode ser 
calculada a partir da soma das propriedades dos seus componentes.
...
CBAMist PCPBPAP CXCXCXC ⋅+⋅+⋅=
...
____
CCBBAAMist HXHXHXH ∆⋅+∆⋅+∆⋅=∆
Ou para a entalpia,
Caso a mistura não seja ideal (real) a energia é absorvida ou liberda e 
o ∆HMist deve ser determinado experimentalmente . Esta energia é
chamada de calor (entalpia) de solução ou mistura.
Obs.: 4. Processos
- Isotérmicos: dT = 0
- Adiabático (o sistema é isolado, Q é muito pequeno em relação aos 
outros termos de energia, o processo é tão rápido que não há tempo 
para troca de calor): Q = 0
- Isobárico: dP = 0
- Isométrico ou isocórico: dV = 0
23
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
4. Balan4. Balançço de Energiao de Energia
1796016HCl.∞H2O
1794435HCl.50000H2O
135881920HCl.3H2O
116685400HCl.2H2O
62686268HCl.1H2O
_0HCl
Composição
etapacadapara
molcalH o )/(
_
∆−
Somatório
molcalH o )/(
_
∆−
Ex.: Calcular a entalpia de formação padrão do HCl e 3 moles de água.
½ H2(g) + ½ Cl2(g) → HCl(g) ............................
HCl(g) + 3H2O → HCl.3H2O …………...............
½ H2(g) + ½ Cl2(g) + 3H2O → HCl.3H2O ……..
mol
kcalo
f 22063H −=∆
_
mol
kcalo
Mist 13588H −=∆
_
mol
kcalo
f 35651H −=∆
_
24
D
e
p
a
r
t
a
m
e
n
t
o
 
d
eC
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
4. Balan4. Balançço de Energiao de Energia
Balanço de energia da 
terra e sua atmosfera.
Luz 
solar
CO2
H2O
O2
Glicose
Fotossíntese: processo 
químico no qual o dióxido 
de carbono e a água são 
quimicamente convertidos 
em glicose e oxigênio 
com o auxílio da luz solar. 
25
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
� Balanço combinado de massa e energia
Para qualquer sistema ou parte dele pode-se escrever:
- Balanço material total; - Balanço material por componente e
- Balanço de energia. QII
F
V
L
Y
W
D
R
QIII
I
II
III
Balanço Entra Sai
Processo inteiro
Total F = D + W
Componentes XFi.F = XDi.D + XWi.W
Energia QII + QIII + ∆HF,m.F = ∆HD,m.D + ∆HW,m.W
Equipamento I
Total F + R + Y = V + L
Componentes XFi.F + XRi.R + XYi.Y = XVi.V + XLi.L
Energia ∆HF,m.F + ∆HR,m.R + ∆HY,m.Y = ∆HV,m.V + ∆HL,m.L
5. Balan5. Balançço Combinado de Massa e Energiao Combinado de Massa e Energia
26
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
5) Dióxido de enxofre é oxidado para trióxido enxofre em um reator. SO2
e 100% de ar em excesso são alimentados no reator a 4500C. A 
reação tem uma conversão de 100% de SO2 e os produtos saem do 
reator a uma temperatura de 5500C. A taxa de produção do SO3 é de 
100 kg/h. O reator é resfriado com auxílio de uma camisa onde água é
alimentada a 25oC. Faça o balanço de energia e calcule a vazão de 
água de resfriamento, sabendo que a diferença de temperatura da 
água não pode ultrapassar 15oC.
Dados: Massas atômicas: S = 32 e O =16 (g/mol);
Kg
J4,2 O)(HC 2P
⋅
=
29,10N2(g)
29,40O2(g)
50,7-395,7SO3(g)
39,9-296,8SO2(g)
CP[J/mol.K]∆Ho298 [kJ/mol]Faixas de T [K]
5. Balan5. Balançço Combinado de Massa e Energiao Combinado de Massa e Energia
27
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
se
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
100
kg
hr
80
gm
mol
1250mol
hr
=
Base de cálculo: 1250 mol/hr de SO3 SO2 + 1/2 O2 = SO3
ENTRA 
∆Hr 1250
mol
hr
395.7− 296.8−( )−[ ]⋅ kJ
mol
⋅:= ∆Hr 123625−
kJ
hr
=
∆HSO2 1250
mol
hr
39.9⋅ J
mol K⋅
298 723−( )⋅ K:= ∆HSO2 21197−
kJ
hr
=
∆HO2e 1250
mol
hr
29.4⋅ J
mol K⋅
298 723−( )⋅ K:= ∆HO2e 15619−
kJ
hr
=
∆HN2e 1250
79
21
⋅
mol
hr
29.1⋅ J
mol K⋅
298 723−( )⋅ K:= ∆HN2e 58157−
kJ
hr
=
5. Balan5. Balançço Combinado de Massa e Energiao Combinado de Massa e Energia
28
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
SAI 
∆HSO3 1250
mol
hr
50.7⋅ J
mol K⋅
823 298−( )⋅ K:= ∆HSO3 33272
kJ
hr
=
∆HO2s
1250
2
mol
hr
29.4⋅ J
mol K⋅
823 298−( )⋅ K:= ∆HO2s 9647
kJ
hr
=
∆HN2s 1250
79
21
⋅
mol
hr
29.1⋅ J
mol K⋅
823 298−( )⋅ K:= ∆HN2s 71841
kJ
hr
=
BALANÇO 
∆Hr ∆HSO2+ ∆HO2e+ ∆HN2e+ ∆HSO3+ ∆HO2s+ ∆HN2s+ 103838−
kJ
hr
= m
103838
kJ
hr
⋅
4.2
J
gm K⋅
15⋅ K
:= m 1648 kg
hr
=
5. Balan5. Balançço Combinado de Massa e Energiao Combinado de Massa e Energia
29
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
6) Um evaporador é alimentado com 5000 kg/h de uma solução de açúcar em 
água, a 15% em massa de açúcar e 50oC. A solução é concentrada até 60% em 
massa de açúcar, com o sistema operando a 90oC sem que ocorra cristalização.
a) Faça um desenho esquemático do processo e b) Supondo que o vapor deixa 
o evaporador na forma de vapor saturado, determine a carga térmica de 
aquecimento da unidade, Q. 
Dados: (i) tabela de vapor d’água saturado, em anexo. 
(ii) calor específico das soluções de açúcar (constante): 
solução a 15%: 3,4 kJ kg-1 oC-1 
solução a 60%: 2,5 kJ kg-1 oC-1 
supor a entalpia de diluição do açúcar igual a zero. 
5. Balan5. Balançço Combinado de Massa e Energiao Combinado de Massa e Energia
30
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
TABELA PARA VAPOR 
SATURADO DE ÁGUA 
(Temperatura de Referência: 0oC)
 VOLUME 
ESPECÍFICO 
ENTALPIA ESPECÍFICA 
Pressão 
(Absoluta) 
Temp. de 
Vapori-
zação 
Do Líquido 
Saturado 
(condensado) 
Do 
Vapor 
Saturado 
DoLíquido 
Saturado 
(condensado) 
Acréscimo na 
Vaporização 
Do Vapor 
Saturado 
p tv Vf Vg hf hfg hg 
bar ºC m³/kg m³/kg kJ/kg kJ/kg kJ/kg 
0,01 6,7 0,001 131,6 28,1 2485,3 2513,4 
0,02 17,2 0,001 68,27 72,0 2460,6 2532,7 
0,03 23,8 0,001 46,53 99,7 2445,1 2544,8 
0,04 28,6 0,001 35,46 120,2 2433,4 2553,6 
0,05 32,6 0,001 28,73 136,1 2424,6 2560,7 
0,06 35,8 0,001 24,19 149,9 2416,7 2566,6 
0,07 38,7 0,001 20,92 161,6 2410,0 2571,6 
0,08 41,2 0,001 18,45 172,1 2404,1 2576,2 
0,09 43,4 0,001 16,51 181,7 2398,2 2580,0 
0,1 45,5 0,001 14,95 190,1 2393,6 2583,7 
0,15 53,6 0,001 10,21 224,0 2374,0 2598,0 
0,2 59,7 0,001 7,794 249,6 2359,3 2608,9 
0,25 64,6 0,001 6,321 270,1 2347,1 2617,3 
0,3 68,7 0,001 5,328 287,3 2336,7 2624,0 
0,4 75,4 0,001 4,068 315,7 2319,5 2635,3 
0,5 80,9 0,001 3,301 338,4 2306,1 2644,5 
0,6 85,5 0,001 2,782 357,6 2294,4 2652,0 
0,7 89,5 0,001 2,408 374,4 2283,9 2658,3 
0,8 93 0,001 2,125 389,4 2274,7 2664,2 
0,9 96,2 0,001 1,904 402,8 2266,3 2669,2 
0,95 97,7 0,001 1,810 409,1 2262,1 2671,3 
1 99,1 0,001 1,725 415,0 2258,4 2673,4 
1,1 101,8 0,001 1,578 426,3 2251,3 2677,6 
1,2 104,3 0,001 1,454 436,8 2244,6 2681,3 
1,3 106,6 0,001 1,349 446,8 2238,3 2685,1 
1,4 108,7 0,0011 1,259 456,0 2232,0 2688,0 
1,5 110,8 0,0011 1,180 464,4 2227,0 2691,4 
1,6 112,7 0,0011 1,111 472,8 2221,5 2694,3 
1,7 114,6 0,0011 1,050 480,7 2216,1 2696,8 
1,8 116,3 0,0011 0,995 488,3 2211,1 2699,3 
1,9 118,8 0,0011 0,9459 495,4 2206,4 2701,8 
2 119,6 0,0011 0,9015 502,1 2202,3 2704,4 
2,1 121,2 0,0011 0,8612 508,4 2198,1 2706,4 
2,2 122,6 0,0011 0,8245 514,7 2193,9 2708,5 
2,3 124,1 0,0011 0,7909 520,9 2189,7 2710,6 
2,4 125,5 0,0011 0,76 526,8 2185,9 2712,7 
2,5 126,8 0,0011 0,7315 532,7 2181,7 2714,4 
2,6 128,1 0,0011 0,7051 538,1 2178,0 2716,1 
2,7 129,3 0,0011 0,6805 543,6 2174,2 2717,8 
2,8 130,6 0,0011 0,6577 548,6 2170,9 2719,4 
2,9 131,7 0,0011 0,6365 553,6 2167,5 2721,1 
3 132,9 0,0011 0,6165 558,6 2164,2 2722,8 
3,1 134 0,0011 0,5979 563,2 2161,2 2724,5 
3,2 135,1 0,0011 0,5803 567,8 2157,9 2725,7 
3,3 136,1 0,0011 0,5638 572,4 2154,9 2727,4 
3,4 137,2 0,0011 0,5482 577,1 2151,6 2728,6 
 
5. Balan5. Balançço Combinado de Massa e Energiao Combinado de Massa e Energia
31
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
F 5000 kg
hr
⋅:= CF 3.4
kJ
kg K⋅
⋅:= CC 2.5
kJ
kg K⋅
⋅:=
Cálculo da vazão das correntes de vapor e de 
solução concentrada:
Balanço material para o açúcar: Xaç F = Xaç C
C
F 0.15⋅
0.60
:= C 1250 kg
hr
=
Balanço material global: F = V + C
V F C−:= V 3750kg
hr
=
5. Balan5. Balançço Combinado de Massa e Energiao Combinado de Massa e Energia
32
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
b) Cálculo da carga térmica de aquecimento da unidade:
Balanço de energia: FHF + Q = VH V + CHC
Da tabela de vapor: HV 2658.3
kJ
kg
⋅:=
HF CF 50 K⋅( )⋅:= HF 170
kJ
kg
=
Foi utilizada a mesma temperatura de referência da tabela de vapor.
HC CC 90 K⋅( )⋅:= HC 225
kJ
kg
=
Q VHV⋅ C HC⋅+ F HF⋅−:= Q 9399875
kJ
hr
=
5. Balan5. Balançço Combinado de Massa e Energiao Combinado de Massa e Energia
33
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
D
e
p
a
r
t
a
m
e
n
t
o
 
d
e
 
C
i
ê
n
c
i
a
 
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s
 
e
 
M
e
t
a
l
u
r
g
i
a
d
o
s
 
M
a
t
e
r
i
a
i
s

Continue navegando