Logo Passei Direto
Buscar

MateriaisMetalicos-Barra-2022

Ferramentas de estudo

Material
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Prévia do material em texto

0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 E-Book 
Materiais metálicos 
Composição, fabricação, propriedades e desempenho 
 Organizadores 
Sérgio Rodrigues Barra 
(Rede PDIMat / UFRN) 
Giuseppe Pintaude 
(Rede PDIMat / UTFPR) 
1 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
 
 
 
 
 
Materiais metálicos 
Composição, fabricação, propriedades e desempenho 
 
 
 
2 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
 
Sérgio Rodrigues Barra 
(Organizador) 
 
Giuseppe Pintaude 
(Organizador) 
 
Materiais metálicos 
Composição, fabricação, propriedades e desempenho 
 
 
 
 
 
 
 
 
 
 
 Coletânea de artigos apresentados no Realização 
 
 
 
2022 
3 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
 
 
 
 
 
 
 
 
Dados Internacionais de Catalogação na Publicação (CIP) 
 
Ficha catalográfica elaborada por: Alda M. César - CRB 1/3253 
 
 
 
É permitida a reprodução e o compartilhamento, total ou parcial, desde que a obra seja adequadamente 
referenciada. 
 
As ideias, as opiniões e os conteúdos dos artigos científicos, incluídos nesta publicação, são de responsabilidade 
exclusiva dos seus respectivos autores e não, necessariamente, refletem as opiniões da Rede PDIMat. 
 
 
 
 
 
 
 
 
 
 
 
M425m Materiais metálicos: Composição, fabricação, propriedades e desempenho / Organizado 
 por Sérgio Rodrigues Barra; Giuseppe Pintaude -- Natal, RN: Rede PDIMat, 2022. 
403 p.; il. 
 
 
E-book, no formato PDF. 
Disponível em: http://www.redepdimat/engbrasil2021 
ISBN: 978-65-00-47916-4 
 
 
Coletânea de trabalhos de revisão apresentados no II Congresso de Engenharia da Rede 
PDIMat, realizado, online, no período de 24 a 26 de novembro de 2021 (engBRASIL2021). 
 
 
1. Processos de fabricação. 2. Corrosão. 3. Metalurgia física. 4. Ensaios Não Destrutivos 
(END). 5. Inspeção. 6. Mecânica da fratura. 7. Análise de falha. 8. Tribologia. 9. Engenharia de 
superfícies. 10. Metalurgia extrativa. 11. Siderurgia. 12. Seleção de materiais. 13. Técnicas de 
caracterização. 14. Indústria 4.0. 15. Educação em engenharia. I. Rede PDIMat. II. 
Universidade Federal do Rio Grande do Norte. III. Barra, Sérgio Rodrigues. IV. Pintaude, 
Giuseppe. V. engBRASIL2021. 
 
 
CDU 620.1 
http://www.redepdimat/engbrasil2021
4 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
SUMÁRIO 
 
 
Prefácio 
 
8 
Comissão Organizadora do engBRASIL2021 
 
9 
Comitê Científico do engBRASIL2021 
 
10 
Sobre a Rede PDIMat 
 
11 
Sobre o engBRASIL2021 
 
11 
SEÇÃO: PROCESSOS DE FABRICAÇÃO E CORROSÃO 
 
13 
Capítulo 1: Carbono equivalente como parâmetro de avaliação da 
soldabilidade dos aços: Uma revisão da literatura 
Sérgio Rodrigues Barra 
Erijanio Nonato da Silva 
Anderson Douglas Simão dos Santos 
 
14 
Capítulo 2: Revisão da literatura sobre a usinabilidade do aço AISI 
H13 sob diferentes meios lubrirrefrigerantes 
Carlos Eduardo Borsoi Rheinheimer 
Rafael Talini Lorenzi 
André João de Souza 
 
37 
Capítulo 3: Os benefícios da usinagem de cerâmicas avançadas no 
estado em verde pelo processo de torneamento 
Marcos Gonçalves Júnior 
Cesar Renato Foschini 
Rodrigo Henriques Lopes da Silva 
 
48 
Capítulo 4: Técnicas sustentáveis de lubrirrefrigeração aplicadas no 
torneamento de aços inoxidáveis duplex: Uma breve revisão 
Diógenes Barbosa Teles 
Maurício Rodrigues Policena 
André João de Souza 
 
62 
Capítulo 5: Avanços recentes em anodização assistida por plasma 
(PEO) em ligas de alumínio: Uma revisão sobre estrutura, 
desempenho tribológico e resistência à corrosão 
Matheus Thedy Dorneles 
Victor Velho de Castro 
Célia De Fraga Malfatti 
75 
Capítulo 6: Riscos ocupacionais na fabricação de produtos em 
metais-pesados e ferramentas de corte em metais-duros na indústria 
metalmecânica 
Fabio Miranda 
Rodrigo Lima Stoeterau 
Gilmar Ferreira Batalha 
 
 
93 
5 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Capítulo 7: Uma revisão do efeito da soldagem na resistência à 
corrosão dos aços inoxidáveis super duplex 
Guilherme dos Santos Vacchi 
Cristie Luis Kugelmeier 
Rodrigo da Silva 
 
114 
SEÇÃO: TRIBOLOGIA E ENGENHARIA DE SUPERFÍCIE 
 
129 
Capítulo 8: Revisão sobre terminologia em falhas por desgaste 
Giuseppe Pintaude 
 
130 
Capítulo 9: Tratamentos de nitretação, nitrocementação e 
cementação sob plasma aplicados aos aços inoxidáveis 
Carlos Eduardo Pinedo 
André Paulo Tschiptschin 
 
142 
Capítulo 10: Nitretação a plasma de aços bainíticos em manufatura 
energeticamente eficiente para aplicações em engrenagens 
Rafael Luciano Dalcin 
Valcir Marques de Menezes 
Alexandre da Silva Rocha 
 
162 
Capítulo 11: Transição de regimes de desgaste em materiais de 
fricção automotivo: Uma revisão 
Liu Yesukai de Barros 
Patric Daniel Neis 
Ney Francisco Ferreira 
 
181 
Capítulo 12: Uma revisão sobre técnicas de medição de topografia de 
superfícies tribológicas 
Jean Carlos Poletto 
Ney Francisco Ferreira 
Patric Daniel Neis 
 
195 
SEÇÃO: EDUCAÇÃO EM ENGENHARIA E INDUSTRIA 4.0 
 
209 
Capítulo 13: Identificação das competências para a formação do 
Digital Lean thinking no contexto da indústria 4.0 
Arthur Henrique Gomes Rossi 
Paulo Leitão 
Joseane Pontes 
 
210 
Capítulo 14: Competências para formação de trabalhadores no 
contexto da Indústria 4.0: Uma revisão de literatura 
Bernardo Perota Barreto 
Leonardo Breno Pessoa da Silva 
Joseane Pontes 
 
224 
Capítulo 15: Barreiras e oportunidades para adoção de tecnologias 
da Indústria 4.0 em Pequenas e Médias Empresas (PMEs) 
Tami Marieli de Andrade Bischoff 
Luis Mauricio Resende 
Rui Tadashi Yoshino 
 
 
 
 
239 
6 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Capítulo 16: A evolução da manutenção no contexto da Indústria 4.0: 
Uma revisão sistemática de literatura 
Raquel Souza Goulart 
Rui Tadashi Yoshino 
Joseane Pontes 
 
254 
Capítulo 17: Mapeamento das competências relevantes para um líder 
digital inseridos no contexto da Indústria 4.0 
Maytê Pietrobelli de Souza 
Fernanda Tavares Treinta 
Joseane Pontes 
 
266 
Capítulo 18: Perspectivas da qualidade para Indústria 4.0: Uma 
revisão sistemática de literatura 
Leonardo Breno Pessoa da Silva 
Pedro Henrique Gualdi Silva 
Joseane Pontes 
 
279 
Capítulo 19: Tecnologias digitais identificadas em Fintechs: Uma 
revisão sistemática da literatura 
Carlos Henrique Fernandes 
Fernanda Tavares Treinta 
Joseane Pontes 
 
295 
SEÇÃO: METALURGIA FÍSICA E SELEÇÃO DE 
MATERAIS 
 
308 
Capítulo 20: Substituição parcial do manganês pelo nióbio em aços 
estruturais de baixo carbono 
Antonio Augusto Gorni 
Marcelo Arantes Rebellato 
Leonardo Magalhães Silvestre 
 
309 
Capítulo 21: Uma revisão das microestruturas bainíticas livres de 
carbonetos em aços de baixo e médio teor de carbono 
Cristiano José Turra 
Pedro José de Castro 
Alexandre da Silva Rocha 
 
321 
Capítulo 22: Mecanismos de autorreparo em materiais metálicos 
Mauricio Mhirdaui Peres 
Juliano Augusto Medeiros de Menezes e Oliveira 
Rubens Maribondo do Nascimento 
 
333 
Capítulo 23: Materiais para eletrodos aplicados em supercapacitores: 
Uma revisão 
Max Krapf Costa 
Adilar Gonçalves Santos Junior 
Célia de Fraga Malfatti 
 
353 
SEÇÃO: ÁREAS CORRELATAS 
 
363 
Capítulo 24: Análise bibliométrica das publicações brasileiras sobre 
ligas com memória de forma na base de dados SCOPUS 
Danilo Maia de Oliveira 
Estephanie Nobre Dantas Grassi 
Carlos José De Araújo 
 
364 
7 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Capítulo 25: Utilização de fibras naturais em aplicações de 
engenharia: Uma revisão bibliográfica 
Beatriz dos Santos Ventura 
Lívia Mendonça Nogueira 
 
377 
Capítulo 26: Revisão integrativasobre respostas biológicas de íons 
dopantes de B, Sr e Mg em biocerâmicas à base de fosfatos de cálcio 
Ariane Pogere 
Gustavo Xavier Peres 
João Antônio Palma Setti 
Lucas Freitas Berti 
394 
 
 
 
 
 
 
 
 
 
8 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
 
Prefácio 
 
Tive o prazer de ser convidado para proferir uma palestra “âncora”, junto ao II Congresso de 
Engenharia da Rede PDIMat (engBRASIL2021), e para escrever o prefácio do e-book 
“Materiais metálicos: Composição, fabricação, propriedades e desempenho”. É claro que, 
inicialmente, avaliei a relevância do congresso e a sua temática, e, ao final, não tive dúvidas 
em aceitar o convite e poder contribuir com as atividades do engBRASIL2021. 
 
No evento, a base das palestras técnicas foca a relação entre os materiais metálicos e suas 
propriedades e aplicabilidades em equipamentos industriais, ou seja, como as diferentes 
aplicações destes materiais de engenharia em peças, conjuntos e equipamentos são obtidas 
considerando desde o seu formato eletrônico (ligações químicas), passando pelos possíveis 
arranjos cristalinos e até as suas diferentes formas de fabricação em algo real, concreto, 
utilizável e com valor agregado. Ao mesmo tempo, como essas aplicações são planejadas e 
operadas no setor industrial. Assim, como pode ser observado nas áreas e capítulos do e-
book, os artigos de revisão são adequadamente focados nas demandas da comunidade e 
giram em torno dos tópicos associados com as áreas de cobertura da Rede PDIMat, como, 
por exemplo, Indústria 4.0, processos de fabricação, corrosão, metalurgia física, END e 
inspeção, engenharia de superfícies, entre outras de igual importância. 
 
Recomendo ao leitor que aproveite a oportunidade e, durante a leitura deste e-book, também, 
acesse o website do engBRASIL2021 (www.redepdimat.org/engbrasil2021) para assistir aos 
vídeos das apresentações dos artigos de revisão e das palestras estratégicas que aderiram ao 
tema central do evento “Novas formas de socialização de conhecimentos científicos nas 
engenharias”. 
 
No campo da educação, pesquisa e desenvolvimento, foram tratadas questões como o quadro 
da educação nas engenharias brasileiras e o adequado contraponto do cenário nacional como 
modelos internacionais, a relevância do conhecimento científico e sua disseminação, assim 
como a forma de como o conhecimento se transforma em riqueza, por meio da melhoria na 
formação da mão de obra e da inovação nas empresas. 
 
Os professores Sérgio R. Barra (UFRN / Rede PDIMat) e Giuseppe Pintaude (UTFPR / Rede 
PDIMat), em conjunto com os integrantes dos Comissão Organizadora, do Comitê Cientifico e 
dos palestrantes e autores, na minha percepção, fizeram um excelente trabalho na 
estruturação e na realização do evento e, agora, estão novamente atuando em parceria para 
fazer acontecer a socialização do conhecimento por meio do acesso aberto deste e-book. 
 
Boa leitura e aproveitem, também, para assistir aos vídeos disponibilizados no canal da Rede 
PDIMat no YouTube, playlist “engBRASIL2021”! 
 
Abraços e até uma próxima! 
 
Hugo Resende, PhD 
Engenheiro aeronáutico e “conselheiro” de inovação 
 
 
 
 
http://www.redepdimat.org/engbrasil2021
9 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
 
Comissão Organizadora do engBRASIL2021 
 
 
Prof. Sérgio Rodrigues Barra 
UFRN / Rede PDIMat 
Coordenador do engBRASIL2021 
 
Prof. Giuseppe Pintaude 
UFTPR / Rede PDIMat 
Coordenador do Comitê Científico 
 
Profa. Fabiana Lopes Silva 
IFRS – Campus Caxias do Sul / Rede PDIMat 
Interface com os Instituros Federais 
 
Prof. Willy Ank Morais 
Unisanta / Rede PDIMat 
Interface com as IES privadas 
 
Eng. André França 
CTDUT / Rede PDIMat 
Interface com as Entidades Representativas 
 
Prof. Marcio Wagner Batista dos Santos 
UFPA / Rede PDIMat 
Interface com as IES públicas 
 
Aretusa Campelo 
Discente UFRN / Rede PDIMat Jr. 
Organização Júnior 
 
Caio Augusto G. S. Valente 
Discente UTFPR 
Organização Júnior 
 
Thaís Suzin 
Discente IFRS 
Organização Júnior 
 
Jullyane R. Almeida Nunes 
Discente UFPA 
Organização Júnior 
 
Amanda Pereira Costa 
Discente UTFPR 
Organização Júnior 
 
 
 
 
 
 
 
 
 
10 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
Comitê Científico do engBRASIL2021 
 
Prof. Giuseppe Pintaude (Coordenador do Comitê) - UTFPR 
Prof. Alessandro Marques - UFPR 
Prof. Alexandre da Silva Rocha - UFRGS 
Prof. Anderson Clayton Alves de Melo - UFRN 
Prof. Anderson Geraldo Marenda Pukasiewicz - UTFPR 
Prof. André Carlos Silva - UFCAT 
André França de Souza - CTDUT 
Antonio Augusto Gorni - Consultor 
Prof. Bismarck Luiz Silva - UFRN 
Prof. Carlos Eduardo Aguiar Lima Rodrigues - Petrobras / UFERSA 
Carlos Eduardo Pinedo - HeatTech 
Prof. Carlos Henrique da Silva - UTFPR 
Edkarlla Sousa Dantas de Oliveira - PósDoc UFPE 
Prof. Gilmar Ferreira Batalha - USP 
Henrique Rodrigues Oliveira - SENAI SC 
Prof. José Aécio Gomes de Sousa - UTFPR 
Prof. José Hilton Ferreira da Silva - UFPB 
Profa. Joseane Pontes - UTFPR 
Prof. Júlio Cesar Klein das Neves - UTFPR 
Profa. Karina Barcelos - Grupo HCT 
Leila Teichmann - GOLDENMAQ 
Prof. Márcio Fontana Catapan - UFPR 
Prof. Mauricio Mhirdaui Peres - UFRN 
Prof. Meysam Mashhadikarimi - UFRN 
Prof. Nicolau Apoena Castro - UFRN 
Prof. Osvaldo Mitsuyuki Cintho - UEPG 
Prof. Pablo Deivid Valle - UFPR 
Prof. Pedro Carlos Hernandez Junior - IFSul 
Prof. Pedro Henrique Costa Pereira da Cunha - FURG 
Prof. Régis Henrique Gonçalves e Silva - UFSC 
Prof. Sérgio Rodrigues Barra - UFRN / Rede PDIMat 
Profa. Roseana Florentino - IFPE 
Profa. Tetyana Gurova - UEZO 
Prof. Tiago Cousseau - UTFPR 
11 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
Sobre a Rede PDIMat 
 
Denominação: 
Rede de cooperação em pesquisa, desenvolvimento e inovação em materiais e equipamentos 
para setor industrial brasileiro (Rede PDIMat) 
 
Criação e objetivo (foco): 
A Rede PDIMat, idealizada pelo Departamento de Engenharia de Materiais da UFRN (2014), 
caracteriza-se pela ação voluntária dos integrantes da comunidade e visa a agregação dos 
diferentes atores (pesquisadores, empresários, indústrias, instituições de ensino, instituições 
de pesquisa, órgãos governamentais, associações, engenheiros, técnicos, inspetores, 
estudantes, entre outros) e, ao mesmo tempo, o estímulo à cooperação, interinstitucional e 
multidisciplinar, como ferramenta de otimização do uso de infraestrutura laboratorial, da 
socialização de conhecimento, de estímulo ao intercâmbio técnico-científico, da discussão 
sobre a formação de mão de obra, do uso adequado de recursos (fomentos) e de suporte às 
demandas dos setores industriais brasileiros, tais como os de petróleo e gás (P&G), construção 
naval, mineração, siderúrgico, metalomecânico, automobilístico, energia renovável, químico e 
petroquímico, outros. 
 
Áreas cobertas: 
Processos de fabricação; Corrosão; Metalurgia física; END e inspeção; Mecânica da fratura e 
análise de falha; Tribologia / Engenharia de superfície; Metalurgia extrativa / Siderurgia; 
Seleção de materiais e técnicas de caracterização; Indústria 4.0; Educação em engenharia; 
Outras. 
 
Sobre o engBRASIL2021 
 
 Os Encontros da Rede PDIMat, nas modalidades presencial e virtual (online), 
caracterizam-se como um fórum periódico, com foco na relação entre os materiais metálicos 
(característica, propriedade e aplicabilidade) e os equipamentos industriais, e objetiva a 
agregação da comunidade afim e, ao mesmo tempo, o estímulo à cooperação para o acesso 
gratuito a conhecimento técnico-científico de qualidade. 
O enBRASIL2021, na modalidade online, contou com a realização, no formato vídeo, 
de apresentações de palestras estratégicas de especialistas âncoras e apresentações de 
trabalhos técnicos-científicos de revisão, os quais abordaram temas-chave para as áreas 
cobertaspela Rede PDIMat. 
 Na edição 2021, o evento teve como tema central "Novas formas de socialização de 
conhecimentos científicos nas engenharias". O tema objetivou estimular a discussão sobre as 
formas de geração e de socialização de conhecimento científico no cenário “novo normal”. 
 Por fim, eventos com esta linha de trabalho e com a capacidade de abrangência (sem as 
barreiras da distância e dos custos de participação) distinguem-se como uma ação estratégica 
e exitosa para a discussão e a identificação dos nortes e oportunidades a serem trabalhados, 
de forma cooperativa, com o intuito da identificação de ações e do desenvolvimento de 
conhecimentos e/ou da resolução de problemas vivenciados pela academia, pelas entidades 
de classe (Associações, Conselhos, outras) e governamentais e pela indústria. 
 
 
 
 
 
 
12 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PÁGINA EM BRANCO 
 
13 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
 
 
 
 
 
 
 
 
 
 
SEÇÃO 
PROCESSOS DE FABRICAÇÃO E 
CORROSÃO 
 
14 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
Capítulo 
1 
 
Carbono equivalente como parâmetro de 
avaliação da soldabilidade dos aços: 
Uma revisão da literatura 
 
 
Sérgio Rodrigues Barra1, sergio.barra@ufrn.br 
Erijanio Nonato da Silva 2, engenheiro.mecanico.erijanio@outlook.com 
Anderson Douglas Simão dos Santos3, andersondouglas79@gmail.com 
 
1 Professor da Universidade Federal do Rio Grande do Norte 
2 Doutorando da Universidade Federal do Rio Grande do Norte 
3 Graduando da Universidade Federal do Rio Grande do Norte 
 
Resumo: Nos projetos de engenharia, em face da necessidade da análise da relação entre a resistência 
mecânica, tenacidade, dureza, custo, segurança, resistência à corrosão, entre outras propriedades e/ou 
características, a adoção dos materiais metálicos são atrativos e correspondem a até 90% dos materiais de 
engenharia aplicados na fabricação de ativos. Neste caso, para os aços estruturais, tratáveis termicamente, o 
histórico de fabricação e a diversidade de composição química impactam no grau da soldabilidade do 
componente (propriedade). Portanto, para o caso específico da relação entre a capacidade de um material ser 
soldado e as possíveis implicações metalúrgicas deletérias geradas, o resultado impactará, por exemplo, na 
integridade da estrutura e, como consequência, demandará a obrigatoriedade e o desafio da padronização, via 
códigos/normas, dos procedimentos de fabricação e das formas de inspeção do grau de soldabilidade a ser 
obtido. Assim, a adoção do carbono equivalente, um parâmetro empírico proposto e/ou utilizados por entidades 
normalizadoras, caracteriza-se como uma interessante e útil ferramenta para a avaliação da tendência da região 
soldada, no resfriamento, induzir a decomposição da austenita em fases deletérias, como a martensita não 
revenida, e tender a elevar a dureza para valores que induzam o comportamento frágil na região (impacto na 
tenacidade) e sejam proibitivos por norma. Assim, o artigo de revisão objetiva mostrar e discutir, na visão de 
fabricação e no aspecto metalúrgico, os conceitos de soldabilidade e as diferentes proposições para a 
determinação do carbono equivalente e suas aplicações industriais. Por fim, discute-se as tendências para as 
possíveis evoluções do carbono equivalente, considerando os avanços técnico-científicos, aqui exemplificados 
pela fabricação aditiva a arco elétrico, o desenvolvimento das ligas de alta entropia, entre outras. 
 
Palavras-chave: Soldagem, Solda, Soldabilidade, Carbono equivalente, AWS, TWI, IIW 
 
 
Carbon equivalent as a parameter for evaluating the 
weldability of steels: A literature review 
 
Abstract: In engineering designs, given the relationship between mechanical strength, toughness, hardness, 
cost, safety, corrosion resistance, and other properties and/or characteristics, metallic materials are attractive, 
and they make up to 90% of engineering materials used in manufacturing. In this case, for heat treatable structural 
steels, the manufacturing history and variety of chemical composition affect the degree of weldability of the 
component (property). For the specific case of the relationship between the weldability and the possible 
metallurgical implications generated, the result will affect, for example, the integrity of the structure and, in 
consequence, it will demand the requirement and challenge of standardization, via codes/standards, 
manufacturing procedures and an analysis of weldability degree. Therefore, the adoption of carbon equivalent, 
an empirical parameter proposed and/or used by standards organizations, characterizing as an interesting and 
useful tool for evaluating the tendency of the weld region, during cooling, inducing the decomposition of austenite 
in deleterious phases, such as untempered martensite. The presence of metastable phase affects the observed 
value for hardness to values that lead fragile behaviour in the region (impact on tenacity) and are prohibitive by 
standards. Thus, the literature review aims to show and discuss, in the fabrication and metallurgical aspect, the 
concepts of weldability and the different propositions for the determination of carbon equivalent and its industrial 
applications. 
 
Keywords: Welding, Weld, Weldability, Carbon equivalent, Normalizing, AWS, TWI, IIW 
 
 
 
 
15 
 
1. INTRODUÇÃO 
 
Dentre os diferentes materiais de engenharia, a commodity aço, destaca-se como uma das principais matérias 
primas adotadas em projetos mecânicos. Neste caso, nas etapas de projeto e seleção, por exemplo, o uso dos 
diferentes aços engloba, por exemplo, desde a confecção de uma simples cadeira escolar até a construção de 
uma plataforma de petróleo. Além disso, os aços, também, são atrativos pela possibilidade da reciclagem, sem 
perda de suas propriedades, adequada resistência mecânica, custo acessível, facilidade de fabricação, entre 
outras propriedades demandadas nas etapas de fabricação e/ou uso. Em termos globais, em 2019 (período pré-
pandemia), a produção de aço contabilizou de 1,8 GTon e teve o emprego em diversos setores industriais, tais 
como: construção e a infraestrutura (52%), equipamentos mecânicos (16%), automobilístico (12%), produtos 
metálicos (10%), transportes (5%), equipamentos elétricos (3%) e eletrodomésticos (2%) (WORLD STEEL 
ASSOCIATION, 2020). Portanto, observa-se que o setor “construção e infraestrutura” abrange a maior parcela 
de participação na aplicação dos aços como material de engenharia. Neste setor, entre outras, destaca-se a 
utilização nas áreas eólica, naval, petróleo e gás, construção civil e ferroviário. Em termos conceituais, conforme 
ilustrado na Figura 1, os aços caracterizam-se como ligas ferrosas que possuem o carbono como o principal 
elemento de liga (0,008%pC – 2,11%pC). Por sua vez, podem ser classificados quanto a sua composição, ao 
método de fabricação, ao tipo de produto, a microestrutura, dentre outras. Quanto à composição, os aços podem 
ser divididos em dois grandes grupos: (i) aços carbono e (ii) aços liga. 
 
 
Figura 1. Divisão dos materiais de engenharia e as classificações dos aços. Elaborada pelos Autores 
 
Como apresentado no grupo (i) (Figura 1), os aços carbono são formados por ligas que têm o ferro como o 
solvente e da adição intencional de carbono como soluto. A adição do C situa-se, teoricamente, entre os seus 
limites de solubilidade na ferrita () e na austenita (), respectivamente. Adicionalmente, podendo, também, 
apresentar impurezas decorrentes do seu processo de extração do minério de ferro, tais como S e P. 
Complementarmente, os aços carbono apresentam ainda percentagens de manganês, entre 0,2<%pMn<1,65, 
para estabilizar o enxofre na forma MnS. Quanto ao teor de carbono e a composição eutetóide, os aços carbono 
subdividem-se em aço eutetóide(0,76%pC), aços hipoeutetóides (0,022<%pC0,76) e aços hipereutetóides 
(0,76<%pC2,14). Além dessa classificação, os aços carbono ainda podem ser identificados como baixo carbono 
(0,3%pC), médio carbono (0,3<%pC 0,5) e alto carbono (%pC>0,5) (ASM INTERNATIONAL, 1998; BRAMFITT, 
2002; COSTA E SILVA; MEI, 2010; DOSSETT; BOYER, 2006; RAJAN; SHARMA; SHARMA, 2011; TIMINGS, 
2008). 
Quanto aos aços liga, em geral, suas composições apresentam quantidades balanceadas de elementos de 
liga, tais como o manganês (>1,65%pMn), níquel, cromo, molibdênio, tungstênio, alumínio, zircônio, cobalto, 
vanádio, titânio e qualquer outro elemento adicionado para obter propriedades específicas demandadas para uma 
determinada aplicação industrial (DOSSETT, 2020; DOSSETT; BOYER, 2006). Ao mesmo tempo, como ilustrado 
na Figura 1, os aços liga podem ser classificados em três grandes grupos, tendo como base a porcentagem, em 
peso, de elementos de liga adicionados, ou seja: (i) baixa liga, com adição de até 5%; (ii) média liga, com adição 
maior que 5% e menor que 10% e (iii) alta liga, contendo valor adicionado igual ou maior que 10%. Entre os aços 
baixa liga, os aços de alta resistência e baixa liga (ARBL) se destacam em aplicações da indústria petrolífera, 
como aos aços cobertos pela norma API 5L, principalmente, na fabricação de dutovias (SHARMA; 
MAHESHWARI, 2017). Desta forma, considerando o significativo percentual das ligas ferrosas aplicadas em 
plantas industriais, estruturas navais, dutovias, entre outras, os aços são as ligas comerciais mais empregadas, 
por apresentarem uma adequada relação entre resistência mecânica x custo x facilidade de fabricação dos 
componentes. No caso específico da fabricação, a resposta em serviço será significativamente dependente da 
sua soldabilidade1 (BLONDEAU, 2008; FARRER, 2004; HICKS, 2001). 
_______________________ 
1 De acordo com American Welding Society (AWS, 2007), a soldabilidade caracteriza-se como a capacidade de um material ser soldado 
(por exemplo, unido, revestido e/ou recuperado), por determinado processo de soldagem, dando como resposta uma estrutura especificada 
em projeto e adequadamente preparada para desempenhar, satisfatoriamente, as condições de serviço. 
16 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 Em geral, como apresentada na Figura 2a, as propriedades almejadas para o substrato (peça, conjunto, 
equipamento), como a resistência mecânica, a tenacidade, a dureza e a resistência à corrosão, entre outras, são 
dependentes da relação entre a composição química da liga ferrosa (critérios de seleção do material, tendo como 
base o meio de operação e as solicitações em serviço) e o histórico de fabricação (trabalho térmico, mecânico ou 
termomecânico). Nesta linha, observando a Figura 2b e considerando a fabricação por soldagem dos aços 
tratáveis termicamente, a determinação do grau de soldabilidade decorrente é uma característica fundamental 
para o entendimento das possíveis implicações metalúrgicas sobre o desempenho do substrato (HEBDA; SADY, 
2013a; KIM et al., 2017; ODEBIYI et al., 2019). 
 
 
Figura 2. Em (a), fluxograma mostrando a relação entre a composição química, a fabricação e a 
propriedade do substrato. Em (b), observa-se que propriedade é mensurada pela determinação do grau 
de soldabilidade e parâmetro empírico carbono equivalente. Fonte: Elaborada pelos autores. 
 
Como a soldabilidade também tem relação com a composição química do substrato, os elementos químicos 
constituintes da liga desempenham um papel fundamental na formação e nas propriedades da zona termicamente 
afetada (ZTA) e do metal de solda (MS). No caso particular dos aços tratáveis termicamente, o teor de carbono 
atua diretamente na “temperabilidade” (característica rastreada, em campo, a partir da dureza) e, 
consequentemente, no grau da soldabilidade, uma vez que esses dois fatores possuem relação direta. Na prática, 
levando-se em conta a composição química adotada, quanto maior o teor de carbono da liga, maior a dureza e, 
consequentemente, menor será o grau soldabilidade da liga. Ou seja, em função da condição de fabricação 
adotada (história térmica), o substrato será mais susceptível à formação de fases deletérias (por exemplo, 
martensita não revenida), à alteração no comportamento dúctil / frágil e à possível indução de defeitos / 
descontinuidades como trincas na ZTA. Então, como a soldabilidade e composição química apresentam relação, 
para as ligas ferrosas tratáveis termicamente, além do carbono, os demais elementos químicos presentes no 
substrato influenciam, proporcionalmente ao carbono, na soldabilidade do substrato. Diante disso, nasce a 
proposição de formulações empíricas denominadas de “carbono equivalente” (CE), as quais foram elaboradas 
com o objetivo de quantificar o grau (facilidade) de soldabilidade de uma determinada liga ferrosa 
(GRIGORENKO; KOSTIN, 2013; ITO; BESSYO, 1969; JORGE et al., 2021; KIM et al., 2017; LIPPOLD, 2015; 
PANG, 1993; TAWENGI; SEDMAK; GRABULOV, 2014; TOMKÓW; TOMKÓW, 2019). 
Nesta linha de pensamento, para facilitar o entendimento inicial, a Figura 2b apresenta, esquematicamente, a 
relação entre o valor do CE, a temperatura de pré-aquecimento adotada e a possibilidade do surgimento de trincas 
na região do depósito. De forma geral, observa-se que quanto maior o valor do CE, maior será a necessidade ou 
a obrigatoriedade (normalização) do planejamento e da execução da etapa de pré-aquecimento e/ou pós-
aquecimento do substrato. 
Portanto, na fabricação por soldagem de ligas ferrosas tratáveis termicamente (matriz ferrítica), a soldabilidade 
e a sua relação com o CE são constantemente estudadas e melhoradas como forma de maximizar as 
propriedades mecânicas do aço, como a tenacidade, a dureza e a resistência à tração e, ao mesmo tempo, tentar 
manter uma adequada capacidade de fabricação e propriedade final do substrato (soldabilidade). Neste caso, se 
a estratégia adotada for pela modificação da resistência mecânica, via composição química, de um lado, ao se 
incrementar a composição, se eleva a resistência mecânica do substrato. Por outro lado, esta ação reduz a 
soldabilidade do substrato, uma vez que a liga torna-se mais propensa à indução de fases deletérias, quando da 
17 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
imposição da história térmica (aquecimento e resfriamento), fora do equilíbrio, característica do processo de 
soldagem (EL-ESKANDARANY, 2015; KASUYA, 2021; KURLYANDSKAYA et al., 2016). Tendo em vista esta 
condição, além do conhecimento das características da liga, é necessário implementar testes auxiliares de 
soldabilidade, os quais permitem realizar a qualificação dos aços quanto grau de soldabilidade. Assim, os testes 
de soldabilidade auxiliam na adequabilidade do depósito, com o objetivo de analisar, sob diferentes graus de 
restrição, a suscetibilidade à ocorrência trincas (trincas a frio, trincas à quente ou trincas de reaquecimento). 
Neste ponto, é importante enfatizar que os testes de soldabilidade não são capazes de representar com exatidão 
as condições reais de serviço de um componente. Diante dessas limitações, os testes de soldabilidade podem 
fornecer um índice de comparação tanto para os metais com diferentes composições quanto para os 
procedimentos e os processos (AWS, 2007; GRIGORENKO; KOSTIN, 2013). 
Os testes de soldabilidade, em geral, são amplamente aceitos e têm emprego na análise combinada com 
outros ensaios mecânicos e/ou técnicas de caracterização microestrutural (SHIRAIWA et al., 2020). Como o 
exemplo discutido anteriormente, a avaliação da soldabilidade, via teste de junta em Y oblíquo “auto-restrição” 
(Teste Tekken), desenvolvido nos anos 60, por Kihara, Suzuki e Nakamura, ainda é utilizada como uma 
importante ferramenta no estudo da soldabilidade dos aços (J. KARTHIKEYAN; R. VARADHARAJAN; K. 
PITCHAIMUTHU, 2015; LEE et al., 2015). 
Quanto à classificação, os testesde soldabilidade podem ser separados em categorias e em função do tipo 
de liga (tanto o metal de base quanto o do consumível), da natureza da trinca (trinca na ZTA ou no metal de 
solda), do modo de fratura (intragranular, intergranular ou clivagem), do procedimento e dos parâmetros de 
soldagem (descrição do processo, polaridade, movimentação do eletrodo “tecimento”, corrente, tensão e 
velocidade de soldagem), do grau de restrição da peça (geometria e dimensões), do nível de hidrogênio difusível 
(teor de hidrogênio e humidade atmosférica), dentre outros (KURJI; CONIGLIO, 2015). 
Na seleção e implantação de um determinado processo de soldagem por fusão, sob imposição ou não de 
normalização, como já abordado anteriormente, é interessante conhecer as condições metalúrgicas que induzam 
possíveis alterações microestruturais e/ou químicas, e, consequentemente, modificações nas propriedades do 
substrato. Essas alterações podem, entre outras análises, embasar a previsão da dureza na condição pós-
soldagem na ZTA (vide Figura 3), como será o perfil e nível de tensão residual e qual a suscetibilidade da região 
à fragilização quando da presença de hidrogênio difusível. Em suma, todos esses aspectos impactam diretamente 
na soldabilidade do componente (GHOMASHCHI; COSTIN; KURJI, 2015; J. KARTHIKEYAN; R. 
VARADHARAJAN; K. PITCHAIMUTHU, 2015; PHILIPS, 2016). 
Ainda na Figura 3, para os aços tratáveis termicamente, verifica-se que a ZTA, na condição como soldada, 
estará sujeita a perfis de tensões mecânicas trativas e compressivas. A região sujeita a carregamento trativo está 
situada na interface da ZTA com o metal de solda. Por sua vez, nesta interface, a ZTA está representada pela 
sub-região denominada de zona de grãos grosseitros (ZGG). Essa sub-região tem algumas características que 
demandam cuidados nas etapas pré, durante e pós-fabricação, uma vez que estará influenciada pelo tripé fase 
desfavorável (por exemplo, martensita não revenida), tamanho de grão (tamanho de grão muito maior do que o 
tamanho original no substrato) e concentrador de tensão (geometria do reforço do cordão gerando um fator 
intensificador de tensões mecânica local – Kt). Por fim, o tripé citado, quando da presença adicional de hidrogênio 
residual, cria condições de susceptibilidade à ocorrência de trinca. 
Com base no conceito de soldabilidade, proposto pela AWS (2007), e nas informações apresentadas e 
discutidas nas Figuras 2 e 3, aspectos como a composição química (eletrodo e/ou metal de base), microestrutura 
(ZTA e metal de solda – MS), hidrogênio difusível (oriundo do processo de fabricação e/ou da condição superficial 
“limpeza”), condições geométricas (espessura e concentrador de tensão), história térmica experimentada 
(gradiente térmico (C/mm) e taxa de resfriamento (C/s), condições normalização / integridade (dureza máxima 
permissível, tipo de dano, outros), procedimento de soldagem (corrente elétrica, tensão elétrica, velocidade de 
soldagem, outros), ensaios / testes relacionados (testes de soldabilidade, análise metalográfica, outros), ambiente 
de serviço (meio e carregamento) são importantes no entendimento, na mensuração e na avaliação para que o 
produto gerado seja factível de uso e satisfaça as condições almejadas em projeto. 
Quanto aos impactos e a importância da soldabilidade, Ito e Bessyo (1969) descrevem que propriedade do 
substrato está diretamente relacionada com a susceptibilidade às trincas na região do depósito (metal de solda 
e/ou zona termicamente afetada “ZTA”) e, portanto, constitui-se como um dos parâmetros mais importantes 
quando do planejamento, execução e inspeção da operação de soldagem. Em adição, Karthikeyan; Varadharajan; 
Pitchaimuthu (2015) e Lee et al. (2015) relatam que, para evitar a formação de trincas induzidas por hidrogênio, 
fatores e condições tais como a espessura, o teor de hidrogênio oriundo do processo / superfície, a composição 
química e o aporte térmico devem ser levados em consideração. Dentre esses fatores, o parâmetro empírico 
carbono equivalente (CE) permite uma avaliação preliminar, de forma padronizada, da suscetibilidade ao 
surgimento da trinca. Neste caso, como apresentado na Figura 2 e considerando norma de fabricação adotada, 
quanto maior o valor do CE calculado para uma determinada liga, menor será a sua soldabilidade e, por 
consequência, maior a sua tendência para a nucleação de trincas na região do depósito. 
Como precursor da proposição do CE, a partir da ideia de se ter uma equação que fosse capaz de relacionar 
a composição química com a resistência à tração e, com isso, servindo de base para o desenvolvimento do 
parâmetro empírico, o metalurgista escocês Andrew McWilliam faz a primeira proposição, no início do século XX. 
Em 1939, pela evolução e conhecimento das ligas ferrosas, o metalurgista Louis Reeve apresentou algumas 
conclusões a respeito da relação da ocorrência de trincas em juntas soldadas com dureza medida na ZTA, o grau 
18 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
de restrição / espessura da peça e o tipo do consumível adotado. Na mesma linha, Dearden e O’Neill, em 1940, 
propuseram uma formulação empírica denominada “carbono equivalente (CE)”, a qual passou a ser adotada pelo 
Instituto Internacional de Soldagem (International Instititute of Welding – IIW), em 1967 (LANCASTER, 1999). A 
concepção do CE baseou-se na expectativa de disponibilizar uma ferramenta auxiliar para a estimativa da 
temperabilidade de uma determinada liga ferrosa, que, no contexto da soldagem, permitiria a inferência do quão 
a liga está susceptível à formação de fases deletérias na ZTA e/ou no metal de solda (incremento da dureza). 
Portanto, é de interesse acadêmico e industrial a realização de estudos e o desenvolvimento e proposições de 
ferramentas, de fácil aplicação, para a predição da temperabilidade e do consequente grau de soldabilidade de 
uma liga tratável termicamente (GRIGORENKO; KOSTIN, 2013; HEBDA; SADY, 2013a; ITO; BESSYO, 1969; 
KASUYA, 2021; KASUYA; YURIOKA, 1993; KIHARA; KANAZAWA; TAMURA, 1976a; KOSTIN, 2012; KURJI; 
CONIGLIO, 2015; ODEBIYI et al., 2019; SHARMA; MAHESHWARI, 2017; TALAŞ, 2010; TAWENGI; SEDMAK; 
GRABULOV, 2014; TOMKÓW; TOMKÓW, 2019; YURIOKA, 2001, 1985). 
 
 
 
Figura 3. Exemplo da localização, da constituição e dos perfis de dureza e de tensões residuais na zona 
termicamente afetada (ZTA) e suas sub-regiões para um aço carbono tratável termicamente. Fonte: 
Elaborada pelos autores. 
 
Diante do quadro apresentado, o trabalho tem como objetivo apresentar uma revisão de literatura sobre a 
soldabilidade de ligas ferrosas tratáveis termicamente, as proposições e as aplicações do carbono equivalente 
como parâmetro de avaliação da soldabilidade e as respectivas ferramentas auxiliares adotadas nesta avaliação 
(testes de soldabilidade). É evidente e estratégica que a revisão desse tema possua importância científica e 
tecnológica, visto que, historicamente, o conceito de carbono equivalente tem apresentado diferentes formulações 
matemáticas a partir de critérios distintos em relação à composição química e ligas cobertas (grupamento), 
critérios geométricos / projeto (espessura) e condições de fabricação (taxa de resfriamento, temperatura de pré-
aquecimento, outras). Por fim, a revisão apresenta a cronologia e a discussão a respeito das principais 
formulações para o carbono equivalente (CE), bem como as tendências para o desenvolvimento e as possíveis 
aplicações desse parâmetro. 
 
2. PROPOSIÇÕES, EVOLUÇÃO E APLICABILIDADE DO CARBONO EQUIVALENTE 
 
Para os aços tratáveis termicamente, além da composição química inicial (teores de carbono e demais 
elementos de liga), é importante entender como a história térmica ou termomecânica, imposta pela etapa de 
fabricação, influencia na relação entre as tensões residuais (geometria, grau de restrição e expansão / contração 
 
19 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho”por mudança de estado e/ou fase) e a quantidade de hidrogênio residual (processo de soldagem / condição 
superficial). Assim, entendo como essa relação pode afetar na susceptibilidade para a fragilização e a nucleação 
de trinca na zona termicamente afetada (ZTA) e/ou no metal de solda (MS), o estudo, o desenvolvimento e a 
disponibilidade de ferramentas auxiliares são fundamentais para a avaliação da integridade da região soldada, 
na condição pós-fabricação. Nesta linha, as diferentes proposições para a formulação empírica do “carbono 
equivalente (CE)” permitem uma avaliação prévia do grau de soldabilidade (boa, média ou baixa), tendo como 
entrada a composição química da liga e a inferência normalizada de um valor limite para uma propriedade de fácil 
mensuração em campo (dureza). 
 
2.1 Formulações e utilização do Carbono Equivalente (CE) 
 
A primeira tentativa, proposta por Andrew McWilliam, no início do século XX, de uma expressão numérica 
empírica, de fácil mensuração, capaz de relacionar o limite de resistência à tração (Ultimate Tensile Stress – UTS) 
com a composição química de ligas ferrosas, teve como base os principais elementos de liga usados na época 
para o controle do aumento de resistência mecânica. Neste caso, os teores em peso de C, Mn e P (vide Equação 
1) (WANG, 2015a). 
 
𝑈𝑇𝑆 (𝑝𝑠𝑖) = 38.000 + 800𝐶 + 100𝑀𝑛 + 100𝑃 (1) 
 
Observa-se que a Equação 1 considera uma relação linear entre a UTS e os elementos liga e é válida para 
os aços com 0,20%pC0,26. Além disso, a equação não leva em consideração o teor de Si e, portanto, mostra 
como resposta um valor menor do que o esperado para a UTS (medido experimentalmente), quando o teor de C 
atinge 0,5% em peso. Isso mostra a necessidade de uma reavaliação da Equação 1, considerando os efeitos da 
presença do Si (vide Equação 2), as variações do C e a interação entre o C e o Mn (WANG, 2015a) 
 
𝑈𝑇𝑆 (𝑝𝑠𝑖) = 38.000 + [800 + 4(𝐶 − 20)] + 120𝑆𝑖 + [100 + 2(𝐶 − 20)]𝑀𝑛 + 100𝑃 (2) 
 
Estudando os resultados e as inconsistências da formulação apresentada por McWilliam, os pesquisadores 
Dearden e O’Neill propuseram a primeira equação para estimar o parâmetro empírico carbono equivalente (CE), 
a partir da Equação 3, tendo como referência os coeficientes de aumento da UTS (DEARDEN, J. e O’NEILL, 
1940; WANG, 2015) 
 
𝐶𝐸𝐷𝑒𝑎𝑟𝑑𝑒𝑛−𝑂′𝑁𝑒𝑖𝑙𝑙−𝑂𝑟𝑖𝑔𝑒𝑚 = 𝐶 +
𝑆𝑖
6
+
𝑃
0,8
+
𝑀𝑛
5
 (3) 
 
Através do CEDearden-O’Neill-Origem (Equação 3), empregando 50 ligas ferrosas, Dearden e O’neill (1940) 
apresentaram, por meio da Equação 4, uma função para a estimação do valor da UTS. 
 
𝑈𝑇𝑆 (𝑡𝑜𝑛𝑠/𝑖𝑛2 ) = 16 + 40𝐶𝐸𝐷𝑒𝑎𝑟𝑑𝑒𝑛−𝑂′𝑁𝑒𝑖𝑙𝑙−𝑂𝑟𝑖𝑔𝑒𝑚 ± 2 𝑡𝑜𝑛𝑠/𝑖𝑛
2 (4) 
 
Como forma de melhorar a resposta gerada pela Equação 3, após nova bateria de ensaios em ligas ferrosas, 
contendo elementos de liga (principais e residuais) não contemplados na referida equação, e da verificação dos 
resultados obtidos para a UTS (Equação 4), Dearden e O’Neill propuseram um ajuste nos termos da Equação 3, 
chegando formulação dada pela Equação 5. Como informação interessante na equação ajustada para o CE, 
observa-se que o elemento fósforo possui efeito sobre o valor do CE mais acentuado do que o próprio carbono. 
 
𝐶𝐸𝐷𝑒𝑎𝑟𝑑𝑒𝑛−𝑂′𝑁𝑒𝑖𝑙𝑙−𝐴𝑗𝑢𝑠𝑡𝑎𝑑𝑜 = 𝐶 +
𝑆𝑖
6
+
𝑀𝑛
8
+
𝐶𝑟
7
+
𝑁𝑖
16
+
𝑀𝑜
4
+
𝐶𝑜
16
+
𝑃
0,8
 (5) 
 
Os autores observaram que a proposição da relação entre o CEDearden-O’Neill-Origem e a UTS (Equação 4) não era 
atrativa, uma vez que a determinação experimental do valor de UTS não representava uma ação simplória. Desta 
forma, Dearden e O’Neill focaram os estudos na relação do CE com a dureza Vickers do substrato, por ser o 
ensaio de dureza de mais fácil implementação (laboratório e campo) e de menor custo. Portanto, como 
desdobramento desta nova frente de estudo, os autores apresentaram uma nova equação para o CE, tendo como 
base a dureza gerada no substrato, na condição como fabricado (Equação 6). 
 
𝐶𝐸𝐷𝑒𝑎𝑟𝑑𝑒𝑛−𝑂′𝑁𝑒𝑖𝑙𝑙−𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑑𝑎 = 𝐶 +
(𝑀𝑛+𝐶𝑟)
5,5
+
𝑁𝑖
15
+
𝑉
5
+
𝑀𝑜
4
+
𝐶𝑜
150
+
𝑃
2
 (6) 
 
Agora, de posse da equação 6, a máxima dureza no substrato pode ser estimada a partir da Equação 7. Nota-
se que a Equação 6 tem uma relação linear entre o valor estabelecido para o CE e a dureza máxima esperada 
de observação no substrato, na condição como fabricado. Segundo Hebda e Sady (2013), essa expressão é um 
dos indicadores mais conhecidos para determinação do grau de soldabilidade de uma liga ferrosa (matriz ferrítica). 
 
𝐻𝑉 = 1200𝐶𝐸𝐷𝑒𝑎𝑟𝑑𝑒𝑛−𝑂′𝑁𝑒𝑖𝑙𝑙−𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑑𝑎 − 200 (7) 
20 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
A partir dos resultados de testes de soldabilidade tipo Reeve, em chapas de 12 mm de espessura, Dearden 
e O’Neill sugeriram que os aços C-Mn são considerados soldáveis quando essa dureza máxima estimada for 
menor do que 350 HV (ITO; BESSYO, 1969). O resultado observado pelos autores é importante para se entender 
o motivo das normas / códigos de fabricação determinarem as durezas limites permissíveis, pós-fabricação, para 
uma determinada liga ferrosa, tratável termicamente, e suas condições de uso (solicitações e meio). Ou seja, a 
dureza medida como uma inferência das possíveis fases esperadas de observação na região soldada. 
Como análise preliminar, conclui-se que, a partir das equações propostas por Dearden e O´Neill, é possível 
inferir os efeitos deletérios da concentração do carbono e dos outros elementos químicos sobre o grau de 
soldabilidade de uma determinada liga ferrosa. Adicionalmente, além da composição química, como a história 
térmica (indução de mudanças de fases no estado sólido), as condições geométricas da estrutura (alterações no 
grau de restrição e no efeito no regime de transferência de calor) e a presença de hidrogênio residual influenciam 
nas características mecânicas (por exemplo, dureza limite), metalúrgicas do substrato (por exemplo, presença de 
martensita não revenida) e, principalmente, para o surgimento de descontinuidades / defeitos estruturais (por 
exemplo, a geração de trinca induzida pelo hidrogênio). Nesta linha de raciocínio, para a área da soldagem, 
avaliando a zona termicamente afetada (ZTA), o conhecimento prévio do CE permite deduzir e subsidiar o 
comportamento do substrato, em especial, na sub-região da ZTA denominada de zona de grãos grosseiros (ZGG), 
situada vizinha à linha de fusão. 
Ainda na evolução das proposições para o CE, em 1958, a British Standards Society (BSS) aceita a definição 
de carbono equivalente e apresenta uma versão modificada (Equação 8) da equação descrita anteriormente por 
Dearden e O’Neill (WANG, 2015b). 
Em 1961, Winterton (Equação 8), depois de revisar doze equações de CE, considerou os efeitos do V e do 
Mo como elementos redutores do valor do CE e, por conseguinte, da diminuição da dureza como fabricado. Por 
esse motivo, as parcelas da Equação 8, contendo tais elementos, são expressas com sinal negativo (WANG, 
2015b). 
 
𝐶𝐸𝑊𝑖𝑛𝑡𝑒𝑟𝑡𝑜𝑛 = 𝐶 +
𝑀𝑛
6
+
𝐶𝑟
10
+
𝑁𝑖
20
−
𝑉
10
−
𝑀𝑜
50
+
𝐶𝑢
40
 (8) 
 
No mesmo ano, Kihara, Suzuki e Tamura propuseram uma versão de CE (Equação 9), onde se considera os 
elementos químicos V e Mo como elementos de incremento da “temperabilidade” (WANG, 2015b). Tal equação 
foi adotada pela Japan WeldingEngineering Society. 
 
𝐶𝐸𝐾𝑖ℎ𝑎𝑟𝑎−𝑊𝐸𝑆 = 𝐶 +
𝑆𝑖
24
+
𝑀𝑛
6
+
𝐶𝑟
5
+
𝑁𝑖
40
+
𝑀𝑜
4
+
𝑉
14
 (9) 
 
No artigo, os autores sugeriram, também, uma relação entre a dureza máxima na ZTA e o valor do CE. Assim, 
de posse do valor do CE (Equação 9), a aplicação de testes padronizados de susceptibilidade ao trincamento, às 
vezes, pode ser substituída pela inferência da máxima dureza observada na condição como fabricada (uma 
estimativa da presença de fases metaestáveis) e, fundamentalmente, a disponibilidade de um método mais 
simples para se determinar o grau de soldabilidade das ligas ferrosas tratáveis termicamente (KIHARA; 
KANAZAWA; TAMURA, 1976b). Para uma determinada liga ferrosa, essa relação, entre a máxima dureza na ZTA 
e o CE é expressa pela Equação 10 (HEBDA; SADY, 2013a). 
 
𝐻𝑉𝑚á𝑥 = 666𝐶𝐸𝐾𝑖ℎ𝑎𝑟𝑎−𝑊𝐸𝑆 + 40 (10) 
 
Adicionalmente, com base nas equações 9 e 10 e nas avaliações experimentais (validação), KIHARA; 
KANAZAWA; TAMURA (1976) relatam ainda que, para valores de HVmáx < 350, durante a soldagem dos aços 
Mn-Si (aços SAE 92XX), não há a necessidade do planejamento e da utilização da etapa pré-aquecimento. No 
entanto, quando várias classes de aços são consideradas, a relação entre o valor de HVmáx e a tendência à 
formação de trincas se torna difícil de ser estimada em termos apenas da dureza (KIHARA; KANAZAWA; 
TAMURA, 1976a). 
Para exemplificar essas considerações, a Figura 4 apresenta graficamente as relações entre o valor do CE e 
a máxima dureza na ZTA (Figura 4a). Por sua vez, na Figura 4b, verifica-se a tendência para a formação de trinca 
na ZTA tendo como referência o valor do CE. Portanto, é possível verificar na figura 4a, para diferentes ligas 
ferrosas, que os resultados experimentais seguem uma tendência de aumento da dureza com o aumento do CE. 
Também, em relação ao CE, a curva da Figura 4(b) mostra que a proposição do CE é uma ferramenta útil na 
estimativa da tendência de formação de trincas para os aços. Os resultados da Figura 4b foram obtidos a partir 
de ensaios de dobramento da região soldada (Weld Bead Bend Test), a partir dos dados levantados por Kim et 
al. (2017). Os resultados destes testes indicam uma tendência exponencial do tamanho observado para a trinca, 
quando se incrementa linearmente o valor do CE. Os autores destacam que, os corpos de prova sofrem 
rompimento caso o limite superior do comprimento da trinca atinja 80 mm. Como critério de confiabilidade, um 
fator de segurança de 40% é geralmente considerado. Isso implica, no estudo, que o comprimento crítico pode 
ser de 32 mm e, consequentemente, CECR = 0,48, conforme estimado na Figura 4b. Esse valor (0,48) é parecido 
com o limite que define a transição entre os graus de soldabilidade (médio e baixo). 
21 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
 
 
Figura 4: Relação entre CE, dureza e suscetibilidade a trincas. Fonte: Imagem (a) por Suzuki e Tamura 
apud Kobelco (2007); Imagem (b) por KIM et al. (2017) 
 
Em 1967, depois de vinte e sete anos dos estudos e das aplicações do conceito de CE, proposto por Dearden 
e O’Neill, o International Institute of Welding (IIW) apresentou à comunidade a sua versão de CEIIW (Equação 11), 
na qual os elementos de liga, com exceção do carbono, são postos em três níveis de influência em relação ao 
CE: Cr, Mo e V são os que mais influenciam, seguidos pelo Mn e com menor grau o Ni e Cu (WANG, 2015b). 
 
𝐶𝐸𝐼𝐼𝑊 = 𝐶 +
𝑀𝑛
6
+
(𝑁𝑖+𝐶𝑢)
15
+
(𝐶𝑟+𝑀𝑜+𝑉)
5
 (11) 
 
O CEIIW é amplamente adotado devido sua aplicabilidade na avaliação dos aços alta resistência e baixa liga 
(ARBL) e com emprego na faixa de espessura de 40 a 150 mm. Portanto, o valor permissível que pode ser atingido 
por CEIIW é de 0,47, para os aços nessa faixa de espessura (KRAWCZYK, 2019). 
Com base na proposição do IIW, por exemplo, a norma API 5L (2004) recomenda o uso da Equação 11 para 
aços com teores de carbono maiores do que 0,12%pC. O uso desta equação também é recomendado para aços-
carbono comuns e aços C-Mn. 
Analisando as limitações das proposições das formulações para o CE e a não presença de determinados 
elementos químicos, em 1968, Yoshinori Ito e Kyoshi Bessyo propuseram um conceito para o CE (Ver Equação 
12)., denominado pelos autores como Pc (cracking parameter), baseado nos ensaios de soldabilidade Tekken, 
para a determinação da tendência de trincas a frio na região do depósito (Yoshinori Ito; Kyoshi Bessyo (1969)). 
O motivo disto foi a sugestão de que os ensaios com teste Reeve, realizados por Dearden e O’Neill, não forneciam 
a restrição suficiente para induzir trincas na região do depósito. O Pc, que indica a susceptibilidade à formação 
de trincas em depósitos de aços médio carbono até a classe de alta resistência (100 kgf/mm2), foi estabelecido 
através de experimento estatístico e levando em consideração a composição química do substrato, o teor de 
hidrogênio difusível e a espessura das chapas. De forma geral, a Equação 12 foi desenvolvida considerando os 
aços com teor de carbono 0,07%pC0,22 e presença do manganês 0,4%pMn1,4, espessura entre 19 e 50 
mm e com eletrodos de baixo hidrogênio. 
 
𝑃𝑐 = 𝐶 +
𝑆𝑖
30
+
𝑀𝑛
20
+
𝐶𝑢
20
+
𝑁𝑖
60
+
𝐶𝑟
20
+
𝑀𝑜
15
+
𝑉
10
+ 5𝐵 +
𝑡
600
+
𝐻
60
 (12) 
 
Onde: 
Pc – Parâmetro de trinca (adimensional) 
t – Espessura da chapa em mm 
H – Hidrogênio residual (difundido no substrato) em ml/100g 
 
Na equação do PC, o valor de t representa a espessura da chapa, em mm, e o H descreve o hidrogênio 
difusível, em ml/100g do metal de solda (MS). Por sua vez, é importante citar que, se os efeitos da espessura de 
chapa e do hidrogênio difusível forem desconsiderados, PC se reduz à equação Pcm (Cracking parameter 
modified), a qual considera apenas a composição química do aço (Equação 13). De acordo com as informações 
contidas na norma API 5L (2004), essa simplificação da Equação 12 é mais adequada para a análise dos aços 
com teores de carbono menores que 0,12%pC. Portanto, essa condição é interessante na avaliação da 
soldabilidade dos aços cobertos pela API 5L e que tenham um número significativo de elementos de liga em suas 
composições. 
 
22 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
𝑃𝑐𝑚 = 𝐶 +
𝑆𝑖
30
+
𝑀𝑛
20
+
𝐶𝑢
20
+
𝑁𝑖
60
+
𝐶𝑟
20
+
𝑀𝑜
15
+
𝑉
10
+ 5𝐵 (13) 
 
No mesmo trabalho, Ito e Bessyo estimaram uma relação linear entre a temperatura de pré-aquecimento (TPA) 
e parâmetro de trinca Pc. Para isto, os autores testaram 100 amostras para cada temperatura de pré-aquecimento 
adotada (50 °C, 100 °C e 150 °C). Os resultados indicaram que as temperaturas de 100 °C e 150 °C apresentaram 
significativo efeito para evitar a formação de trincas. Esta relação entre TPA e Pc é apresentada na Equação (14). 
 
𝑇𝑃𝐴 = 1440𝑃𝑐 − 392 (14) 
 
Além da proposição dada pela Equação 14, há outras proposições para a determinação da temperatura de 
pré-aquecimento, tendo como base o valor do CE, onde as mesmas podem auxiliar na análise da possível 
fragilização na região do depósito. Por exemplo, uma relação não linear entre TPA e PC é mostrada na Equação 
15. Na equação, com base nas investigações realizadas via testes de soldabilidade Tekken, O. G. Kasatkin apud 
Belyaev (2018) descrevem que essa relação tem validade para 0,27%pC0,5. 
 
𝑇𝑃𝐴 = 350{1 − exp [−5(𝑃𝐶 −0,27)]} (15) 
 
Contudo, é importante ressaltar que a equação Pcm reflete um comprimento nominal de trinca, que engloba, 
ao mesmo tempo, o metal de solda (MS) e a ZTA. Assim, não diferencia o comprimento de trinca localizado no 
metal de solda do comprimento de trinca presente metal de base. Portanto, a análise da tendência à formação de 
trinca na ZTA é mascarada, omitindo a contribuição da formação de trinca no metal de solda. Nesta linha, um 
estudo mais detalhado desta condição deve ser avaliado para o melhor entendimento desta possibilidade de 
inconsistência nas medições e nas avaliações da real susceptibilidade da ZTA. 
Ainda no âmbito da discussão relacionada às formulações empíricas para a avaliação do grau de 
soldabilidade do substrato, via PC e Pcm, Ito e Bessyo (1969) comprovam ser impróprio estimar a susceptibilidade 
à trinca na região do depósito somente com base no valor medido para o Pcm, uma vez que os fatores adicionais 
como o “hidrogênio difusível” e a “espessura” não podem ser menosprezados. Foi observado que corpos de prova 
com maiores frações de H difusível exibiram maior susceptibilidade ao trincamento. Portanto, com base em 
fundamentos da mecânica da fratura, a simples variação da espessura do substrato, na região do depósito, pode 
alterar o estado de tensão atuante, ou seja, induzir um estado plano de tensões, para valores baixos de 
espessura, e, em contrapartida, um estado plano de deformações, para valores elevados de espessura. Dessa 
forma, o modelo matemático proposto para PC se apresenta útil para remover os efeitos de dispersão dos dados 
obtidos no gráfico (CE x %trinca), tanto motivado pelas diferentes concentrações de H, quanto pelas diferenças 
na espessura dos metais de base (vide Figura 5). Além disso, o PC se mostra eficiente na predição de trincamento 
a frio de uma ampla gama de aços provenientes de diferentes processos termomecânicos, como aços 
temperados, normalizados, laminados etc. 
 
 
Figura 5: Efeito da formulação adotada para avaliação da soldabilidade sobre a dispersão nos valores 
medidos para “CE x %trinca”. Em (a) dispersão gerada pelo uso do CEIIW e, em (b), a redução na 
dispersão gerada pelo uso de Pc (ITO; BESSYO, 1969). 
 
Outrossim, Ito e Bessyo (1969) consideraram que a medição da dureza máxima não pode ser usada como 
forma de determinar a susceptibilidade ao trincamento na região do depósito e, portanto, não deve ser um fator 
determinante para CE. Na época do estudo mencionado, o IIW (International Institute of Welding) havia posto 
como norma que a dureza limite para solda deveria ser de 350 HV, porém, na prática, foram observadas que um 
conjunto de amostras possuíam valores menores que 350 HV, mas com a com susceptibilidade elevada ao 
trincamento, enquanto ou conjunto de corpos de prova, mesmo com valores de dureza próximos a 400 HV, 
possuíam baixa susceptibilidade ao trincamento (ITO; BESSYO, 1969; WANG, 2015c). Neste caso, é factível 
inferir que os valores limites de dureza, indicados em normas e/ou códigos, devem avaliar, para grupamentos 
específicos de ligas ferrosas, qual o limite de dureza permissível e representativo (seguro). 
23 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
No estudo do carbono equivalente, Beckert et al. (1973) ponderam que a dureza máxima dos aços não é 
apenas prevista pela adição (efeito isolado) de elementos de liga contidos nas formulações do CE, mas, também, 
pelas interações entre carbono e os demais elementos. Dessa forma, apresentaram uma formulação específica 
para CE (Equação 16) e, atrelada a esta análise, outra formulação para a determinação da dureza máxima na 
região do depósito (equação 17). Um fator diferencial na formulação proposta foi o acréscimo do efeito da taxa 
de resfriamento, via utilização do Δt8/5 (no diagrama CCT, o tempo transcorrido para o resfriamento entre 800°C 
e 500°C), na equação de dureza. 
 
𝐶𝐸𝐵𝑒𝑐𝑘𝑒𝑟𝑡 = 𝐶 +
𝑆𝑖
11
+
𝑀𝑛
2.9
+
𝑁𝑖
17
+
𝐶𝑟
3.2
+
𝑀𝑜
3.4
+
𝐶𝑢
3.9
 (16) 
 
𝐻𝑉𝐵𝑒𝑐𝑘𝑒𝑟𝑡 = (𝐴 − 𝐵) exp(−𝑏𝑡)
2 + 𝐵 (17) 
 
Onde: 
 𝐵 = 167(𝐶𝐸𝐵𝑒𝑐𝑘𝑒𝑟𝑡)
2,42 + 137 
 𝐴 = 939𝐶 + 284 
 𝑏 = exp(−0.013𝐵 + 0.8) 
 𝑡 = ∆𝑡8/5 
 
Um outro trabalho sobre a soldabilidade, na condição soldagem de campo, Stout, Vasudevan e Pense (1976) 
formularam a Equação 18. Na análise, os autores consideram que se o valor de CEStout for menor que 0,35, não 
haverá a observação da presença de trinca na região do depósito. Neste ponto, vale salientar que esse mesmo 
“valor limite” foi encontrado no estudo do Pcm. Observa-se ainda, na formulação em questão, a considerável 
influência do cobre, com efeito equivalente ao carbono, o que sugere o significativo efeito deletério da presença 
e da concentração deste elemento químico sobre a suscetibilidade à ocorrência de trincamento na região do 
depósito. 
 
𝐶𝐸𝑆𝑡𝑜𝑢𝑡 = 𝐶 +
𝑀𝑛
6
+
𝑁𝑖
20
+
𝐶𝑟+𝑀𝑜
10
+ 𝐶𝑢 (18) 
 
Uma possível explicação para as diferentes formulações propostas para o CE é a diversidade nos tipos de 
testes de soldabilidade, somada com a evolução química nas ligas ferrosas, comercialmente aplicáveis. Como 
exemplo desta consideração, Lorenz, K. e Düren (1981 apud Wang 2016) observaram que, para o CEIIW, foi 
adotado o teste de Severidade Térmica Controlada (Controlled Termal Severity – CTS) para o auxílio na 
determinação do grau de soldabilidade. Os valores medidos experimentalmente diferenciavam consideravelmente 
dos valores levantados nas tubulações em condições reais de fabricação. Dessa forma, eles criaram uma nova 
formulação para carbono equivalente com aplicação específica para avaliar a soldabilidade de ligas ferrosas em 
oleodutos (Pipeline Steel Fórmula – PSL). Neste caso, o valor de CEPSL reajusta os valores de CEIIW para faixas 
químicas encontradas em condições reais de fabricação (Equação 19). 
 
𝐶𝐸𝑃𝑆𝐿 = 𝐶 +
𝑆𝑖
25
+
𝑀𝑛+𝐶𝑢
16
+
𝐶𝑟
20
+
𝑁𝑖
60
+
𝑀𝑜
40
+
𝑉
15
 (19) 
 
Além disso, os autores propuseram a Equação 20, especialmente destinada para predição da dureza, a qual 
se baseia nos efeitos da microestrutura e das taxas de resfriamento e sua integração com a composição química. 
 
𝐻𝑉𝐶 = 802𝐶 − 452𝐶 ∗ 𝐴 + 350𝐴(𝐶𝐸𝐵 ∗ 𝐶) + 305(1 − 0.67𝐴) (20) 
 
Onde: 
𝐴 =
(𝐻𝑉𝑀−𝐻𝑉𝑋)
(𝐻𝑉𝑀−𝐻𝑉𝐵)
, para 0 < A < 1 
Equação para a determinação da dureza da martensita: 𝐻𝑉𝑀 = 802𝐶 + 305 
Equação para a definição da dureza da bainita: 𝐻𝑉𝐵 = (𝐶 +
𝑆𝑖
11
+
𝑀𝑛
8
+
𝐶𝑢
9
+
𝐶𝑟
5
+
𝑁𝑖
17
+
𝑀𝑜
6
+
𝑉
3
) + 101 
Equação que representa a somatória das durezas da martensita e da bainita: 
𝐻𝑉𝑋 = 2019(𝐶[1 – 0.5𝑙𝑜𝑔 ∆𝑡8/5] + 0.3[𝐶𝐸𝐵 – 𝐶]) + 66(1 − 0.8𝑙𝑜𝑔 ∆𝑡8/5 ) 
𝐶𝐸𝐵 = 𝐶 +
𝑆𝑖
11
+
𝑀𝑛
8
+
𝐶𝑢
9
+
𝐶𝑟
5
+
𝑁𝑖
17
+
𝑀𝑜
6
+
𝑉
3
 
 
Geralmente, na região do depósito, a microestrutura final pode ser estimada a partir da dureza medida na 
ZTA, na condição como fabricado, em decorrência da imposição de taxas de resfriamento, fora da condição de 
equilíbrio, características para a fabricação por soldagem a arco (fusão). Comumente, a condição “martensita + 
bainita” está presente nos aços ARBL, como os aços API 5L X70 e X80 (WANG, 2015c). Além disso, o uso de 
operação de pós-aquecimento (tratamento térmico pós soldagem – TTPS), para a manutenção da dureza < 22 
HRC, pode impactar negativamente sobre a tenacidade, como, por exemplo, na redução da resistência à 
propagaçãode trinca a frio. 
24 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Estudando a possibilidade de ocorrência de fissuração no metal de solda, Ohshita, S., Yurioka, N. e Kimura 
(1983) perceberam que, na soldagem de aços com baixo teor de carbono, a presença trincas de solidificação, 
caso o metal de adição tivesse %Cp 0,05. Neste caso, além do efeito da contração volumétrica pela mudança 
de estado, os pesquisadores constataram que o problema tinha motivação nas transformações de fases dos aços 
(ferrita  para austenita , uma vez que os elementos que estabilizam essas fases possuem diferentes 
coeficientes de expansão térmica. Neste caso, Cr, Si, Ti, Mo, V, W e Zr estabilizando a fase . Por outro lado, C, 
Ni, Mn, Cu estabilizando a fase . O fato é que, ao se elevar o teor de carbono (elemento com maior influência na 
redução da suscetibilidade a trincas à quente), pode-se aumentar estabilidade da fase , diminuindo assim os 
efeitos de contração indesejados relacionados à transição   . Dessa forma, foi proposta uma equação para 
CE (Equação 21) que favorecesse a estabilização da formulação tem aplicabilidade para ligas ferrosas onde 
o teor de C, tanto do aço quanto no metal de solda, esteja na faixa de 0,05%Cp0,10. 
 
𝐶𝐸𝛾 = 𝐶 +
𝑁𝑖
28
+
𝑀𝑛
110
+
𝐶𝑢
83
−
𝑆𝑖
15
−
𝑀𝑜
21
−
𝐶𝑟
76
 (21) 
 
Cottrell (1984), considerando os elementos de liga e a taxa de resfriamento, propôs o conceito de dureza 
equivalente (HE) e soldabilidade equivalente (WE), impulsionado pelo conhecimento adquirido na análise dos 
efeitos do nitrogênio e do enxofre no CE. No artigo, o autor enfatiza que a equação WE se mostrou mais eficiente 
para predição da trinca a frio do que o CEIIW, fato que pode ser explicado pela consideração dos elementos de 
liga N e S nas formulações da HE e da WE. 
 
𝐻𝐸 = 80 + 800(𝐶 + 3𝑁 + 0,29) exp {− {0,25(𝑟)
1,5[𝑐+
𝑀𝑛
6
+
𝐶𝑟+𝑀𝑜
5
+
𝑉
3
+
𝑁𝑏
4𝐶
+
0,0001
𝑆
]+
𝑁𝑖
𝑀𝑛2}
−1
} (22) 
𝑊𝐸 = (𝐶 + 3𝑁 + 0,29) exp {− {0,25(𝑟)
1,5[𝑐+
𝑀𝑛
6
+
𝐶𝑟+𝑀𝑜
5
+
𝑉
3
+
𝑁𝑏
4𝐶
+
0,0001
𝑆
]+
𝑁𝑖
𝑀𝑛2}
−1
} (23) 
 
Lorenz e Düren (1981 apud Wang 2016) avaliaram a relação entre o comportamento isolado do C e o 
comportamento isolado dos demais elementos de liga, para um limite fixo de dureza permissível, na estimativa 
da presença de fase deletéria (martensita não revenida), na ZTA, quando da imposição de diferentes valores para 
o Δt8/5 (vide Figura 6) 
 
 
Figura 6: Valores permissíveis de C e demais elementos de liga para controle do limite de dureza na 
ZTA, quando da imposição de diferentes valores de Δt8/5 (LORENZ e DÜREN, 1981). 
 
De maneira complementar, Kasuya e Yurioka (1993) sugerem a divisão da soldabilidade das ligas ferrosas 
em grupos, tomando como o princípio norteador da divisão os elementos que mais influenciam na susceptibilidade 
da ocorrência de trinca a frio. Neste caso, se o carbono for o elemento químico mais relevante, a liga fará parte 
do Grupo 1. Em contrapartida, para o Grupo 2, o efeito combinado dos demais elementos será o de maior 
influência. Para isso, os autores formularam as Equações 24 e 25 (YURIOKA et al., 1983). 
 
25 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
𝐶𝐸𝑌𝑢𝑟𝑖𝑜𝑘𝑎 = 𝐶 + 𝐴(𝐶) (
𝑆𝑖
24
+
𝑀𝑛
6
+
𝐶𝑢
15
+
𝑁𝑖
20
+
𝐶𝑟+𝑀𝑜+𝑁𝑏+𝑉
5
+ 5𝐵) (24) 
 
Onde: 
𝐴(𝐶) = 0,75 + 0,25 𝑡𝑎𝑛ℎ [20(𝐶 − 0,12)] 
 
𝐻𝑚á𝑥 (𝐻𝑣) = 406𝐶 + 164𝐶𝐸𝐼 + 183 − (369𝐶 − 149𝐶𝐸𝐼 + 100) tan
−1 {
𝑙𝑜𝑔∆𝑡8
5
−2.822𝐶𝐸𝐼𝐼+0.262
0,526−0.195𝐶𝐸𝐼𝐼
} (25) 
Onde: 
𝐶𝐸𝐼 = 𝐶 +
𝑆𝑖
24
+
𝑀𝑛
6
+
𝐶𝑢
15
+
𝑁𝑖
40
+
𝐶𝑟
5
+
𝑀𝑜
4
+
𝑁𝑏 + 𝑉
5
+ 10𝐵 
𝐶𝐸𝐼𝐼 = 𝐶 −
𝑆𝑖
30
+
𝑀𝑛
5
+
𝐶𝑢
5
+
𝑁𝑖
20
+
𝐶𝑟
4
+
𝑀𝑜
6
+ 10𝐵 
 
Além disso, Yurioka et al. (1983), também, levaram em consideração uma taxa de resfriamento crítica, a qual 
tem a temperatura de 100 °C ou (t100)cr como parâmetro de referência. Portanto, caso a taxa de resfriamento seja 
maior que esse valor, a liga ferrosa analisada estará susceptível à formação de trinca a frio e, portanto, induzirá 
a uma melhor análise de qual temperatura de pré-aquecimento necessária ao controle da susceptibilidade. 
 
(𝑡100)𝑐𝑟 = exp(67.6𝐶𝑙
3– 182𝐶𝑙2 + 163.8𝐶𝑙 − 41) (26) 
 
Onde: 
(t100)cr = taxa de resfriamento (°C/s) medida ao atingir a temperatura 100 ºC 
𝐶𝐼 = 𝐶𝐸 + 0.15𝑙𝑜𝑔[𝐻] + 0.30𝑙𝑜𝑔(0.017 ∗ 𝐾𝑡 ∗ 𝜎𝑤) 
[H] é o hidrogênio difusível, Kt é fator de intensificador de tensões mecânica local e w representa o fator de 
tensão relacionado com a restrição na região do depósito. 
 
Han; Park e Kang (2012) corroboram que a microestrutura e a dureza estão relacionadas com a taxa de 
resfriamento imposta em ligas ferrosas tratáveis termicamente. Essa taxa de resfriamento, por sua vez, é 
determinada pelos parâmetros e procedimentos de soldagem e pelos aspectos geométricos da região. Portanto, 
estes fatores serão capazes de alterar a contribuição (efeitos) dos elementos contidos nas formulações para o 
CE. De forma geral, as equações para o CE, utilizadas para processos de soldagem a arco elétrico, em função 
das diferenças significativas entre as taxas de resfriamento características da fabricação, não podem ser 
aplicadas para aços avançados de alta resistência (Advanced High Strength Steels – AHSS), quando da soldagem 
a laser (CO2). Para avaliar a aplicabilidade nesta condição específica, as equações conhecidas para a 
determinação do CE foram examinadas a fim de verificar qual melhor se adequaria com a dureza observada na 
soldagem a laser. Como resposta, as equações de CE e PCM (ITO; BESSYO, 1969), propostas para reduzir efeitos 
de Mn, apresentaram melhor correlação. Especificamente, o CEL apresentou resultados mais precisos, devido ao 
acréscimo dos efeitos do Si e Cr na composição dos AHSS. Assim, essa equação passou a ser útil na predição 
da dureza máxima no caso da soldagem laser dos aços AHSS, em especial, para a indústria automobilística. 
 
𝐶𝐸𝐿 = 𝐶 +
𝑆𝑖
50
+
𝑀𝑛
25
+
𝑃
2
+
𝐶𝑟
25
 (27) 
 
𝐻𝑚á𝑥(𝐻𝑣) = 701𝐶𝐸𝐿 + 281 (28) 
 
Por último, uma equação de carbono equivalente proposta por Talaş (2010) é apresentada. Essa equação foi 
obtida através da análise estatística de um conjunto de dados de CE oriundos de diversos estudos, incluindo as 
equações anteriormente mencionadas. O autor verificou que a equação proposta (CEWM), CECottrel e CEAWS 
apresentaram-se mais adequadas na consideração das propriedades mecânicas. 
 
𝐶𝐸𝑊𝑀 = 𝐶 +
𝑀𝑛+𝐶𝑟+𝑉+𝑆𝑖
6
+
𝑀𝑜
4
+
𝑁𝑏
9
+
𝑇𝑖
3
+
𝐶𝑢
20
+
𝑁𝑖
25
+ 5𝐵 (29) 
 
O principal ponto a ser verificado nesta equação é a adição do termo que inclui o titânio. O autor propõe essa 
equação para compensar seu efeito quando da avaliação, por exemplo, dos aços ARBL contendo micro adições 
de Ti. 
Para facilitar a visualização geral das diferentes proposições para a estimação do CE, (KURJI; CONIGLIO, 
2015) propõem a estrutura apresentada na Tabela 1. De maneira sucinta, as equações para CE e suas aplicações 
são baseadas em faixas de uso, aplicabilidade e seguem as recomendações de Talaş (2010) e Yurioka e Suzuki 
(1990). 
 
 
 
 
26 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Tabela 1: Proposições para a determinação do valordo CE e suas aplicabilidades. Adaptada de Kurji 
e Coniglio (2015); Talaş (2010) e Yurioka e Suzuki (1990). 
 
GRUPO 
Fórmula usada 
para a 
determinação do 
CE 
Faixas de aplicação 
segundo a proposição 
Talas (2010) 
Faixas de aplicação 
segundo a proposição de 
Yurioka e Suzuki (1990) 
A 
CEIIW 
Aços C-Mn, com altos 
valores para o CE 
C ≤ 0,08% 
CEWES-136 
CEAWS D1.1 
- 
Graville 
CEKihara-WES 
CEDearden-O'Neill 
Winterton 
Breadstreat 
Cottrell 
B 
CEDNV 
Aços com baixos valores 
para o CE 
0,08≤%Cp≤ 0,12 
CET 
Pcm (Ito-Bessyo) %Cp≤0,12% 
C 
CEHSLA 
Aços para dutovias 
%Cp≤0,12% 
Duren (CEPSL) 
Koch-Bersch - 
D Yurioka (CEN) Todos os aços %Cp≤0,3% 
- Talas (CEWM) - - 
 
 
2.2 Aplicação do diagrama de Graville para classificação dos aços quanto ao grau de soldabilidade 
 
A partir do diagrama de Graville (figura 6) e do CE proposto pela AWS (SAENGER, 2005; AWS, 2006) – CEAWS 
= C + [(Mn + Si)/6] + [(Cr + Mo + V)/5/ + [(Ni + Cu)/15], constata-se que a relação CE versus %C, para 
determinadas ligas ferrosas, produz a ocorrência de três zonas de soldabilidade, possíveis de ocorrência em 
condições de fabricação por soldagem. 
 
a) Zona I (boa soldabilidade) 
 
Zona caracterizada pela baixa susceptibilidade à fragilização, em função do reduzido teor de C < 0,1%. Como 
consequência, uma baixa probabilidade da ocorrência de trinca a frio. Em termos de fabricação, não há a 
necessidade do uso de pré-aquecimento. 
 
b) Zona II (média soldabilidade) 
 
Nesta zona, mesmo para valores C > 0,1%, há uma intermediária possibilidade de "endurecimento" da ZTA, 
uma vez que os demais elementos de liga presentes nas ligas induzem um valor intermediário de CE. Como 
consequência, a zona terá sua probabilidade da ocorrência de trinca a frio dependente das condições impostas 
na região do depósito. Em termos de fabricação, há a necessidade de uma avaliação prévia da necessidade ou 
não do uso de pré-aquecimento. 
 
c) Zona III (baixa soldabilidade) 
 
Nesta zona, com valores C > 0,1%, há forte possibilidade de "temperabilidade / endurecimento" da ZTA, uma 
vez que os demais elementos de liga induzem um incremento no CE. Como consequência, a zona terá elevada 
probabilidade para a ocorrência de trinca a frio. Em termos de fabricação, há a obrigatoriedade do planejamento 
e do uso das temperaturas de pré-aquecimento, interpasses e pós-aquecimento. 
 
 
 
 
27 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
d) Zona de não aplicabilidade da análise (CE < %C). 
 
Kurji e Coniglio (2014) citam que, no início do diagrama de Graville, existe uma área interceptando as zonas 
I e II. Nesta condição, o valor medido do CE é menor do que o valor do % do carbono contido na liga 
("inconsistência"), o que a torna conhecida como “zona inválida”. 
 
 
Figura 6. Diagrama de Graville mostrando a tendência ou não para o surgimento de trinca a frio na 
região do depósito – relação “%C x CEAWS” (LAMPMAN, 1997). 
 
2.3 Relação entre o nível de hidrogênio residual no metal de solda e o processo de soldagem adotado 
 
Pensando nas consequências da presença de H difundido na região do depósito, é importante que se saiba 
a quantidade de hidrogênio dissolvido na Zona Fundida durante o processo de soldagem. Neste caso, a medição 
se dá pela deposição, em condições padronizadas, de um único cordão de solda e sob condições de elevada 
taxa de resfriamento. Posteriormente, medindo a presença de H no metal de solda. Neste caso, os valores 
medidos de H residual serão dependentes do processo de soldagem selecionado e da condição de preparação 
da superfície (limpeza). A importância da medição do teor de H no metal de solda se justifica pela possibilidade 
de se adequar os consumíveis de soldagem, em termos de seus níveis de H difusíveis, de modo a servir de guia 
para a mitigação da ocorrência de trincas induzidas pelo H. Assim, conforme ilustra a Figura 7a, os menores 
valores de H potencial estarão presentes quando do uso de processos que utilizam arame nu ou com fluxo / 
revestimento com baixo teor de umidade (regiões). Por sua vez, o H residual (HR), na região do depósito, é 
representado por faixas. Neste caso, as faixas para valores de HR, representadas por mL de H por 100g de metal 
de solda, são adotados para classificar os processos em: (a) muito baixo (HR  5), (b) baixo (5 < HR  10), (c) 
médio (10 < HR  15) e (d) alto (HR >15). Assim, a Figura 6 apresenta as faixas observadas para a relação HR 
versus processo de soldagem versus H potencial (BAILEY, 1994; LIPPOLD, 2015). 
 
 
 (a) (b) 
Figura 7: Em (a), relações gerais entre o potencial de hidrogênio potencial e os níveis de H no metal de 
solda (BAILEY et al., 1993) (b) Difusão do hidrogênio do metal de solda para a ZTA (Adaptada de 
LIPPOLD (2015)). 
 
28 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
A Figura 7b mostra o mecanismo de absorção de H na poça de fusão, aprisionamento no metal de solda (HR) 
e posterior difusão para a ZTA. A solubilidade do hidrogênio é reduzida durante a transformação primária de 
austenita para ferrita e, como consequência, gera uma força motriz para a difusão do H+ para a ZTA. 
 
2.4 Relação entre o CE e o tratamento térmico pós-soldagem (TTPS) 
 
O tratamento térmico pós-soldagem (TTPS) pode ser usado para o controle da dureza (por exemplo, no 
revenimento da martensita), na recuperação da tenacidade (controle) e para aliviar as tensões residuais presentes 
na região do depósito. O aquecimento pós-soldagem da região do depósito também pode ajudar controle do HR, 
via difusão e a posterior liberação para a atmosfera. Segundo Kou (2003), para a maioria dos aços carbono, a 
faixa de temperatura de tratamento térmico pós-soldagem situa-se entre 590 a 675 °C, seguindo a regra de ouro 
de 1 hora de aquecimento da região para cada 1” (25,4 mm) de espessura. É importante ter em mente que o valor 
a ser adotado para a temperatura de pós-aquecimento, os tempos de permanência e as taxas de aquecimento e 
de resfriamento serão função do substrato a ser fabricado (sempre consultar normas, código e o fabricante). Outro 
aspecto importante da adoção do TTPS é a prevenção da fratura frágil e a potencial manutenção geométrica da 
estrutura (tensões versus deformações). 
Segundo Abson et al. (2006), na análise das normas britânicas associadas com a fabricação por soldagem, 
descrevem que é importante observar os requisitos exigidos para o TTPS, em operações que envolvam aços com 
teores consideráveis de carbono. Por exemplo, na BS 2633, não há a obrigatoriedade de TTPS para espessuras 
iguais ou inferiores a 35 mm, quando a temperatura do ambiente fabril estiver acima de 0 °C. De forma geral, a 
espessura permitida para a não adoção de TTPS diminui com o incremento da composição química da liga 
(elevação do CE) e/ou com a adoção de pré-aquecimento. 
 
 
2.5 Importância do conhecimento da taxa e do tempo de resfriamento para a determinação do CE 
 
Nos aços C-Mn e aços baixa liga, uma ampla variedade de microestruturas pode existir, a depender da 
composição específica da liga e dos parâmetros e processo de soldagem. Nas matrizes ferríticas, em geral, a 
presença de microestruturas com elevadas durezas torna o substrato mais susceptível à fragilização pelo 
hidrogênio. Essas microestruturas, normalmente se formam devido ao rápido resfriamento, imposto pelo processo 
de fabricação por soldagem, a partir do campo austenítico (temperaturas superiores aquelas associadas com a 
linha A3 no diagrama Fe-Fe3C) e são normalmente microestruturas compostas por bainita e/ou martensita 
(LIPPOLD, 2015; YURIOKA, 1985). 
Portanto, para os aços tratáveis termicamente, a taxa de resfriamento é um parâmetro que afeta diretamente 
o comportamento mecânico na ZTA e, consequentemente, na máxima dureza presente na região. Na maioriados 
aços, a taxa de resfriamento é levantada durante a passagem pela faixa de temperatura 800 °C a 500 °C (uma 
relação direta com o tempo de passagem t8/5 (s)). Nesta região, ocorre a decomposição da austenita na condição 
“fora do equilíbrio”. Na prática, para se ter a inferência da dureza e da microestrutura presente na ZTA, é mais 
fácil mensurar t8/5 do que a taxa de resfriamento R (C/s). 
Para exemplificar a discussão, na Figura 8a mostra o diagrama de transformação fora do equilíbrio (CCT) 
para um aço HS50, onde é observada a relação entre a dureza medida na ZTA, as diferentes taxas de 
resfriamento, impostas no intervalo de temperatura entre 800 e 500 C, e as correspondestes regiões 
interceptadas no diagrama (fases). Neste caso, quanto menor o valor de R ou maior o valor de t8/5, menor será 
a dureza observada na ZTA. Sendo assim, é fundamental acessar, para cada liga estudada, o diagrama CCT 
referente e conhecer as relações entre R e as regiões (fases interceptadas) durante a decomposição da austenita. 
Da mesma forma, a Figura 8b apresenta o comportamento da dureza final na ZTA quando da imposição de 
diferentes t8/5. Neste caso, em função da relação t8/5(s) = (800 C – 500 C)/R(C/s), é importante se conhecer 
previamente a condição de soldagem a ser adotada na fabricação, uma vez que o calor aportado, a geometria do 
substrato, a temperatura inicial do substrato, a temperatura de interpasse, entre outros parâmetros, promovem a 
variação no valor da taxa de resfriamento e, como resposta, na microestrutura e dureza da ZTA (LIPPOLD, 2015; 
ODEBIYI et al., 2019; YURIOKA, 2001). 
Bastien (1970 apud Kasuya 2007) apresenta as proposições dadas pelas Equações 30 e 31, as quais 
permitem inferir uma relação entre a taxa de resfriamento (TRC), imposta na fabricação, e o carbono equivalente 
referente (CEBastien) à liga ferrosa adotada. 
 
ln(𝑇𝑅𝐶) = 13,9 − 10,6𝐶𝐸𝐵𝑎𝑠𝑡𝑖𝑒𝑛 (29) 
 
Onde: 
𝐶𝐸𝐵𝑎𝑠𝑡𝑖𝑒𝑛 = 𝐶 +
𝑀𝑛
4,4
+
𝑁𝑖
10,3
+
𝐶𝑟
15,4
+
𝑀𝑜
7,7
 (30) 
 
A relação entre o carbono equivalente e a possível “temperabilidade”, estimada pelo Carbon Equivalent of 
hardenability – CEHarden, é um exemplo que se destaca no que se refere a uma relação empírica entre 
temperabilidade na ZTA e composição química do substrato (Equações 31 e 32) (KASUYA e HASHIBA, 2007). 
29 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
ln(𝑡𝑀) = 10,6𝐶𝐸𝐻𝑎𝑟𝑑𝑒𝑛 − 4,8 (31) 
 
Onde: 
𝐶𝐸𝐻𝑎𝑟𝑑𝑒𝑛 = 𝐶 +
𝑆𝑖
24
+
𝑀𝑛
6
+
𝐶𝑢
15
+
𝑁𝑖
12
+
𝑀𝑜
4
+
𝐶𝑟
8
+ 𝐷𝐻 (32) 
 
 
 (a) (b) 
Figura 8: Em (a), usando o aço HS50 como exemplo, a relações entre a taxa de resfriamento, a curva de 
transformação em resfriamento contínuo e as respectivas durezas esperadas de observação (YURIOCA, 
1885). Em (b), a relação entre a máxima dureza observada na ZTA e a imposição de diferentes valores 
para o t8/5 (YURIOKA, 2001). 
 
Observa-se que a equação de CEHarden representa um índice de “temperabilidade” para a liga estudada. Tem 
similaridade com o CEIIW, apesar de incluir um termo H que descreve o efeito das impurezas, tais como o boro 
(B), enxofre (S), oxigênio (O) e o nitrogênio (N). Em particular, ainda que em teores muito baixos, o boro apresenta 
influência sobre o valor final do CEHarden e da temperabilidade na ZTA (KASUYA; YURIOKA, 1993). O motivo da 
influência está relacionado com a difusão do boro nos contornos dos grãos austeníticos primários, de modo a 
evitar a nucleação da ferrita nos contornos de grão. Dessa forma, a decomposição da austenita para a martensita 
é facilitada pelo retardo da formação da ferrita e a temperabilidade é aumentada pelo boro segregado nos 
contornos de grão. Neste caso, o crescimento dos grãos austeníticos na ZTA, em especial na zona de grãos 
grosseiros (ZGG), é muito favorecido tanto pela história térmica (gradiente térmico (C/mm)) quanto pelo teor de 
boro (YURIOKA, 2001). Em particular, até mesmo um teor baixíssimo de boro pode influenciar significativamente 
na temperabilidade na ZTA. Esse efeito, em aços com baixo teor de nitrogênio, é listado a seguir. 
 
𝐻 = 0, 𝑞𝑢𝑎𝑛𝑑𝑜 𝐵 ≤ 1 𝑝𝑝𝑚 
𝐻 = 0,03, 𝑞𝑢𝑎𝑛𝑑𝑜 𝐵 = 2 𝑝𝑝𝑚 
𝐻 = 0,06, 𝑞𝑢𝑎𝑛𝑑𝑜 𝐵 = 3 𝑝𝑝𝑚 
𝐻 = 0,09, 𝑞𝑢𝑎𝑛𝑑𝑜 𝐵 ≥ 4 𝑝𝑝𝑚 
 
2.6 Carbono equivalente para o ferro fundido 
 
Em comparação às composições químicas dos aços, os ferros fundidos contêm quantidades apreciáveis de 
silício, além de teores mais elevados de carbono e, portanto, devem ser considerados ligas ternárias de Fe-C-Si. 
A introdução deste constituinte adicional (silício), muda o diagrama ferro-carbono. Neste caso, para uma avalição 
da soldabilidade de um determinado ferro fundido, é conveniente combinar o efeito do silício com o efeito do 
carbono nas parcelas que compõem o CEFoFo-1 (Equação 33). O CE de um ferro fundido descreve o quão próxima 
uma dada análise está da composição eutética. Neste caso, quando o CE do ferro fundido for 4,3, a liga é eutética. 
30 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Logo, um valor de CE menor que 4,3 mostrará que se trata de uma liga é hipoeutética, caso contrário, a liga será 
hipereutética. 
 
𝐶𝐸𝐹𝑜𝐹𝑜−1 = 𝐶 +
𝑆𝑖
3
 (33) 
 
Outra proposição de CE para ferro fundido é apresentada na Equação 34. Nesse caso, esta equação se aplica 
em ferros fundidos que possuem quantidades apreciáveis de fósforo. 
 
𝐶𝐸𝐹𝑜𝐹𝑜−2 = 𝐶 +
𝑆𝑖+𝑃
3
 (34) 
 
Quando apreciáveis teores de níquel estão presentes no ferro fundido, a equação estabelecida pela 
Sociedade Americana de Metalúrgicos (American Foundrymen’s Society) deve ser empregada (Equação 35). 
Nesse caso recomenda-se principalmente o seu uso em ferros fundidos dúcteis (FATAHALLA; ABUELEZZ; 
SEMEIDA, 2009). 
 
𝐶𝐸𝐹𝑜𝐹𝑜−3 = 𝐶 + 0,33𝑆𝑖 + 0,047𝑁𝑖 − (0,0055𝑁𝑖 ∗ 𝑆𝑖) (35) 
 
Por fim, na consideração do S, Mn e P, além do Si, a Equação 36 proposta por (Bazhenov; Pikunov, 2011) é 
mostrada 
 
𝐶𝐸𝐹𝑜𝐹𝑜−4 = 𝐶 + 0,3𝑆𝑖 + 0,33𝑃 − 0,015𝑀𝑛 + 0,26𝑆 (36) 
 
Neste ponto, é importante ressaltar que a Equação 36 é válida para as seguintes faixas de concentrações: Si 
(0 – 0,4% em peso), P (0 – 0,7% em peso); Mn (0 – 1,5% em peso) e S (0 – 0,2% em peso). 
 
2.7 Relação entre o CE e a temperatura de pré-aquecimento para os aços hipereutetóide 
 
As recomendações das condições de entrada para a determinação de temperatura de pré-aquecimento, para 
ligas ferrosas tratáveis termicamente, incluem a espessura e a geometria da junta, o calor aportado, o 
conhecimento do H potencial e o entendimento das técnicas adotadas para a retirada do HR . Neste caso, estas 
recomendações são citadas em vários códigos relacionados com a fabricação por soldagem (HINTON; 
WISWESSER, 2008). Neste caso, o planejamento e a qualificação de procedimentos de soldagem serão 
diferenciais para uma condição pós-soldagem que satisfaça os requisitos de fabricação, projeto e integridade 
estrutural. Skoda (1990) sugeriu uma formação matemática, baseada no CEAWS (faixa entre 0,47 a 1,00) para aestimativa da temperatura mínima de pré-aquecimento (TPA) que garantisse níveis de dureza satisfatórios na 
região soldada (vide equação 37). 
 
𝑇𝑃𝐴 = 450°𝐶√𝐶𝐸 − 0,42 (37) 
 
O valor CEAWS igual a 1,0 representa um limite prático para soldagem dos aços baixa liga. Esta estimativa 
para um TPA precisa de uma avaliação complementar que leve em consideração a geometria do chanfro (por 
exemplo, V, 1/2V, K), a forma de junção (topo ou filete) e a espessura do substrato. 
As equações que relacionam temperatura de pré-aquecimento com parâmetro de trinca (Equação 15 e 16) 
são válidas para aços na faixa de 0,25%pC0,5. No entanto, para aços hipereutetoides (0,7<%pC<1,5), não 
havia disponibilidade de equações para determinar TPA nesta condição. Assim, a partir dessa necessidade, 
Belyaev, Terentev, Mikhaylitsyn (2016), avaliando o CEIIW, apresentaram uma relação entre temperatura de pré-
aquecimento e carbono equivalente para aços hipereutetoides, como relacionado na Equação 38. Observa-se 
que, com o aumento do teor de carbono, a temperatura de pré-aquecimento, mínima permissível, para evitar a 
ocorrência de trincas a frio também aumenta. Esta condição é melhor visualizada a partir da análise da Figura 9. 
 
𝑇𝑃𝐻 = 700{1 − exp [−1,24(𝐶𝐸𝐼𝐼𝑊 − 0,01)]} (38) 
 
Onde: 
TPH = TPA 
 
Uma simplificação da Equação 38 permite chegar na proposta da Equação 39. 
 
𝑇𝑃𝐻 = 778{1 − exp (−𝐶𝐸𝐼𝐼𝑊)} (39) 
 
A Figura 9 apresenta, para os aços hipereutetóides, a tendência do aumento da temperatura de pré-
aquecimento, mínima necessária para a fabricação, e o aumento do teor de carbono. Neste caso, é possível 
verificar que os resultados experimentais corroboram com a estimativa teórica (pontos localizados acima da linha 
tendência estarão isentos da presença de trinca). Portanto, a temperatura de pré-aquecimento, estimada pela 
31 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Equação 38, é interessante de utilização quando da avaliação da mitigação da formação de trincas a frio, dada 
as condições convencionais de ciclo térmico, impostas pelo processo de fabricação, e tendo como entrada as 
composições químicas dos aços na faixa de composição hipereutetóide. 
 
 
 
Figura 9 – Relação entre o CE, a temperatura de pré-aquecimento e a suscetibilidade à formação de 
trincas a frio (BELYAEV, 2018). 
 
 
3. TESTES DE SOLDABILIDADE 
 
De acordo com Kurji e Coniglio (2015), o processo de seleção para o adequado teste de soldabilidade 
demanda uma avaliação criteriosa de diferentes aspectos, como o custo (US$ 1.000 a US$ 100.000), a 
disponibilidade (normalmente os testes não são comercializados), as possíveis variações nos testes (incertezas, 
restrição controlada e imposição de tensão pós-soldagem) e o tipo de trinca esperada de observação. Como base 
no exposto, é necessário o conhecimento prévio dos principais testes de soldabilidade, as fundamentações 
teóricas associadas e as aplicabilidades laboratoriais / campo. 
 
3.1 Exemplos e características de testes de soldabilidade 
 
Como visualizado na Tabela 2 e detalhado o aspecto construtivo na figura 10, uma considerável quantidade 
de testes tem sido desenvolvida e com diferentes possibilidades de uso (especificidades). A ideia central é que 
os testes de soldabilidade sejam projetados para impor o controle (grau) na restrição e/ou na tensão/deformação 
na região do depósito (solda). 
 
Tabela 2 – Exemplos e características de testes de soldabilidade aplicados na avalição da ocorrência 
da trinca induzida pelo hidrogênio na ZTA. (Adaptada de KURJI; CONIGLIO (2015). 
 
 
 
A tabela 2 apresenta um resumo dos testes de soldabilidade, tendo como base se os testes serão intrínsecos 
ou extrínsecos, trativos ou de flexão, com carga aplicada no sentido transversal ou longitudinal e, por fim, o índice 
com o qual se medirá o trincamento a frio. Portanto, com base na tabela, é importante notar que existe a 
possibilidade de a severidade da carga variar de acordo com: (a) dimensões da amostra e profundidade da cunha 
(Teste Lehigh), (b) distância da restrição (testes WIC e M-WIC) e (c) diâmetro do círculo de restrição (testes de 
soldabilidade com restrição circulares). Como características gerais, os testes baseados em flexão aplicam 
32 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
deformação controlada na região de análise (solda e sua vizinhança), conformando a amostra em uma superfície 
de formato curvo (molde). Para o teste de implante o princípio se baseia na investigação da susceptibilidade às 
trincas apenas na ZTA, a partir de um carregamento de um implante pré-colocado. Por outo lado, para o teste 
Lehigh U-groove há o favorecimento à formação de trincas na raiz do metal de base. Para o teste Tekken, pela 
restrição imposta, há a facilidade da ocorrência de trinca a frio na ZTA, inferindo sobre o efeito da presença de 
HR e, da mesma forma, podendo avaliar possibilidade do emprego de pré-aquecimento. Já para o teste CTS 
(controlled termal severity) existem as caraterísticas de ser um teste intrínseco, trativo e que analisa a severidade 
da trinca, tomando como referência a taxa de resfriamento. Por último, o teste G-BOP possui como característica 
única, entre a maioria dos testes, a aplicação da carga de modo longitudinal (KURJI; CONIGLIO, 2015). 
 
 
 
 
Teste G-BOP 
 
Teste WIC 
 
 
Teste Tekken 
 
Teste TRC 
 
Teste RRC 
 
 
 
Teste de dobramento 
 
Figura 10 – Representação esquemática das características geométricas dos testes de soldabilidade 
relacionados na tabela 2. Imagens adaptada de Alipooramirabad et al. (2016), Lippold (2015), Dunne et al. 
(1996) e Kurji e Coniglio (2015). 
 
33 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
3.2 Características dos testes de soldabilidade 
 
3.2.1 Testes intrínsecos 
 
Esse agrupamento de testes se caracteriza pela dependência das tensões e dos esforços, gerados 
internamente, para induzir a formação da trinca. Embora simples e menos dispendiosos para realizar, os testes 
intrínsecos geralmente envolvem cargas complexas e não uniformes que evoluem durante o resfriamento da 
região soldada e não podem ser facilmente quantificadas. 
 
3.2.2 Testes extrínsecos 
 
Por sua vez, essa categoria de testes envolve a aplicação controlada de uma tensão externa durante a 
soldagem. Esta ação permite que o carregamento seja mais independente das propriedades do material ou dos 
parâmetros de soldagem. Estes testes são mais caros, mas permitem a quantificação da carga. 
 
4. TENDÊNCIAS PARA A AVALIAÇÃO DA SOLDABILIDADE 
 
As proposições e os conhecimentos teóricos relacionados com as formulações do carbono equivalente 
impactam positivamente na fabricação, por soldagem, de componente, conjunto e equipamento demandados 
pelos setores industriais envolvidos, como o setor naval, químico e petroquímico, entre outros. 
Wang (2016) cita que, em função da possível deterioração da tenacidade da ZTA, gerada pela aplicação de 
tratamento térmico pós-soldagem (TTPS), há a necessidade do desenvolvimento de estudos que correlacionem 
o controle da dureza, tanto na ZTA quanto no MS, com a taxa de resfriamento, com a operação de pós-
aquecimento, com a microestrutura e com a composição química (ou seja, com o CE). 
Outra linha de pesquisa atrativa é o estudo da soldabilidade e da adaptação do CE quando da união de 
componentes mecânicos (metálicos) obtidos respectivamente por fabricação aditiva (manufatura aditiva) e por 
processos de fabricação convencionais (FAYAZFAR et al., 2018; WANG et al., 2021). 
No lado do projeto de ligas de alta entropia, estimular o desenvolvimentode formulações empíricas para um 
carbono equivalente (CE) dedicadas a essa nova tendência, quando das suas aplicações industriais. 
No viés educacional, observando a realidade brasileira em termos de formação acadêmica, especificamente 
na área da soldagem, em seus diferentes temas e níveis, ainda há desafios a serem trabalhados, não só no 
estudo da evolução e da aplicação do CE, mas também dos fundamentos de soldabilidade, dos conhecimentos 
de metalurgia física, do conhecimento, planejamento e operação dos processos de fabricação, da importância, 
conhecimento e aplicação de normalização, entre outros. 
 
5. REFERÊNCIAS 
 
ABSON, D. J. et al.. A Review of Postweld Heat Treatment Code Exemption – Part 1. Welding Journal, vol.85, 
no.3, March 2006, pp.63-69. 
ALIPOORAMIRABAD, H et al.. Prediction of welding stresses in WIC test and its application in pipelines. Materials 
Science and Technology. ISSN: 1743-2847 (Online). DOI: 10.1080/02670836.2016.1200285, 2016. 
AMERICAN PETROLEUM INSTITUTE. API 5L Specification for line pipe. [s.l: s.n.]. v. Forty Four ISBN: 
0784406243. 155 p, December 2004. 
AMERICAN WELDING SOCIETY (AWS). Structural Welding Code - Steel. AWS D 1.1. 20th edition, 2005. 
ASM INTERNATIONAL. Properties and Selection: Irons, Steels, and High-Performance Alloys. 2. ed., [s.l.] : ASM 
international, 1998. v. 1 ISSN: 20754701. DOI: 10.3390/met9050560. 
AWS. AWS B4.0:2007 An American National Standard: Standard methods for mechanical testing of welds. 7. ed., 
[s.l: s.n.]. ISBN: 9780871710710. 
BAILEY, N.; COE, F. R.; GOOCH, T. G.; HART, P. H. M.; JENKINS, N.; PARGETER, R. J. Welding steels without 
hydrogen cracking. Welding steels without hydrogen cracking, [S. l.], 1993. DOI: 10.1533/9780857093097. 
BAILEY, NORMAN. Weldability of ferritic steels. [s.l: s.n.]. May 1994. 
BAZHENOV, V. E.; PIKUNOV, M. V. Determining the carbon equivalent of cast iron by the thermo-calc program. 
Steel in Translation, [S. l.], v. 41, n. 11, p. 896–899, 2011. ISSN: 09670912. DOI: 10.3103/S0967091211110027. 
BELYAEV, A. I.; TERENTEV, A. V.; MIKHAYLITSYN, S. V. Special features of surfacing of hypereutectoid steels. 
Welding International, [S. l.], v. 30, n. 6, p. 467–471, 2016. ISSN: 17542138. DOI: 
10.1080/09507116.2015.1090175. 
BELYAEV, A. N. Determination of the optimum preheat temperature in hardfacing hypereutectoid steels. Welding 
International, [S. l.], v. 32, n. 12, p. 748–749, 2018. ISSN: 17542138. DOI: 10.1080/09507116.2018.1443878. 
BLONDEAU, Régis. Metallurgy and Mechanics of Welding. 2. ed., Londres: wiley, 2008. ISBN: 9781848210387. 
DOI: 10.1002/9780470611272. 
BRAMFITT, Bruce L. CARBON AND ALLOY STEELS. In: Handbook of Materials Selection. [s.l.] : John Wiley e 
Sons, 2002. p. 17–65. ISBN: 084932145X. 
COSTA E SILVA, André Luíz Da; MEI, Paulo Roberto. Aços e Ligas Especiais. 3. ed., [s.l: s.n.]. ISBN: 
9788521205180, 2010. 
34 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
COTTRELL, C. L. M. “Hardness equivalent may lead to a more critical measure of weldability”. Metal Construction, 
[S. l.], v. (12), p. p740- 744., 1984. 
DEARDEN, J. AND O’NEILL, H. “A guide to the selection and welding of low alloy strucutural steels”. Transactions 
of the Institute of Welding, [S. l.], v. III, p. p203-214, 1940. 
DOSSETT, Jon L. Practical Heat Treating: Basic Principles. 1. ed., Columbus: ASM International, 2020. ISBN: 
9781627080965. 
DOSSETT, Jon L.; BOYER, Howard E. Practical Heat Treating. 2. ed., Columbus: ASM International, 2006. ISBN: 
0-87170-829-9. DOI: 10.1361/pht2006. 
DUNNE, N. A., SQUIRES, I., BARBARA, F. and B.Feng. Weldment Cold Cracking - The Effect of Hydrogen and 
Other Factors. Hydrogen and Preheat Management in Welded High Strength Steel for Defense Application (TTCP 
Workshop and Joint Seminar). Volume II: Joint Seminar Papers. pp. 49-60, 1997. 
EL-ESKANDARANY, Sherif. Mechanical Alloying: Nanotechnology, Materials Science and Powder Metallurgy. 2. 
ed., Kidlington: William Andrew, 2015. ISBN: 9780323221283. 
FARRER, J. C. M. The Alloy Tree: A Guide to Low-Alloy Steels, Stainless Steels, and Nickel-base Alloys. [s.l: 
s.n.]. ISBN: 0849325757, 2004. 
FATAHALLA, Nabil; ABUELEZZ, Aly; SEMEIDA, Moenes. C, Si and Ni as alloying elements to vary carbon 
equivalent of austenitic ductile cast iron: Microstructure and mechanical properties. Materials Science and 
Engineering A, [S. l.], v. 504, n. 1–2, p. 81–89, 2009. ISSN: 09215093. DOI: 10.1016/j.msea.2008.10.019. 
FAYAZFAR, Haniyeh; SALARIAN, Mehrnaz; ROGALSKY, Allan; SARKER, Dyuti; RUSSO, Paola; PASERIN, 
Vlad; TOYSERKANI, Ehsan. A critical review of powder-based additive manufacturing of ferrous alloys: Process 
parameters, microstructure and mechanical properties. Materials and Design, [S. l.], v. 144, p. 98–128, 2018. 
ISSN: 18734197. DOI: 10.1016/j.matdes.2018.02.018. 
GHOMASHCHI, Reza; COSTIN, Walter; KURJI, Rahim. Evolution of weld metal microstructure in shielded metal 
arc welding of X70 HSLA steel with cellulosic electrodes: A case study. Materials Characterization, [S. l.], v. 107, 
p. 317–326, 2015. ISSN: 10445803. DOI: 10.1016/j.matchar.2015.07.032. 
GRIGORENKO, G. M.; KOSTIN, V. A. Criteria for evaluating the weldability of steels. Welding International, [S. l.], 
v. 27, n. 10, p. 815–820, 2013. ISSN: 09507116. DOI: 10.1080/09507116.2013.796633. 
HAN, Tae Kyo; PARK, Bong Gyu; KANG, Chung Yun. Hardening characteristics of CO 2 laser welds in advanced 
high strength steel. Metals and Materials International, [S. l.], v. 18, n. 3, p. 473–479, 2012. ISSN: 15989623. DOI: 
10.1007/s12540-012-3014-2. 
HEBDA, Marek; SADY, Radosław. Software for the estimation of steel weldability. Advances in Engineering 
Software, [S. l.], v. 58, p. 13–17, 2013 a. ISSN: 09659978. DOI: 10.1016/j.advengsoft.2012.12.003. 
HEBDA, Marek; SADY, Radosław. Software for the estimation of steel weldability. Advances in Engineering 
Software, [S. l.], v. 58, p. 13–17, 2013 b. ISSN: 09659978. DOI: 10.1016/j.advengsoft.2012.12.003. Disponível 
em: http://dx.doi.org/10.1016/j.advengsoft.2012.12.003. 
HICKS, John. Welded Design - Theory and Practice. 1. ed., Cambridge: ABINGTON PUBLISHING, 2001. DOI: 
10.1533/9781855737624. 
HINTON, R. W.; WISWESSER, R. K. Estimating Welding Preheat Requirements for Unknown Grades of Carbon 
and Low-Alloy Steels. [S. l.], n. November, p. 273–278, 2008. 
ITO, Yoshinori; BESSYO, Kiyoshi. Weldability Formula of High Strength Steels Related to Heat-Affected Zone 
Cracking. The Sumitomo Search, [S. l.], v. 1, 1969. 
J. KARTHIKEYAN; R. VARADHARAJAN; K. PITCHAIMUTHU. Investigation of Hydrogen Assisted Crack in 
Welding by using Y-Groove Test. International Journal of Engineering Research and, [S. l.], v. V4, n. 10, p. 165–
173, 2015. DOI: 10.17577/ijertv4is100187. 
JORGE, J. C. F.; SOUZA, L. F. G. D.; MENDES, M. C.; BOTT, I. S.; ARAÚJO, L. S.; SANTOS, V. R. Do.; 
REBELLO, J. M. A.; EVANS, G. M. Microstructure characterization and its relationship with impact toughness of 
C-Mn and high strength low alloy steel weld metals - A review. Journal of Materials Research and Technology, [S. 
l.], v. 10, p. 471–501, 2021. ISSN: 22387854. DOI: 10.1016/j.jmrt.2020.12.006. 
KASUYA, T. HAZ hardness prediction of boron-added steels. [S. l.], p. 1609–1621, 2021. 
KASUYA, T.; YURIOKA, N. Carbon equivalent and multiplying factor for hardenability of steel. Welding Journal-
New York-, [S. l.], v. 72, p. 263- s, 1993. ISSN: 0043-2296. 
KIHARA, H.; KANAZAWA, T.; TAMURA, H. Weldability and Toughness Specifications for Structural Steels in 
Japan-With Special Reference to WES-135 and -136. Philosophical Transactions of the Royal Society of London., 
[S. l.], v. 282, n. 1307, p. 247–258, 1976 a. 
KIHARA, H.; KANAZAWA, T.; TAMURA, H. Weldability and Toughness Specifications for Structural Steels in 
Japan-With Special Reference to WES-135 and -136. Philosophical Transactions of the Royal Society of London., 
[S. l.], v. 282, n. 1307, p. 247–258, 1976 b. Disponível em: https://www.jstor.org/stable/74540.KIM, Ki Hyuk; MOON, In Jun; KIM, Ki Won; KANG, Ki Bong; PARK, Byung Gyu; LEE, Kwang Seok. Influence of 
Carbon Equivalent Value on the Weld Bead Bending Properties of High-Strength Low-Alloy Steel Plates. Journal 
of Materials Science and Technology, [S. l.], v. 33, n. 4, p. 321–329, 2017. ISSN: 10050302. DOI: 
10.1016/j.jmst.2016.07.009. 
KOBELCO. The ABC’s of Arc Welding || Education Center || KOBELCO - KOBE STEEL, LTD, 2007. Disponível 
em: https://www.kobelco-welding.jp/education-center/abc/ABC_2007-01.html 
KOSTIN, Valery A. Mathematical description of the carbon equivalent as a criterion for assessing the weldability 
35 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
of steels. Автоматическая Сварка, [S. l.], n. 8, p. 12–17, 2012. 
KRAWCZYK, Ryszard. Evaluation of welding properties of construction materials using the SEP 1390 tests. 
Welding Technology Review, [S. l.], v. 91, n. 1, p. 1–7, 2019. ISSN: 0033-2364. DOI: 10.26628/wtr.v91i1.996. 
KURJI, R.; CONIGLIO, N. Towards the establishment of weldability test standards for hydrogen-assisted cold 
cracking. International Journal of Advanced Manufacturing Technology, [S. l.], v. 77, n. 9–12, p. 1581–1597, 2015. 
ISSN: 14333015. DOI: 10.1007/s00170-014-6555-3. 
KURLYANDSKAYA, G. V.; BHAGAT, S. M.; BAGAZEEV, A. V.; MEDVEDEV, A. I.; BALLESTEROS, A.; 
BEKETOV, I. V.; SAFRONOV, A. P. Structure, magnetic and microwave properties of FeNi invar nanoparticles 
obtained by electrical explosion of wire. Journal of Physics and Chemistry of Solids, [S. l.], v. 98, p. 255–262, 2016. 
ISSN: 00223697. DOI: 10.1016/j.jpcs.2016.06.015. 
LAMPMAN, S. Weld Integrity and Performance. [s.l: s.n.]. ISBN: 0871706008, 9780871706003. 
LEE, Myungjin; CHO, Kyungmok; KIM, Yongdeok; KANG, Namhyun. Effect of martensite on cold cracking in 600-
MPa grade flux-cored arc weld metals using the Y-groove test. Welding in the World, [S. l.], v. 59, n. 5, p. 647–
654, 2015. ISSN: 00432288. DOI: 10.1007/s40194-015-0240-5. 
LIPPOLD, John C. Welding Metallurgy and Weldability. [s.l: s.n.]. ISBN: 978-1-118-23070-1, 2014. 
LORENZ, K. AND DÜREN, C. “Evaluation of large diameter pipe steel weldability by means of the carbon 
equivalent”,. In: PROCEEDINGS OF AN INTERNATIONAL CONFERENCE “STEELS FOR LINE PIPE AND 
PIPELINE FITTINGS” 1981, London, October 21-13,. Anais [...]. London, October 21-13, p. p322-332. 
ODEBIYI, Oluwasegun S.; ADEDAYO, Segun M.; TUNJI, Lawal A.; ONUORAH, Martins O. A review of weldability 
of carbon steel in arc-based welding processes. Cogent Engineering, [S. l.], v. 6, n. 1, 2019. ISSN: 23311916. 
DOI: 10.1080/23311916.2019.1609180. 
OHSHITA, S., YURIOKA, N. AND KIMURA, T. “Prevention of solidification cracking in very low carbon steel welds”. 
Welding Journal, [S. l.], v. 5, p. p130- s – p136- s, 1983. 
PANG, Willy. The structure and properties of the heat affected zone of structural plate steels welded by high 
productivity processes. [S. l.], 1993. 
PHILIPS, David H. Welding Engineering: An Introduction. [s.l: s.n.]. ISBN: 9781118766446, 2016. 
RAJAN, T. V.; SHARMA, C. P.; SHARMA, Ashok. Heat Treatment: Principles and Techniques. 2. ed., New Delhi. 
ISBN: 9780123849533. DOI: 10.1016/B978-0-12-384947-2.00371-8, 2011. 
SAENGER, Fritz Jr. Guide to weldability: Carbon and low alloy steels. American Welding Society. ISBN: 0-87171-
000-5. 2005. 
SHARMA, Satish Kumar; MAHESHWARI, Sachin. A review on welding of high strength oil and gas pipeline steels. 
Journal of Natural Gas Science and Engineering, [S. l.], v. 38, p. 203–217, 2017. ISSN: 18755100. DOI: 
10.1016/j.jngse.2016.12.039. 
SHIRAIWA, Takayuki; KAWATE, Miki; BRIFFOD, Fabien; KASUYA, Tadashi; ENOKI, Manabu. Evaluation of 
hydrogen-induced cracking in high-strength steel welded joints by acoustic emission technique. Materials and 
Design, [S. l.], v. 190, p. 108573, 2020. ISSN: 18734197. DOI: 10.1016/j.matdes.2020.108573. 
STOUT, R. D.; VASUDEVAN, R.; PENSE, A. W. Field Weldability Test for Pipeline Steels. Welding Journal (Miami, 
Fla), [S. l.], v. 55, n. 4, p. 8–10, 1976. ISSN: 00432296. 
TALAŞ, Şükrü. The assessment of carbon equivalent formulas in predicting the properties of steel weld metals. 
Materials and Design, [S. l.], v. 31, n. 5, p. 2649–2653, 2010. ISSN: 02641275. DOI: 
10.1016/j.matdes.2009.11.066. 
TAWENGI, A. S.; SEDMAK, A.; GRABULOV, V. Cold weld cracking susceptibility of high strength low alloyed 
(HSLA) steel NIONIKRAL 70. Metalurgija, [S. l.], v. 53, n. 4, p. 624–626, 2014. ISSN: 05435846. 
TIMINGS, Roger. Fabrication and Welding Engineering. [s.l: s.n.], 2008. 
TOMKÓW, Jacek; TOMKÓW, Michalina. The influence of the carbon equivalent on the weldability of high-strength 
low-alloy steel in the water environment. Welding Technology Review, [S. l.], v. 91, n. 5, p. 43–49, 2019. ISSN: 
0033-2364. DOI: 10.26628/wtr.v91i5.1001. 
WANG, Jingjing et al. Microstructure and mechanical properties of ASTM A131 EH36 steel fabricated by laser 
aided additive manufacturing. Materials Characterization, [S. l.], v. 174, n. October 2020, p. 110949, 2021. ISSN: 
10445803. DOI: 10.1016/j.matchar.2021.110949. 
WANG, Wesley. The Great Minds of Carbon Equivalent Part I: Invention of the Carbon Equivalent. EWI, [S. l.], v. 
Material G, n. 9, p. 9–11, 2015 a. 
WANG, Wesley. The Great Minds of Carbon Equivalent Part ll: The Adoption of Carbon Equivalent. [S. l.], v. 60, 
n. 9, p. 9–11, 2015 b. 
WANG, Wesley. The Great Minds of Carbon Equivalent Part III : The Evolution of Carbon Equivalent Equations. 
[S. l.], v. Material G, n. 9, p. 9–11, 2015 c. 
WANG, Wesley. Future Trends on Carbon Equivalent Research. EWI, [S. l.], 2016. 
WORLD STEEL ASSOCIATION. Major steel-producing countries 2018 and 2019 million. 2020 World steel in 
figures, [S. l.], n. 30 April, p. 1–8, 2020. 
YURIOKA, N. Physical metallurgy of steel weldability. ISIJ International, [S. l.], v. 41, n. 6, p. 566–570, 2001. ISSN: 
09151559. DOI: 10.2355/isijinternational.41.566. 
YURIOKA, N.; SUZUKI, H. Hydrogen assisted cracking in C—Mn and low alloy steel weldments. International 
Materials Reviews, [S. l.], v. 35, n. 1, p. 217–249, 1990. ISSN: 17432804. DOI: 10.1179/imr.1990.35.1.217. 
YURIOKA, N.; SUZUKI, H.; OHSHITA, S.; SAITO, S. Determination of Necessary Preheating Temperature in Steel 
36 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Welding. Welding Journal (Miami, Fla), [S. l.], v. 62, n. 6, 1983. ISSN: 00432296. 
YURIOKA, Nobutaka. Impact of welding research on steel composition development. Materials and Design, [S. l.], 
v. 6, n. 4, p. 154–171, 1985. ISSN: 02613069. DOI: 10.1016/0261-3069(85)90038-X. 
 
 
37 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
Capítulo 
2 
 
Revisão da literatura sobre a 
usinabilidade do aço AISI H13 sob 
diferentes meios lubrirrefrigerantes 
 
 
Carlos Eduardo Borsoi Rheinheimer 1, carlosrheinheimer@acad.ftec.com.br 
Rafael Talini Lorenzi 2, rafalorenzi@hotmail.com 
André João de Souza 3, ajsouza@ufrgs.br 
 
1 Aluno de Doutorado do Programa de Pós-Graduação em Engenharia Mecânica. 
2 Aluno de Mestrado do Programa de Pós-Graduação em Engenharia Mecânica. 
3 Professor Doutor da Universidade Federal do Rio Grande do Sul. 
Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Engenharia Mecânica (DEMEC), Rua 
Sarmento Leite, n° 425, Porto Alegre, RS, CEP 90050-170. 
 
 
Resumo: O AISI H13 é um aço-ferramenta para trabalho à quente ligado ao cromo-molibdênio que apresenta 
alta resistência ao desgaste, ao choque térmico, à fadiga térmica e ao amolecimento pelo calor. São utilizados 
principalmente na fabricação de moldes e matrizes de forjamento, fundição e extrusão devido à sua capacidade 
de manter a dureza em temperaturas elevadas, com suficiente tenacidade. O seu alto teor de carbono, associado 
aos demais elementos de liga, lhe permite alta temperabilidade. Quando tratado termicamente, o H13 forma 
carbonetos globulares que expõem repetidamente a ferramentade corte durante a usinagem a elevadas tensões 
térmicas e mecânicas. Tais dificuldades direcionam para a aplicação de fluidos de corte em abundância visando 
reduzir o atrito nas interfaces ferramenta-peça e ferramenta-cavaco, remover a energia térmica que surge na 
zona de corte, e expulsar os cavacos gerados. Por outro lado, o avanço tecnológico de máquinas e ferramentas 
tem possibilitado a “usinagem dura” aplicando métodos alternativos de lubrirrefrigeração em substituição ao fluido 
em abundância motivados por aspectos econômicos e ambientais. Assim, esta revisão da literatura visa 
apresentar as vantagens e limitações da aplicação desses métodos alternativos (a seco, com mínima quantidade 
de lubrificante, refrigerado a gás, e por criogenia) na usinagem do AISI H13 endurecido. 
 
Palavras-chave: Usinabilidade do AISI H13, Meios lubrirefrigerantes, Materiais de difícil usinagem. 
 
 
A literature review on machinability of the AISI H13 steel 
under different lubricooling environments 
 
Abstract: AISI H13 is a chromium-molybdenum alloy steel with high wear resistance, high thermal shock 
resistance, high thermal fatigue resistance, and high heat softening resistance. This tool steel is mainly used to 
manufacture molds and dies applied on forging, casting, and extrusion due to its ability to maintain hardness at 
high temperatures with sufficient toughness. The high carbon content present in AISI H13 tool steels, associated 
with other alloying elements, allows their high hardenability. When heat-treated, H13 produce globular carbides 
that expose the cutting tool to high thermal and mechanical stresses during machining. Such difficulties encourage 
applying cutting fluid in abundance to reduce friction at the tool-workpiece and tool-chip interfaces, extracting the 
heat produced in the cutting zone, and removing the generated chips. On the other hand, technological advances 
in machine tools and cutting tools have enabled “hard machining” by applying alternative methods of lubricooling 
to replace the cutting fluid in abundance supported by economic and environmental aspects. Thus, this literature 
review aims to present the advantages and limitations of applying these alternative methods (dry, minimal quantity 
lubrication, gas cooling, and cryogenic cooling) in the machinability of hardened AISI H13. 
 
Keywords: Machinability of AISI H13 tool steels, Lubricating media, Hardness machine materials.
 
 
 
 
 
mailto:ajsouza@ufrgs.br
38 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
1. INTRODUÇÃO 
Aços da família “H” são aços para trabalho a quente, sendo o H11 o primeiro a ser desenvolvido para 
fabricação de moldes para fundição de alumínio. 
O aço AISI H13 é um aço-ferramenta para trabalho a quente, do tipo cromo-molibdênio (Cr-Mo), utilizado 
principalmente para fabricação de moldes e matrizes devido a sua capacidade de manter a dureza em 
temperaturas elevadas, com resistência mecânica e tenacidade suficientes (Kumar e Chauhan, 2015). 
O endurecimento do AISI H13 acontece por tratamento térmico de têmpera com revenimento ao ar, devido a 
sua elevada temperabilidade (Umbrello et al., 2008). Essa característica se deve, além do alto teor de carbono, 
aos elementos de liga encontrados em sua composição. A presença de cromo propicia maior uniformidade das 
características mecânicas entre a superfície e o núcleo da peça, podendo atingir durezas de até 60 HRC, onde 
apresenta fase martensítica metaestável (Cardarelli, 2008). 
Devido à alta dureza do AISI H13 e à formação de carbonetos globulares, a ferramenta de corte é 
repetidamente exposta a níveis extremamente elevados de tensões mecânicas e térmicas. A aplicação de fluido 
de corte em abundância é altamente utilizada, visando a redução do atrito entre peça-ferramenta e ferramenta-
cavaco, a extração da energia térmica que surge na zona de corte, e a remoção dos cavacos (Bakar et al., 2020). 
Materiais endurecidos comumente apresentam baixa usinabilidade. No entanto, a usinagem realizada após 
tratamento térmico com o material já em sua dureza final evita problemas decorrentes do tratamento térmico, 
como por exemplo variações dimensionais e empenamentos (Wang e Zheng, 2003). 
A usinagem de materiais endurecidos afeta o mecanismo de formação do cavaco, sendo comum encontrar 
forças de usinagem mais altas para materiais de maior dureza (maior pressão específica de corte); no entanto, 
as áreas das seções transversais de corte utilizadas na usinagem são normalmente menores, fazendo com que 
as forças não sejam elevadas. Percebe-se ainda que a utilização de materiais com baixas condutividades térmicas 
resulta em maiores solicitações de usinagem, pois apenas uma pequena quantidade de energia térmica que surge 
na usinagem seja removida junto ao cavaco. Isso faz com que uma quantidade maior de calor seja absorvida pela 
ferramenta, reduzindo a sua vida (Klocke, 2011). 
Os avanços tecnológicos das ferramentas de corte e conjuntos máquinas-ferramentas possibilitaram a 
usinagem de materiais endurecidos através de métodos alternativos. Processos de torneamento de materiais 
endurecidos vem substituído processos de retificação de forma econômica (Wang e Zheng, 2003). A aplicação 
de novos revestimentos tem resultado em melhorias significativas na vida das ferramentas de corte, possibilitando 
o estudo de fresamento a seco em altas de velocidades de corte (Fox-Rabinovich et al., 2005), além de outros 
métodos de refrigeração. 
A eliminação, ou ao menos a redução do uso de fluido lubrirrefrigerante é uma busca devido a pressões 
econômicas e ambientais, visando atender uma série de normas atualmente adotadas que contempla o controle 
e o descarte deste tipo de insumo. Além do custo gerado ao processo, o fluido é associado a uma série de 
doenças que podem acometer os colaboradores, doenças essas que podem ser respiratórias ou cutâneas, além 
do impacto ambiental devido ao seu descarte incorreto (Goindi e Sarkar, 2017). 
Diante disso, o objetivo deste artigo é apresentar uma revisão concisa da literatura acerca das possibilidades 
da usinagem deste material utilizando diferentes métodos de aplicação de lubrirrefrigerantes ambientalmente 
amigáveis. 
2. USINAGEM A SECO DO AISI H13 
A usinagem sem utilização de qualquer fluido lubrirefrigerante, denominada usinagem a seco, é considerada 
como ideal do ponto de vista econômico e ambiental. Uma vez que não há o custo envolvido com a aquisição e 
descarte deste insumo, bem como a eliminação do agente causador de doenças que afetam a saúde dos 
operadores. Por isso a busca pela usinagem a seco tem sido cada vez maior. Entretanto, sem o uso de fluído de 
corte, o excessivo aumento de temperatura causa o amolecimento do material da ferramenta, fazendo com que 
esta perca sua dureza, aumente a taxa de desgaste, e modifique a geometria de corte. Isso, por sua vez, aumenta 
as forças de usinagem e gera maiores deformações, que podem inclusive causar falhas repentinas da ferramenta. 
Além disso, pode causar danos à superfície usinada. Por isso, a usinagem a seco tem sido implementada com 
sucesso em alguns poucos materiais e processos (Goindi e Sarkar, 2017). 
2.1. Torneamento 
O torneamento a seco tem sido o processo mais estudado para usinagem de materiais de difícil usinagem, 
onde busca-se com isso reduzir a necessidade de retificação pós beneficiamento. 
Ghani et al. (2008) realizaram estudos para torneamento a seco de AISI H13 temperado (dureza de 56 HRC) 
com usando insertos de PCBN. Foram utilizadas duas velocidades de corte distintas para realização dos 
experimentos. A profundidade de corte e o avanço e foram mantidos constantes e iguais a ap = 0,2 mm e 
f = 0,172 mm/rev., respectivamente. Os parâmetros experimentais, na Tab. (1). Os dados obtidos 
experimentalmente foram utilizados em conjunto com análise de elementos finitos para estabelecer relações entre 
a temperatura na zona de corte e o desgaste da ferramenta, uma vez que influenciafortemente nas forças de 
usinagem e na integridade superficial da peça. Após cada passe de 85 mm de comprimento, a aresta de corte e 
39 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
os cavacos gerados foram analisados em microscópio óptico para determinar a área da seção transversal do 
cavaco e assim calcular a espessura do cavaco gerado. 
Tabela 1. Parâmetros de corte no torneamento de AISI H13 com dureza de 56 HRC (Ghani et al. 2008) 
Experimento 
Nº 
Velocidade de corte 
vc (m/min) 
Comprimento de corte 
l (mm) 
Nº de 
passes 
1 144,26 85 1 
2 144,26 170 2 
3 144,26 255 3 
4 144,26 340 4 
5 288,52 85 1 
6 288,52 170 2 
7 288,52 255 3 
 
A Figura (1) monstra a influência da espessura do cavaco na área de contato entre o cavaco e a ferramenta 
e a transferência de calor na interface. Supondo que 90% do trabalho realizado na usinagem seja convertido em 
energia térmica, cerca de ¾ desta energia é transformada devido ao cisalhamento durante a formação do cavaco 
(zona primária) e ¼ por meio do atrito entre o cavaco e a superfície de saída da ferramenta (zona secundária) e 
pelo do atrito entre a superfície de folga da ferramenta e a peça de trabalho (zona terciária). 
 
Figura 1. Geração de calor na usinagem ortogonal (Ghani et al. 2008). 
O desgaste da ferramenta foi medido ao final de cada passe, mostrando-se menores para as condições com 
menor vc (menor calor gerado durante o corte). A evolução dos desgastes máximos de flanco pode ser vista na 
Fig. (2). Identificou-se alta incidência de lascamentos nos flancos dos insertos. O desgaste de cratera também foi 
identificado, sendo mais acentuado para altas velocidades de corte. 
As forças de usinagem quando vc = 144,26 m/min permaneceram praticamente constates, aumentando a 
partir do segundo passe e permanecendo constante para o restante dos testes, com exceção do passe 3, que 
apresentou um aumento temporário das forças de corte (provavelmente devido a alguma inclusão de maior 
dureza), e o passe 4, que exibiu redução gradativa das forças devido ao lascamento da aresta, que diminuiu o 
contato original com a peça. A temperatura apresentou aumento de forma oscilatória no início do processo, sendo 
essa oscilação gradualmente eliminado com o tempo; isso acontece durante o aquecimento inicial, pois o 
coeficiente de transferência de calor da ferramenta é muito baixo, e por isso o calor é transferida desta forma até 
que uma temperatura constante e com menores oscilações, seja atingida. A conclusão dos autores é que a vida 
da ferramenta pode ainda ser melhorada se utilizados materiais com menores condutividades térmicas, inibindo 
assim o calor que é transmitido para a ferramenta, o que poderia tornar viável a usinagem a seco do AISI H13. 
 
40 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
Figura 2. Desgastes máximos de flanco no torneamento a seco de AISI H13 com dureza de 56 HRC, 
(Ghani et al. 2008). 
2.2. Fresamento HSM 
Com o avanço tecnológico, o fresamento de topo em altas velocidades de corte (HSM – High-Speed 
Machining) tornou-se um processo de fabricação de baixo custo, com produção de peças de alta precisão 
dimensional e qualidade superficial. Inicialmente utilizou-se o fresamento aço rápido em ligas de alumínio; com o 
passar o tempo, foram realizados estudos em materiais com usinabilidade cada vez menor. As principais 
vantagens da utilização de HSM são alta produtividade, baixa força de usinagem (seção de corte reduzida) e boa 
dissipação térmica. Entretanto, muitas vezes se associa HSM com desgastes excessivos de ferramenta, uso de 
máquinas-ferramentas de alto custo e necessidade de utilização de materiais avançados para ferramentas de 
corte e revestimentos (Fallböhmer et al., 2000). 
Fallböhmer et al. (2000) analisaram o fresamento a seco HSM do AISI H13 com dureza de 46 HRC utilizando 
fresas com insertos de metal-duro com diferentes revestimentos (TiN, TiCN, TiAlN1 e AlTiN²) e fresas com insertos 
de PCBN a 300, 450 e 800 m/min de velocidade de corte. A ferramenta que apresentou maior tempo de vida foi 
o inserto com revestimento de TiN atingindo fim de vida após a usinagem de uma área de 750 cm². Além disso, 
todos os insertos de metal-duro tiveram vida superior aos insertos de PCBN, possivelmente devido à menor 
tenacidade. A vida da ferramenta foi ligeiramente maior para velocidades de corte menores, mas as vidas foram 
também expressivas para vc = 450 m/min, tornando esse parâmetro como ideal para estas condições. Outra 
característica notada foi que os insertos de PCBN apresentaram maior vida para vc = 800 m/min, pois estas 
apresentam maior dureza a quente. A Figura (3) mostra os resultados encontrados. Os autores concluíram que a 
usinagem de AISI H13 com durezas próximas às ensaiadas em HSM não só são possíveis de serem realizadas, 
como são economicamente viáveis. 
 
Figura 3. Área de material usinado vs. material da ferramenta (Fallböhmer et al. 2000) 
 
¹ - A designação “TiAlN” é usada para revestimentos de nitreto de Ti-Al onde o teor de alumínio atômico de Al é menor ou igual a 50%, normalmente de cor marrom opaca. 
² - A designação “AlTiN” é usada para revestimentos de nitreto de Ti-Al onde o teor de alumínio atômico de Al é maior do que 50%, normalmente de cor preta. 
 
41 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Outro estudo em HSM foi feito por Fox-Rabinovich et al. (2005) em que os autores analisaram fresamento 
utilizando fresas esféricas inteiriças com revestimentos PVD de TiAlN (50% Al + 50 Ti), TiAlCrN (25% Ti + 65% 
Al + 10% Cr) e TiAlCrN (10% Ti + 70% Al + 20% Cr), com diferentes teores de elementos constituintes, no 
fresamento a seco em aço AISI H13 endurecido (50 HRC) com velocidade de corte vc = 200 m/min, avanço por 
dente fz = 0,06 mm/dente, profundidade de corte radial ae = 5 mm e profundidade de corte axial ap = 0,6 mm. A 
Figura (4) mostra os valores de desgaste máximo de flanco (VBmax) medido nas ferramentas após 30 m usinados. 
Observou-se que as ferramentas revestidas com TiAlCrN (10% Ti + 70% Al + 20% Cr) apresentaram os menores 
valores de VBmax, sendo quase duas vezes superior ao TiAlN (50% Ti + 50% Al). Para os autores, a existência de 
cromo na composição química do revestimento promoveu a criação de um tribofilme que reduziu o atrito nas 
interfaces peça-ferramenta e ferramenta-cavaco. Analisando-se as ferramentas através de MEV (Microscopia 
Eletrônica de Varredura) observou-se que esse revestimento promoveu a redução do mecanismo de desgaste 
por oxidação (a formação de Cr2O3 impede que a superfície entre em contato com a atmosfera, prevenindo a 
oxidação). 
 
Figura. 4. Desgaste máximo de flanco vs. revestimento de ferramenta após 30 m de usinagem do 
AISI H13 endurecido a 50 HRC (Fox-Rabinovich et al. 2005) 
3. MÍNIMA QUANTIDADE DE LUBRIFICANTE NA USINAGEM DO AISI H13 
A usinagem a seco tem se mostrado como o grande objetivo para uma usinagem ambientalmente amigável. 
Entretanto, para materiais de difícil corte, ela ainda não é viável, sendo muitas vezes impraticável. Por outro lado, 
os fluidos de corte em abundância são uma importante ferramenta para o aumento da produtividade, seja através 
de efeito refrigerante, que reduz a temperatura de corte nas interfaces pelo efeito lubrificante, que reduz o atrito 
da ferramenta com o cavaco e a peça; e ainda há o efeito de remover o cavaco da zona de corte. Nesse contexto, 
a usinagem com mínima quantidade de lubrificante (MQL) pode ser tornar uma opção de estudo. 
Diversos estudos apresentam o uso de método de lubrirefrigeração MQL satisfatórios para fresamento, 
torneamento furação e retificação, inclusive apresentando melhorias perceptíveis para a maiorias destes 
processos. Os resultados mais expressivos podem ser vistos quando comparados com método de aplicação de 
fluido abundante. Pode-se concluir que o uso de MQL nãose mostra não apensar como uma melhoria ambiental, 
mas também, em muitos casos, com uma melhoria da usinagem em si, embora ainda haja diferentes estudos 
neste campo (Sharma et al., 2015). 
Se o objetivo principal é realizar a lubrificação, utiliza-se o sistema é MQL; se tanto o resfriamento quanto a 
lubrificação são necessários, aplica-se o MQCL com o uso de tubo de vórtice. Em operações MQCL, o lubrificante 
usado é comumente óleo puro, mas em algumas aplicações usam-se emulsão ou água (Dixit et al., 2012). 
3.1. Furação 
Brandão et. al (2011) realizaram o processo de furação do aço AISI H13 com dureza de 55 HRC utilizando 
brocas helicoidais inteiriças de metal duro revestidas com TiAlN. O processo foi realizado utilizando três meios 
lubrirrefrigerantes: a seco, MQL e por inundação. Os testes foram realizados utilizando a broca nova; 
posteriormente, foram realizados outros testes em um novo corpo de prova até o desgaste de flanco atingir 
0,2 mm e novamente foi realizado o teste com a broca desgastada para registro de temperaturas. Para a 
realização das medidas de temperatura, termopares foram inseridos na peça a 0,8 mm, 3,3 mm e 5,8 mm da 
parede do furo em distâncias da entrada da broca de 3 mm (T0), 7 mm (T1) e 11 mm (T2). Os resultados das 
medições de temperatura apresentados na Figura (5). Os valores mais altos são encontrados na condição a 
seco, sendo a condição por inundação a que apresentou menores temperaturas. De acordo com os autores, o 
melhor para brocas que apresentam já um certo nível de desgaste, é a condição abundante, visto que as 
temperaturas se mantiveram na mesma faixa das brocas novas. Utilizando como base os valores encontrados 
42 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
no termopar T1 na posição de 0,8 mm (Dist_0,8) no teste utilizando MQL, verificam-se temperaturas muito mais 
elevadas nas brocas desgastadas ao serem comparadas com as brocas novas, demonstrando com isso que 
este método não foi suficiente para manter as temperaturas próximas em ambos os níveis. 
 
 
Figura 5. Resultados da temperatura para os testes com broca nova e desgastada na furação de 
AISI H13 nas condições a seco, MQL e por inundação (Brandão et al. 2011). 
3.2. Fresamento 
Mulyadi et al. (2015) realizaram o fresamento frontal HSM em aço AISI H13 utilizando fresas inteiriças de 
metal-duro com 8 mm de diâmetro revestidas com TiAlN sob diferentes meios lubrirrefrigerantes: a seco, com 
fluido abundante de base mineral (vazão de 1,8 L/h) e com método MQL (vazão de 29,9 mL/h). Os parâmetros 
de corte foram mantidos constantes e iguais a vc = 315 m/min, f = 0,05 mm/rev. ap = 1,5 mm e ae = 1,5 mm. Foram 
realizados 11 passes consecutivos com comprimentos de corte de 100 mm cada. A medição de VBmax foi 
registrada por microscópio óptico, adotando como critério de fim de vida da ferramenta VBmax  0,3 mm. Além 
disso, foram monitorados os consumos de energia elétrica através da potência para cada condição de 
lubrirrefrigeração. 
A Figura (6) monstra as curvas de vida encontradas pelos autores. A maior taxa de desgaste ocorreu na 
usinagem a seco, que atingiu fim de vida após 15,3 min de usinagem. No caso da usinagem com MQL e com 
fluido abundante (inundação), a vida foi de 25,0 min e 29,7 min, respectivamente. Notou-se que até 23,3 min de 
usinagem (VBmax  0,235 mm) as taxas de desgaste para ambos foram próximas e estatisticamente iguais. 
 
Figura 6. Desgaste de flanco na usinagem de AISI H13 nas condições a seco, MQL e com fluido em 
abundância (Mulyadi et al. 2015). 
43 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
A Figura (7) mostra os valores de potência consumida. Como era esperado pelos autores, a usinagem a seco 
foi a que consumiu menores quantidades de potência, uma vez que não havia demanda de energia da bomba. 
Notou-se ainda a potência de corte na usinagem com MQL muito próxima da usinagem a seco, e a usinagem por 
inundação a que apresentou maior consumo de potência. Por considerar que a vida da ferramenta com MQL e 
com fluido em abundância foram relativamente próximas. Para autores o conjunto de fatores econômicos e 
ambientais devem definir qual método preferível. 
 
Figura 7. Potência de corte na usinagem de AISI H13 nas condições a seco, MQL e com fluido em 
abundância (Mulyadi et al. 2015). 
Manimaran e Ross (2020) realizaram o fresamento de uma liga de aço AISI H13 comparando o método MQCL 
com o corte a seco e com emulsão 1:20 em abundância. O MQCL utilizou óleo de rícino (vegetal) em conjunto 
com dióxido de carbono (CO2) aplicado a uma vazão de 3,6 l/h e pressão de 2 bar. Os autores analisaram os 
resultados obtidos em relação à temperatura de corte, ao desgaste da ferramenta, à morfologia do cavaco, à 
microdureza e a rugosidade média (Ra). Constataram que o MQCL reduziu respectivamente a temperatura e o 
desgaste de flanco em relação ao corte a seco em 52% e 54%, e em relação à usinagem inundada em 40% e 
18%. Ao analisarem os cavacos, observaram que houve redução no ângulo de cisalhamento, aumentando a 
espessura do cavaco e facilitando sua quebra devido a lubrificação e resfriamento superiores. Ao investigar a 
superfície usinada, o MQCL gerou uma microdureza 6% mais alta em relação à usinagem a seco e 2% maior que 
na com fluido em abundância. Com relação à rugosidade, a condição MQCL gerou os menores valores de Ra e a 
condição a seco os maiores. Além disso, maiores velocidades de corte (vc) produziram menor rugosidade em 
todas as condições lubrirrefrigerantes, havendo pequena influência do avanço (f) que apresentou valores 
ligeiramente maiores para um avanço 20% maior. A Figura (8) mostra as rugosidades encontradas. 
 
 
 (a) f = 0,10 mm/rev (b) f = 0,12 mm/rev 
Figura 8. Valores de Ra para diferentes velocidades de corte e avanço (Manimaran e Ross, 2020). 
44 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
4. REFRIGERAÇÃO A GÁS NA USINAGEM DO AISI H13 
A utilização de fluido gasoso causa menores prejuízos ambientais, uma vez que não há geração de qualquer 
resíduo com uso deste insumo. O ar comprimido é tido como a alternativa economicamente mais viável, uma vez 
que o mesmo está prontamente disponível na maioria das empresas. Outros gases como oxigênio (O2), dióxido 
de carbono (CO2), nitrogênio (N2) e argônio (Ar) sob altas pressões também podem ser aplicados isoladamente 
ou em conjunto com o ar comprimido. Um fluido gasoso pode ser aplicado de várias formas, com vários ângulos 
de aplicação: quando aplicado diretamente na superfície de saída (face) da ferramenta, reduz o atrito desta com 
o cavaco; quando aplicado na superfície de folga (flanco) refrigera a interface ferramenta-peça. Ao ser aplicado 
através de um tubo de vórtice, este reduz a temperatura do gás e amplia sua capacidade refrigerante, podendo 
chegar a ser 20ºC menor (Sarma, 2009). 
4.1. Torneamento 
Sarma (2009) realizou torneamento de AISI H13 com dureza de 46 HRC utilizando corte a seco e refrigeração 
com ar comprimido. Para os testes foram utilizadas ferramentas de CBN revestidas com TiN variando os 
parâmetros de corte (vc = 125 a 215 m/min f = 0,05 a 0,25 mm/rev. e ap = 0,06 a 0,40 mm). Foram considerados 
as forças de usinagem, o desgaste de flanco da ferramenta e a rugosidade da superfície usinada. As forças de 
avanço e de corte, em geral, são maiores para o torneamento com refrigeração a ar. A Figura (9) mostra as 
imagens da progressão do desgaste do flanco da ferramenta no torneamento a seco e refrigerado a ar para 
vc = 125 m/min, f = 0,16 mm/rev e ap = 0,16 mm. Cada imagem foi obtida após a usinagem de 200 mm. Nota-se 
nas imagens que o desgaste de flanco foi maior para condição a seco em comparação com a refrigerada a ar. 
Isso mostra que a refrigeração com ar comprimido tem influência direta na vida da ferramenta. Isso foi evidenciado 
pelos autores para altas velocidades de corte,onde há tendência de elevação da temperatura de usinagem. 
Observou-se ainda na condição refrigerada a ar que não houve desgaste de cratera e formação de aresta postiça 
de corte (APC). No entanto, o resfriamento a ar não influencia significativamente a rugosidade da superfície 
usinada e não auxilia na redução das forças de corte e avanço. Portanto, o método parece ser uma opção 
ecologicamente correta e econômica para torneamento de materiais endurecidos com ferramentas de CBN. 
 
Comprimento usinado 200 mm 400 mm 600 mm 
Corte a seco 
 
Resfriamento a ar 
comprimido 
 
Figura 9. Progressão do desgaste de flanco da ferramenta durante o torneamento a seco e com ar 
comprimido do AISI H13 com ferramenta de CBN (Sarma, 2009) 
5. REFRIGERAÇÃO POR CRIOGENIA 
Refrigeração criogênica em processos de usinagem envolve o uso de gases liquefeitos como nitrogênio (LN2), 
dióxido de carbono (LCO2), hélio (LHe) e argônio (LAr), em baixíssimas temperaturas (abaixo de 120 K). Pode-
se utilizar esse artifício como parte do tratamento térmico da ferramenta, melhorando as propriedades do material 
que a compõe, denominado crio-processamento, ou como fluido de corte propriamente dito, a fim de refrigerar a 
zona de corte, reduzindo o atrito e afastando o cavaco (Shokrani et al., 2013). A usinagem criogênica visa 
aumentar a vida da ferramenta, melhorar o acabamento superficial da peça e reduzir as forças de usinagem 
(Bakar et al., 2020). 
Usinagem criogênica é um termo utilizado para denominar processos de usinagem submetidos a uso de gases 
liquefeitos super frios, direcionados área de usinagem com objetivo de resfriar a zona de corte. Há, entretanto, 
uma ressalva importante para utilização de refrigeração criogênica: as baixíssimas temperaturas da criogenia 
também podem alterar as propriedades superficiais do material da peça usinada, geralmente aumentando a 
dureza e elasticidade. Aços de baixo carbono, por exemplo, que são materiais dúcteis, com tendência a aderir a 
ferramenta de usinagem, podem vitrificar – de forma similar a materiais poliméricos – ao atingir temperaturas 
45 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
inferiores a temperatura de transição vítrea, reduzindo significativamente a usinabilidade do material. A redução 
da temperatura também diminuía condutividade térmica do material, podendo resultar em um comportamento 
imprevisível durante a usinagem (Shokrani et al., 2013). 
5.1. Fresamento 
A geometria da aresta de corte e os parâmetros de corte afetam significativamente o desempenho da 
ferramenta a estabilidade do processo de usinagem, sendo reconhecidos por influenciar as forças de usinagem 
e a temperatura de corte, além de ter impacto sobre a vida da ferramenta e a qualidade da superfície usinada. 
Três formas geométricas fundamentais são comumente empregadas quando se trata da usinagem de materiais 
endurecidos: arredondadas, afiadas e chanfradas. Com esta abordagem, Bakar et al. (2020) estudaram a 
influência do raio de arredondamento da aresta de corte (rβ) na rugosidade média (Ra) gerada por fresamento 
HSM a seco e com LN2 do aço AISI H13 endurecido (52 HRC) utilizando fresas inteiriças de metal-duro. A Tabela 
(2) mostra o planejamento experimental realizado pelos autores. Inicialmente realizou-se os experimentos 8 com 
usinagem a seco com velocidade de corte constante em vc = 200 m/min. Em seguida, a lubrificação criogênica 
com LN2 foi aplicada nos experimentos 1 e 8, os quais corresponderam aos maiores e menores tempos de vida 
da ferramenta (Fig. 10). 
Tabela 2. Planejamento experimental (Bakar et al. 2020). 
Experimento 
Nº 
Avanço 
fz (mm/dente) 
Profundidade de corte axial 
ap (mm) 
Raio de arredondamento de aresta 
rβ (mm) 
1* 0,03 0,1 0,03 
2 0,03 0,1 0,05 
3 0,03 0,2 0,03 
4 0,03 0,2 0,05 
5 0,06 0,1 0,03 
6 0,06 0,1 0,05 
7 0,06 0,2 0,03 
8* 0,06 0,2 0,05 
*Fresamento com refrigeração criogênica (LN2) 
 
Todos os experimentos de vida da ferramenta (Fig. 10) foram interrompidos quando VBmax  0,3 mm. Nota-se 
que o uso do menor rβ (0,03 mm), combinado com baixos níveis de ap e fz, gerou a menor taxa de desgaste. A 
maior vida de ferramenta no corte a seco foi de 4,43 min, enquanto que para aplicação de LN2, a vida alcançou 
8,65 min (aumento de 95%). Segundo os autores, isso pode ter sido devido à grande redução de temperatura na 
zona de corte e a diminuição do atrito nas interfaces. 
 
Figura 10. Curva de vida da ferramenta no fresamento do AISI H13 a seco e com LN2 (Bakar et al. 2020). 
A Figura (11) mostra os valores de rugosidade média (Ra) obtidos. Observa-se que um menor rβ (0,03 mm) 
aliado a baixos níveis de ap e fz geram melhor acabamento na superfície fresada. Além disso, essa rugosidade 
46 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
diminuí com aplicação de criogenia (até 7,59% menor) pois há uma tendência de que haja menos adesão de 
material à ferramenta, o que resulta em menos marcas (arranhões) na superfície. 
 
Figura 11. Rugosidade no fresamento do AISI H13 a seco e com LN2 (Bakar et al. 2020). 
 
A Tabela (3) resume estes resultados. Essas técnicas estão se tornando cada vez mais viáveis de serem 
utilizadas e mais adequadas à usinagem verde. Vale citar o método por mínima quantidade de lubrificação (MQL), 
o qual se apresenta como mais proeminente em relação aos demais métodos. 
Tabela 3. Resumo dos resultados encontrados 
Autores 
Procedimento 
de usinagem 
Meio 
lubrirrefrigerante 
Resultados 
Ghani et al. (2008) Torneamento Seco 
Os menores desgastes da ferramenta foram 
encontrados nas condições com menor velocidade de 
corte devido ao menor calor gerado. 
Fallböhmer et al. 
(2000) 
Fresamento Seco 
Todos os insertos de metal-duro tiveram vida superior 
aos insertos de PCBN. Maior tempo de vida foi 
encontrado com insertos de metal-duro com 
revestimento de TiN. 
Fox-Rabinovich et al. 
(2005) 
Fresamento Seco 
Os menores valores de desgaste máximo de flanco 
foram observados nas ferramentas revestidas com 
TiAlCrN (10/70/20) 
Brandão et al. (2011) Furação 
Seco, MQL e 
Abundância 
Os melhores resultados foram encontrados ao utilizar 
o método de resfriamento por inundação 
Mulyadi et al. (2015) Fresamento 
Seco, MQL e 
Abundância 
Maior desgaste da ferramenta na usinagem a seco e 
maior consumo de potência na usinagem abundante. 
Manimaran e Ross 
(2020) 
Fresamento 
Seco, MQCL e 
Abundância 
Menores temperaturas e desgaste de flanco foram 
obtidos com o método MQCL, quando comparados 
com o corte a seco e a usinagem inundada. 
Sharma (2009) Torneamento 
Seco e Ar 
Comprimido 
Na condição a seco ocorreu maior desgaste de flanco, 
existência de desgaste de cratera e formação de APC, 
que não foi notada na usinagem refrigerada a ar. 
Bakar et al. (2020) Fresamento Seco e Criogênico. 
Aumento na vida da ferramenta de 95% utilizando LN2 
ao comparar com o fresamento a seco. 
 
6. CONCLUSÃO 
O artigo sintetiza estudos promissores de diferentes métodos de lubrirrefrigeração para a usinagem do aço 
AISI H13. Conclui-se que essa liga pode se enquadrar como um material de difícil usinagem, o que torna o 
processo sem aplicação de fluido em abundância bastante desafiador. Entretanto, diversos trabalhos aplicando 
47 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
métodos alternativos de lubrirrefrigeração foram desenvolvidos e apresentaram resultados satisfatórios com 
relação à vida das ferramentas, temperaturas de corte, forças de usinagem e qualidades superficiais. 
Dessa forma é possível afirmar que a usinagem de AISI H13 é possível de ser realizada com métodos 
alternativos de aplicação de fluido lubrirefrigerante em detrimento a utilização de fluido abundante e que existe 
uma tendência de que esses métodos sejam ainda aprimorados. Demonstra que outros materiais de difícil 
usinagem possam ser submetidos a condições semelhantes. 
Analisando os estudos revisados,percebe-se que ainda existe campo para estudo no que se refere a métodos 
de lubrirrefrigerantes mais amigáveis para usinagem de AISI H13, principalmente furação profunda e processos 
de usinagem com ferramentas de geometria não definida. Além disso, há oportunidades de estudos em fluidos 
de corte de base vegetal em substituição a fluidos de base mineral, que são potencialmente mais agressivos. 
7. REFERÊNCIAS 
Bakar, H. N. A., Ghani, J. A., Haron, C. H. C., 2020. “Influence of rounded cutting-edge radius and machining 
parameters on surface roughness and tool wear in milling AISI H13 steel under dry and cryogenic machining”, 
Jurnal Tribologi, v. 24, p. 52-64. 
Brandão, L. C., Coelho, R. T., Lauro, C. H., 2011. "Contribution to dynamic characteristics of the cutting 
temperature in the drilling process considering one dimension heat flow" Applied Thermal Engineering, Volume 
31, Issues 17–18, 2011. p. 3806-3813, 
Dixit, U. S., Sarma, D. K., Davim, P. J., 2012. Environmentally friendly machining, Springer, New York. 
https://doi.org/10.1007/978-1-4614-2308-9. 
Cardarelli, F., 2008. Materials Handbook 2ª ed., Tucson: Springer, 1365p. 
Fallböhmer, P., Rodríguez, C. A., Özel, T., Altan, T., 2000. “High-speed machining of cast iron and alloy steels 
fordie and mold manufacturing”, Journal of Materials Processing Technology, v. 98, p. 104-115. 
Fox-Rabinovich, G. S., Yamomoto, K., Veldhuis, S. C., Kovalev, A. I., Dosbaeva, G. K., 2005. “Tribological 
adaptability of TiAlCrN PVD coatings under high performance dry machining conditions”, Surface & Coatings 
Technology, v. 200, p. 1804-1813. 
Ghani, M. U., Abukhshim, N. A., Sheikh, M. A.,.2008. “An investigation of heat partition and tool wear in hard 
turning of H13 tool steel with CBN cutting tools”, The International Journal of Advanced Manufacturing Technology, 
v.39, p. 874-888. 
Goindi, G. S., Sarkar, P., 2017. “Dry machining: A step towards sustainable machining e Challenges and future 
directions”, Journal of Cleaner Production, v. 165, p. 1556-1571. 
Klocke, F., 2011. “Manufacturing Processes 1: Cutting”. RWTH Edition, Springer, New York. 
Kumar, P., Chauhan, S. R., 2015. “Machinability Study on Finish Turning of AISI H13 Hot Working Die Tool 
Steel With Cubic Boron Nitride (CBN) Cutting Tool Inserts Using Response Surface Methodology (RSM)”, Arabian 
Journal for Science and Engineering, v. 40, p. 1471-1485. 
Manimaran, G., Ross, K. N. S., 2020. “Surface Behavior of AISI H13 Alloy Steel Machining under 
Environmentally Friendly Cryogenic MQL with PVD-Coated Tool,” Journal of Testing and Evaluation 48, no. 4 
(July/August 2020): 3269–3280. https://doi.org/10.1520/JTE20180130 
Mulyadi, I. H., Balogun, V. A., Mativenga, P. T., 2015. “Environmental performance evaluation of different 
cutting environments when milling H13 tool steel”, Journal of Cleaner Production, v.108, p. 110-120. 
Sharma, V. S., Singh, G., Sorby, K., 2015. “A Review on Minimum Quantity Lubrication for Machining 
Processes”, Materials and Manufacturing Processes, v. 30, p. 935-953. 
Sarma, D. K., 2009, “Experimental study, neural network modelling and optimization of environment – friendly 
air-cooled and dry turning process”, Guwahati/India, Ph.D. Thesis, Department of Mechanical Engineering, Indian 
Institute of Technology Guwahati, 237p. 
Shokrani, A., Dhokia, V., Muñoz-Escalona, P., Newman, S.T., 2013. “State-of-the-art cryogenic machining and 
processing”, International Journal of Computer Integrated Manufacturing, v. 7, p. 616-648. 
Umbrello, D., Rizzuti, S., Outeiro, J.C., Shivpuri, R., M’Saoubi, R., 2008. “Hardness-based flow stress for 
numerical simulation of hard machining AISI H13 tool steel”, journal of materials processing technology, v. 199, p. 
64-73. 
Wang, J. J., Zheng, M. Y., 2003. “On the machining characteristics of H13 tool steel in different hardness 
states in ball end milling”, The International Journal of Advanced Manufacturing Technology, v. 22, p. 855-86. 
 
48 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
Capítulo 
3 
 
Os benefícios da usinagem de cerâmicas 
avançadas no estado em verde pelo 
processo de torneamento 
 
 
Marcos Gonçalves Júnior1, marcos.junior@ifmg.edu.br 
Cesar Renato Foschini2, cesar.foschini@unesp.br 
Rodrigo Henriques Lopes da Silva³, rodrigolopes@utfpr.edu.br 
 
1 Professor do Instituto Federal de Minas Gerais (IFMG), Campus Avançado Arcos – Doutor em Engenharia 
Mecânica 
2 Professor da Universidade Estadual Paulista “Júlio de Mesquita Filho”, Bauru (SP) – Doutor em Ciência e 
Engenharia dos Materiais 
3 Professor da Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio (PR) – Doutor em 
Engenharia Mecânica 
 
 
Resumo: A usinagem de cerâmica em verde é um método para fabricação de formas complexas, na qual a 
cerâmica “não sinterizada”, ou seja, no seu estado verde é usinada. Tal método fornece uma alternativa possível 
para a rápida fabricação de cerâmica de geometria complexa com dimensões próximas às finais (near-net-
shape), tendo vantagens consideráveis em termos de custo-benefício e acabamento superficial, em comparação 
com outras tecnologias utilizadas para fabricação. A correlação entre a força de usinagem e a taxa de remoção 
de material é um parâmetro importante na definição do projeto de produtos cerâmicos, já que, parâmetros 
inadequados produzem danos superficiais inaceitáveis na peça. Neste estudo, foi realizada uma revisão na 
literatura sobre o torneamento de compactos cerâmicos em verde. Foram investigadas as forças de corte, 
acabamento e integridade superficial, ferramenta de corte e a viabilidade do processo. Os resultados encontrados 
na literatura indicam que o torneamento da cerâmica em verde é benéfico para a fabricação, pois permite altas 
taxas de remoção de material, baixas forças de corte, melhoria no acabamento superficial após a sinterização, o 
que proporciona redução nos tempos de usinagem e consequentemente nos custos da operação. 
 
Palavras-chave: Usinagem em verde, Cerâmica avançada, Acabamento superficial, Forças de corte, 
Ferramenta de corte 
 
 
The benefits of advanced ceramic machining in the green 
state through the turning process 
 
Abstract: The machining of green ceramics is a method for manufacturing complex shapes in which “unsintered” 
ceramics are machined, that is, ceramics in their green state. This method provides a feasible alternative for the 
rapid fabrication of complex geometry ceramics with dimensions close to the final (near-net-shape), which has 
considerable advantages in terms of cost-effectiveness and surface finish, compared to other technologies used 
for manufacturing. The correlation between machining force and material removal rate is an essential parameter 
in defining the design of ceramic products since inadequate parameters produce unacceptable surface damage 
to the part. This study carried out a literature review on the turning of ceramic compacts in the green state. Thus, 
cutting forces, finish and surface integrity, cutting tools, and process feasibility were investigated. The results 
found in the literature indicate that green ceramic turning is beneficial for fabrication, as it allows high material 
removal rates, low-cutting forces, improved surface finish after sintering, which provides reduced machining times 
and, consequently, minimizes the costs of the operation. 
 
Keywords: Green machining, Advanced ceramic, Surface finish, Cutting forces, Cutting tool 
 
 
 
 
 
 
 
49 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
1. INTRODUÇÃO 
 
As cerâmicas avançadas são empregadas em componentes de precisão em vários setores, como: engenharia 
biomédica, sistemas micro-eletro-mecânicos (MEMS), eletro-óptica, aeroespacial, dentre outros, devido às suas 
propriedades físicas, mecânicas, ópticas e eletrônicas, resultam em um aumento do interesse na utilização desses 
materiais (Debnath, Singh, e Dvivedi 2015; Qinet al. 2010; Zhang et al. 2013). No entanto, o processamento e a 
fabricação desses materiais pela usinagem sempre foi um desafio para as indústrias, devido a sua alta dureza e 
a baixa tenacidade à fratura, que reduzem sua usinabilidade (Chen et al. 2018; Sharma e Pandey 2016). 
Para obtenção da geometria, tolerâncias e qualidade superficial desejada de componentes cerâmicos 
sinterizados, a usinagem por retificação utilizando ferramenta diamantada é o principal processo empregado, 
porém, este processo apresenta um custo elevado (Besshi, Sato, e Tsutsui 1999). Outro fator importante na 
usinagem é a alta taxa de desgaste da ferramenta, levando a restrições de remoção de materiais. Além disso, 
invariavelmente, os componentes sofrem danos, como trincas médias e laterais causadas pela usinagem, 
resultando em perda de resistência mecânica devido à sua alta fragilidade, o que limita o uso de alto valor de 
remoção de material (Agarwal e Rao 2008). Nesse sentido, a usinagem de cerâmica sinterizada deve ser 
minimizada (Li et al. 2017). Ainda, ressalta-se o elevado custo de fabricação, principalmente para componentes 
de geometrias complexas. (Besshi, Sato, e Tsutsui 1999; Westerheide et al. 1997). Assim, devido às dificuldades 
de usinagem de peças já sinterizadas, uma alternativa é utilizar a usinagem de cerâmica em verde. 
 A usinagem em verde é uma técnica amplamente utilizada na fabricação de componentes cerâmicos 
(Lindqvist and Carlstrom 2002), pois representa um caminho alternativo a outros processos de fabricação, oferece 
um alto grau de flexibilidade e eficiência econômica para a usinagem de componentes cerâmicos (Li et al. 2017). 
Além disso, é favorável para alcançar uma forma complexa nos estágios iniciais do processamento da cerâmica 
(Janssen, Scheppokat, e Claussen 2008), sendo uma técnica estruturada na filosofia do near-net-shape 
(Salvendy 2001). Adicionalmente, as forças de usinagem são extremamente baixas, se comparadas com as 
forças de usinagem de componentes sinterizados (Gonçalves Júnior et al. 2019). Em muitos processos de 
usinagem somente é possível obter a geometria desejada pelo torneamento, sendo o tema desta revisão. Vale 
ressaltar que existem poucos trabalhos publicados sobre este tema. 
 
2. USINAGEM DE CERÂMICA EM VERDE 
 
A usinagem de cerâmica em verde é realizada após a etapa de compactação, sendo um processo favorável 
para alcançar uma forma complexa nos estágios iniciais do processamento da cerâmica, bem como, reduzir as 
distorções geradas após a sinterização. A usinagem de componentes cerâmicos em verde pode ser executada 
com quase todas as ferramentas convencionais e com as técnicas utilizadas para os metais (Desfontaines et al. 
2005). Nesse caso, os processos convencionais de usinagem são possíveis devido à baixa resistência mecânica 
apresentada pelo estado verde, o que possibilita o uso de ferramentas de geometria definida e o emprego de 
altas taxas de remoção de material quando comparado com a usinagem de cerâmicas sinterizadas (Janssen, 
Scheppokat, e Claussen 2008; Maier e Michaeli 1997; Westerheide et al. 1997). A Figura 1 ilustra alguns exemplos 
de corpos de prova em verde usinados pelo processo de torneamento. 
 
 
 
Figura 1. Exemplos de corpos verdes usinados pelo torneamento. 
Adaptado de Besshi, Sato, e Tsutsui, 1999. 
 
O processo de remoção de material da cerâmica no estado verde é diferente daquele que ocorre nos metais, 
principalmente, quando se refere aos metais dúcteis. Assim, ela é usinada através da fratura do material e não 
da deformação plástica. Portanto, a aresta de corte esmaga a cerâmica que entra em contato enquanto se move, 
formando pequenas partículas que resultam em um pó, ao contrário dos metais, que na sua maioria, apresentam 
características especificas (tipo e forma) para o cavaco (Herlinger, Schoettmer, e Zimmer 2006). 
Tal método permite uma excelente vantagem com relação à ferramenta de corte, além de não exigir 
ferramentas caras, as forças de corte aplicadas sobre elas são pequenas e a geração de calor durante o processo 
é baixa, o que reduz os custos das operações de acabamento final (Gonçalves Júnior et al. 2015). Logo, a 
usinagem de uma peça cerâmica no estado verde pode ser até 1000 vezes mais rápida do que a usinagem 
50 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
convencional de cerâmicas sinterizadas (Desfontaines et al. 2005; Robert-Perron et al. 2005). A Tabela 1 exibe a 
comparação de algumas propriedades de uma coroa dentária fabricada de alumina em verde e sinterizada, sendo 
verificado as propriedades mecânicas bem inferiores no estado em verde. 
 
Tabela 1. Resultados experimentais para os LR e dureza 
 
Adaptado de Mohanty et al., 2013. 
 
A alumina (óxido de alumínio - Al2O3), é umas das cerâmicas mais estudadas e tradicionalmente utilizadas 
como cerâmica estrutural devido à sua elevada dureza, alta resistência ao desgaste, estabilidade química, baixa 
densidade, alta temperatura de fusão, alta resistividade elétrica e baixo custo, tendo sua matéria-prima abundante 
(Wefers and Misra 1987; Senthil Kumar, Raja Durai, e Sornakumar 2004). Vale ressaltar que a maioria das 
pesquisas em cerâmicas verdes empregam a alumina como o material em estudo. 
 
2.1 Parâmetros e informações importantes para a usinagem 
 
Para obter resultados satisfatórios na usinagem de materiais cerâmicos em verde pelo processo de 
torneamento, alguns parâmetros devem ser analisados cuidadosamente, tais como: formulação adequada do 
material, aditivos, gradientes de densidade (Robert-Perron et al. 2005), resistência mecânica adequada para 
suportar a ação do corte (Liu et al. 2017), controle da retração causada durante a sinterização, suportes para 
fixação dos compactos em verde para a usinagem e seleção da ferramenta apropriada (material e geometria) 
para o processo (Mohanty et al. 2013; Su, Dhara, e Wang 2008). 
É importante salientar que os compactos em verde devem ser resistentes o suficiente para resistir às tensões 
induzidas em relação à fixação e ao processo de usinagem, devido à alta taxa de falhas por fratura (Liu et al. 
2017). Assim, os parâmetros de usinagem devem ser cuidadosamente selecionados e controlados para evitar 
tensões excessivas no material frágil, que podem resultar em trincas, quebras ou acabamento superficial ruim 
(Ng, Hull, e Henshall 2006). A Figura 2 ilustra uma simulação numérica do procedimento experimental da 
distribuição de densidade no compacto em verde após o processo de compactação. O compacto foi 
primeiramente prensado (conformado) pelo método uniaxial para dar forma ao compacto e, posteriormente, 
prensado pelo método isostático duas vezes. 
 
 
Figura 2. Variação da densidade após a compactação. 
Densidade após a prensagem: a) Uniaxial, 75 MPa. b) Isostática, 25 MPa. c) Isostática, 200 MPa. 
Adaptado de Melo et al., 2018. 
 
Observando a Figura 2, o atrito entre o pó de alumina e as paredes do molde conduz a um gradiente de 
densidade relevante na prensagem uniaxial (varia conforme o molde empregado). Após a primeira prensagem 
isostática, a densidade foi parcialmente homogeneizada na porção inferior do compacto, uma vez que a pressão 
aplicada não foi suficiente para compactar todas as regiões da amostra. No entanto, a segunda prensagem 
isostática a 200 MPa foi suficiente para resultar na distribuição homogênea da densidade. A existência de 
gradientes de densidade distintos faz com que em cada região da peça haja contração volumétrica de diferente 
intensidade na sinterização. Consequentemente, haverá valores de contrações diferentes, o que resulta em 
deformação da peça sinterizada (Bukvic et al. 2012). 
Os processos de conformação visam a maior produtividade a um menor custo, e cada processo de 
conformação influencia de modo diferente a camada superficial da peça a ser usinada (Richerson 1992). Existem 
51 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
diferentesprocessos de conformação, como: colagem, injeção em moldes, gelcasting, prensagem uniaxial 
(simples e dupla ação) e prensagem isostática (técnica do molde seco e molde úmido). 
Para executar a usinagem em verde pelo torneamento, um procedimento na tentativa de evitar danos na peça 
em sua região de fixação (como a deformação e o colapso total provocado pela baixa resistência mecânica do 
compactado cerâmico a verde) é confeccionar uma base de aço com uma cavidade cilíndrica, possuindo diâmetro 
semelhante ao do corpo de prova para não fixar diretamente no cabeçote da máquina. 
Segundo Herlinger et al. (2006), as trincas internas na cerâmica verde geralmente podem ser prevenidas 
evitando pressões excessivas no momento da fixação. No trabalho de Gonçalves Júnior (2019), os corpos de 
prova foram fixados por adesão com cera térmica. Dessa forma, garantiu-se uma rígida fixação e propiciou uma 
remoção da peça pelo aquecimento a 100 ºC, sendo possível reutilizar a base metálica, apresentado na Figura 
3. Outro ponto importante, é a necessidade de adotar precauções para proteção da máquina, devido ao sistema 
de remoção de material se dar em forma de pó durante a usinagem a verde. Assim, esse pó pode penetrar 
facilmente nos componentes da máquina, como nas guias e demais componentes, fazendo com que acelere o 
desgaste destas partes (Ng, Hull, e Henshall 2006) devido a sua alta abrasividade. 
 
 
Figura 3. Conjunto formado pela base e corpo de prova (Gonçalves Jr M., 2019). 
 
 
 
2.2 Influência dos parâmetros de corte no acabamento superficial e nas forças 
 
A análise dos parâmetros de corte e das forças de usinagem pode auxiliar o processo de planejamento, na 
escolha de condições de corte adequadas, como também, reduzir o desgaste da ferramenta e a probabilidade de 
quebra da ferramenta. Além do mais, as forças de corte inadequadas podem afetar a qualidade final da peça 
(Schroeter, Bastos, e Crichigno Filho 2007). Por esse motivo os parâmetros de usinagem devem ser 
cuidadosamente selecionados e controlados, para evitar tensões excessivas no material frágil, o que pode 
acarretar em trincas, quebra ou acabamento superficial ruim (Ng, Hull, e Henshall 2006). Quantificar a 
usinabilidade da cerâmica em verde depende de vários fatores, como: máquina-ferramenta, inserto, parâmetros 
de corte, material da peça, método de elaboração da peça em verde, entre outros. De modo geral, obter uma boa 
usinabilidade em cerâmicas verdes é um processo empírico. Nesse sentido, Konig and Wagemann (1993) 
empregaram o desgaste da ferramenta como um indicador de usinabilidade. Porém, o melhor critério é o nível de 
qualidade superficial após o processo de usinagem. 
Alguns autores pesquisaram a influência dos parâmetros de corte no acabamento superficial e nas forças, 
sendo tratados nesta revisão. No estudo realizado por Sheppard (1999), ele verificou que a velocidade máxima 
de usinagem é limitada àquela que produz uma superfície adequada, sem trincas e lascamento, e que a força de 
corte aumenta linearmente com o aumento da velocidade de corte e as taxas de alimentação, podendo ter forças 
totais de usinagem de até 25 N. Também verificou que a profundidade de corte não tem efeito relevante sobre a 
qualidade da superfície. 
Outro estudo interessante foi o de Xu e Jahanmir (1996). Segundo os autores, a velocidade de corte (vc) 
pouco influencia o acabamento superficial da peça cerâmica em verde. Porém, devido à baixa resistência 
apresentada no material cerâmico em verde e aos esforços impostos pelo aumento da força centrífuga, a 
velocidade de corte é limitada em operações de torneamento. Já em relação ao avanço, seu aumento gera 
maiores valores de rugosidade. A Figura 4 ilustra a variação da velocidade de corte e do avanço em função da 
rugosidade. 
 
 
52 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
Figura 4. Influência da velocidade de corte e do avanço na rugosidade (Rz) gerada no torneamento de 
cerâmica a verde (Xu e Jahanmir, 1996). 
 
No estudo de Maier e Michaeli (1997), foram torneadas peças de alumina compactadas por 150 MPa. Os 
autores verificaram de modo geral que o aumento da velocidade de corte gerou uma diminuição da rugosidade e 
a força resultante permaneceu praticamente constante. Já o aumento do avanço produziu um incremento 
significativo da rugosidade e das forças geradas, e, o aumento da profundidade de corte causou leve redução da 
rugosidade, porém, gerou aumento da força resultante. Essas observações são verificadas na Figura 5, segundo 
Robert-Perron et al. (2007), o avanço da ferramenta demonstrou ser o principal parâmetro de influência sobre os 
lascamentos nas bordas das peças, corroborando com os dados apresentados na Figura 5. 
 
 
Figura 5. Análise da rugosidade e força resultante (F) obtida por diferentes parâmetros de corte 
(Maier e Michaeli, 1997). 
 
No estudo de Gonçalves Júnior et al. (2015), corpos de prova de alumina em verde prensados isostaticamente 
por 200 MPa foram usinados pelo torneamento. Como resultado, verificou-se que a ocorrência de danos pode 
ser provocada pela força de corte empregada na usinagem, devido às velocidades de corte e aos avanços 
inadequados, como também, às altas tensões desenvolvidas que podem causar desprendimento das partículas 
compactadas, uma vez que a peça verde compactada apresenta baixa resistência mecânica. Essa relação 
também foi verificada no trabalho de Bukvic et al. (2012), no qual foram usinados compactos verdes de alumina 
prensados uniaxialmente (120 MPa), torneados com quatro valores de profundidade de corte, sendo: 0,25; 0,50; 
0,75 e 1,0 mm, mantendo os mesmos parâmetros. A Figura 6 mostra três exemplos de superfícies de peças 
geradas em melhores condições progressivas: uma sob condições de corte inadequadas (Figura 6a), outra 
parcialmente adequada (Figura 6b) e a última sob condições adequadas que foi usada nos testes. 
 
 
Figura 6. Superfícies usinadas em verde com acabamento considerado (a) impróprio, (b) 
parcialmente adequado e (c) adequado (Bukvic et al., 2012). 
53 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Para Desfontaines et al. (2005), os danos também são influenciados pelo grau da resistência da peça em 
verde, em que a diferença na resistência em verde resulta em comportamentos diferentes da força de corte e 
danos, podendo ser conduzido a uma fratura do tipo intergranular ou transgranular. A Figura 7 ilustra os tipos de 
trincas geradas após a usinagem. 
 
 
Figura 7. Tipo de trinca na região fraturada, (a) intergranular, (b) intergranular/transgranular e (c) 
transgranular. 
Adaptado de Desfontaines et al., 2005. 
 
Foi verificado também no estudo de Gonçalves Júnior et al. (2015) que a profundidade de corte não afetou 
consideravelmente a qualidade das superfícies, corroborando com os resultados dos trabalhos citados 
anteriormente. Condição importante, pois é possível empregar maiores taxas de remoção de material sem 
prejudicar o acabamento superficial, além de reduzir o número de passes para a remoção do sobre material da 
peça. Outro fato importante é que, ao utilizar maiores profundidades de corte, pode-se evitar gerar lascamento 
da borda do compacto. Nesse sentido, a Figura 8 apresenta corpos de prova com danos na borda, em que foi 
empregado os mesmos parâmetros de usinagem, alterando somente a profundidade de corte. Segundo 
Desfontaines et al. (2005), a retenção da borda também é usada para caracterizar a usinabilidade, constituindo 
em mais um elemento de análise da peça durante a usinagem. 
 
 
Figura 8. Lascamento gerado na borda do compacto após a usinagem em verde (Gonçalves Jr et al., 
2015). 
 
Na análise das forças, os resultados de Bukvic et al. (2012) demonstraram que a força de corte não 
ultrapassou 3 N, verificado na Figura 9. É possível ainda observar que quanto maior a profundidade de corte, 
maiores forças são mensuradas. No trabalho de Sanchez et al. (2018),também foram torneados compactos em 
verde de alumina prensados pelo método uniaxial por 120 MPa, e em relação às forças, foi possível verificar que 
ao longo dos passe executados, a força de corte média (Fc) não ultrapassou 2 N, sendo observado que o aumento 
da força em função dos passes se deve ao desgaste gradual da ferramenta de corte, como visto na Figura 10. 
Além disso, é observado que a região de maior densidade apresentou maiores valores de forças, esses resultados 
podem ser atribuídos à maior coesão das partículas cerâmicas nessa região. Tal fato pode ser atribuído à 
prensagem ser somente uniaxial, fazendo com que o compacto verde tenha distribuição heterogênea dos 
gradientes de densidade, apresentando maior densidade na parte superior do compacto. 
 
54 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
Figura 9. Força de corte em função dos passes executados. 
Adaptado de Bukvic et al., 2012. 
 
 
 
Figura 10. Força de corte em função dos passes executados. 
Adaptado de Sanchez et al., 2018. 
 
Já no trabalho de Gonçalves Júnior et al. (2019), compactos de alumina prensados isostaticamente por 200 
MPa foram usinados e foi empregado um dinamômetro para mensurar as forças de corte, de avanço e de 
profundidade. Nos resultados relativos às forças, o valor máximo mensurado não chegou a 9 N ao final dos passes 
executados, sendo a força de avanço a variável que apresentou maiores incrementos, como apresentado na 
Figura 11. Uma relação importante ao relacionar os trabalhos que indicaram o método e o grau de compactação, 
é que quanto maior for o grau de compactação dos corpos de prova, maior será sua densidade, e 
consequentemente, maiores serão as forças geradas. 
 
 
Figura 11. Forças obtidas em função dos passes. 
Adaptado de Gonçalves Jr et al., 2019. 
 
55 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Após a análise com o foco nos parâmetros de corte, pode-se dizer que as forças na usinagem em verde são 
extremamente baixas e que, nas pesquisas relacionadas nesta revisão, os valores não ultrapassaram 9 N, visto 
que em um torneamento de cerâmica sinterizada os valores medidos são bem maiores. 
Para se fazer uma comparação, na pesquisa realizada por Amini et al. (2014), os autores investigaram a 
usinabilidade da alumina sinterizada pelo torneamento, em termos da qualidade da superfície, forças de corte e 
desgaste da ferramenta. Assim, em um dos resultados foi verificado que a força durante a usinagem atingiu 
valores próximos a 140 N, empregando uma profundidade de corte de 0,2 mm. Nesse sentido, a usinagem em 
verde é vantajosa, pois além de permitir uma taxa de remoção de material elevada, as forças envolvidas são 
baixas, o que exige menos da máquina (torno) durante a usinagem. 
Uma análise para corroborar com as forças no torneamento em verde é a temperatura atingida durante o 
processo. Um trabalho que demonstra essa informação, é o estudo realizado por Gonçalves Jr et al. (2019), na 
qual dois termopares (microtermopar tipo K) foram empregados para monitoramento da temperatura da 
ferramenta, e um termopar tipo J, para registrar a temperatura do ambiente. O microtermopar foi posicionado em 
contato com a superfície de saída da ferramenta de corte a 1,2 mm da extremidade da aresta de corte. E o 
resultado demonstrou que a máxima temperatura mensurada durante o ensaio foi de quase 33 ºC, sendo somente 
um pouco maior que a temperatura ambiente. 
 
 
2.3 Influência do acabamento superficial em verde após a sinterização 
 
Após a usinagem em verde é necessário realizar o processo de sinterização da peça, para atingir suas 
dimensões e propriedades finais. Nesse sentido, sinterização é o processo de união entre as partículas do pó 
cerâmico, o que leva a um grande aumento na resistência mecânica e na redução da porosidade e do volume 
(Richerson, 1992). O termo sinterização abrange quatro fenômenos (consolidação, densificação, crescimento de 
grão e reações físico-químicas) que acontecem simultaneamente e muitas vezes competem entre si (Boch e 
Niepce, 2007). A densificação e a nucleação do grão no processo de sinterização influenciam a microestrutura e 
as propriedades mecânicas. Nesta seção são apresentados alguns estudos que avaliaram o acabamento 
sinterizado, tendo realizado o torneamento em verde. 
Sanchez et al. (2018) avaliaram a variação da rugosidade pós-sinterização (amostras prensadas pelo método 
uniaxial por 120 MPa), e alguns de seus resultados são apresentados na Figura 12. Eles verificaram que a peça 
verde não usinada (VBmáx = 0) sofreu uma redução da rugosidade da superfície de aproximadamente 15% após 
a sinterização dos compactos, tanto na usinagem feita pela parte mais densa, quanto na menos densa. Ao 
comparar as rugosidades em verde e após a sinterização, foi observado uma redução da rugosidade após a 
sinterização, devido à retração linear e à densificação do material. Como também, observa-se que a rugosidade 
superficial aumenta com o aumento do desgaste da ferramenta de corte ao longo dos passes executados. 
 
 
 
Figura 12. Comparação da rugosidade em verde e após a sinterização, além do desgaste da ferramenta 
de corte após cada passe. 
Adaptado de Sanchez et al., 2018. 
 
No estudo de Gonçalves Júnior et al. (2019) analisaram o acabamento superficial usinado em verde (amostras 
prensadas isostaticamente por 200 MPa) e o mesmo acabamento após a sinterização. Para isso, empregou-se 
três tipos de ferramentas de Cermet com a mesma geometria e composição, alterando somente o raio de ponta 
dos insertos. A Figura 13 apresenta a rugosidade mensurada (Ra) após a usinagem em verde e após sua 
sinterização. Ainda, para verificar se realmente era benéfico a usinagem em verde, uma amostra sem usinagem 
serviu de padrão. 
56 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
 
Figura 13. Comparação da rugosidade em verde e após a sinterização (Gonçalves Jr et al., 2019). 
 
Gonçalves Júnior et al. (2019) certificaram que o acabamento superficial da peça a verde tem influência direta 
na peça sinterizada, sendo que, os danos gerados na peça foram conduzidos após a sinterização. Também, foi 
analisado que com o aumento do raio de ponta da ferramenta houve uma redução da rugosidade. Nesse sentido, 
ficou patente que o raio de ponta teve influência no acabamento superficial do compacto tanto no estado verde, 
quanto no sinterizado. A Figura 14 ilustra o acabamento superficial dos compactos em cada condição obtido por 
MEV, onde é possível verificar maiores danos na condição da Figura 14a. 
 
 
Figura 14. Acabamento superficial e rugosidade média mensurada em cada condição após a 
sinterização, sendo: a) r - ponta 0,05 mm, b) r- ponta 0,1 mm e c) r - ponta 0,2 mm (Gonçalves Jr et al., 
2019). 
 
Em síntese, a rugosidade após a sinterização teve um incremento de valores em ambas as condições em 
relação ao estado verde, conforme é observado nas Figuras 13 e 14. Um fato para tal motivo é que, o compacto 
foi prensado isostaticamente com 200 MPa, o que lhe garante a melhor distribuição dos gradientes de densidade 
no estado verde, devido ao elevado grau de compactação. Nessa ótica, outro fator está ligado ao plastificante 
presente, gerando uma superfície mais uniforme após a usinagem. Contudo, após a sinterização, como não há 
mais o plastificante e outros aditivos, ocorre a ligação das partículas gerando “pescoço” e, consequentemente, 
contorno de grãos. Assim, pode gerar maiores valores de rugosidade superficial do que no seu estado verde. 
Esse comportamento da rugosidade é o contrário dos resultados obtidos na Figura 12, provavelmente devido 
ao método de compactação e o valor da pressão empregada na compactação, pois o método de compactação e 
o valor empregado influenciam a rugosidade após a sinterização. Quando maior a pressão, melhor a densificação 
do material. Caso seja isostática, o compacto apresenta umadistribuição homogênea dos gradientes de 
densidade, condição que não ocorre quando o compacto é prensado somente de forma uniaxial. Assim, ao 
comparar a Figuras 12 e Figura 13, a rugosidade máxima mensurada pela prensagem isostática foi de 0,853 μm, 
já quando se empregou a prensagem uniaxial, a rugosidade chegou próximo de 2 μm, fato que corrobora com a 
explicação dada. Portanto, uma alta densidade da peça verde também pode ser associada com maior resistência 
do compactado, sendo um pré-requisito para a usinagem de peças nesse estado. 
2.4 Análise da ferramenta de corte 
 
57 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Ao longo do texto foi verificado que a usinagem de cerâmica em verde pode ser executada com quase todas 
as ferramentas convencionais, como também, as técnicas utilizadas para os metais. Por esse fato, há variações 
de ferramentas de corte empregadas na usinagem verde e, em específico, quando executada pelo processo de 
torneamento. Nos trabalhos apresentados nesta revisão, foram empregadas ferramentas de corte de Metal Duro 
e de Cermet, sendo elas as mais empregadas, conforme são para o torneamento de metais em geral. 
Para Herlinger et al. (2006), na usinagem em verde o desgaste é causado pela natureza abrasiva das 
partículas de cerâmica, em vez do fator temperatura ou parâmetros de corte do material, essa conclusão também 
foi observada nos trabalhos de Gonçalves Júnior et al. (2015; 2019), Bukvic et al. (2012) e Sanchez et al. (2018). 
Logo, esse desgaste pode ser significativamente reduzido utilizando ferramenta de diamante, que pode durar 
muito mais tempo em relação às demais (10 até 50 vezes), além de apresentar coeficiente de atrito mais baixo 
do que as ferramentas de metal duro. 
Para verificar os mecanismos de desgaste, na pesquisa de Sanchez et al. (2018), as ferramentas de corte 
foram avaliadas gastas e são apresentadas na Figura 15. Desse modo, foi observado a presença de mecanismo 
de desgaste abrasivo, visto que apenas sulcos paralelos perpendiculares à aresta de corte principal foram 
produzidos pelas partículas de cerâmica da peça. Pode-se dizer que, as condições de usinagem não favorecem 
nenhum outro mecanismo de desgaste, pois a temperatura e as tensões são bastante baixas. 
 
 
Figura 15. Ferramenta de corte: (a) nova, (b e c) após remover 5 mm de material (Sanchez et al., 2018). 
 
Os valores dos desgastes são diversificados nas pesquisas, pois dependem dos parâmetros de usinagem 
empregados. Entretanto, para tentar reduzir o desgaste da ferramenta de corte, alguns métodos podem ser 
empregados, como exemplo, Liu et al. (2017) produziram diferentes tipos de texturas na face do flanco das 
ferramentas de metal duro. Posteriormente, foi executado o torneamento da alumina em verde, cujos resultados 
são apresentados na Figura 16, sendo consideradas as diferentes texturizações empregadas nas ferramentas. 
 
 
Figura 16. Desgaste de flanco em função da texturização da ferramenta de corte. 
Adaptado de Liu et al., 2017. 
 
As ferramentas de corte texturizadas expostas na Figura 16 apresentaram menor desgaste de flanco em 
comparação com a ferramenta não texturizada. A ferramenta AT-1, cuja texturização foi paralela à aresta de corte, 
apresentou o menor desgaste entre as ferramentas de corte. Logo, a texturização desempenhou papel relevante 
na melhoria da resistência ao desgaste dos flancos durante o torneamento de cerâmicas em verde. Os autores 
(Liu et al. 2017) verificaram que as texturas na face do flanco exibiam fenômeno de corte derivado durante o 
corte, que auxiliou na remoção de partículas duras entre a interface ferramenta-peça. Outras pesquisa semelhante 
foi realizada no trabalho de Liu et al. (2018), em que também empregaram ferramentas texturizadas para o 
torneamento da cerâmica em verde. A Figura 17 apresenta o desgaste de flanco de ferramentas texturizadas com 
diferentes espaçamentos de sulcos de textura. 
58 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
 
Figura 17. Desgaste de flanco de ferramentas texturizadas com diferentes espaçamentos de sulcos de 
textura (Liu et al., 2018). 
 
No estudo recente de Gonçalves Júnior (2019), foi aplicado o processo de torneamento assistido por 
ultrassom em materiais cerâmicos em verde, sendo uma técnica nova empregada. O estudo visou investigar os 
efeitos da vibração ultrassônica (sobreposta no movimento da ferramenta) no acabamento superficial, nas forças 
de usinagem e no desgaste da ferramenta de corte. Como parte dos resultados, em relação ao desgaste da 
ferramenta, a Figura 18 ilustra a comparação do desgaste máximo de flanco da ferramenta gerado após todos os 
passes executados pelo torneamento convencional e pelo torneamento assistido por ultrassom. 
 
 
Figura 18. Desgaste máximo de flanco da ferramenta após todos os passes executados: a) 
Torneamento convencional CT. b) Torneamento assistido por ultrassom (Gonçalves Jr M., 2019). 
 
 
Pela Figura 18, foi verificado que o desgaste de flanco máximo ocorreu na região do centro da ponta da 
ferramenta, local em que a abrasividade foi superior. Como também é visível a diferença do desgaste entre os 
métodos. O autor concluiu que o emprego da usinagem assistida por ultrassom em materiais cerâmicos 
proporcionou benefícios para o processo, em termos de melhores acabamentos superficiais, redução da 
rugosidade, minimização de danos concentrados e/ou críticos e na redução do desgaste da ferramenta de corte. 
Logo, a seleção da ferramenta de corte é muito importante para a usinagem em verde, pois vai interferir no seu 
59 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
comportamento durante a usinagem e, consequentemente, na sua taxa de desgaste. Além de influenciar o 
acabamento da peça final. 
Por fim, outro ponto interessante na usinagem da cerâmica em verde, é que todo o cavaco produzido pelo 
torneamento é apresentado no formato de pó e em pequenos aglomerados de grãos de formato e tamanho 
aleatório. Na qual são influenciados pelos parâmetros de usinagem e métodos de conformação do compacto 
verde. Vale ressaltar que o cavaco gerado pode ser reaproveitado para a conformação de novos compactos. 
 
3. CONSIDERAÇÕES FINAIS 
 
Tendo em vista as análises feitas a partir dos artigos citados, é possível citar vários pontos importantes ao 
empregar a usinagem pelo processo de torneamento de materiais cerâmicos no estado em verde, sendo eles: 
 
 A possibilidade de alcançar uma forma complexa nos estágios iniciais do processamento da cerâmica, 
sendo que em alguns casos, somente é possível pelo torneamento; 
 A perspectiva de se empregar vários tipos (dimensões/materiais) de ferramenta de corte; 
 A oportunidade de empregar altas taxas de remoção de material; 
 É necessário fazer um estudo dos parâmetros de usinagem para selecionar as condições ideais de 
corte, pois varia de situação para situação. Além disso, de modo geral, a escolha é empírica, mas 
estudos podem contribuir para o avanço do entendimento do torneamento desse tipo de material 
(cerâmica em verde); 
 As características do material em verde fazem com a usinagem apresente baixa geração de calor na 
zona de corte; 
 O desgaste da ferramenta é causado pela natureza abrasiva das partículas de cerâmica, em vez do 
fator temperatura ou parâmetros de corte; 
 O processo de torneamento em verde exibe baixas forças de usinagem; 
 O acabamento superficial da peça em verde tem influência direta no acabamento da peça sinterizada. 
Logo, é benéfica a usinagem da cerâmica no estado em verde para melhoria do acabamento 
superficial da peça após a sinterização; 
 A usinagem em verde traz redução nos tempos de usinagem e consequentemente nos custos da 
operação. 
 
4. REFERÊNCIAS 
 
Agarwal, Sanjay, and P. Venkateswara Rao. 2008. “Experimental Investigation of Surface/Subsurface 
Damage Formation and Material Removal Mechanisms inSiC Grinding.” International Journal of Machine Tools 
and Manufacture 48 (6): 698–710. https://doi.org/10.1016/j.ijmachtools.2007.10.013. 
Amini, S., M. R. Khosrojerdi, R. Nosouhi, and S. Behbahani. 2014. “An Experimental Investigation on the 
Machinability of Al 2O 3 in Vibration-Assisted Turning Using PCD Tool.” Materials and Manufacturing Processes 
29 (3): 331–36. https://doi.org/10.1080/10426914.2013.864411. 
Besshi, Tatsuo, Teisuke Sato, and Isao Tsutsui. 1999. “Machining of Alumina Green Bodies and Their 
Dewaxing.” Journal of Materials Processing Technology 95 (1–3): 133–38. https://doi.org/10.1016/S0924-
0136(99)00280-0. 
Boch, P, and J. C. Niepce. 2007. Ceramic Materials : Processes, Properties and Applications. Edited by 
Hoboken : John Wiley & Sons. 
Bukvic, Gill, Luiz Eduardo De Angelo Sanchez, Carlos Alberto Fortulan, A. A. Fiocchi, and Ioan Demitrius 
Marinescu. 2012. “Green Machining Oriented to Diminish Density Gradient for Minimization of Distortion in 
Advanced Ceramics.” Machining Science and Technology 16 (2): 228–46. 
https://doi.org/10.1080/10910344.2012.673968. 
Chen, Wanqun, Dehong Huo, Yilun Shi, and J M Hale. 2018. “State-of-the-Art Review on Vibration-Assisted 
Milling : Principle , System Design , and Application,” 2033–49. https://doi.org/10.1007/s00170-018-2073-z. 
Debnath, Kishore, Inderdeep Singh, and Akshay Dvivedi. 2015. “Rotary Mode Ultrasonic Drilling of Glass 
Fiber-Reinforced Epoxy Laminates.” Journal of Composite Materials 49 (8): 949–63. 
https://doi.org/10.1177/0021998314527857. 
Desfontaines, M., Y. Jorand, Maurice Gonon, and G. Fantozzi. 2005. “Characterisation of the Green 
Machinability of AlN Powder Compacts.” Journal of the European Ceramic Society 25 (6): 781–91. 
https://doi.org/10.1016/j.jeurceramsoc.2004.03.006. 
Gonçalves Júnior, Marcos. 2019. “Torneamento Assistido Por Ultrassom de Materiais Cerâmicos Em Verde 
e Pré-Sinterizados.” Unesp - Bauru. 
Gonçalves Júnior, Marcos, Luiz Eduardo de Angelo Sanchez, Thiago Valle França, Carlos Alberto Fortulan, 
Rodrigo Henriques Lopes da Silva, and Cesar Renato Foschini. 2019. “Analysis of the Tool Nose Radius Influence 
in the Machining of a Green Ceramic Material.” International Journal of Advanced Manufacturing Technology 105 
(7–8): 3117–25. https://doi.org/10.1007/s00170-019-04430-6. 
Gonçalves Júnior, Marcos, Luiz Eduardo de Angelo Sanchez, Rubens Roberto Ingraci Neto, Carlos Alberto 
Fortulan, Gill Bukvic, and Cesar Renato Foschini. 2015. “Análise Do Acabamento Superficial e Força de Corte No 
60 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Torneamento de Alumina a Verde.” Revista Materia 20 (2): 480–90. https://doi.org/10.1590/S1517-
707620150002.0048. 
Herlinger, J., G. Schoettmer, and J. Zimmer. 2006. “Optimizing Green Machining.” Ceramic Industry 156 (2): 
22–25. 
Janssen, Rolf, Sven Scheppokat, and Nils Claussen. 2008. “Tailor-Made Ceramic-Based Components-
Advantages by Reactive Processing and Advanced Shaping Techniques.” Journal of the European Ceramic 
Society 28 (7): 1369–79. https://doi.org/10.1016/j.jeurceramsoc.2007.12.022. 
Konig, W, and A. Wagemann. 1993. “Machining of Ceramic Components: Process-Technological Potentials.” 
In Proceedings of the International Conference on Machining of Advanced Materials., 3–16. Washington, DC. 
Li, Chen, Feihu Zhang, Binbin Meng, Lifei Liu, and Xiaoshuang Rao. 2017. “Material Removal Mechanism 
and Grinding Force Modelling of Ultrasonic Vibration Assisted Grinding for SiC Ceramics.” Ceramics International 
43 (3): 2981–93. https://doi.org/10.1016/j.ceramint.2016.11.066. 
Lindqvist, Karin, and Elis Carlstrom. 2002. “Green Machining of Alumina Formed by CIP, Starch Consolidation 
and Latex Slip Casting.” Key Engineering Materials 213: 301–4. 
https://doi.org/10.4028/www.scientific.net/KEM.206-213.301. 
Liu, Yayun, Jianxin Deng, Wei Wang, Ran Duan, Rong Meng, Dongliang Ge, and Xuemu Li. 2018. “Effect of 
Texture Parameters on Cutting Performance of Flank-Faced Textured Carbide Tools in Dry Cutting of Green 
Al2O3ceramics.” Ceramics International 44 (11): 13205–17. https://doi.org/10.1016/j.ceramint.2018.04.146. 
Liu, Yayun, Jianxin Deng, Fengfang Wu, Ran Duan, Xiang Zhang, and Yunhe Hou. 2017. “Wear Resistance 
of Carbide Tools with Textured Flank-Face in Dry Cutting of Green Alumina Ceramics.” Wear 372–373: 91–103. 
https://doi.org/10.1016/j.wear.2016.12.001. 
Maier, H.R., and N. Michaeli. 1997. “Green Machining of Alumina.” Key Engineering Materials 132–136: 436–
39. https://doi.org/10.4028/www.scientific.net/KEM.132-136.436. 
Melo, C C, A L I Moraes, F O Rocco, F S Montilha, and R B Canto. 2018. “A Validation Procedure for 
Numerical Models of Ceramic Powder Pressing.” Journal of the European Ceramic Society 38 (8): 2928–36. 
https://doi.org/10.1016/j.jeurceramsoc.2018.01.009. 
Mohanty, Saralasrita, Arun Prabhu, Shyamal Mandal, Bo Su, and Santanu Dhara. 2013. “Critical Issues in 
near Net Shape Forming via Green Machining of Ceramics : A Case Study of Alumina Dental Crown.” Journal of 
Asian Ceramic Societies 1: 274–81. https://doi.org/10.1016/j.jascer.2013.06.005. 
Ng, S. H., J. B. Hull, and J. L. Henshall. 2006. “Machining of Novel Alumina/Cyanoacrylate Green Ceramic 
Compacts.” Journal of Materials Processing Technology 175 (1–3): 299–305. 
https://doi.org/10.1016/j.jmatprotec.2005.04.055. 
Qin, Yi, A. Brockett, Y. Ma, A. Razali, J. Zhao, C. Harrison, W. Pan, X. Dai, and D. Loziak. 2010. “Micro-
Manufacturing: Research, Technology Outcomes and Development Issues.” International Journal of Advanced 
Manufacturing Technology 47 (9–12): 821–37. https://doi.org/10.1007/s00170-009-2411-2. 
Richerson, D. W. 1992. Modern Ceramic Engineering: Properties, Processing, and Use in Design. Segund. 
New York. 
Robert-Perron, Etienne, Carl Blais, Sylvain Pelletier, and Yannig Thomas. 2007. “Machinability of Green 
Powder Metallurgy Components: Part I. Characterization of the Influence of Tool Wear.” Metallurgical and 
Materials Transactions A: Physical Metallurgy and Materials Science 38 (6): 1330–36. 
https://doi.org/10.1007/s11661-007-9191-9. 
Robert-Perron, Etienne, Carl Blais, Yannig Thomas, Sylvain Pelletier, and Martin Dionne. 2005. “An 
Integrated Approach to the Characterization of Powder Metallurgy Components Performance during Green 
Machining.” Materials Science and Engineering A 402 (1–2): 325–34. https://doi.org/10.1016/j.msea.2005.05.019. 
Salvendy, Gavriel. 2001. Handbook of Industrial Engineering: Technology and Operations Management. 
Third Edit. Wiley-Interscience Publication. 
Sanchez, L. E.A., G. Bukvic, A. A. Fiocchi, and C. A. Fortulan. 2018. “Allowance Removal from Green Pieces 
as a Method for Improvement Surface Quality of Advanced Ceramics.” Journal of Cleaner Production 186: 10–21. 
https://doi.org/10.1016/j.jclepro.2018.03.072. 
Schroeter, R. B., C. M. Bastos, and J. M. Crichigno Filho. 2007. “Simulation of the Main Cutting Force in 
Crankshaft Turn Broaching.” International Journal of Machine Tools and Manufacture 47 (12–13): 1884–92. 
https://doi.org/10.1016/j.ijmachtools.2007.03.008. 
Senthil Kumar, A., A. Raja Durai, and T. Sornakumar. 2004. “Development of Alumina-Ceria Ceramic 
Composite Cutting Tool.” International Journal of Refractory Metals and Hard Materials 22 (1): 17–20. 
https://doi.org/10.1016/j.ijrmhm.2003.10.005. 
Sharma, Varun, and Pulak M. Pandey. 2016. “Recent Advances in Ultrasonic Assisted Turning: A Step 
towards Sustainability.” Cogent Engineering 3 (1): 1–20. https://doi.org/10.1080/23311916.2016.1222776. 
Sheppard, l. M. 1999. “Green Machining - Tools and Considerations for Machining Unfired Ceramic.” Ceramic 
Industry, 65–76. 
Su, B., S. Dhara, and L. Wang. 2008. “Green Ceramic Machining: A Top-down Approach for the Rapid 
Fabrication of Complex-Shaped Ceramics.” Journal of the European Ceramic Society 28 (11): 2109–15. 
https://doi.org/10.1016/j.jeurceramsoc.2008.02.023. 
Wefers, Karl, and Chanakya Misra. 1987. “Oxides and Hydroxidesof Aluminum.” Alcoa Technical Paper 19: 
1–100. 
61 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Westerheide, R., K.a. Drüsedau, T. Hollstein, T. Schwickert, and H. Zipse. 1997. “Advances in 
Characterisation of Machined Green Compacts.” Journal of the European Ceramic Society 17 (96): 467–72. 
https://doi.org/10.1016/S0955-2219(96)00174-4. 
Xu, H. K., and Said Jahanmir. 1996. “Transitions in the Mechanism of Material Removal in Abrasive Wear of 
Alumina.” Wear 192 (95): 228–32. 
Zhang, Xinquan, Muhammad Arif, Kui Liu, A. Senthil Kumar, and Mustafizur Rahman. 2013. “A Model to 
Predict the Critical Undeformed Chip Thickness in Vibration-Assisted Machining of Brittle Materials.” International 
Journal of Machine Tools and Manufacture 69: 57–66. https://doi.org/10.1016/j.ijmachtools.2013.03.006. 
 
 
62 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
Capítulo 
4 
 
Técnicas sustentáveis de 
lubrirrefrigeração aplicadas no 
torneamento de aços inoxidáveis duplex: 
Uma breve revisão 
 
 
Diógenes Barbosa Teles1, dbteles@ucs.br 
Maurício Rodrigues Policena1, mrpolicena@gmail.com 
André João de Souza2, ajsouza@ufrgs.br 
 
1 Aluno de Doutorado do Programa de Pós-Graduação em Engenharia Mecânica. 
2 Professor Doutor da Universidade Federal do Rio Grande do Sul. 
Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Engenharia Mecânica (DEMEC), Rua 
Sarmento Leite, nº 425, Porto Alegre, RS, CEP 90050-170. 
 
 
Resumo: Os aços inoxidáveis duplex (DSS – Duplex Stainless Steels) são materiais com elevada resistência à 
corrosão e alta resistência mecânica utilizados na fabricação de componentes críticos para diversas aplicações 
nas indústrias marítima, naval, de papel e celulose, e de petróleo e gás. Os DSS são considerados aços de difícil 
corte devido à presença de altos teores de cromo, níquel e molibdênio, baixa condutividade térmica, produzindo 
altas temperaturas na zona de corte, alto grau de encruamento e a geração de cavacos finos. A combinação 
desses fatores pode ocasionar altas taxas de desgaste na ferramenta de corte e dificuldades na obtenção de 
textura e integridade adequadas na superfície usinada. Portanto, a utilização de fluidos de corte para minimizar 
esses problemas, faz-se necessária. Contudo, buscando conciliar aspectos econômicos e ambientais, o número 
de publicações sobre técnicas alternativas de lubrirrefrigeração tem aumentado significativamente nos últimos 
anos. Assim, este trabalho pretende apresentar uma breve revisão da literatura acerca das principais técnicas 
aplicadas na usinagem limpa em materiais de difícil corte e analisar comparativamente as condições 
lubrirrefrigerantes empregadas no torneamento de DSS quanto a vantagens, desvantagens, lacunas de 
pesquisas e sugestões para trabalhos futuros. 
 
Palavras-chave: Torneamento de aços inoxidáveis duplex, Técnicas de lubrirrefrigeração, Usinagem limpa, 
Revisão da literatura. 
 
 
Sustainable lubricooling techniques applied in duplex 
stainless steel turning: A brief review 
 
Abstract: Duplex stainless steels (DSS – Duplex Stainless Steels) are materials with high corrosion resistance 
and high mechanical resistance used to manufacture critical components for various applications in the maritime, 
marine, pulp and paper, and oil and gas industries. DSS are considered difficult-to-cut steels due to the presence 
of high contents of chromium, nickel, and molybdenum, low thermal conductivity, producing high temperatures in 
the cutting zone, high degree of hardening, and the generation of fine chips. Combining these factors can lead to 
high wear rates on the cutting tool and difficulties in obtaining adequate texture and integrity on the machined 
surface. Therefore, the use of cutting fluids to minimize these problems is necessary. However, seeking to 
reconcile economic and environmental aspects, the number of publications on alternative lubrication cooling 
techniques has increased significantly in recent years. Thus, this work intends to present a brief literature review 
about the main techniques applied in clean machining in difficult-to-cut materials and comparatively analyze the 
lubrication and coolant conditions used in DSS turning concerning advantages, disadvantages, research gaps, 
and suggestions for future work. 
 
Keywords: Turning of duplex stainless steel, Sustainable lubricooling techniques, Clean machining, Literature 
review. 
 
 
 
 
 
 
63 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
1. INTRODUÇÃO 
 
As pesquisas atuais envolvendo processos de usinagem têm proporcionado desenvolvimento econômico e 
aumento de produtividade em diversos setores da indústria. Ligas metálicas de alto desempenho, com alta 
resistência a altas temperaturas e elevada resistência à corrosão, são sempre necessárias em aplicações críticas 
(Nomani, 2014). A usinabilidade pode ser designada como a facilidade ou dificuldade de um material ser usinado, 
sob um determinado conjunto de condições de corte. Assim, é importante que o processo de usinagem de ligas 
especiais seja planejado de forma eficiente, buscando o equilíbrio entre fatores econômicos e ambientais 
(Grzesik, 2008). 
As exigências para os equipamentos utilizados em instalações de exploração, produção e refino de produtos 
do petróleo vêm aumentando em todo o mundo, principalmente na exploração em águas profundas e 
processamentos em unidades flutuantes de produção, armazenagem e descarga (FPSO – Floating Production 
Storage and Offloading). A FPSO possui a função de receber a produção de poços de petróleo submarinos e 
processá-los para a estabilização do óleo, separação da água produzida e gás natural. Neste processo os 
equipamentos são submetidos a ambientes altamente corrosivos, com a presença de dióxido de carbono (CO2) 
e sulfeto de hidrogênio (H2S). Para contornar estes fatores adversos nas aplicações, muitos equipamentos estão 
sendo fabricados em aços inoxidáveis duplex (DSS) e super duplex (SDSS) (Oliveira e Zoghbi Filho, 2016). 
Os aços inoxidáveis duplex (DSS) são frequentemente usados em aplicações químicas e offshore que 
requerem alta resistência à corrosão e excelente resistência mecânica, pois possuem um teor substancial de 
elementos de liga que melhoram essas propriedades, tais como cromo (Cr), níquel (Ni) e molibdênio (Mo). Além 
disso, os DSS combinam favoravelmente as propriedades dos aços inoxidáveis ferríticos e austeníticos. Essas 
ligas possuem uma microestrutura bifásica em proporções balanceadas das fases austenita (Fe-: CFC – cúbica 
de face centrada) e ferrita (Fe-: CCC – cúbica de corpo centrado) (Freitas et al. 2021). 
Porém, apesar dos benefícios do uso de DSS em diversas aplicações na indústria marítima, naval, de papel 
e celulose, e de petróleo e gás, verificam-se certas dificuldades nos processos de usinagem de componentes 
desses aços. As dificuldades ocorrem devido ao alto teor de elementos de liga, baixa condutividade térmica, alto 
grau de encruamento, elevada temperatura na zona de corte, que podem gerar elevado desgaste na ferramenta 
de corte e a formação de aresta postiça (Gowthaman et al. 2020). 
Além de contornar as dificuldades para a usinagem de ligas de alto desempenho, a indústria vem buscando 
métodos para reduzir o consumo de fluidos de corte em usinagem devido a questões ecológicas e econômicas. 
De acordo com Chetan et al. (2015), a fabricação sustentável é uma tendência nos processos industriais pelos 
benefícios relacionados a aspectos ambientais, saúde de operadores e questões financeiras. A busca pelo 
atendimento à chamada Usinagem Ecológica, em muitos casos, envolve a redução (ou eliminação) do uso de 
fluido de corte e consequentemente a redução da geração de resíduos de descargas. 
Entretanto, existem algumas adversidades nos processos de usinagem de materiais de alto desempenho sem 
a utilização de fluido de corte, como o alto calor geradona zona de corte e a forte adesão do material na 
ferramenta de corte, gerando desgaste por abrasão e por aderência e arrastamento (attrition) e, 
consequentemente, vida curta da ferramenta (Grzesik, 2008). Com isso, diversas técnicas foram desenvolvidas 
nos últimos anos com o objetivo de minimizar os problemas citados e melhorar a eficácia geral do processo: 
estudo de novos materiais de ferramentas e revestimentos aplicados na usinagem a seco, desenvolvimento e 
aprimoramento de técnicas consideradas ambientalmente amigáveis como usinagem quase a seco (NDM – near-
dry machining), mínima quantidade de lubrificação (MQL), resfriamento a gás e resfriamento criogênico (Sharma 
et al. 2009; Ghatge et al. 2018; Singh et al. 2021). 
Nesse contexto, este trabalho apresenta uma breve revisão da literatura sobre o processo de torneamento de 
peças de aços inoxidáveis DSS e SDSS com a utilização de técnicas ambientalmente amigáveis de 
lubrirrefrigeração. 
2. CARACTERIZAÇÃO DO AÇO INOXIDÁVEl DUPLEX 
O DSS é definido pela norma ISO 15156-3 (2020) como sendo um aço inoxidável cuja microestrutura, na 
temperatura ambiente, é composta por uma mistura balanceada de fases austenítica e ferrítica. 
A primeira referência relacionada ao aço inoxidável duplex ocorreu na publicação de Bain e Griffith (1927), 
onde estes autores apresentaram dados sobre uma liga de estrutura bifásicas do tipo ferrita-austenita. Os 
primeiros aços inoxidáveis duplex laminados foram produzidos na Suécia em 1930, sendo usados na indústria do 
papel sulfite. O objetivo era reduzir problemas de corrosão intergranular que ocorriam em aços austeníticos de 
alto carbono utilizados na época. Também em 1930 ocorreu a produção de peças em DSS, por fundição, na 
Finlândia e em 1936 foi concedida à França a primeira patente de DSS. Esta primeira geração do DSS foi 
amplamente utilizada na Segunda Guerra Mundial e em aplicações diversas da indústria, como em tanques, 
trocadores de calor e bombas (Gunn, 1997; IMOA, 2014). 
Os aços DSS da primeira geração forneceram boas características de desempenho nas aplicações 
supracitadas, porém sua baixa soldabilidade limitou o seu uso. A zona termicamente afetada (ZTA) das juntas 
soldadas, apresentavam baixa tenacidade devido ao excesso de ferrita e uma resistência à corrosão 
significativamente menor que o material de base. No final da década de 1960, com o desenvolvimento da 
tecnologia de fabricação de aços, a descarburação de oxigênio e argônio possibilitou, entre outros avanços, a 
64 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
inclusão do nitrogênio na composição do DSS. Isso fez com que a ZTA apresentasse melhor tenacidade e maior 
resistência à corrosão, tornando-se similar ao metal-base. A adição de nitrogênio também propiciou melhor 
estabilidade da fase austenita, reduzindo a formação de fases intermetálicas prejudiciais (IMOA, 2014). 
A segunda geração do DSS foi impulsionada pela adição do nitrogênio, tendo sua expansão comercial no 
final dos anos 1970. Nesse período, surgiu a elevada demanda por materiais resistentes à corrosão por cloretos, 
boa trabalhabilidade e alta resistência mecânica, para serem empregados nas plataformas offshore de petróleo 
e gás do Mar do Norte. Na ocasião, a liga UNS S32205 foi a mais utilizada. A alta resistência desse material 
permitiu a redução da espessura de componentes, resultando em menor peso nas plataformas e oferecendo, 
assim, vantagens consideráveis para a sua utilização (IMOA, 2014). 
Uma série de trabalhos sobre o DSS foi publicada em diversas conferências internacionais a partir dos anos 
1980, o que impulsionou a enorme demanda dessas ligas em todo o mundo. Dentre tais conferências destacam-
se: 1982 (St. Louis – EUA), 1986 (Den Hauge – Holanda), 1991 (Beaune – França), 1993 (Yokohama – Japão), 
1994 (York – Reino Unido), 1997 (Maastricht – Holanda), 2000 (Veneza – Itália), 2007 (Grado – Itália). Os 
trabalhos publicados nessas conferências abordavam aspectos metalúrgicos, precipitação de fase, resistência à 
corrosão e propriedades mecânicas dos DSS. Esses trabalhos mencionaram a grande necessidade de substituir 
os aços austeníticos da Série 300 pelo DSS. Assim, as ligas DSS ganharam grande aplicabilidade em indústrias 
que operavam em ambientes hostis, sendo a mais utilizada a UNS S32205 (Verma & Taiwade, 2017). 
A corrosão por pites, ou simplesmente pite, é caracterizada por um ataque altamente localizado e se inicia 
em diferentes pontos da superfície de aços inoxidáveis passivos na presença de cloretos. Pode ser uma forma 
destrutiva de corrosão, visto que causa perfuração do metal (Sedriks, 1996). O pite ocorre devido a uma reação 
eletroquímica localizada dentro da cavidade do material, que é acelerada pela presença de halogenetos, 
principalmente cloretos. Uma vez iniciado o pite, ele tem uma forte tendência a continuar seu crescimento, 
gerando uma propagação rápida com o aumento local da acidez (Carvalho, 2021). A presença dos elementos de 
liga Cr, Mo e N favorecem a resistência a corrosão por pite dos aços inoxidáveis, de modo que quanto maior o 
teor dessas substâncias, maior a resistência à corrosão do aço. O índice de resistência à corrosão por pite (PREN 
– Pitting Resistance Equivalent Number) é uma expressão que permite comparar, de maneira genérica, a 
resistência ao pite em diferentes aços inoxidáveis. O PREN pode ser calculado pela Eq. (1): 
 
PREN = %Cr + 3,3 (%Mo + 0,5%W) + 16%N. (1) 
 
As ligas DSS, consideradas modernas, são classificadas em cinco grupos segundo a International 
Molybdenum Association (IMOA): 
 Lean Duplex: não contém a adição deliberada de Mo (ex. UNS S32304); 
 Standard Duplex: o mais utilizado, cerca de 80% das aplicações (ex. UNS S31803, UNS S32205); 
 Duplex 25 Cr: PREN  40 (ex. UNS S32550); 
 Super Duplex: 40  PREN  45 (ex. UNS S32750, UNS S32760); 
 Hiper Duplex: aço inoxidável duplex de alta liga com PREN  45 (ex. UNS S32707). 
 
A Tab. (1) apresenta exemplos de referências normativas para as principais ligas utilizadas em equipamentos 
aplicados na indústria do petróleo e gás atualmente. 
Tabela 2. Referências normativas para ligas DSS e SDSS, utilizadas em válvulas com extremidades 
flangeadas, roscadas e soldadas para uso no setor de óleo e gás (ASME B16.34, 2020; ASTM A182/182M, 
2021; ASTM A995/995M, 2020). 
Grupo UNS Composição Nominal Forjado Fundido 
DSS S31803 22Cr-5Ni-3Mo-N ASTM A182 F51 ASTM A995 CD3MN 
DSS S32750 25Cr-5Ni-4Mo-N ASTM A182 F53 - 
SDSS - 25Cr-5Ni-3Cu-2Mo-N - ASTM A995 CD4MCuN 
SDSS - 25Cr-7Ni-3,5Mo-W-N - ASTM A995 CD3MWCuN 
SDSS S32760 25Cr-7,5Ni-3,5Mo-N-Cu-W ASTM A182 F55 - 
 
A Fig. (1) apresenta a microestrutura de um aço inoxidável super duplex ASTM A182 Grau F55 utilizando o 
método de quantificação de fases de acordo com ASTM E562 (2019). 
3. TÉCNICAS DE LUBRIRREFRIGERAÇÃO: USINAGEM LIMPA APLICADA NO TORNEAMENTO DO DSS 
Nos últimos anos verifica-se a crescente demanda por fluidos de corte sustentáveis, biodegradáveis e 
métodos de usinagem de menor impacto ao ambiente e à saúde dos operadores. Em usinagem, a alta 
produtividade muitas vezes está associada ao aumento da velocidade de corte, do avanço e da profundidade de 
corte, que por sua vez elevam a temperatura na zona de corte. Consequentemente, a precisão dimensional, a 
65 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
vida da ferramenta e o acabamento da superfície sofrem variações. Nesse contexto, costuma-se aplicar fluidos 
de corte visando aumento da produtividade, pois estes têm a função de diminuir o atrito nas interfaces cavaco-
ferramenta e ferramenta-peça, reduzir a temperatura na zona de corte e favorecer a quebra e a expulsão do 
cavaco gerado na usinagem (Debnath et al. 2014; Singh et al. 2021). Apesar dessas vantagens, diversos 
problemas são relatados: estima-se que 80% das infecções dos operadores foram causados devido ao contato 
da pele com o fluido de corte. A Agência Internacionalde Pesquisa sobre o Câncer relatou que alguns tipos de 
fluidos de corte podem causar câncer de pele em operadores expostos a logos períodos. A névoa, resultado do 
processo de usinagem também pode levar ao desenvolvimento de câncer no pulmão, doenças respiratórias e 
dermatológicas. Outra dificuldade do uso dos fluidos de corte é seu descarte que, dependendo do tipo, requer 
tratamentos específicos de elevado custo para poderem ser posteriormente descartados ou reutilizados. No 
entanto, as novas técnicas denominadas Usinagem Verde, podem alcançar níveis de qualidade equivalentes ou 
até mesmo superiores às técnicas convencionais (Debnath et al. 2014). 
 
 
Figura 1. Imagem da microestrutura do aço ASTM A182 F55 (51% Fe-, 49% Fe-). 
De acordo com Krolczyk et al. (2019), a usinagem de alto desempenho, com minimização de seus efeitos no 
meio ambiente, pode ser caracterizada pelo círculo da usinagem sustentável (Fig. 2) que consiste em técnicas de 
lubrirrefrigeração com um impacto negativo relativamente baixo no meio ambiente como corte a seco, métodos 
que usam mínimas quantidades de lubrificantes, resfriamento criogênico, resfriamento com fluidos de alta 
pressão, ou aplicação de óleos biodegradáveis. A adoção do desenvolvimento sustentável no sistema produtivo 
oferece às indústrias uma forma de melhorar o desempenho ambiental. No entanto, a influência das condições 
de usinagem como velocidade de corte, avanço, características das ferramentas de corte e propriedades dos 
materiais da peça, ainda não foram totalmente esclarecidas. 
 
 
Figura 2. Círculo da usinagem sustentável (adaptado de Krolczyk et al., 2019). 
66 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
A sustentabilidade de um processo de usinagem precisa considerar as suas variáveis intrínsecas, de modo 
que os parâmetros de corte possam ser otimizados visando a máxima produtividade. Por exemplo, um menor 
consumo de energia elétrica pela máquina-ferramenta pode ser alcançado pela seleção correta dos parâmetros 
de corte. Uma forma de se conseguir isso é medir a corrente elétrica no motor de acionamento do eixo-árvore do 
torno e controlar os parâmetros de torneamento a fim de gerar menor consumo de energia (Koyee et al. 2014). 
Outra variável importante é a temperatura na zona de corte, que exerce influência sobre a taxa de desgaste da 
ferramenta, além do atrito entre o cavaco e a ferramenta (Sharma et al. 2009). Ademais, as variações das 
componentes da força de usinagem podem ser correlacionadas ao desgaste da ferramenta, resultado das 
variações produzidas pelo atrito entre a ferramenta e a peça (Ghani et al. 2011). Geralmente, as forças diminuem 
ao reduzir a profundidade de corte e o avanço, e ao aumentar a velocidade de corte (Krolczyk et al. 2016). 
Em pesquisas relacionadas a artigos publicados sobre o torneamento do DSS nos últimos dez anos, dentre 
as técnicas ambientalmente amigáveis, verificou-se que a maior parte dos trabalhos estão relacionados a 
usinagem a seco. Em menor número, estão publicações relacionadas às técnicas alternativas, tais como mínima 
quantidade de lubrificação (MQL), mínima quantidade de lubrificação refrigerada (MQCL – Minimal Quantity 
Cooling Lubrication) e usinagem criogênica. Os aspetos considerados nesses estudos são: textura (rugosidade) 
e integridade (dureza) superficial, força de usinagem, otimização de parâmetros de corte (a partir de metodologias 
que consideram a previsão das variáveis de saída) e comparações do desempenho das ferramentas em relação 
à vida e ao desgaste. Em muitos casos, as análises correlacionam dois ou mais desses aspectos. 
3.1. Torneamento a seco do DSS 
Como supracitado, os principais problemas associados à usinagem a seco são devidos ao aumento excessivo 
da temperatura na interface cavaco-ferramenta. Embora certos materiais com boa usinabilidade sejam escolhas 
naturais para corte a seco, materiais de difícil corte podem apresentar problemas sérios. 
A usinagem a seco do DSS é o tema com o maior número de publicações dentre os métodos considerados 
ambientalmente amigáveis. O corte a seco é considerado complexo devido à dificuldade no controle de cavacos, 
aos desgastes por adesão (attrition) e abrasão, e à formação de aresta postiça de corte (APC) na ferramenta. No 
caso, a maior parte dos trabalhos apresentaram bons resultados, principalmente com o uso de ferramentas com 
revestimentos especiais do tipo multicamadas e com parâmetros de corte otimizados (Gowthaman et al. 2020). 
Rajaguru e Arunachalam (2017) estudaram o desempenho de insertos de metal-duro revestidos pelos 
processos CVD (deposição química de vapor) e PVD (deposição física de vapor) no torneamento a seco do SDSS 
(SAF 2507). Os resultados indicaram que os insertos com revestimento CVD TiCN + Al2O3 tiveram os melhores 
resultados em termos de redução de desgaste, menores forças de corte e melhor qualidade superficial da peça. 
Para esse revestimento, verificou-se maior dureza a quente e estabilidade à oxidação, tornando-o eficaz para a 
aplicação. O revestimento CVD TiCN + Al2O3 + TiN foi o que apresentou menor eficiência nos resultados devido 
à instabilidade em elevadas temperaturas geradas no processo. Os autores também registraram a temperatura 
média na zona de corte por meio de imagem por infravermelho. Utilizando velocidade de corte vc = 120 m/min, 
avanço f = 0,3 mm/volta e profundidade de corte ap = 1,0 mm, a temperatura média foi de 364 °C. 
Kadam et al. (2017) realizaram uma investigação experimental das forças de usinagem, da rugosidade e da 
vida da ferramenta no torneamento a seco do SDSS (SAF 2507) utilizando quatro insertos de metal-duro (um sem 
revestimento e três revestidos pelo processo de pulverização catódica por impulso magnético de alta potência 
(PVD-HiPIMS): TiAlSiN (3,3 μm – dureza 38 GPa), TiAlN (3,0 μm – dureza 32 GPa) e TiAlN (7,0 μm – dureza 
28 GPa). Os autores verificaram que valores mais altos de velocidade de corte, geraram maior temperatura e, 
consequentemente, menores esforços. Porém, o controle da geração do cavaco é prejudicado, produzindo danos 
à textura da peça, reduzindo a qualidade superficial. Com o incremento da velocidade de corte, ocorre o aumento 
do desgaste, sendo o desgaste severo logo no início do processo para a ferramenta não revestida. Além disso, o 
inserto revestido com TiAlN (7,0 μm) apresentou os melhores resultados em comparação com os demais, mesmo 
sendo o revestimento de menor dureza dentre os ensaiados. Contudo, constatou-se que o desgaste abrasivo, as 
interações adesivas que formam APC e a geração de cavacos segmentados, são os principais problemas 
observados no processo, independentemente da ferramenta de corte. 
Sonawane e Sargade (2020) realizaram um trabalho de investigação do desgaste de ferramentas, força de 
corte (Fc) e rugosidade média (Ra) no torneamento a seco do DSS (SAF 2205) utilizando insertos de metal-duro 
revestidos por PVD-HiPIMS com TiAlCrN, TiAlN e sem revestimento. A velocidade de corte (vc) e o avanço (f) 
foram variados em três níveis cada e profundidade de corte foi mantida fixa (ap = 0,8 mm). O revestimento TiAlCrN 
promoveu o maior comprimento usinado por vida da ferramenta (cerca de 7,84 m) contra 4,41 m, obtido com o 
revestimento TiAlN. Os autores explicaram que isso ocorreu porque o revestimento de TiAlCrN possibilitou maior 
adesão ao substrato da ferramenta, maior resistência a oxidação e maior estabilidade térmica. Quando 
comparadas com a ferramenta sem revestimento, a vida foi seis vezes maior para TiAlCrN e quatro vezes maior 
para TiAlN. Além disso, verificaram que os menores valores de rugosidade (Ra = 0,72 μm) e força de corte 
(Fc = 260 N) foram alcançados com o revestimento TiAlCrN aplicando a maior velocidade de corte 
(vc = 180 m/min) combinada com o menor avanço (f = 0,12 mm/volta). Os autores explicaram que isso ocorreu 
devido ao efeito do menor coeficiente de atrito e da menor rugosidade superficial desse revestimento. 
Krolczyket al. (2017) compararam a usinagem a seco e com fluido de corte (óleo mineral emulsionável em 
água) em abundância no torneamento de desbaste do DSS (DIN 1.4462) com ferramenta de metal-duro revestida 
67 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
por CVD TiCN + Al2O3 + TiN. Foram avaliados como variáveis de resposta a vida da ferramenta, a morfologia da 
superfície usinada, as forças de corte, a energia específica de corte e o coeficiente de atrito. A vida da ferramenta 
na condição a seco (20,8 min) foi cerca de 65% maior que com fluido de corte (7,3 min). Por meio de imagens via 
microscópio eletrônico de varredura (MEV), concluiu-se que o mecanismo de desgaste predominante na 
superfície de folga foi a abrasão e houve formação de APC em ambos os casos. Notou-se que houve lascamento 
da aresta de corte para o corte a seco, enquanto que para a condição lubrirrefrigerada foi notada a presença de 
material aderido ao invés de lascamento. Além disso, o desgaste de cratera foi observado na superfície de saída 
durante a usinagem a seco, enquanto para o corte com fluido isso não foi observado (Fig. 3). No caso da superfície 
usinada, a lubrirrefrigeração favoreceu a regularidade do perfil de rugosidade. Os resultados também mostraram 
que o corte a seco com alta velocidade de corte e baixo avanço minimizou a força de corte (Fc) e, principalmente, 
a força de avanço (Ff). Segundo os autores, a Ff desempenha papel importante na qualidade dimensional e 
geométrica da peça usinada. Através dos dados de força de corte foi possível estimar ainda o coeficiente de atrito 
entre a ferramenta e a peça para os diferentes parâmetros de corte utilizados. 
 
 Superfície de Folga Superfície de Saída 
C
o
rt
e 
a 
S
ec
o
 
 
C
o
rt
e 
co
m
 F
lu
id
o
 
 
Figura 3. Topografia do desgaste da ponta da ferramenta durante o torneamento DSS em função do 
método lubrirrefrigerante (adaptado de Krolczyk et al., 2017). 
Subhash et al. (2019) investigaram a influência da velocidade de corte (vc) e do avanço (f) na temperatura 
gerada no torneamento a seco e com fluido de corte em abundância do SDSS (SAF 2507) usando ferramenta de 
metal-duro com revestimento CVD (TiCN + Al2O3 + TiN). Os autores analisaram o efeito da temperatura sobre a 
rugosidade da superfície usinada e o desgaste de flanco da ferramenta. A maior temperatura (860 °C) foi 
observada na usinagem a seco com a maior velocidade de corte (vc = 120 m/min) e, consequentemente, gerou 
maior desgaste do flanco da ferramenta (VB = 0,53 μm). Da mesma forma, esses valores diminuíram com a 
redução de vc e com a utilização de fluido de corte. Por outro lado, a operação com vc = 100 m/min, 
f = 0,05 mm/volta resultou em Ra = 0,438 mm para o corte a seco e Ra = 0,693 mm para a usinagem com fluido 
em abundância. 
3.2. Torneamento do DSS utilizando MQL 
O método de mínima quantidade de lubrificante (MQL) envolve o fornecimento de uma quantidade ínfima de 
fluido, tipicamente a uma vazão de 50-500 ml/h (abaixo de 50 ml/h tem-se a NDM), onde o óleo puro (mineral, 
sintético ou vegetal) é misturado com ar comprimido (gerando uma névoa) e introduzido (pulverizado) em forma 
de gotículas atomizadas na zona de corte. Este processo reduz significativamente o impacto ambiental, visto que 
as gotículas são vaporizadas pela extração de calor latente da zona de corte (Rajaguru e Arunachalam, 2020). 
Fornecer uma pequena quantidade de fluido de corte é menos oneroso e consome menos energia, reduzindo o 
custo total e o impacto ambiental. Além disso, os cavacos gerados durante a usinagem com MQL são quase 
secos e fáceis de reciclar (Krolczyk et al. 2019). Se o objetivo principal é realizar a lubrificação, utiliza-se o sistema 
é MQL; se tanto o resfriamento quanto a lubrificação são necessários, aplica-se o MQCL com o uso de tubo de 
Lascamento 
Desgaste 
abrasivo 
Desgaste 
abrasivo 
Adesão 
Adesão 
APC 
APC 
Adesão 
Cratera 
68 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
vórtice. Em operações MQCL, o lubrificante usado é comumente óleo puro, mas em algumas aplicações é usada 
emulsão ou água (Dixit et al. 2012). 
Krolczyk et al. (2018) realizaram análises 3D na superfície usinada no torneamento de DSS (DIN 1.4462) em 
diferentes velocidades de corte e avanços para as condições a seco e com MQCL (emulsão 6% óleo mineral e 
94% água). Não houve menção sobre a classe de inserto utilizada. A Fig. (4) ilustra a morfologia da superfície 
após o torneamento para diferentes combinações de velocidade de corte (vc) e avanço (f). Os autores constataram 
que o corte a seco gerou mais picos que vales e maiores amplitudes nos perfis 3D de rugosidade (maiores valores 
de rugosidade) quando foram usados os maiores níveis de vc e f. Por outro lado, ao utilizar MQCL, a topografia 
de superfície mostrou uma melhor distribuição de picos e vales com certa periodicidade e menores amplitudes. 
O mesmo ocorreu para baixas velocidade de corte. No caso, as temperaturas mais altas geradas na zona de 
corte foram extraídas pela névoa de emulsão, reduzindo assim a deformação e melhorando a qualidade da 
superfície usinada. Em outro estudo semelhante (Krolczyk et al. 2016), os mesmos autores relataram que o MQCL 
resultou em uma superfície menos rugosa e mais homogênea que na usinagem a seco, além de que o aumento 
da velocidade de corte acarretou uma redução da rugosidade para ambas as condições. 
 
 
Figura 4. Morfologia 3D da superfície do DSS após o torneamento (adaptado de Krolczyk et al., 2018). 
69 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Rajaguru e Arunachalam (2020) estudaram os efeitos do torneamento em MQL em comparação ao corte a 
seco e com fluido em abundância sobre a usinabilidade e a resistência à corrosão sob tensão do SDSS 
(SAF 2507) utilizando ferramenta de metal-duro revestida por CVD TiCN + Al2O3. A análise de usinabilidade se 
deu pela avaliação do desgaste da ferramenta, das forças de corte, do acabamento da superfície usinada, da 
morfologia dos cavacos e das tensões residuais. A resistência à corrosão sob tensão foi avaliada em um ambiente 
com cloro conforme a norma ASTM G36. As operações realizadas com MQL apresentaram resultados superiores 
para todos os parâmetros de usinabilidade. Segundo os autores, esse melhor desempenho ocorreu devido a 
convecção e evaporação das gotículas atomizadas que reduziram a temperatura na zona de corte. Essa redução 
ajudou a minimizar o desgaste abrasivo e principalmente a adesão, além de manter a dureza do revestimento da 
ferramenta. Assim, não houve formação de APC no torneamento com MQL, diferente do que foi visto nas demais 
condições. Em comparação ao corte a seco, caso onde foi identificado maior quantidade de adesão e maior APC, 
a lubrirrefrigeração convencional reduziu a adesão e a aresta postiça, mas não os eliminou completamente. Foi 
observada na condição MQL baixa ocorrência de trincas superficiais na peça; os autores associaram isso à menor 
presença de tensões residuais de tração e à menor quantidade de defeitos superficiais. Além disso, também foi 
relatado que as amostras de MQL apresentaram menor formação de pites na superfície. 
Uma mistura coloidal de partículas metálicas e/ou não metálicas de tamanho nanométrico (até 100 nm) em 
um fluido de corte convencional é chamada de nanofluidos (NF). A adição de nanopartículas específicas pode 
aumentar a condutividade térmica do fluido de corte, além de melhorar significativamente suas propriedades 
tribológicas e termofísicas. Os NFs não são aconselháveis para uso em abundância por terem um custo elevado. 
Porém, sua aplicação em MQL o torna uma alternativa viável (Sharma et al. 2016). Kumar et al. (2021) 
investigaram os efeitos de nanopartículas de óxido de alumínio (Al2O3) e óxido de cobre (CuO) dispersas em uma 
emulsão 1:20 de óleo mineral em água e aplicados em MQL no torneamento do DSS (SAF 2205) usando inserto 
demetal-duro revestido por PVD TiAlN. Os NFs foram preparados em diferentes concentrações (0,3%, 0,5% e 
0,7%). As variáveis de resposta analisadas foram a força de corte, a temperatura e a rugosidade. Os resultados 
experimentais revelaram que o NF-Al2O3 reduziu a força de corte e promoveu melhor acabamento. Porém, o NF-
CuO proporcionou melhores resultados quanto à redução da temperatura. A otimização multivariada DFA 
(Desirability Function Analysis) resultou nos seguintes parâmetros de entrada visando a minimização simultânea 
dos parâmetros de saída: NF-Al2O3 (0,7%) com vc = 64,74 m/min, f = 0,051 mm/volta, ap = 0,4 mm; NF-CuO 
(0,634%) com vc = 59,92 m/min, f = 0,053 mm/volta, ap = 0,4 mm. 
Saravanakumar et al. (2020) avaliaram os efeitos da usinagem a seco, com óleo vegetal aplicado em MQL e 
com refrigeração a gás nitrogênio (N2) na rugosidade da superfície, na temperatura da zona de corte e no 
desgaste de ferramenta gerados durante o torneamento de SDSS (UNS S32760) sob diferentes combinações de 
parâmetros de corte. Utilizou-se nos experimentos insertos de metal-duro com revestimento PVD TiAlN. Os 
autores relataram que o aumento do avanço ocasionou um aumento na rugosidade para todos os casos e que o 
aumento da velocidade de corte acelerou o desgaste da ferramenta e a temperatura na zona de corte. O MQL 
resultou em melhor acabamento e menor desgaste da ferramenta em comparação aos demais. Os piores 
resultados foram com o corte a seco. 
3.3. Torneamento do DSS com refrigeração criogênica 
A usinagem criogênica consiste no uso de gases liquefeitos, como nitrogênio (LN2) e dióxido de carbono 
(LCO2), como fluido lubrirrefrigerante em temperaturas abaixo de -150 °C (Karassik et al. 2008). A técnica 
apresenta-se como uma alternativa sustentável, pois substitui o uso de fluidos nocivos ao meio ambiente e à 
saúde de trabalhadores por gases não tóxicos que ficam dispersos na atmosfera. Além de reduzir a temperatura 
e o atrito na zona de corte, essa técnica altera as propriedades dos materiais (da peça ou ferramenta) para 
melhorar o seu desempenho. Entretanto, o custo de utilizar a criogenia é alto, além de necessitar de adaptações 
na máquina e nos equipamentos, sendo necessário avaliar com atenção a aplicação antes de adotar essa técnica. 
Dhananchezian et al. (2018) compararam a usinagem do DSS (SAF 2205) a seco e com resfriamento 
criogênico (nitrogênio líquido) utilizando ferramenta de metal-duro com revestimento PVD TiAlN. Os autores 
relataram que o uso de LN2 resultou em temperaturas cerca de 56% menores que no corte a seco, o que promoveu 
menor adesão de material na ferramenta e menor desgaste de flanco. As menores temperaturas acarretaram em 
valores de força de corte aproximadamente 36% menores e valores de rugosidade 20% inferiores. 
Narayanan et al. (2021) estudaram a usinagem criogênica do SDSS (SAF 2507) utilizando LN2 aplicado na 
zona de corte e insertos revestidos por PVD TiAlN + TiN com tratamentos criogênicos em comparação com a 
usinagem a seco. Os autores relataram que o uso de ferramenta com tratamento criogênico resultou em menores 
forças de corte, menor rugosidade da peça e uma maior vida útil da ferramenta em comparação com a usinagem 
a seco. Porém, os melhores resultados foram apresentados quando LN2 foi introduzido na zona de corte, sendo 
associado a maior remoção de calor das interfaces por esse método. Além disso, os autores relatam que o uso 
de criogenia fragilizou os cavacos e facilitou a sua quebra e remoção, o que por sua vez reduziu o tempo e área 
de contato do cavaco com a ferramenta, reduzindo o desgaste e o atrito. 
Akhil et al. (2021) realizaram um trabalho de otimização de parâmetros de usinagem do SDSS (SAF 2507) 
utilizando o método Taguchi (matriz ortogonal L27) e refrigeração criogênica por LN2. Os autores não mencionaram 
qual inserto foi utilizado. As variáveis de controle foram os parâmetros de corte (vc, f, ap) e as variáveis de resposta 
foram os valores de rugosidade média (Ra), média parcial (Rz) e taxa de remoção de material (MRR). A análise 
70 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
experimental foi projetada para minimizar a rugosidade da superfície e maximizar a taxa de remoção de material. 
Os níveis otimizados dos parâmetros de corte visando obter as melhores características de desempenho 
(Ra = 2,14 μm, Rz = 7,45 μm e MRR = 14,3 g/min) foram vc = 240 m/min, f = 0,1 mm/volta e ap = 1,5 mm. 
Ademais, vc foi o parâmetro de maior influência sobre a rugosidade e ap o fator mais significativo sobre a MRR. 
Kumar e Senthilkumaar (2013) e Kumar et al. (2014) estudaram a aplicação de gás CO2 gelado (baseado nos 
vapores de LCO2) no torneamento de SDSS (SAF 2507) em comparação ao corte a seco e com fluido de corte 
em abundância utilizando insertos de metal-duro sem revestimento. Em ambos os estudos, a usinagem com CO2 
gelado apresentou resultados superiores em relação ao desgaste de flanco da ferramenta (valores menores) e à 
formação de cavacos (quebra facilitada). Os autores não informaram a temperatura do CO2 gelado. 
Gabaldo (2019) comparou o direcionamento do fluido pelas superfícies de folga/saída e apenas pela 
superfície de saída aplicando fluido de corte em abundância (emulsão com óleo semissintético) e LCO2 no 
torneamento de acabamento de DSS (SAF 2205) usando inserto de metal-duro com revestimento PVD TiAlN + 
Al2O3. Em ambos os casos houve a formação de APC na ferramenta; contudo, a usinagem criogênica conseguiu 
reduzir a adesão e o tamanho da APC. Isso, por sua vez, resultou em um melhor acabamento da superfície em 
comparação com a usinagem com emulsão. O autor relata que o uso de LCO2 resultou em menores rugosidades 
e maior vida da ferramenta, porém, apresentou um desgaste mais irregular, pois identificou a presença de (micro) 
lascamentos resultantes do desprendimento da APC. Similar aos estudos anteriores, as temperaturas criogênicas 
facilitaram a quebra/remoção do cavaco ao causar o seu endurecimento (Fig. 5). O autor não identificou 
alterações na microestrutura e/ou na proporção austenita-ferrita do DSS com o uso de LCO2. Por fim, o 
direcionamento do fluido pelas superfícies de folga/saída da ferramenta de corte mostrou-se mais eficiente que 
somente pela superfície de saída, principalmente com o aumento de vc e com a aplicação de LCO2. 
 
 
(a) (b) 
Figura 5. Formação dos cavacos nos ensaios realizados com canais de refrigeração para superfície de 
saída: (a) emulsão; (b) LCO2 (Gabaldo, 2019). 
3.4. Comparativo entre as técnicas de usinagem limpa e lacunas das pesquisas 
Dentre as citações apresentadas, quanto à usinagem a seco, verifica-se a vantagem da retirada do fluido de 
corte do processo. Isso significa menores custos com a aquisição, manuseio, tratamentos de efluentes e descarte. 
Também gera cavacos limpos, sendo estes mais fáceis de serem reciclados. Com isso, minimizam-se danos ao 
meio ambiente e à saúde de trabalhadores. Por outro lado, as pesquisas que apontam bons resultados para esta 
técnica estão atreladas a ferramentas de alto desempenho, ou seja, insertos especiais com revestimentos 
multicamadas que melhoram a estabilidade térmica frente as elevadas temperaturas do processo. Dessa forma, 
o custo com a aquisição de ferramentas aumenta. O planejamento do processo de usinagem deve considerar o 
objetivo específico da produção, ou seja, a fabricação seriada de peças em grandes quantidades ou a fabricação 
de pequenos lotes de pouca repetibilidade. 
Verificou-se também que o corte a seco gera menores esforços de usinagem, pois as altas temperaturas 
geradas na zona de corte reduzem a dureza e a resistência mecânica do material. Porém, acentua-se o desgaste 
da ferramenta e a formação de cavacos longos que podem prejudicar o acabamento superficial da peça. Para 
isso, a refrigeração criogênica aumenta a dureza do material, principalmente dos cavacos, facilitando sua quebra 
e retirada da zona de corte. No entanto, a implantaçãodesta técnica está comumente atrelada a elevados custos 
de adaptações da máquina-ferramenta e na aquisição de insumos. 
O uso do MQL mostra-se eficiente e em equilíbrio entre as técnicas citadas. Em velocidades mais elevadas 
de corte, a névoa gerada pela pulverização do fluido costuma ter melhor penetração na zona de corte, melhorando 
os resultados de acabamento da superfície (textura e integridade) e desgaste da ferramenta. A Tab. (2) apresenta 
71 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
um resumo quanto às vantagens e desvantagens das técnicas de lubrirrefrigeração relacionadas à usinagem 
limpa abordadas no estudo. 
Tabela 2. Pontos positivos e negativos quanto aos métodos de lubrirrefrigeração em usinagem do DSS. 
Método Desempenho Energia Custo Ambiente 
Seco 
Geração de altas temperaturas que, para 
algumas aplicações, pode 
favorecer/aumentar a adesão e o 
desgaste da ferramenta. Apresenta bom 
desempenho quando se utiliza insertos 
especiais com revestimentos 
multicamadas. 
Consumo 
intermediário, 
(baixos 
parâmetros de 
corte). 
Custo mais elevado para 
aquisição de ferramentas. 
Porém, não há o custo 
com fluido de corte. 
Ambientalmente amigável. 
Não utiliza fluido de corte. 
Cavaco fácil de reciclar. 
MQL 
Difícil remoção do cavaco. 
Melhor vida da ferramenta e melhor 
acabamento superficial. 
Baixo atrito. 
Baixo consumo. 
Custo baixo. Redução do 
uso de fluido. Sistema 
versátil. 
Grande redução do uso de 
fluido. Cavaco fácil de 
reciclar. 
Criogenia 
Facilita a quebra/remoção do cavaco. 
Menor desgaste da ferramenta devido à 
maior 
redução da temperatura. 
Alto 
consumo. 
Alto custo. Dificuldades 
em adaptações em 
máquinas. 
Fluidos não tóxicos e 
inertes. Ambiente limpo 
(criogênicos são 
evaporados para a 
atmosfera). 
3.5. Lacunas das pesquisas e sugestões para trabalhos futuros 
Diante dos estudos citados, verificam-se algumas lacunas nas pesquisas e sugestões para trabalhos futuros. 
Nos tópicos a seguir apresentam-se algumas observações: 
 Não há até o momento uma definição de qual revestimento utilizar na ferramenta conforme o tipo de aço 
inoxidável duplex (lean, standard, 25 Cr, super ou hiper) que é torneado. Os trabalhos geralmente abordam 
estudos de aplicações de insertos com diversos revestimentos, considerando apenas uma única liga DSS. 
Portanto, estudos relacionados ao tipo de DSS quanto à sua usinabilidade, de acordo com a sua composição 
química e respectiva microestrutura, ainda não foram elucidados. 
 Até o momento não se encontram trabalhos confrontando diferentes técnicas de refrigeração criogênicas 
em uma mesma aplicação. Os trabalhos relacionados à criogenia em torneamento de DSS comparam essa 
técnica a outros métodos lubrirrefrigerantes como o corte a seco e com MQL. 
 A variação de fases no corte da ferrita (Fe-) e da austenita (Fe-) pode induzir a vibrações prejudiciais ao 
processo de torneamento de DSS, principalmente quanto ao acabamento da superfície usinada. Porém, não se 
verificam estudos para a determinação da vibração gerada por esta alternância de fases. 
 As fases Fe- e Fe- possuem propriedades diferentes em relação à corrosão e à deformação. Portanto, 
estudos mais aprofundados seriam indicados para entendimento do comportamento do DSS quanto aos 
mecanismos de remoção de material que ocorrem no processo de torneamento. 
 Estudos sobre o amolecimento térmico do DSS durante o torneamento torna-se relevante para as 
definições dos parâmetros ótimos de entrada, como, por exemplo, a velocidade de corte. 
 O uso de fluidos de corte de base vegetal, biodegradáveis, poderiam ser mais explorados nas pesquisas 
como uma alternativa ambientalmente amigável frente ao uso de fluidos de base mineral. No entanto, é importante 
que as propriedades destes fluidos sejam mantidas em temperaturas elevadas, pois nestas situações os fluidos 
vegetais costumam apresentar degradações. 
 O uso de ar comprimido refrigerado por tubo de vórtice poderia ser mais explorado no torneamento de 
DSS. 
4. CONCLUSÕES 
O presente trabalho apresentou uma breve revisão da literatura acerca do torneamento de aços inoxidáveis 
duplex (DSS) e super duplex (SDSS) com a utilização de técnicas ambientalmente amigáveis de 
lubrirrefrigeração. Algumas conclusões obtidas são apontadas a seguir: 
 Os DSS são materiais de usinagem complexa devido à presença de altos teores de elementos de liga como 
cromo, níquel e molibdênio. Seu uso em setores como petróleo e gás, indústria química, papel e celulose indicam 
que o funcionamento dos componentes usinados ocorre em condições críticas, e os meios agressivos por cloretos 
requerem propriedades aprimoradas dos materiais. Para atender a finalidade da superfície técnica do 
componente, a usinabilidade fica prejudicada. 
 A baixa condutividade térmica e o alto grau de encruamento do DSS resultam em altas temperaturas na 
zona de corte. Isso gera altas taxas de desgaste e vida curta das ferramentas, exigindo a parada do processo 
para substituição constante das mesmas. A utilização de baixos avanços e profundidades de corte resultam em 
72 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
cavacos longos e finos, difíceis de quebrar; por ficarem emaranhados na peça e/ou ferramenta, a parada periódica 
do processo para remoção dos mesmos é requerida. Esses fatores prejudicam a produtividade. 
 O processo de torneamento não pode comprometer a textura e integridade da superfície usinada da peça, 
principalmente em materiais de difícil usinagem com elevado valor agregado (como o DSS e o SDSS). 
 A usinagem DSS ainda é um desafio, pois os parâmetros ideais não são os mesmos para os diferentes 
tipos. 
 As técnicas alternativas de lubrirrefrigeração apresentam benefícios e limitações. A técnica MQL se mostra 
promissora, porém necessita de maiores investigações sobre as particularidades desta aplicação (vazão do fluido, 
pressão do ar comprimido, posição e distância do bico aspersor, viscosidade do fluido etc.) no torneamento de 
diferentes DSS. 
 A fabricação da maioria dos produtos envolve a usinagem direta ou indireta na cadeia produtiva. Os 
processos de usinagem devem evoluir na direção da usinagem limpa. 
 A escassez de recursos e energia torna indispensável atenção sobre a eficiência energética, que deve 
primar pela implementação dos melhores processos buscando o equilíbrio entre o ponto de vista ambiental, a 
saúde dos usuários e os aspectos econômicos. 
 A preocupação com o meio ambiente dominará as discussões a nível mundial. Os requisitos de leis e 
regulamentos ambientais tendem a ser ainda mais rígidos nos próximos anos. 
 O sucesso ou fracasso de uma empresa depende do conhecimento aplicado à fabricação. Mapear os 
desperdícios contribuirá com a saúde financeira das companhias. Logo, a usinagem ambientalmente amigável 
será um fator decisivo e estratégico na economia e prosperidade de uma nação. 
5. REFERÊNCIAS 
Akhil, K. T., Arul, S., & Shunmugesh, K. (2021). Optimization of cryogenic turning process parameters using 
Grey Relational Analysis (GRA) in super-duplex stainless steel (A479). In: Lecture Notes in Mechanical 
Engineering. Springer Singapore. https://doi.org/10.1007/978-981-15-8704-7_38. 
ASTM A182/182M. (2021). Standard Specification for Forged or Rolled Alloy-Steel Pipe Flanges, Forged 
Fittings, and Valves and Parts for High-Temperature Service. American Society for Testing and Materials. 
https://doi.org/10.1520/A0182. 
ASTM A995/995M. (2020). Standard Specification for Castings, Austenitic-Ferritic (Duplex) Stainless Steel, 
for Pressure-Containing Parts. American Society for Testing and Materials. https://doi.org/10.1520/A0995. 
ASTM E562. (2019). Standard Test Method for Determining Volume Fraction by Manual Point Count. American 
Society for Testing and Materials. https://doi.org/10.1520/mnl10913m. 
ASME B16.34. (2020). Valves - Flanged, Threaded, and Welding End. AmericanSociety of Mechanical 
Engineers, Standards, 2020. 
Bain, E. C. & Griffiths, W. E. (1927). Trans AIME, 75,166. 
Carvalho, J. A. N. (2021). Corrosão em Aços Inoxidáveis, Capítulo 5 - Corrosão por Pites. Capacitação: 
Aprenda com o Especialista, Associação Brasileira de Aço Inoxidável (ABINOX). 
https://www.abinox.org.br/site/capacitacao-aprenda-com-especialista. 
Chetan, Ghosh, S., & Venkateswara Rao, P. (2015). Application of sustainable techniques in metal cutting for 
enhanced machinability: A review. Journal of Cleaner Production, 100, 17–34. 
https://doi.org/10.1016/j.jclepro.2015.03.039. 
Debnath, S., Reddy, M. M., & Yi, Q. S. (2014). Environmental friendly cutting fluids and cooling techniques in 
machining: A review. Journal of Cleaner Production, 83, 33–47. https://doi.org/10.1016/j.jclepro.2014.07.071 
Dhananchezian, M., Priyan, M. R., Rajashekar, G., & Narayanan, S. S. (2018). Study the effect of cryogenic 
cooling on machinability characteristics during turning duplex stainless steel 2205. Materials Today: Proceedings, 
5(5), 12062–12070. https://doi.org/10.1016/j.matpr.2018.02.181. 
Dixit, U. S., Sarma, D. K., Davim, P. J. (2012). Environmentally Friendly Machining, Springer, New York. 
https://doi.org/10.1007/978-1-4614-2308-9. 
Freitas, G. C. L. D., Fonseca, G. S., Moreira, L. P., & Leite, D. N. F. (2021). Phase transformations of the 
duplex stainless steel UNS S31803 under non-isothermal conditions. Journal of Materials Research and 
Technology, 11, 1847–1851. https://doi.org/10.1016/j.jmrt.2021.02.008. 
Gabaldo, S. (2019). Dióxido de carbono como fluido de corte no torneamento de aço inoxidável duplex com 
ferramentas de metal duro: efeitos na integridade superficial. 131 p. Tese (doutorado) em Engenharia Mecânica, 
UNICAMP, Campinas, SP. 
Ghani, J. A., Rizal, M., Nuawi, M. Z., Ghazali, M. J., & Haron, C. H. C. (2011). Monitoring online cutting tool 
wear using low-cost technique and user-friendly GUI. Wear, 271(9–10), 2619–2624. 
https://doi.org/10.1016/j.wear.2011.01.038. 
Ghatge, D. A., Ramanujam, R., Reddy, B. S., & Vignesh, M. (2018). improvement of machinability using eco-
friendly cutting oil in turning duplex stainless steel. Materials Today: Proceedings, 5(5), 12303–12310. 
https://doi.org/10.1016/j.matpr.2018.02.208. 
Gowthaman, P. S., Jeyakumar, S., & Saravanan, B. A. (2020). Machinability and tool wear mechanism of 
Duplex stainless steel – A review. Materials Today: Proceedings, 26, 1423–1429. 
https://doi.org/10.1016/j.matpr.2020.02.295. 
https://doi.org/10.1007/978-1-4614-2308-9
73 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Grzesik, W. (2008). Machining of hard materials. In: Machining: Fundamentals and Recent Advances (pp. 97–
126). https://doi.org/10.1007/978-1-84800-213-5_4. 
Gunn, R. N. (Ed.). (1997). 1 - Developments, grades and specifications. In: Duplex Stainless Steels (pp. 1–
13). Woodhead Publishing. https://doi.org/https://doi.org/10.1533/9781845698775.1. 
IMOA. (2014). Practical Guidelines for the Fabrication of Duplex Stainless Steels. International Molybdenum 
Association. https://www.imoa.info/download_files/stainless-steel/Duplex_Stainless_Steel_3rd_Edition.pdf. 
ISO 15156-3. (2020). Petroleum and natural gas industries — Materials for use in H2S-containing 
environments in oil and gas production — Part 3: Cracking-resistant CRAs (corrosion-resistant alloys) and other 
alloys. International Organization for Standardization, Issue 4. 
Kadam, S., Khake, R., & Mudigonda, S. (2017). Experimental investigations on surface roughness, cutting 
forces and tool wear in turning of super duplex stainless steel with coated carbide inserts. In: Additive 
Manufacturing; Materials, https://doi.org/10.1115/MSEC2017-3008. 
Karassik, I. J., Messina, J. P., Cooper, P., & Heald, C. C. (2008). Pump Handbook, 4. ed., McGraw-Hill 
Education. https://www.accessengineeringlibrary.com/content/book/9780071460446. 
Koyee, R. D., Heisel, U., Eisseler, R., & Schmauder, S. (2014). Modeling and optimization of turning duplex 
stainless steels. Journal of Manufacturing Processes, 16(4), 451–467. 
https://doi.org/10.1016/j.jmapro.2014.05.004. 
Krolczyk, G. M., Maruda, R. W., Krolczyk, J. B., Nieslony, P., Wojciechowski, S., & Legutko, S. (2018). 
Parametric and nonparametric description of the surface topography in the dry and MQCL cutting conditions. 
Measurement, 121, 225–239. https://doi.org/10.1016/j.measurement.2018.02.052. 
Krolczyk, G. M., Maruda, R. W., Krolczyk, J. B., Wojciechowski, S., Mia, M., Nieslony, P., & Budzik, G. (2019). 
Ecological trends in machining as a key factor in sustainable production – A review. Journal of Cleaner Production, 
218, 601–615. https://doi.org/10.1016/j.jclepro.2019.02.017. 
Krolczyk, G. M., Maruda, R. W., Nieslony, P., & Wieczorowski, M. (2016). Surface morphology analysis of 
duplex stainless steel (DSS) in clean production using the power spectral density. Measurement, 94, 464–470. 
https://doi.org/10.1016/j.measurement.2016.08.023. 
Krolczyk, G. M., Nieslony, P., Maruda, R. W., & Wojciechowski, S. (2017). Dry cutting effect in turning of a 
duplex stainless steel as a key factor in clean production. Journal of Cleaner Production, 142, 3343–3354. 
https://doi.org/10.1016/j.jclepro.2016.10.136. 
Kumar, K. S., & Senthilkumaar, J. S. (2013). Analysis of flank wear and chip morphology when machining 
super duplex stainless steel in a gas cooled environment. International Journal of Engineering and Technology, 
5(6), 5045–5056. 
Kumar, K. S., Senthilkumaar, J. S., & Thirumalai, R. (2014). Chip morphology investigation among dry, wet 
and gas cooled machining of super duplex stainless steel. Applied Mechanics and Materials, 592–594, 811–815. 
https://doi.org/10.4028/www.scientific.net/AMM.592-594.811. 
Kumar, S. T. P., Prasada, H. P. T., Nagamadhu, M., Siddaraju, C. (2021). Investigate the effect of Al2O3 & 
CuO nano cutting fluids under MQL technique in turning of DSS-2205. Advances in Materials and Processing 
Technologies. In Press, Corrected Proof. https://doi.org/10.1080/2374068X.2021.1948701. 
Narayanan, D., Salunkhe, V. G., Dhinakaran, V., & Jagadeesha, T. (2021). Experimental evaluation of cutting 
process parameters in cryogenic machining of duplex stainless steel. In: Advances in Industrial Automation and 
Smart Manufacturing, Springer, Singapore, pp. 505–516. https://doi.org/10.1007/978-981-15-4739-3_44. 
Nomani, J. (2014). Built-up Edge Mechanisms in the Machining of Duplex Stainless Steels. Ph.D. Thesis, 
Deakin University, School of Engineering. https://doi.org/http://hdl.handle.net/10536/DRO/DU:30074699. 
Oliveira, J. J. M. & Zoghbi Filho, J. R. B. (2016). O pré-sal brasileiro e o problema da corrosão por CO2. Revista 
da Pós-Graduação da Faculdade do Centro Leste, Pós-Graduação Em Engenharia de Petróleo & Gás Natural. 
https://www.researchgate.net/publication/311066120. 
Rajaguru, J., & Arunachalam, N. (2017). Coated tool performance in dry turning of super duplex stainless steel. 
Procedia Manufacturing, 10(4), 601–611. https://doi.org/10.1016/j.promfg.2017.07.061. 
Rajaguru, J., & Arunachalam, N. (2020). A comprehensive investigation on the effect of flood and MQL coolant 
on the machinability and stress corrosion cracking of super duplex stainless steel. Journal of Materials Processing 
Technology, 276, 116417. https://doi.org/10.1016/j.jmatprotec.2019.116417. 
Saravanakumar, M., Tamilselvam, P., Subramanian, M., & Somu, C. (2020). Eco-friendly machining of super 
duplex stainless steel (UNS S32760) under nitrogen gas cooled and vegetable oil based MQL system. PalArch’s 
Journal of Archaeology of Egypt/Egyptology, 17(9), 5267–5295. 
Sedriks, A. J. (1996). Corrosion of Stainless Steels. 2. ed, John Wiley and Sons. 
Sharma, A. K., Tiwari, A. K., Dixit, A. R. (2016). Effects of Minimum Quantity Lubrication (MQL) in machining 
processes using conventional and nanofluid based cutting fluids: A comprehensive review. Journal of Cleaner 
Production, 127: 1-18.https://doi.org/10.1016/j.jclepro.2016.03.146. 
Sharma, V. S., Dogra, M., & Suri, N. M. (2009). Cooling techniques for improved productivity in turning. 
International Journal of Machine Tools and Manufacture, 49(6), 435–453. 
https://doi.org/10.1016/j.ijmachtools.2008.12.010. 
Singh, J., Gill, S. S., Dogra, M., & Singh, R. (2021). A review on cutting fluids used in machining processes. 
Engineering Research Express, 3(1), 012002. https://doi.org/10.1088/2631-8695/abeca0 
Sonawane, G. D., & Sargade, V. G. (2020). Machinability study of duplex stainless steel 2205 during dry 
https://doi.org/10.1080/2374068X.2021.1948701
https://doi.org/10.1016/j.jclepro.2016.03.146
74 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
turning. International Journal of Precision Engineering and Manufacturing, 21(5), 969–981. 
https://doi.org/10.1007/s12541-019-00305-8. 
Subhash, N., Sambedana, S., Nithin Raj, P., Jagadeesha, T. (2019). Experimental study on tool wear and 
optimization of process parameters using ANN-GA in turning of super-duplex stainless steel under dry and wet 
conditions. In: Advances in Manufacturing Technology, Springer, Singapore, pp. 411-420. 
https://doi.org/10.1007/978-981-13-6374-0_47. 
Verma, J., & Taiwade, R. V. (2017). Effect of welding processes and conditions on the microstructure, 
mechanical properties and corrosion resistance of duplex stainless steel weldments – A review. Journal of 
Manufacturing Processes, 25, 134–152. https://doi.org/10.1016/j.jmapro.2016.11.003. 
 
https://doi.org/10.1007/978-981-13-6374-0_47
75 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
Capítulo 
5 
 
Avanços recentes em anodização 
assistida por plasma (PEO) em ligas de 
alumínio: Uma revisão sobre estrutura, 
desempenho tribológico e resistência à 
corrosão 
 
 
Matheus Thedy Dorneles1, matheusthedydorneles@gmail.com 
Victor Velho de Castro2, victorvcastro@yahoo.com.br 
Célia De Fraga Malfatti3, celia.malfatti@ufrgs.br 
 
1 Aluno do PPGE3M da Universidade Federal do Rio Grande do Sul (UFRGS) 
2 Aluno do PPGE3M da Universidade Federal do Rio Grande do Sul (UFRGS) 
3 Professora da Universidade Federal do Rio Grande do Sul (UFRGS) 
 
 
Resumo: Neste artigo de revisão, é apresentado o estado atual das pesquisas sobre desenvolvimento 
tecnológico na área de revestimentos cerâmicos produzidos por PEO obtido sobre alumínio e suas ligas. 
Anodização Assistida por Plasma (PEO – Plasma Electrolytic Oxidation) é um método que permite obter 
revestimentos com elevada resistência ao desgaste e à corrosão a partir da obtenção de camadas com estruturas 
complexas, empregando-se para isso eletrólitos ambientalmente amigáveis. No entanto, os revestimentos 
obtidos por PEO apresentam propriedades fortemente influenciadas pelos elementos de liga, parâmetros 
elétricos e tipo e concentração do eletrólito utilizado. As estruturas e morfologia dos revestimentos afetam seu 
desempenho tribológico e resistência à corrosão. Essas características podem ser controladas diretamente por 
meio de ajustes de parâmetros elétricos, como diferentes densidades de corrente, frequências e a relação entre 
as cargas anódica e catódica e, além disso, alterando a composição eletrolítica. No caso do alumínio e suas 
ligas, fases como α-Al2O3 aumentam a resistência ao desgaste, enquanto camadas com maior porosidade e 
trincas tendem a enfraquecer o revestimento, comprometendo o desempenho anticorrosivo por favorecer a 
penetração do meio ácido através do revestimento até o substrato. Esta revisão discute o efeito dos parâmetros 
elétricos e da composição dos eletrólitos sobre as fases obtidas, resistência ao desgaste e resistência à corrosão. 
 
Palavras-chave: PEO, Alumínio, Tribologia, Corrosão. 
 
 
Recent advances in PEO on al alloys: a review about 
structure, tribological performance and corrosion 
resistance 
 
Abstract: In this review article, we present the status of research on technological development in the field of 
ceramic coatings produced by PEO applied to aluminum and its alloys Plasma Electrolytic Oxidation (PEO) is an 
environmentally friendly method that provide high thicknesses and high rates of layer growth with complex 
structures. However, the coatings obtained by PEO present properties strongly influenced by the alloying 
elements, electrical parameters and the type and concentration of the electrolyte used. The structures and 
morphology of the coatings affects their tribological performance and corrosion resistance. These characteristics 
can be controlled directly through adjustments of electrical parameters, such as different current densities, 
frequencies and the relation between anodic and cathodic charges and in addition by changing the electrolyte 
composition. In the case of aluminum and its alloys, phases such as α-Al2O3 increase the strength, while layers 
with greater porosity and cracks tend to weaken the coating, compromizing the anti-corrosive performance by 
favoring the penetration of the medium through the layer to the substrate. This review discusses the effect of 
electrical parameters and composition of electrolytes on the phases obtained, wear resistance and corrosion 
resistance. 
 
Keywords: PEO, Aluminium, Tribology, Corrosion. 
 
 
 
76 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
1. INTRODUCTION 
 
Due to its excellent relationship between weight and mechanical strength, aluminum alloys are widely used in 
the automotive and aerospace industries, given the wide range of applications that such properties allow. However, 
despite having great versatility of applications, aluminum still exhibits low resistance to corrosion and wear, when 
exposed to extreme process conditions [1]. 
To solve this problem, conventional methods such as anodization [2] and hard anodization [3, 4] are 
widespread and used to obtain protective oxide coatings in aluminum alloys. Although the two methods provide 
better anti-corrosive properties for the substrate, hard anodization provides the greatest potential for wear 
resistance, since the surface hardness values presented by the coatings formed during the process vary between 
300 and 550 HV [4], as higher current densities and lower temperatures are used during the process. However, 
Plasma Electrolytic Oxidation (PEO) process has aroused increasing interest in being a process that uses 
environmentally friendly electrolytes and provides, to aluminum and its alloys, properties that none of the 
processes mentioned above can achieve. 
Plasma electrolytic Oxidation (PEO) is an electrochemical process proposed by Markov and his 
collaborators in the mid-1970s [5, 6], which aimed at the formation of a ceramic coating of complex structure and 
with strong adhesion to the substrate [7, 8], with high hardness (between 1000 and 1900 HV) and resistant to 
corrosion and wear [9-12]. The process occurs with an aluminum anode under the condition of electrical discharges 
on the sample surface. The PEO method can be considered the evolution of the processes mentioned right before, 
by using alkaline electrolytes that contains combinations of inorganic (silicate, phosphate, alotate, etc.) and organic 
components, which present more environmentally friendly behavior [13-16]. 
In addition, the type of electrolyte used, the PEO process also stands out for the high energy values 
employed, because the energy required must be greater than the dielectric breakdown voltage of the anodic film 
formed early in the process [16]. Thus, high coating growth rates and higher layer thicknesses can be obtained 
through PEO [16-18]. 
The oxide coating formed by PEO is the result of the dielectric breakdown of the anodic barrier formed 
initially on the surface of the substrate. The characteristics of the coating, such as its structure, are directly linked 
to the process conditions and the rapid cooling of molten oxide, since the current and voltagedensity influence 
the number, intensity and useful life of electrical discharges that are responsible for the formation and growth of 
oxide. In addition to the deposition and interaction between the electrolyte components with the substrate surface 
[18-21]. 
Recently, some authors authors [22] presented a review on the PEO, in a generic way, process applied in 
different metals. It was demonstrated evidence of the remarkable growth of this method as an alternative to obtain 
coatings with good resistance to corrosion and wear. Therefore, this review aims to gather information and results 
obtained over the last 10 years in wear and corrosion resistance focused on the application of the PEO process in 
aluminum and its alloys. In the present paper, we intend to discuss and relate the effect of electrical parameters 
and electrolyte composition on the phases obtained, and wear and corrosion resistance of Al and Al alloys. 
 
2. PLASMA ELECTROLYTIC OXIDATION (PEO) 
 
The process of plasma electrolytic oxidation is an electrochemical process and consists of applying a 
potential difference to a sample (anode) and a counter electrode (cathode), both submerged in an alkaline 
electrolyte bath. Such high potential differences promote the formation of electrical micro-discharges ("sparkings") 
in the entire sample’s surface region [16-20]. The electrical discharges, caused after the dielectric breakdown of 
the anodic layer formed in the first seconds of the process, are responsible for the production of coating’s inherent 
discharge channels, which provide high temperatures and pressures inside the layer, assisting the formation of 
dense and complex layers of oxide on the substrate’s surface (Figure 1) [8]. 
Beyond the high rate of coating growth and the complex properties and structures of the coating, the 
exposition of the electrolyte to different process’ conditions is responsible for the deposition of elements such as 
silicon (Si) and phosphorus (P), from the alkaline electrolyte to the substrate’s surface [14, 23, 25, 26]. 
Therefore, the formation and growth of the coating, during the PEO process, is the result of the 
combination of three distinct processes [7]: 
I – Electrical discharges that result in the casting and oxidation of the substrate, traveling through the discharge 
channels to the interface between the surface and the electrolyte, with rapid solidification. 
II - Partial destruction of the external coating due to the high stresses involved in the process; 
III - Diffusion process. 
Many authors have been studying (Table 1), the alteration of microstructure, morphology and formation of 
porosities and fissures inherent to the PEO process. The deposition of electrolyte components are directly linked 
to the cyclic effects of plasma heating, growth, breakage and re-growth of the ceramic layer [27]. 
 
77 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
 
Figure 1. Development of the oxide layer during the PEO process. (a) columnadic growth of anodic film, 
(b) rupture of anodic film and coexistence during the coating growth’s beginning, (c) transformation of 
anodic films, (d) growth of PEO layer. Adapted from Zhong et al. (2019) [8]. 
 
As already mentioned, the ceramic coating obtained by PEO forms extremely complex and dense 
structures, which may contain crystalline and amorphous phases due to the high cooling rates provided by the 
contact of oxide (melted during micro-discharges) and the electrolyte [7, 27, 28, 29]. 
The PEO process applied to aluminum can culminate in different crystallographic phases of aluminum oxide, such 
as ɳ-Al2O, Ƴ-Al2O, α-Al2O and 3Al2O3.2SiO2 (mullite) in different proportions, depending on the conditions of the 
process and the electrolyte utilized [13, 30, 31]. Some authors report that aluminate and silicate-based electrolytes 
are beneficial for the formation of the α-Al2O phase. The α-Al2O phase has greater hardness and wear resistance, 
along with the Ƴ-Al2O phase at the coating surface [23]. 
Wang et al. (2018) [27] found the formation of 3Al2O3.2SiO2 and α-Al2O phases, changing only the process 
time. It is noted that for times of 2 to 4 minutes using current density of 2.2 A. dm-² and duty cycle of 50%, the ɣ-
Al2O phase was predominantly formed. For longer process times (from 10 to 30 minutes), using the same work 
cycle, the formation of phases 3Al2O3.2SiO2 and α-Al2O occurred, maintaining the same current density used 
previously. 
Jaspard-Mécuson et al. (2007) [42] went deeper into the study of electrical parameters’ influence on the 
formation of PEO coating. For the authors, the ratio of amount between positive and negative charges applied has 
critical importance to ensure better coating quality. In their experiments, using an integral equation, as can be seen 
in Figure 2, the authors consider not only the currents applied in the process, but also the times that these currents 
remain “on” and “off” during the work pulse. The R=0.89 ratio is seen as an optimal relation since, as say the 
authors, the higher application of negative charge allows better distribution of electrical micro-discharges in the 
substrate, with no large concentration points of these discharges (Figure 3). 
The higher number of negative charges also promotes thicker and more homogeneous coating at the 
entire sample’s surface and drastically reduces the presence of large discharge channels (Figure 4), which are 
inherent to the PEO process. 
 
 
 
 
 
 
 
 
78 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Table 1. Recent studies on PEO process and its relations with the structure of the material. 
 
Author Year Substrate Electrolyte Electrical parameters Ref. 
Wu et al. 2018 AA1060 NaOH; 
Na2SiO3.9H2O 
- Current density: 2.2 A.dm-2 
- Frequency: 50Hz 
- Duty Cycle: 50% 
- t= 30s, 45s, 2 min, 4 min, 10 min, 20 
min and 30 min. 
[7] 
Wang et al. 2018 AA1060 NaOH; 
Na2SiO3.9H2O 
- Current density: 4.4 A.dm-² 
- t= 1, 2, 5, 10, 15, 20 and 30 min. 
[27] 
Dehnavi et al. 2018 Al6061 - KOH; 
- Al2SiO3 
- Current densities: 5, 10, 15, 20 e 25 
A.dm-²; 
- Frequencies: 50 and 1000 Hz; 
- Duty cycle: 20% e 80% 
- t= 30 min. 
[28] 
Xiang et al. 2015 Al6063 - KOH; 
- K2ZrF6; 
- NaSiO3 
- Current densities: 5, 10, 15 e 20 A.dm-²; 
- Duty cycle: 75%; 
- Frequency: 140 Hz. 
- t= 18 min. 
[29] 
Wang et al. 2020 AA1060 - NaOH; 
-Na2SiO3.9H2O; 
- (NaPO3)6 
- Current density: 15 A.dm-²; 
- Frequency: 500 Hz; 
- Duty cycle: 60% 
- t= 60 min. 
[30] 
Hussein et al. 2010 Al1100 - KOH; 
- Al2SiO3 
- Duty cycle: 80%; 
- Frequency: 2000 Hz; 
- Single and bipolar currents. 
- t= 60 and 90 min. 
[31] 
Cheng et al. 2014 AlCuLi 2A97 - KOH; 
- NaAlO2 (Different 
concentrations) 
- Current density: 0.25 and 0.2 A.dm-²; 
- Frequency: 1000Hz; 
- Duty cycle: 20% 
[32] 
Erfanifar et 
al. 
2017 AA1190 - KOH; 
- Na2SiO3.5H2O; 
- Na3PO4.12H2O; 
- Addition of alumina 
nanoparticles. 
- Current density: 223 mA.cm-²; 
- t= 1, 2, 4, 8 and 16 min. 
 
[33] 
Liu et al. 2015 AA1060 - Al2SiO3; 
- (NaPO3)6; 
- KF; 
- NaOH. 
- Current density: 4.4 A.dm-²; 
- t= 20 min. 
 
[34] 
Wu et al. 2020 AlSi9Cu3 - KOH; 
- Na3PO4 
- Current density: 3 A.dm-²; 
- Dutycycle: 10%; 
- t= 15, 30, 60, 120, 240 and 480 s. 
 
[35] 
Xiang et al. 2015 Al6063 - Al2SiO3; 
- Al2B4O7; 
- NaAlO2; 
- With and without 
additives of 
nanoparticles of 
Al2O3 and TiO2. 
 
- Current density: 15 A.dm-². 
- t= 60 min. 
[36] 
Wheeler et al. 2012 Al5052 - NaOH; 
- Al2SiO3 
- t= 25 min. [37] 
Zhang et al. 2020 AA7075-T6 - KOH; 
- Na2SiO3.9H2O; 
- With and without 
addition of 
Na2Cu.EDTA 
- Current density: 100 mA.cm-²; 
- Duty cycle: 10%; 
- Frequency: 600 Hz. 
- t= 600 s. 
[38] 
Zhang et al. 2017 Aluminum CP - Al2SiO3; 
- (NaPO3)6; 
- KF; 
- NaOH. 
 
- Current densities: 2.2, 4.4 and 8.8 A.dm-
²; 
- Duty cycle: 50%; 
- Frequency: 50 Hz. 
- t= 10, 60 and 600 s.[39] 
Dehnavi et al. 2014 Al6061 - KOH; 
- Al2SiO3 
- Current Density: 5, 10, 15, 20 and 25 
A.dm-²; 
- Duty cycle: 20% and 80%; 
- Frequency: 1000 Hz. 
- t= 30 min. 
[40] 
Zhang et al. 2020 Al2024 - NaOH; 
- Al2SiO3; 
- Glycerol; 
- Oxide 
nanoparticles(α- 
Al2O3,SiC, TiO2,ZrO2 
and CeO2) 
- Current density: 100 mA.cm-2; 
- Duty cycle: 40%; 
Frequency: 400 Hz; 
- t= 20 min. 
[41] 
 
79 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
 
Figure 2. Equation used by Jaspard-Mécuson et al. (2007) [42], where the applied currents and the 
times “on” and “off”, of the positive and negative pulses, are crucial for the process. Adapted from 
Jaspard-Mécuson et al. (2007) [42]. 
 
 
 
Figure 3. Distribution of electrical discharges during the PEO process using R=1.57 (a, b, c, d, e) in 
a few seconds, 1, 15, 45 and 100 minutes, respectively, and R=0.89 (f, g, h, i) in a few seconds, 15, 30 and 
45 minutes, respectively. Adapted from Jaspard Mécuson et al. (2007) [42]. 
 
Reinforcing the argument of Jaspard-Mécuson, Rogov et al. (2019) [43] studied the effect of cathodic current 
on Plasma Electrolytic Oxidation (PEO). For the authors, a process under conditions of anodic and cathodic 
polarization allows greater uniformity of the coating, even if the primary current density distribution is not uniform. 
He also points out that the application of negative current decreases the local resistance of the coating through 
the electro-catalytic action of the cathodic current, which injects protons into the active region of the coating, 
altering and better distributing the subsequent anodic current density. These effects tend to decrease the activation 
energy of alumina, that forms in the oxide resulting from the PEO process, also decreasing the anodic energy 
required for the continuous growth of the coating. Such arguments support the statement of Jaspard-Mécuson et 
al. (2007) [42] on the best distribution of micro-discharges on the surface of the coating, in addition to the smaller 
appearance of large discharge channels, since when you need less energy to "break" the coating resistance, lower 
are the chances of surface defects in oxide growth. 
Martin et al. (2013 and 2017) [13 And 44] also studied the effects of electrical parameters in the PEO 
process, in addition to testing the proposed by Jaspard-Mécuson et al. (2003) [42]. For the authors, long-life and 
larger size of electrical micro-discharges promotes coating’s deterioration. In other words, it is preferred to obtain 
smaller and better distributed electrical discharges on the surface of the sample to avoid possibly damages to the 
coating. In addition, the relation of positive and negative charges was tested, where r=0.5, R=0.9, R=1.5, R=1.6 
and R=6.0 ratios were implemented. After experiments, a smaller size of electrical micro-discharges was observed, 
in addition to better distribution and shorter useful life for samples exposed to the R=0.9 ratio. Besides that, it is 
possible to observe the great difference in the cross-sections of all samples, since the ratio R=0.9 presented thick 
and much more compact than the other ones (Figure 4). Such compaction and lower presence of defects such as 
cracks and large discharge channels can effectively influence corrosion resistance and coating wear, as we will 
note later in this review. 
 
80 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
Figure 4. Cross-sections of coatings obtained at different load ratios (R=Qp/Qn). Adapted from 
Martin et al. (2017) [44]. 
 
Adding more variables, Dehnavi et al. (2014) [40] have already explained about the influence of electrical 
parameters in transformation of coating phases. In this study on an Al6061 aluminum alloy, the current densities 
ranged between 5 and 25 A. dm-², in addition to the work cycle from 20% to 80%. For the authors, the Ƴ-Al2O 
phase is the base structure of the oxide coating when used frequency of 1000 Hz and duty cycle of 20%. However, 
this structure can be changed according to adjustments made in the electrical parameters. By increasing the duty 
cycle from 20% to 80%, along with same current density and low frequencies, it is possible to obtain a 
transformation of the phase from Ƴ-Al2O to α-Al2O (Figure 5), which would be beneficial in terms of hardness and 
wear resistance of the coating. 
 
 
 
Figure 5. DRX analysis of PEO coating samples formed at 1000 Hz frequency and in duty cycles of (a) 
20% and (b) 80%. Adapted from Dehnavi et al (2014) [40]. 
 
81 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Unlike such a transformation, to achieve phase 3Al2O3.2SiO2, the duty cycle should be increased to 80% 
and high current densities, between 20 and 25 A.dm-² must be used. Besides them, Martin et al. (2019) [13] used 
the load ratio proposed by Jaspard-Mécuson et al. (2007) [42] to obtain Mullita's metastable structure 
(3Al2O3.2SiO2) during the “soft” regime. The authors observed that, after the beginning of the "soft" regime, a 
lamellar alumina nanocomposite is formed, which periodically alternate with 1:1 lamellar mullite, filling the voids 
formed by the structures called "pancakes". 
In addition to the electrical parameters and process time, the electrolyte also has a great importance in 
obtaining different phases. In one of their most recent studies, Wang et al. (2020) [30] utilized three different 
electrolytes, one containing only Na2SiO3·9H2O, one other containing (NaPO3)6 (g. L-1) + NaOH (g. L-1) and one 
last with addition of the three components mentioned above. At the end of the experiment, the growth mechanism 
of the PEO layer in the three different electrolytes was discussed. It was concluded that, for silicate-based 
electrolytes only, mullite nodules (3Al2O3.2SiO2) were formed, as well as an increase in silicon concentration on 
the surface of the coating compared to the internal layer and the interface region with the substrate. These results 
were also obtained previously [13], where lamelar phases of 3Al2O3.2SiO2 were also formed using silicate-based 
electrolyte added to specific electrical parameters. 
Contrary to the observations of Wang et al. (2020) [30], Wu et al (2020) [35] obtained the mullite phase 
(3Al2O3.2SiO2) in phosphate-based electrolyte. However, this fact can be explained by the different alloy used as 
substrate (Al9Si3Cu), since higher silicon concentrations can influence the formation of phase 3Al2O3.2SiO2. 
 
 
 
Figure 6. Cross-sectional analysis SEM representing: (a) orientation of the analyzed layer, (b) individual 
mapping of elements O, Al, Si and P and (c) PEO coating obtained in electrolyte based on Si + P. 
Adapted from Wang et al. (2020) [30]. 
 
 
 
Figure 7. Surface morphology and EDS analysis of surface mapping obtained in electrolytes based on: 
(a)Si, (b)P and (c)Si-P. Adapted from Wang et al. (2020) [30]. 
82 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
For phosphate-based electrolyte, the α-Al2O phase was mainly formed, with phosphorus (P) elements 
scattered and distributed, mostly at the interface between the coating and the substrate (Figure 6 and Figure 7). 
Phosphorus maintained its behavior when was used an electrolyte combining the two elements, but this time, 
silicon also deposited and concentrated at the surface of the coating. 
Roughness, porosities, and other types of defects are also inherent to the PEO process and are influenced 
by the process variables too, as much as the phases formed. Dehnavi et al. (2018) [28] and Xiang et al. (2015) 
[29] clarify that high current densities increase the hardness of the coating and make it more compact, but there 
are optimal parameters to be followed. To Xiang et al. (2015) [29], the best result obtained between current 
densities ranging from 5 to 20 A. dm-² was the current density of 15 A. dm-², because the coatingpresented better 
structure with less defects and greater compaction of the layer. 
Reinforcing this point, Zhang et al. (2017) [39] argue that the influence of current density on layer thickness 
is not always linear. They present results that demonstrate a gain of 100% of layer thickness when the current 
density is increased by 2.2 A. dm-²to 4.4 A. dm-², but a gain of only 1/6 of the thickness when the density is 
increased from 4.4 A. dm-² to 8.8 A. dm-². In addition, the authors clarify that coatings exposed to higher current 
densities can generate thicker outer layer. However, these coatings could present greater number of defects and 
greater irregularity in the interface between the coating and the substrate (Figure 8). 
 
 
Figure 8. Cross section of the coating obtained at different current densities for 10s: (a) 2.2 A. dm-², (b) 
4.4 A.dm-² and (c) 8.8 A.dm-²;60s: (a) 2.2 A.dm-²,(b) 4.4 A.dm-² and (c) 8.8 A.dm-². Adapted from Zhang 
et al. (2017) [39]. 
 
Nanoadditives can also be used as an alternative, besides changing electrical parameters and process time, 
to improve coating properties. Such additives have the function of "masking" possible defects caused by the PEO 
process [37]. Diameter of discharge channels are responsible for increasing the surface roughness of the coating 
and can be mitigated by the adsorption of nanoparticles, filling micro-pores and empty spaces caused by the 
process [33]. However, it is necessary to identify and use additives that provide and meet the final needs of the 
material. Some authors report higher porosities and lower hardness values for materials exposed to processes 
involving the addition of nanoparticles such as α-Al2O3 TiO2 and ZrO2 in the electrolyte [41] and others that report 
increased hardness and properties such as wear resistance, for additions of Al2O3 nanoparticles [36] in electrolytes 
that do not provide such characteristics for the coating. 
 
3. WEAR RESISTANCE 
 
Wear is defined as one of the sub-areas of tribology, being the gradual but continuous loss of material when 
contact occurs between two surfaces or when they are in relative movements to each other [45, 46]. Variables 
such as applied loads and sliding speeds directly influence the results of material wear resistance tests. 
The phenomenon of wear causes the occurrence of several processes involved during the test, being divided 
into five main processes, or groups [47]: 
- Adhesive wear; 
- Abrasive wear; 
- Fatigue wear; 
- Wear by tribochemical reactions. 
- Erosive wear. 
Many authors have been studying different ways and different variables of the PEO process (Table 2) in 
aluminum substrate to improve compaction, surface hardness and lubrication of the oxide coating to evaluate 
which aspects (among them the chemical composition, hardness, coating thickness and morphology) are crucial 
to define the coating behavior when exposed to wear tests of various types and intensities. 
 
83 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Table 2. Recent studies on PEO process and its relations with wear resistance. 
 
Author Year Substrate Electrolyte Electrical parameters Ref. 
Polat et al. 2010 Al-2017A - KOH; 
-Na2SiO3.5H2O (Different 
concentrations) 
- Current density: 0.150 A.dm-²; 
- 150 min. 
 
[48] 
Sabatini et al. 2010 - A359-T6; 
- AA7075-T6. 
- Kerolyte aluminum. - Current density: 15 A.dm-²; 
- Frequency: 50 Hz; 
- A359-T6: 27 min; 
- AA7075-T6: 20 min. 
[49] 
Malayoglu et 
al. 
2011 AA6082 - Keronite - [50] 
Jiang et al 2011 - Cp Aluminum - NaOH; 
- Na3PO4; 
- Al2CO3 
- Tested with different frequencies, 
current densities and process times. 
[51] 
Treviño et al. 2012 Al6061 - KOH; 
- Al2SiO4. 
- Voltage: between 400 and 600 V; 
- Frequency: 50 Hz; 
- Parameters adjusted to obtain 100, 
125 and 150 μm layer thickness. 
[52] 
Erarslan, and. 2013 - CP aluminum; 
- CuO particles. 
 
- KOH; 
- KF; 
- Al2SiO3; 
- 
- Voltage: 500 V (positive) and 83 V 
(negative); 
- Time: 5 min. 
[53] 
Treviño et al. 2013 - Al6061 - KOH; 
- Al2SiO4. 
- Voltage: between 400 and 600 V; 
- Frequency: 50 Hz; 
- Process times adjusted to get 100, 
125 and 150 μm layer thickness. 
[54] 
Arrabal et al. 2015 - Al6082-T6 -KOH; 
- Al2SiO3; 
- Additions of 2 and 10 g.L-
1 of α-Al2O3. 
 
- Current density: 500 mA.cm-2; 
- Voltage: 490 V(+) and 110 V(-); 
- Frequency: 50 Hz; 
Duty cycle: 50% 
[55] 
Cheng et al. 2015 - Al2A97 - KOH; 
- NaAlO2 at concentrations 
of 5, 32 and 56 g.L-1. 
- Current density: 0. 25 A.dm-²(+) and 
0. 20 A.dm-² (-); 
- Frequency: 1000 Hz; 
Duty cycle: 20%. 
[56] 
Yin et al. 2016 - Cp Aluminum - KOH; 
- Al2SiO3. 
- Addition of ethyl alcohol 
+ dispersed graphite (10 
g.L-1). 
 
- Current density: 6.5 A.dm-²; 
- Frequency: 150 Hz; 
- Duty cycle: 40%; 
- Time: 30 min. 
[57] 
Xie et al. 2017 - A356 - KOH; 
-Na2AlO2 (2. 16 and 24 
g.L-1); 
- Na2SiO3.9H2O + KOH(for 
comparison). 
- Current density: 0.20 A.dm-² (+) and 
0.13 A.dm-² (-); 
- Frequency: 1000 Hz; 
- Duty cycle: 20%; 
 
[58] 
Shamsi et al. 2018 - CP aluminum. - KMnO4; 
- Al2SiO3; 
- Al2CO3. 
- Current density: 1.2 A.dm-²; 
- Voltage: 63 V; 
- Time: 5 min. 
[59] 
Li et al. 2019 - Al39Zn5Cu - KOH; 
- EDTA; 
- Al2SiO3. 
- Current density: 10 A.dm-²; 
- Frequency: 100 Hz; 
- Times: 10, 30, 50 and 70 min. 
[60] 
Cai et al. 2019 - A365 - - Current density: 0.15 A.dm-²; 
- Duty cycle, 20, 30 and 40%; 
- Time: 20 min. 
[61] 
Lu et al. 2019 - Al2024 - KOH; 
- Al2SiO3. 
- Current density: 7 A.dm-²; 
- Voltages: 60, 90, 120 and 150 V; 
- Frequency: 150 Hz; 
- Duty cycle: 40%; 
- Time: 30 min. 
[62] 
Yang et al. 2019 - Al7075 - KOH; 
- Na2SiO3. 
- Voltages: 500 V(+) and 120 V(-); 
- Frequency: 75 Hz; 
- Time: 60 min. 
[63] 
Lu et al. 2020 - Al2024 - KOH; 
- Al2SiO3. 
- Impregnation PTFE 
(lubrication) with and 
without laser texturing. 
- [64] 
Li et al. 2020 - Al2A50 - KOH; 
- Al2SiO3. 
- Voltage: 400 V (+) and 0-200 V(-); 
- Frequency: 50 Hz; 
- Duty cycle: 5%; 
- Time: 30 min. 
[65] 
Yang et al. 2021 - Al LY12 - Zn(AC)2; 
- EDTA-2Na; 
- (NaPO3)6 
- Current Density: 10 A.dm-2; 
- Frequency: 750 Hz; 
- Duty Cycle: 12%; 
- t= 12 min. 
[66] 
84 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
The phases formed during the PEO process may be directly linked to the surface properties of the coating. 
When compared to the pure substrate, as detailed in Erarslan's work [53], or another commonly used 
electrochemical process, it presents excellent results of wear resistance, as seen in Figure 11. This behavior is 
related to its mechanical and microstructural properties formed during the severe conditions of the process [50]. 
 
 
Figure 9. Wear rate for different sliding speeds, in ball-on-plate test, for hard anodizing (HA) and Plasma 
Assisted Oxidation (PEO). Adapted from Malayoglu et al. (2011) [50]. 
 
In their work, Sabatini et al. (2010) [49] demonstrate that, in addition to electrolyte components, the 
different alloy compositions of the substrate have great influence on the phases formed and, consequently, on the 
wear behavior of the obtained coatings. 
Using the same electrolyte obtained commercially, in two distinct alloys (one A359-T6 and another 
AA7075-T6), the authors Sabatini et al. (2010) [49] achieved superior results of wear resistance by slide and 
abrasion in alloy AA7075-T6 (Figure 9), precisely because they contained alloy elements that favored the formation 
of the α-Al2O3 phase, which provides high hardness to the PEO coating. 
Polat et al. (2010) [48] also evidence the effectiveness of the α-Al2O3 phase as a enhancer of the PEO 
coating against wear. When tested two concentrations of the reagent Na2SiO3.5H2O in its electrolyte, the authors 
found that the best tribological result was present in the sample with the lowest concentration of the reagent, which 
showed higher presenceof α-Al2O3 phase. The authors also report that, for the higher concentration of the reagent, 
the phase 3Al2O3.2SiO2 presented its highest concentration among the samples, what may explain the worst 
results of wear resistance. 
Treviño et al. (2012) [52] and (2013) [54] also related the wear resistance of the Al6061 alloy with the 
different phases formation at the oxide coating. In their two works, they used the same electrolyte, containing 
Na2SiO3, and performed pin-on-disc wear and erosive wear tests. The electrical parameters and process times 
were adapted to obtain layers of three different thicknesses, being 100, 125 and 150 μm. The authors obtained 
results that are in line with what has already been seen in the literature. They also noticed that the best result in 
relation to wear resistance was obtained for the sample containing the α-Al2O3 phase. Reinforcing this argument, 
Yang et al. (2021) [66] observed the decrease of the wear rate, beyond the greater hardness (711,8 HV) in a 
sample where the improved crystallinity of the phase α-Al2O3 grows as the electrolyte concentration is higher. 
Treviño et. al. (2012) [52] also observed that the lowest mass loss was presented by the lower layer 
thickness, however, the lower mass loss may be the result of the non-formation of porous the outer layer, which 
is susceptible to breakage due to its surface defects (fact occurred in the samples with thickness of 125 and 150 
μm). 
When an erosive wear test was performed in their samples, the authors used two speed tests (6 m.s-1 and 10 
m.s-1) to eject the particles at coating’s direction. Thus, the thicker layer (150 μm) showed better wear resistance 
for speed test of 6 m.s-1. However, for speed of 10 m.s-1, it has demonstrated the worst behavior among the three 
thicknesses tested for all impact angles analyzed. 
This result can be explained by the severity of erosion processes at higher velocities, since the layer 
containing 150 μm thickness has a larger pore outer layer and with surface defects. Fragility of the porous outer 
layer has already been reported in other studies [56], where the higher concentration of the reagent NaAlO2 
granted greater fragility to the coating, because it has formed large amount of the α-Al2O3 phase, what differs from 
when a lower concentration of the same additive was used (Figures 10 and 11). 
 
85 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
 
Figure 10. Coating formed with different concentrations of NaAlO2: (a) 5 g. L-1 (b) 32 g. L-1 (c and d) 56 g. 
L-1. Adapted from Cheng et al. (2015) [56]. 
 
 
 
Figure 11. Depth track profiles depth under applied load of 100 N, for NaAlO2 concentrations of 32 g. L-1 
and 56 g. L-1 Adapted from Cheng et al. (2015) [56]. 
 
Xie et al. (2017) [58] also used the reagent NaAlO2 at different concentrations, testing the result to wear 
of the PEO coatings obtained at those different solutions. The authors reported that the higher concentration of 
NaAlO2 in the electrolyte where the PEO was performed, the better the result of wear resistance of the sample, 
presenting a more compact coating and with higher rate of layer growth. This result is not consistent with what 
was reported by Cheng et al. (2015) [56]. However, the highest concentration used in Xie's study was 24 g.L-1, 
while the best result obtained by Cheng was using 32 g.L-1, which explains the ambiguity of the results obtained 
by the authors. Li et al. (2020) [65] still suggest another way to improve the compacticity of the layer, using the 
same reagent. For them, the increase in cathodic tension tends to improve the compaction of the coating, using 
voltages generally below 100 V (-). 
Some other methods such as the addition of α- Al2O3 [55], graphite [57] and polytetrafluoroethylene (PTFE) 
particles (62 and 64) in the electrolyte bath are also used to improve surface hardness and lubrication of PEO 
coating. The α- Al2O3 particles, when incorporated at the electrolyte during the PEO process, are mainly 
concentrated on the surface of the coating, where contact occurs between the test body and the coating, reducing 
the damage caused by the tribological test to the sample. 
Graphite particles are added to the electrolytic bath to promote surface lubrication in the oxide coating 
formed by the PEO process. Thus, the main phases formed during the process were α-Al2O3, Ƴ-Al2O3, graphite 
and amorphous alumina. Along with the increased wear resistance that is promoted by the PEO coating, the rate 
of mass loss is further reduced with the addition of graphite, as can be seen in Figure 10. 
The addition to PTFE with vacuum, combined with certain electrical parameters used to form a rougher 
coating, may facilitate the interaction between PTFE and the coating. It has been proven as a good way to promote 
self-lubrication in the oxide layer. This method has the function of decreasing the coefficient of friction and, 
consequently, the damage caused to the substrate during the wear process [62]. However, to achieve greater 
success in the implementation of polytetrafluoroethylene, a certain roughness [62] or texturing [64] of the coating 
is required, which can make the process more expensive and unviable. 
86 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
As well as the addition of graphite, particles of α-Al2O3 and PTFE, potassium permanganate is also used to 
decrease the coefficient of friction and decrease the damage caused by wear [59], even if there are reports of the 
absence of elements such as phosphate in the formation of the PEO outer layer [51]. 
 
4. CORROSION RESISTANCE 
 
As previously seen, as well as wear resistance, corrosion resistance is among the main qualities of the coating 
obtained by PEO, presenting better results when compared to conventional anodizing, which was observed, by 
Rahimi et al [67] and Algahtani and Mahmoud [68] in their works. 
Several authors also studied the response of these coatings, obtained with different parameters and in different 
solutions, when exposed to tests such as potentiodynamic polarization (PDP) and electrochemical impedance 
(EIS), as can be seen in Table 3. 
Such experiments provide data on corrosion resistance, as well as characterize the behavior of the 
samples, by obtention of corrosion potential, corrosion current density and informing the role of the inner and outer 
layers of the PEO coating in corrosion resistance when the sample is exposed to an acidic medium, usually NaCl 
solution, for a given time [69-71]. 
PEO-coated components exposed, in different media, such as rainwater, artificial seawater [73] and 
different temperatures [77], beyond the variation in the amount, concentration and components of a given reagent 
[75, 78, 84 and 87] are good examples of process variables that aim to demonstrate the versatility and the multitude 
of existing options to promote the utilization of PEO process on improving corrosion resistance. 
The surface morphology of the PEO coating has a great influence in terms of material’s usability. Samples 
exposed to corrosive medium, usually NaCl, tend to succumb their anticorrosive properties according to time, and 
surface defects play a key role in such phenomenon. Wen et al. (2010) [72] at their electrochemical impedance 
experiment, divides the corrosion process at PEO coating into three main stages. The first stage occurs when the 
penetration of the acidic medium is nullified by the ceramic coating, when the acidic solution used for polarization 
tests does not exceed the porous outer layer, characteristic of PEO coatings. The second stage, after 12 hours of 
process, starts when the corrosive medium penetrates through the surface defects of the coating, causing pitting 
corrosion at the interface between the layer and the substrate. The third stage takes place after 96 hours of 
process, when corrosion stabilizes. This stabilization, accordingto the authors, is the result of the diffusion of 
corrosion products, which was also verified by Wang et al (2020) [85]. 
Electrolyte penetration through surface defects are also observed by other authors, perceiving a loss of 
PEO layer’s anti-corrosive properties after a certain time of process. Venugopal et al. (2012) [74] found that in the 
first half hour of their electrochemical impedance experiment, resistance values increased considerably, but they 
decreased in their values after this period. The author argues that the surface defects of the coating were 
responsible for the event and also cites the highest resistance values in the compact inner layer (9.0, 10.4, 10.0, 
12.0 and 10.2 Ω. cm-²) compared to the values of the porlous outer layer (7.5, 0.4, 0.03, 0.1 and 0.1 Ω. cm-²), 
noting the majority participation of the inner layer in the protection of the substrate against corrosion. 
Porosities and superficial defects are also cited by other authors such as Yang et al. (2021) [66] Chen et 
al. (2013) [76], Deng et al. (2015) [79], Venugopal et al. (2016) [81], Hakimizad et al. (2017) [83], Kaseem and Ko 
(2019) [84], Yang et al. (2020) [86] and Pillai et al. (2021) [88]. The authors also state that surface defects are 
important in the corrosion resistance of the coating and that it is rather improved by the PEO coating, but the 
resistance to crack propagation does not. Beyond the higher porosity, Yang et al. (2021) [88] states that higher 
concentrations of the reagent leads to a decrease of the zinc phosphate presence, allowing an higher presence of 
alumina, which are responsible for the increase of the corrosion current density from 1,275.10-7 to 2,045.10-7 
A.(cm2)-1. According to Venugopal et al. (2016) [81], the formation of cracks during the PEO process leads to 
penetration of the electrolyte into the coating when exposed in acidic medium. Thus, the electrolyte assists in an 
even more severe propagation of these cracks, leaving the substrate more exposed to the corrosion process. 
Process time is also taken into consideration to prevent defects. According to Yang et al (2020) [86], the 
surface of the coating behaved differently in the three times used for the process (7, 10 and 15 minutes). The 
authors state that the coatings obtained at times of 7 and 15 minutes presented a higher number of cracks, 
especially in the 15-minute sample. The experiment carried out for 7 minutes presented a large amount of defects, 
due to the initial stage of the PEO process, which generates great stress, since the volume of the coating increased 
soon after the transition from the anodic film to the ceramic coating, or the transition from stage I to stage II of the 
process. 
Chen et al. (2013) [76], Kaseem and Ko (2019) [84] and Zhang et al. (2020) [87] propose possible solutions 
to reduce surface defects of the coating. Additions of polypropylene and potato starch to the electrolyte showed 
considerable improvement in corrosion resistance compared to coatings that did not use such additives. 
Polypropylene acts as a physical barrier to protection against corrosion, filling pores, surface defects [76] and 
presenting better values for corrosion potential and corrosion current density. Potato starch follows the same 
principle, besides providing lower cooling rates to molten oxide during the process, which ends up favoring the 
formation of the α-Al2O3. The addition of potato starch generated superior results regarding corrosion resistance, 
due to the non-degradation of the coating with the exposure and process time, and its corrosion potential was -
0.277 V versus -0.606 V for sample without use of starch in the electrolyte. The logic followed the same path when 
comparing corrosion current density values (1.43 x 10-9 A. cm-²against 4.22x10-7 A. cm-²). 
87 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Table 3. Recent studies on PEO process and its relationship with corrosion resistance. 
 
Author Year Substrate Electrolyte Electrical parameters Ref. 
Wen et al. 2010 Al2024 - Na2SiO3.9H2O; 
- (NaPO3)6; 
- Na2WO4. 
- Voltage: 450 V; 
- Frequency: 600 Hz; 
Duty cycle: 10%. 
[72] 
Ding et al. 2010 Al2024 - Al2SiO3; 
- KOH 
- [73] 
Venugopal et 
al. 
2012 AA7075-T7352 - Al2SiO3; 
- KOH 
- Current density: 0.2 A.cm-²; 
- Frequency: 50 Hz; 
- Time: 30 min. 
[74] 
Liu et al. 2012 Al6061 - Al2SiO3; 
-NaOH; 
- Na2WO4 (different 
concentrations); 
- C10H14N2O8Na2. 
- Current density: 8 A.dm-²; 
- Time: 20 min. 
[75] 
Chen et al. 2013 Al2519 - Al2SiO4; 
- KOH. 
- Voltage: 360-400 V; 
- Time: 10 min. 
- PEO samples immersed in 2% polypropylene 
solution with dimethylbenzene for 10 min. 
[76] 
Shen et al. 2013 At 6061 - Al2SiO3; 
- (NaPO3)6; 
- Na2S3O4; 
- NaOH. 
 
- Current density: 4.4 A.dm-²; 
-High temperature (HTO-MAO) and normal 
temperature (NMAO); 
- Time: 5 min. 
[77] 
Y. Yang, L. 
Zhou. 
2014 Al7075 - Na2SiO3 (10, 15 and 20 g.L
-1); 
- NaOH. 
 
- Current density: 5 A.dm-²; 
- Time: 40 min. 
[78] 
Deng et al. 2015 AlLY12 - And2SiO3; 
-KOH. 
- Current density: 10 A.dm-²; 
- Frequency: 100 Hz; 
- Duty cycle: 30%; 
-Time: 30, 60, 90, 120 and 150 min. 
[79] 
Liu et al. 2015 AA1060 - Al2SiO3; 
- NaOH; 
- (NaPO3)6 (to obtain mullite); 
- KF (to get mullite). 
- Current density: 4.4 A.dm-²; 
- Frequency: 50 Hz; 
- Duty cycle: 50%. 
[80] 
Venugopal et 
al. 
2016 AA7020-T6 - Al2SiO3; 
- KOH. 
- Current density: 0.2 A.cm-²; 
- Frequency: 50 Hz; 
- Time: 30 min. 
[81] 
Ji et al. 2017 AlLY12 - (NaPO3)6; 
- Na2EDTA; 
- C6H12FeN3O12·3H2O at 
different concentrations (0, 2, 4, 
5, 6 and 8 g.L-1). 
- Current density: 6 A.dm-²; 
- Frequency: 200 Hz; 
- Duty cycle: 30%; 
- Time: 30 min. 
[82] 
Hakimizad et 
al. 
2017 Al7075 - And2SiO3; 
- KOH; 
- TiO 2 nanoparticles. 
- Current density: 5.6 A.dm-²; 
- Frequency: 2000 Hz; 
- Duty cycle: 20 and 40%; 
- Time: 1 h. 
[83] 
Rahimi et al. 2018 Al7075 PEO 
- Al2SiO3; 
- KOH; 
Anodizing 
- H2SO4 
PEO 
- Density of 
current: 0.14 A.cm-²; 
- Duty cycle: 50%; 
- Time: 30 min 
Anodizing 
- Current density: 0.11 A.cm-²; 
- Duty cycle: 50%; 
- Time: 10 min. 
[67] 
Mr Kaseem; 
Y.G. Ko. 
2019 Al-Mg-Si - NaOH; 
- Na2B4O7; 
- With and without potato starch. 
- Current density: 100 mA.m-²; 
- Time: 300 s. 
[84] 
Algahtani; E. 
R.I. Mahmoud 
2019 Al6082-T6 - Al2SiO3; 
- KOH; 
 
- Pulses of positive and negative potential; 
-Frequency: 50 Hz. 
[68] 
Wang et al. 2020 Al7075 - Al2SiO3; 
- (NaPO3)6; 
- NaOH. 
 
- Voltage: 500 V; 
- Frequency: 500 Hz; 
- Duty cycle: 8%; 
- Time: 20 min. 
[85] 
Z Yang et al. 2020 AA1060 - Na5P3O10; 
- NaOH (0, 1 and 2 g.L-1). 
- Current density: 44 mA.cm-²; 
- Time: 7, 10 and 15 min. 
[86] 
Zhang et al. 2020 Al2024 - Na2SiO3; 
- NaOH; 
- Glycerol; 
- C6H15NO3; 
Addition of Nanoparticles: 
- a-Al2O3; 
- SiC; 
- TiO2; 
- ZrO2; 
- CeO2. 
 
- Current density: 100 mA.cm-²; 
- Frequency: 400 Hz; 
- Duty cycle: +/- 40%; 
- Time: 20 min. 
[87] 
Pillai et al. 2021 AA 6061 - Na2SiO3 - Current density: 6 A.dm
-2; 
- Frequency: 300 Hz. 
[88] 
88 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Following the same line, the addition of nanoparticles of α-Al2O3,SiC, TiO2,ZrO2 and CeO2 are also 
indicated to improve the behavior of the coating [87]. When comparing the coatings with addition of all the particles 
mentioned above, the ones that had the best response in electrochemical impedance tests, in immersion for 1440 
hours, were the coatings with nanoparticles of TiO2 and CeO2 (5.02x106 Ω. cm-² and 4.03x106 Ω.cm-² 
respectively). Interestingly, such coatings also demonstrated a higher number of porosities and median layer 
thicknesses, however, the author explains that the entry of these nanoparticles inside the pores can help protect 
against the penetration of the acidic medium into the coating, since the particles of TiO2 and CeO2were used in 
smaller size compared to the others. The authors also state that corrosion resistance is mainly commanded by the 
compaction of the inner layer of the PEO coating, citing as an example the introduction of nanoparticles in surface 
defects of the coating. 
 
 
 
Figure 12. Superficial morphology and cross-section of coatings containing (a, c) mostly alumina; (b, d) 
Mullite. Adapted from Liu et al. (2015) [80]. 
 
Liu et al. (2015) [80], agree with the argument of Zhang et al. (2020) [87]. In their work, the author added 
the reagents (NaPO3)6 and KF to obtain phase 3Al2O3.2SiO2 (mullite phase) in its coating. Comparing results, it 
was concluded that phase 3Al2O3.2SiO2 provided greater layer compaction of the PEO coating compared to the 
coating composed mostly of alumina (Figure 12). Given this, the results obtained were proven through 
electrochemical impedance tests (EIS), the corrosion resistance increase in acidic medium (3. 5 % NaCl). 
 
 
5. CONCLUSION 
 
Since its discovery, the PEO method has opened up a range for numerous investigations and 
experiments that put its properties in test. Thus, it is possible to compare and complement several studies, 
linking results of corrosion resistance and wear resistance, with the surface morphology and with the phases 
formed in the oxide coating produced by the method, for example. With the variety of articles studied and 
evidenced in this work, it is possible to draw some conclusions, listed below: 
 Among the most found structures in the coating are the ɳ-Al2O, Ƴ-Al2O, α-Al2O and 3Al2O3.2SiO2 
(mullite). The structure of the Ƴ-Al2O is considered the basis of the PEO coating, but it can be transformed, 
changing adjustments in electrical parameters of the process. Processes that culminated in the appearance of the 
α-Al2O phase showed higher values of surface hardness and better wear resistance. 
 Electrolyte constituents tend to behave in different ways, acting in different phases of ceramic coating 
formation. It was seen, for example, that the phosphorus element is spread and distributed mostly in the interface 
and participates mostly in the formation of the inner compact layer, between the substrate and the outer layer. 
Electrolytes containing silicates are most used for wear resistance purposes, since the silicon element, unlike 
phosphorus, is deposited in the surface region of the coating and increases the surface hardness of the sample. 
 The increase in the electrolyte concentration can impair the performance of the coating, which can 
cause the fragility of the layer through the development of abundant surface defects, such as porosities and cracks. 
 Silicate-based electrolytes demonstrate lower corrosion potentials and higher corrosion current 
densities when compared to phosphate-based electrolytes. Phosphorus acts mostly in the formation of the 
compact internal coating of the PEO and assists in preventing the penetration of the corrosive medium to the 
interface between the coating and the substrate. 
 Surface morphology is crucial to determine the corrosion behavior of the coatings obtained by PEO 
on Al alloys. Surface defects and large porosities impair the resistance of the sample, causing the acidic medium 
to penetrate through these gaps, helping to further propagate the defects already existing in the coating. Thus, 
with recent and important studies in this area, the optimized the adjustment of electrical parameters of the PEO 
89 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
process also has great importance in the corrosion resistance of the coating, because as already seen in this 
review. Not only does the anodic current have importance for the formation of the protective layer, but the cathodic 
current also has a crucial role to a better control of the morphological characteristics of the oxide layer. Also, the 
process is not conducted so aggressively for the sample, maintaining high rates of layer growth besides providing 
greater compacticity and less presence of defects and large discharge channels in the coating obtained at the end 
of the PEO process. Therefore, further studies are essential for samples exposed to the most variable types and 
electrical configurations of the PEO process, aiming and optimizing the usability in different areas of materials 
obtained through this process. 
 
6. ACKNOWLEGMENTS 
 
The authors acknowledge the CAPES - PROEX - Case 23038.000341/2019-71, M. T. Dorneles acknowledges 
CNPq, V. V. de Castro acknowledges CNPq (166262/2018-8), C. F. Malfatti acknowledges CNPq (Grant 
307723/2018-6). 
 
7. REFERENCES 
 
[1] A.L. Yerokhin, L.O. Snizhko, N.L. Gurevina, A. Leyland, A. Pilkington, A. Matthews, Spatial characteristics 
of discharge phenomena in plasma electrolytic oxidation of aluminium alloy, Surf. Coat. Tech., 2004, Vol. 177–
178, pp. 779–783. 
[2] Chelliah, N.M., Saxena, A., Sharma, K., Singh, H., Surappa, M.K., Surface characterization of nanoporous 
aluminium oxide films synthesized by single-step DC and AC anodization, Surfaces and Interfaces, 2017, Vol. 7, 
pp. 139–145. 
[3] I. Ali, M. M. Quazi, E. Zalnezhad, A. A. D. Sarhan, N. L. Sukiman, M. Ishak, Hard Anodizin of Aerospace 
AA7075-T6 Aluminum Alloy for Improving Surface Properties, Trans Indian Inst Met, 2019, Vol. 72(10), pp. 2773-
2781. 
[4] J. M. T. Alvarez, “Hard Anodic Films for Aluminium Alloys”, Ph.D. Thesis, Faculty of Science and 
Engineering, University of Manchester, England, 2018. 
[5] G.A. Markov and Markova G.V: USSR patent No 526,961, Bull. Inventions, 1976, vol. 32. 
[6] A.V. Nikolaev, G.A. Markov, B.I. Peshchevitskij, Izv. SO AN 30, in Russian. SSSR. Ser. Khim. Nauk 5, 
1977, vol. 12. 
[7] Y. k. Wu, Z. Yang, R.-q. Wang, G. -r. Wu, D. Chen, D. -d. Wang, X. -t. Liu, D. -l. Li, C. -h. Guo, S. -x. Yu, 
D. -j. Shen, P. Nash, An investigation of microstructure evolution for plasma electrolytic oxidation (PEO) coated Al 
in an alkaline silicate electrolyte, Surface and Coatings Technology, 2018, Vol. 351, pp. 136–152. 
[8] Z. Yang, Wu, Y. -k. Kang, Zhang, X. -zhen, Wang, D. -dong, Liu, X. -tong, Wu, G. -rui, Li, D. -long, Yu, S. -
xue, Shen, D. -jiu, An interesting anodic oxidation behavior of plasma electrolytic oxidation coatings fabricated on 
aluminum in alkaline phosphate electrolyte, Surfaces and Interfaces, 2019, Vol. 16, pp. 199–205. 
[9] M. Javidi, H. Fadaee, Plasma electrolytic oxidation of 2024-T3 aluminum alloy and investigation on 
microstructure and wear behavior, Applied Surface Science, 2013, Vol. 286, pp. 212–219. 
[10] O. Hussein, O. Northwood, Production of anti-corrosion coatings on light alloys (Al, Mg, Ti) by plasma-
electrolytic oxidation (PEO), Developments in Corrosion Protection, IntechOpen, 2014, pp. 201-239. 
[11] L. Famiyeh, X. Huan, Plasma Electrolytic Oxidation Coatings on Aluminum Alloys: Microstructures, 
Properties and Applications, Modern Concepts in Material Science, 2019, Vol. 2, pp. 1-13. 
[12] L. Rama Krishna, A. S. Purnima, G. Sundararajan, Comparative study of tribological behavior of microarc 
oxidation and hard-anodized coatings, Wear, 2006, Vol. 261(10), pp, 1095-1101. 
[13] J. Martin, A. Nominé, V. Ntomprougkidis, S. Migot, S. Brutère, F. Soldera, T. Belmonte, G. Henrion, 
Formation of a metastable nanostructured mullite during Plasma Electrolytic Oxidation of aluminium in ‘soft’ regime 
condition, Materials & Design, 2019, Vol. 180, pp, 107977. 
[14] A. B. Rogov, A. Matthews, A. Yerokhin, Role of cathodic current in plasma electrolytic oxidation of Al: A 
quantitative approach to in-situ evaluation of cathodically onduced effects, Electrochimica Acta, 2019, Vol. 317, 
pp, 221-231. 
[15] T.S.N Sankara Narayanan, Il Song Park, Min Ho Lee, Strategies to improve the corrosion resistance of 
micro arc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges. Progress 
in Materials Science, 2014, Vol. 60, pp. 1–71. 
[16] Mohedano, Marta, XiaopengLu, Endzhe Matykina, C. Blawert, Raul Arrabal, e M.L. Zheludkevich, Plasma 
Electrolytic Oxidation (PEO) of Metals and Alloys, Encyclopedia of Interfacial Chemistry, 2018, pp. 423-438. 
[17] Wood, G. C., Pearson, C. Dielectric Breakdown of Anodic Oxide Films on Valve Metals, Corrosion 
Science, 1967, Vol. 7(2), pp. 119-125. 
[18] Albella, J. M., Montero, I., Martinezduart, J. M. A Theory of Avalanche Breakdown during Anodic-
Oxidation, Electrochimica Acta, 1987, Vol. 32(2), pp. 255–258. 
[19] Ikonopisov, S. Theory of Electrical Breakdown during Formation of Barrier Anodic Films, Electrochimica 
Acta, 1977, Vol. 22(10), pp. 1077–1082. 
[20] K. Shimizu, G.E. Thompson, G.C Wood, The Electrical Breakdown during Anodizing of High-Purity 
Aluminum in Borate Solutions, Thin Solid Films, 1982, Vol. 92(3), pp. 231–241. 
90 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
[21] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering, 
Surface & Coatings Technology, 1999, Vol. 122(2-3), pp. 73–93. 
[22] M. Kaseem, S. Fatimah, N. Nashrah, Y. Gun Ko, Recent progress in surface modification of metals coated 
by plasma electrolytic oxidation: Principle, structure, and performance, Progress in Materials Science, 2020, Vol. 
117, pp. 100735. 
[23] A. Lugovskoy, M. Zinigrad, A. Kossenko, e B. Kazanski, Production of ceramic layers on aluminum alloys 
by plasma electrolytic oxidation in alkaline silicate electrolytes, Applied Surface Science, 2013, Vol. 264, pp. 743–
747. 
[24] N. Godja, N. Kiss, Ch. Löcker, A. Schindel, A. Gavrilovic, J. Wosik, R. Mann, J. Wendrinsky, A. 
Merstallinger, G.E. Nauer, Preparation and characterization of spark-anodized Al-alloys: Physical, chemical and 
tribological properties, Tribology International, 2010, Vol. 43(7,) pp. 1253–1261. 
[25] A. Sobolev, A. Kossenko, M. Zinigrad, K. Borodianskiy, Comparison of plasma electrolytic oxidation 
coatings on Al alloy created in aqueous solution and molten salt electrolytes, Surface and Coatings Technology, 
2018, Vol. 344, pp. 590-595. 
[26] R. O. Hussein, X. Nie, e D. O. Northwood, An investigation of ceramic coating growth mechanisms in 
plasma electrolytic oxidation (PEO) processing, Electrochimica Acta, 2013, Vol. 112, pp. 111–119. 
[27] R.-q. Wang, Y.-k. Wu, G.-r. Wu, D. Chen, D.-l. He, D. Li, C. Guo, Y. Zhou, D. Shen, P. Nash, An 
investigation about the evolution of microstructure and composition difference between two interfaces of plasma 
electrolytic oxidation coatings on Al, Journal of Alloys and Compounds, 2018, Vol. 753, pp. 272-281. 
[28] V. Dehnavi, B. L. Luan, X. Y. Liu, D. W. Shoesmith, S. Rohani, Correlation between plasma electrolytic 
oxidation treatment stages and coating microstructure on aluminum under unipolar pulsed DC mode, Surface & 
Coatings Technology, 2015, Vol. 269, pp. 91-99. 
[29] N. Xiang, R. -g. Song, J.-j. Zhuang, R.-x. Song, X.-y. Lu, X.-p. Su, Effects of current density on 
microstructure and properties of plasma electrolytic oxidation ceramic coatings formed on 6063 aluminum alloy, 
Transactions of Nonferrous Metals Society of China, 2015, Vol. 26, pp. 806-813. 
[30] S. Wang, X. Liu, X. Yin, N. Du, Influence of electrolyte components on the microstructure and growth 
mechanism of plasma electrolytic oxidation coatings on 1060 alumiun alloy, Surface & Coatings Technology, 2020, 
Vol. 381, pp. 125124. 
[31] R.O. Hussein, X. Nie, D.O. Northwood, Influence of process parameters on electrolytic plasma discharging 
behaviour and aluminum oxide coating microstructure, Surface and Coatings Technology, 2010, Vol. 205, pp. 
1659-1667. 
[32] Y. L. Cheng, M. K. Mao, J. H. Cao, Z. M. Peng, Plasma electrolytic oxidation of an Al-Cu-Li alloy in alkaline 
aluminate electrolytes: a competition between growth and dissolution for the initial ultra-thin films, Electrochimica 
Acta, 2014, Vol. 138, pp. 417-429. 
[33] E. Erfanifar, M. Aliofkhazraei, H. Fakhr Nabavi, H. Sharifi, A.S. Rouhaghdam, Growth kinetics and 
morphology of plasma electrolytic oxidation coating on aluminum, Materials Chemistry and Physics, 2017, Vol. 
185, pp. 162-175. 
[34] Liu, C., He, D., Yan, Q., Huang, Z., Liu, P., Li, D., Jiang, G., Ma, H., Nash, P., Shen, D., An investigation 
of the coating/substrate interface of plasma electrolytic oxidation coated aluminum, Surface and Coatings 
Technology, 2015, Vol. 280, pp. 86–91. 
[35] Wu, T., Blawert, C., Zheludkevich, M.L., Influence of secondary phases of AlSi9Cu3 alloy on the plasma 
electrolytic oxidation coating formation process, Journal of Materials Science & Technology, 2020, Vol. 50, pp. 
75–85. 
[36] Xiang, N., Song, R., Zhao, J., Li, H., Wang, C., Wang, Z., Microstructure and mechanical properties of 
ceramic coatings formed on 6063 aluminium alloy by micro-arc oxidation, Transactions of Nonferrous Metals 
Society of China, 2015, Vol. 25, pp. 3323–3328. 
[37] Wheeler, J.M., Curran, J.A., Shrestha, S., Microstructure and multi-scale mechanical behavior of hard 
anodized and plasma electrolytic oxidation (PEO) coatings on aluminum alloy 5052, Surface and Coatings 
Technology, 2012, Vol. 207, pp. 480–488. 
[38] Zhang, X., Wu, Y., Wang, J., Xia, X., Lv, Y., Cai, G., Liu, H., Xiao, J., Liu, B., Dong, Z., Microstructure, 
formation mechanism and antifouling property of multi-layered Cu-incorporated Al2O3 coating fabricated through 
plasma electrolytic oxidation. Ceramics International, 2020, Vol. 46, pp. 2901–2909. 
[39] Zhang, Y., Wu, Y., Chen, D., Wang, R., Li, D., Guo, C., Jiang, G., Shen, D., Yu, S., Nash, P., Micro-
structures and growth mechanisms of plasma electrolytic oxidation coatings on aluminium at different current 
densities, Surface and Coatings Technology, 2017, Vol. 321, pp. 236–246. 
[40] Dehnavi, V., Liu, X.Y., Luan, B.L., Shoesmith, D.W., Rohani, S., Phase transformation in plasma 
electrolytic oxidation coatings on 6061 aluminum alloy, Surface and Coatings Technology, 2014, Vol. 251, pp. 
106–114. 
[41] Zhang, P., Zuo, Y., Nie, G., The pore structure and properties of microarc oxidation films on 2024 
aluminum alloy prepared in electrolytes with oxide nanoparticles, Journal of Alloys and Compounds, 2020, Vol. 
816, pp. 152520. 
[42] Jaspard-Mécuson, F., Czerwiec, T., Henrion, G., Belmonte, T., Dujardin, L., Viola, A., Beauvir, J., Tailored 
aluminium oxide layers by bipolar current adjustment in the Plasma Electrolytic Oxidation (PEO) process, Surface 
and Coatings Technology, 2007, Vol. 201, pp. 8677–8682. 
91 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
[43] Rogov, A.B., Shayapov, V.R., The role of cathodic current in PEO of aluminum: Influence of cationic 
electrolyte composition on the transient current-voltage curves and the discharges optical emission spectra, 
Applied Surface Science, 2017, Vol. 394, pp. 323–332. 
[44] Martin, J., Nominé, A., Brochard, F., Briançon, J.-L., Noël, C., Belmonte, T., Czerwiec, T., Henrion, G., 
Delay in micro-discharges appearance during PEO of Al: Evidence of a mechanism of charge accumulation at the 
electrolyte/oxide interface, Applied Surface Science, 2017, Vol. 410, pp. 29–41. 
[45] H. Czichos, Chapter 1 - Introduction to Friction and Wear, Composite Materials Series, vol. 1, K. Friedrich, 
Org. Elsevier, 1986, pp.. 1–23. 
[46] “Standart Terminology Relating to Wear and Erosion”, G40, ASTM International, West Conshohocken, 
PA, 1973. 
[47] S.-W. Zhang, Chapter 3 - An Introduction to Wear, Tribology and Interface Engineering Series, vol. 47, 
Elsevier, 2004, pp. 33–38. 
[48] A. Polat, M. Makaraci, M. Usta, Influence of sodium silicate concentration on structural and tribological 
properties of microarc oxidation coatings on 2017A aluminum alloy substrate, Journal of Alloys and Compounds, 
2010, Vol. 504(2), pp. 519-526. 
[49] Sabatini, G., Ceschini, L., Martini, C., Williams, J.A., Hutchings, I.M., Improving sliding and abrasive wear 
behaviour of cast A356 and wrought AA7075 aluminiumalloys by plasma electrolytic oxidation, Materials & Design, 
2010, Vol. 31, pp. 816–828. 
[50] Malayoglu, Ugur, Tekin, K.C., Malayoglu, Ufuk, Shrestha, S., An investigation into the mechanical and 
tribological properties of plasma electrolytic oxidation and hard-anodized coatings on 6082 aluminum alloy, 
Materials Science and Engineering: A, 2011, Vol. 528(24), pp. 7451–7460. 
[51] Jiang, Y., Zhang, Y., Bao, Y., Yang, K., Sliding wear behaviour of plasma electrolytic oxidation coating on 
pure aluminium, Wear, 2011, Vol. 271, pp. 1667–1670. 
[52] Treviño, M., Garza-Montes-de-Oca, N.F., Pérez, A., Hernández-Rodríguez, M.A.L., Juárez, A., Colás, R., 
Wear of an aluminium alloy coated by plasma electrolytic oxidation. Surface and Coatings Technology, 2012, Vol. 
206, pp. 2213–2219. 
[53] Erarslan, Y., Wear performance of in-situ aluminum matrix composite after micro-arc oxidation, 
Transactions of Nonferrous Metals Society of China, 2013, Vol. 23, pp. 347–352. 
[54] Treviño, M., Mercado-Solis, R.D., Colás, R., Pérez, A., Talamantes, J., Velasco, A., Erosive wear of 
plasma electrolytic oxidation layers on aluminium alloy 6061, Wear, 2013, Vol. 301, pp. 434–441. 
[55] Arrabal, R., Mohedano, M., Matykina, E., Pardo, A., Mingo, B., Merino, M.C., Characterization and wear 
behaviour of PEO coatings on 6082-T6 aluminium alloy with incorporated α-Al2O3 particles, Surface and Coatings 
Technology, 2015, Vol. 269, pp. 64–73. 
[56] Cheng, Y., Cao, J., Mao, M., Peng, Z., Skeldon, P., Thompson, G.E., High growth rate, wear resistant 
coatings on an Al-Cu-Li alloy by plasma electrolytic oxidation in concentrated aluminate electrolytes, Surface and 
Coatings Technology, 2015, Vol. 269, pp. 74-82. 
[57] Yin, B., Peng, Z., Liang, J., Jin, K., Zhu, S., Yang, J., Qiao, Z., Tribological behavior and mechanism of 
self-lubricating wear-resistant composite coatings fabricated by one-step plasma electrolytic oxidation, Tribology 
International, 2016, Vol. 97, pp. 97–107. 
[58] H. -j. Xie, Y. -l. Cheng, S. -x. Li, J. -h. Cao, L. Cao, Wear and corrosion resistant coatings on surface of 
cast A356 aluminum alloy by plasma electrolytic oxidation in moderately concentrated aluminate electrolytes. 
Transactions of Nonferrous Metals Society of China, 2017, Vol. 27(2), pp. 336-351. 
[59] Shamsi, F., Khorasanian, M., Lari Baghal, S.M., Effect of potassium permanganate on corrosion and wear 
properties of ceramic coatings manufactured on CP-aluminum by plasma electrolytic oxidation, Surface and 
Coatings Technology, 2018, Vol. 346, pp. 63–72. 
[60] Z. Li, Cai, Z., Y. Cui, J. Liu, M. Zhu, Effect of oxidation time on the impact wear of micro-arc oxidation 
coating on aluminum alloy, Wear, 2019, Vol. 426–427(Part A), pp. 285–295. 
[61] Cai, R., Zhao, C., Nie, X., Effect of plasma electrolytic oxidation process on surface characteristics and 
tribological behavior, Surface and Coatings Technology, 2019, Vol. 375, pp. 824–832. 
[62] Lu, C., Feng, X., Yang, J., Jia, J., Yi, G., Xie, E., Sun, Y., Influence of surface microstructure on tribological 
properties of PEO-PTFE coating formed on aluminum alloy. Surface and Coatings Technology, 2019, Vol. 364, 
pp. 127–134. 
[63] Yang, X., Chen, L., Jin, X., Du, J., Xue, W., Influence of temperature on tribological properties of microarc 
oxidation coating on 7075 aluminium alloy at 25 °C –300 °C, Ceramics International, 2019, Vol. 45, pp. 12312–
12318. 
[64] Lu, C., Shi, P., Yang, J., Jia, J., Xie, E., Sun, Y., Effects of surface texturing on the tribological behaviors 
of PEO/PTFE coating on aluminum alloy for heavy-load and long-performance applications, Journal of Materials 
Research and Technology, 2020, Vol. 9, pp. 12149–12156. 
[65] Li, X.-J., Zhang, M., Wen, S., Mao, X., Huo, W.-G., Guo, Y.-Y., Wang, Y.-X., Microstructure and wear 
resistance of micro-arc oxidation ceramic coatings prepared on 2A50 aluminum alloys, Surface and Coatings 
Technology, 2020, Vol. 394, pp. 125853. 
[66] C. Yang, J. Zhu, S. Cui, P. Chen, W. Zhongcan, Z. Ma, K. R.K.Y. Fu, X. Tian, P.K. Chu, W. Zhongzhen, 
Wear and corrosion resistant coatings prepared on LY12 aluminum alloy by plasma electrolytic oxidation, Surface 
and Coatings Technology, Vol. 409, pp. 126885. 
92 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
[67] Rahimi, S., Khiabani, A.B., Yarmand, B., Kolahi, A., Comparison of corrosion and antibacterial properties 
of Al alloy treated by plasma electrolytic oxidation and anodizing methods, Materials Today: Proceedings, 2018, 
Vol. 5, pp. 15667–15676. 
[68] Algahtani, A., Mahmoud, E.R.I., Erosion and corrosion resistance of plasma electrolytic oxidized 6082 
aluminum alloy surface at low and high temperatures, Journal of Materials Research and Technology, 2019, Vol. 
8, pp. 2699–2709. 
[69] M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L.G. 
Johansson, Fundamentals and advances in magnesium alloy corrosion, Progress in Materials Science, 2017, 
Vol. 89, pp. 92–193. 
[70] Macdonald JR, Barsoukov E. Impedance spectroscopy: theory, experiment, and applications, vol. 1, 
Wiley-Interscience, 2005, pp. 1-13. 
[71] Allen J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Russian Journal 
of Electrochemistry, 2002, Vol. 38, pp. 1364-1365.. 
[72] Wen L., Wang Y., Zhou Y., Ouyang J.-H., Guo L., Jia D., Corrosion evaluation of microarc oxidation 
coatings formed on 2024 aluminium alloy, Corrosion Science, 2010, Vol. 52(8), pp. 2687-2696. 
[73] Ding H., Dai Z., Skuiry S.C., Hui D., Corrosion wear behaviors of micro-arc oxidation coating of Al2O3 on 
2024Al in different aqueous environments at fretting contact, Tribology International, 2010, Vol. 43(5-6), pp. 868-
875. 
[74] Venugopal, A., Panda, R., Manwatkar, S., Sreekumar, K., Krishna, L.R., Sundararajan, G., Effect of micro 
arc oxidation treatment on localized corrosion behaviour of AA7075 aluminum alloy in 3.5% NaCl solution, 
Transactions of Nonferrous Metals Society of China, 2012, Vol. 22, pp. 700–710. 
[75] Liu, Y., Xu, J., Gao, Y., Yuan, Y., Gao, C., Influences of Additive on the Formation and Corrosion 
Resistance of Micro-arc Oxidation Ceramic Coatings on Aluminum Alloy, Physics Procedia, Vol. 32, Pan, F., 2010 
(China), The 18th International Vacuum Congress (IVC-18), pp. 107–112. 
[76] Chen, M., Liu, S., Li, J., Cheng, N., Zhang, X., Improvement to corrosion resistance of MAO coated 2519 
aluminum alloy by formation of polypropylene film on its surface. Surface and Coatings Technology, 2013, Vol. 
232, pp. 674–679. 
[77] Shen, D., Li, G., Guo, C., Zou, J., Cai, J., He, D., Ma, H., Liu, F., Microstructure and corrosion behavior of 
micro-arc oxidation coating on 6061 aluminum alloy pre-treated by high-temperature oxidation, Applied Surface 
Science, 2013, Vol. 287, pp. 451–456. 
[78] Yang, Y., Zhou, L., Improving Corrosion Resistance of Friction Stir Welding Joint of 7075 Aluminum Alloy 
by Micro-arc Oxidation, Journal of Materials Science & Technology, 2014, Vol. 30, pp. 1251–1254. 
[79] Deng, H., Ma, Z., Zhang, X., Zhang, Y., Liu, X., Corrosion resistance in simulated DMFC environment of 
plasma electrolytic oxidation coating prepared on aluminum alloy, Surface and Coatings Technology, 2015, Vol. 
269, pp. 108–113. 
[80] Liu, C., Liu, P., Huang, Z., Yan, Q., Guo, R., Li, D., Jiang, G., Shen, D., The correlation between the 
coating structure and the corrosion behavior of the plasma electrolytic oxidation coating on aluminum, Surface and 
Coatings Technology, 2016, Vol. 286, pp. 223–230. 
[81] Venugopal, A., Srinath, J., Rama Krishna, L., Ramesh Narayanan, P., Sharma, S.C., Venkitakrishnan, 
P.V., Corrosion and nanomechanical behaviors of plasma electrolytic oxidation coated AA7020-T6 aluminum alloy, 
Materials Science and Engineering: A, 2016, Vol. 660, pp. 39–46. 
[82] Ji, S., Weng, Y., Wu, Z., Ma, Z., Tian, X., Fu, R.K.Y., Lin, H., Wu, G., Chu, P.K., Pan, F., Excellent corrosion 
resistanceof P and Fe modified micro-arc oxidation coating on Al alloy, Journal of Alloys and Compounds, 2017, 
Vol. 710, pp. 452–459. 
[83] Hakimizad, A., Raeissi, K., Golozar, M.A., Lu, X., Blawert, C., Zheludkevich, M.L., The effect of pulse 
waveforms on surface morphology, composition and corrosion behavior of Al 2 O 3 and Al 2 O 3 /TiO 2 nano-
composite PEO coatings on 7075 aluminum alloy, Surface and Coatings Technology, 2017, Vol. 324, pp. 208–
221. 
[84] Kaseem, M., Ko, Y.G., Effect of starch on the corrosion behavior of Al-Mg-Si alloy processed by micro arc 
oxidation from an ecofriendly electrolyte system, Bioelectrochemistry, 2019, Vol. 128, pp. 133–139. 
[85] Wang, S., Gu, Y., Geng, Y., Liang, J., Zhao, J., Kang, J., Investigating local corrosion behavior and 
mechanism of MAO coated 7075 aluminum alloy, Journal of Alloys and Compounds, 2020, Vol. 826, pp. 153976. 
[86] Yang, Z., Zhang, X., Wu, Y., Wang, D., Liu, X., Wu, G., Nash, P., Shen, D., Plasma electrolytic oxidation 
ceramic coatings proceed by porous anodic film, Journal of Alloys and Compounds, 2020, Vol. 812, pp. 152098. 
[87] Zhang, P., Zuo, Y., Nie, G., The pore structure and properties of microarc oxidation films on 2024 
aluminum alloy prepared in electrolytes with oxide nanoparticles, Journal of Alloys and Compounds, 2020, Vol. 
816, pp. 152520. 
[88] A.M. Pillai, R. Ghosh, A. Dey, K. Prajwal, A. Rajendra, A.K. Sharma, S. Sampath, Crystalline and 
amorphous PEO based ceramic coatings on AA6061: Nanoindentation and corrosion studies, Ceramics 
International, 2021, Vol. 47, pp. 14707-14716. 
 
93 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
 
Capítulo 
6 
 
Riscos ocupacionais na fabricação de 
produtos em metais-pesados e 
ferramentas de corte em metais-duros na 
indústria metalmecânica 
 
 
Fabio Miranda 1,2, fabio.miranda@usp.br 
Rodrigo Lima Stoeterau3, rodrigo.stoeterau@usp.br 
Gilmar Ferreira Batalha3, gfbatalh@usp.br 
 
1 Professor da Universidade Paulista (UNIP) e do Centro Paula Souza (CPS) 
2 Aluno do Programa de Pós-Graduação Doutorado em Engenharia Mecânica PPGEM (USP) 
3 Professor da Universidade de São Paulo USP - Deptº. de Eng. Mecatrônica e de Sistemas Mecânicos, Escola 
Politécnica da USP, São Paulo, SP. 
 
Resumo: O objetivo deste trabalho foi realizar uma revisão das normas regulamentadoras vigentes, artigos e 
literatura em conjunto com um estudo de caso, que tratou da análise das condições do ambiente de trabalho de 
uma indústria, tendo como foco os trabalhadores expostos aos agentes químicos na fabricação de produtos e 
ferramentas de corte de metal-duro. O método utilizado nesta pesquisa se deu de forma qualitativa. Visitas 
técnicas e registros dos setores da fábrica foram realizadas. Com a inspeção realizada no local de trabalho, se 
faz necessário conhecer o Fator de Proteção Mínimo Requerido para aerodispersóides, poeiras respiráveis, 
variando de 0,1 a 10 micra e escolher o Equipamento de Proteção Respiratório correto, que possua Fator de 
Proteção Atribuído maior que a dose de exposição. O valor do limite de tolerância, 5 µg.m-3, para exposição de 
pós-metálicos de metal-duro proposto pela ACGIH, em 2016, representa um grande avanço para a higiene 
ocupacional e segurança do trabalho, sendo possível a realização da avaliação quantitativa da concentração 
média dos aerodispersóides de metais-duros. A doença do metal-duro ocorre devido as exposições elevadas de 
concentrações de aerodispersóides e identificou-se neste trabalho, a necessidade e a importância do treinamento 
dos trabalhadores na indústria, mas não apenas dos que atuam diretamente com o produto, mas das equipes 
multidisciplinares da gestão, segurança e medicina do trabalho. 
 
Palavras-chave: Aerodispersóides, Metais-duros; Exposição ocupacional, Medidas preventivas e doenças 
ocupacionais. 
 
 
Occupational risks in the manufacture of products heavy 
alloy and in hardmetals cutting tools in the mechanical 
industry 
 
Abstract: The objective of this work was to carry out a review of current regulatory standards, articles, and 
literature together with a case study, which dealt with the analysis of the conditions of the working environment of 
an industry, with the focus on workers exposed to chemical agents in manufacturing of carbide cutting tools and 
products. The method used in this research was qualitative. Technical visits and records of the factory sectors 
were carried out. With the inspection carried out at the workplace, it is necessary to know the Minimum Required 
Protection Factor for aerodispersoids, respirable dust, ranging from 0.1 to 10 microns and choose the correct 
Respiratory Protection Equipment, which has an Assigned Protection Factor greater than the exposure dose. The 
tolerance limit value, 5 µg.m-3, for exposure of carbide metallic powders proposed by the ACGIH in 2016, 
represents a major advance in occupational hygiene and occupational safety, making it possible to carry out the 
assessment quantitative analysis of the mean concentration of hard metal aerodispersoids. The hardmetal 
disease occurs due to high exposures to concentrations of aerodispersoids and it was identified in this work, the 
necessity and the importance of training workers in the industry, but not only those who work directly with the 
product, but also the multidisciplinary teams of management, safety and occupational medicine. 
 
Keywords: Aerodispersoids, Hardmetal; Occupational exposure, Preventive measures, Occupational diseases 
 
 
 
 
94 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
1. INTRODUÇÃO 
 
Para obtenção de um produto metalúrgico denominado metal-duro, liga de carboneto de tungstênio e 
cobalto (WC-Co) ou em metal-pesado, liga de tungstênio com níquel, cobre ou ferro (W-Ni-Cu-Fe), se fez 
necessária a aplicação da técnica da metalurgia do pó. De modo geral, os metais-duros são compostos por metais 
refratários duros como WC em maior percentual em massa e os demais como complementares: TiC, TaC, NbC, 
VC, Cr2C3 que são incorporados a uma fase ligante metálica como o níquel, cobalto ou ferro para formação de 
um compósito metalocerâmicos que tem como objetivo, a aplicação principal em ferramentas de corte para o 
processo de usinagem, ferramentas para resistência a abrasão e conformação (Abd-Elghany et al., 2018). Para 
o metal-pesado, é uma liga baseada na predominância do elemento químico tungstênio (W), sendo adicionado a 
fase ligante níquel, cobre ou ferro e suas possíveis combinações Ni-Cu ou Ni-Fe. Essas ligas de tungstênio são 
sinterizados por fase líquida em fornos a vácuo e as suas aplicações requerem altas resistências a fratura a 
quente e deformação plástica termomecânica para suportar condições severas, como laminação a quente, 
extrusão e estampagem (Alam et al., 2021). 
O compósito WC-Co, conhecido como metal-duro, foi desenvolvido em 1926, na Alemanha primeiramente 
como ferramentas de corte, insertos para usinagem, pela empresa Krupp – Widia AG. Os carbonetos sinterizados 
são constituídos essencialmente por partículas de carbono com um elemento químico metálico, o tungstênio, 
considerado um metal pesado, rígido e possui grande resistência ao desgaste e à corrosão, além de ser bom 
condutor de calor e eletricidade (Garcia et al., 2018). O metal-duro sendo um compósito que consiste em uma 
fase dura, possui alta dureza, resistência mecânica e uma fase ligante que confere tenacidade e plasticidade ao 
material. A fase dura consiste em grãos de carboneto de tungstênio (WC), elemento principal, mas em algumas 
aplicações são adicionadas pequena quantidade de carbonetos refratários, tais como: TaC, MoC, NbC ou TiC 
para melhorar a dureza a quente e a resistência ao desgaste, mas 95% das ferramentas de corte de metal-duro, 
contêm WC. A fase ligante consiste em cobalto ou níquel, mas também pode ser substituída por ferro (Fernandes 
e Seno, 2011). 
Para a fabricação destas ligas, via rota convencionalde processamento da metalurgia do pó, os 
trabalhadores ficam expostos aos pós-metálicos, na forma de aerodispersóides, ocasionando uma doença difusa 
causada por inalação de partículas de cobalto e carbonetos, resultando em pneumoconiose por exposição a 
metal-duro, que se manifesta de três formas diferentes: asma ocupacional, doença intersticial e alveolite alérgica 
(Moreira et al., 2009). A exposição de pós-metálicos de metal-duro, pode resultar em uma pneumoconiose, que 
é uma doença difusa causada por inalação de partículas de cobalto; os demais metais que, níquel e ferro, são 
considerados inertes, não ocasionando lesão pulmonar, mas podem geral quadros de asma ocupacional. 
Ocupações relacionadas à fabricação e ao refino dessa liga WC-Co, assim como a utilização de discos revestidos 
de cobalto para o polimento de diamantes e a afiação de ferramentas estão relacionadas a essas doenças 
(Moreira et al.; 2010) 
Os trabalhadores são expostos as partículas de cobalto, na forma ionizada, e o WC, que são absorvidas 
pelos pulmões e pelo trato gastrointestinal, na produção desses produtos sinterizados para o uso das ferramentas 
de corte e afiação de metais, perfuração de poços, polimento com diamante, próteses dentárias, entre outros 
(Miautani et al., 2016). Foi sugerido que a exposição a essas ligas de W e WC, com aglutinantes de cobalto e 
níquel, pode aumentar o risco de câncer pulmonar entre os trabalhadores na fabricação de metais-duros e 
pesados (McElvenny et al., 2017). Do ponto de vista de higiene ocupacional, as principais vias de exposição com 
relação aos pós-metálicos, são: a respiratória e a dérmica (Alves e Della Rosa, 2003). A exposição ao cobalto 
durante a produção de metal-duro foi associada a vários efeitos adversos à saúde, como rinite, sinusite, bronquite, 
asma, e outros efeitos respiratórios, ou seja, função pulmonar diminuída relacionada à dosagem ao longo do 
tempo e metal-duro doença pulmonar (DPMD). Dermatite alérgica também foi relatada, assim como casos de 
cardiomiopatia, e um aumento na incidência de doença cardíaca isquêmica foram determinados em um estudo 
de grupo de trabalhadores de na fabricação e manipulação de metal-duro (Svartengren et al., 2017). 
 
1.1 Processo de fabricação de metal-duro e metal-pesado 
 
As ligas de WC-Co e WC-Ni podem ser produzidas através do processo convencional, conforme mostrado 
na Fig. 1(a) e ou por métodos, incluindo moldagem por injeção, Fig. 1(b), ou moldagem por extrusão, que são 
técnicas da metalurgia do pó (Yang et al, 2020). O problema principal, na fabricação de metal-duro e metal-
pesado, inicia-se primeiramente na preparação da mistura dos pós-metálicos, que para a maioria foram 
elaborados por misturados ou moinho Atritor, ou seja, pelo processo convencional, com tamanhos variando de 
0,1 a 50 µm, aglomerados e superfinos, conforme mostrado na Fig. 2(a) e 2(b) (Nie; Zhang, 2019). 
McElvenny et al. (2017), descrevem de uma forma suscinta os agentes químicos, solventes aromáticos, 
pós-metálicos, entre outros, envolvidos nas etapas de fabricação dos metais-duros e metais pesados: no 
processo inicial, ocorre a mistura dos pós-metálicos de WC-Co, processo de moagem de alta energia, necessário 
para homogeneizar e dispersar o cobalto entre as partículas de WC, e para facilitar a molhabilidade da fase 
ligante durante a sinterização. A moagem é realizada sob um líquido inflamável, como álcool etílico, álcool 
isopropílico, metanol, nafta, querosene, hexano, heptano ou acetona; que no processo volatiliza facilmente no 
ambiente, liberando uma mistura hibrida (vapores orgânicos + aerodispersóides sólidos finos). Após essa etapa, 
um lubrificante sólido é adicionado à mistura, como a cera de parafina, mono ou polietilenoglicol; favorece a 
95 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
escoabilidade da mistura na etapa de compressibilidade. Há também o processo de spray dryer, secagem por 
pulverização, comumente usados na indústria de metal-duro, um gás inerte, como o nitrogênio ou argônio, entra 
em contato com uma corrente de partículas WC-Co para produzir agregados esféricos de pó de fluxo livre. 
Os pós-misturados aglomerados com o lubrificante sólido, são prensados nos formatos desejados em 
prensas hidráulicas ou mecânicas. Após essa etapa, o orgânico do compactado a verde é removido por secagem, 
denominada pré-sinterização em fornos de redução com gás hidrogênio. Formas especiais podem exigir uma 
operação de pré-usinagem até a forma final. Há também o processo de prensagem isostática a frio e extrusão de 
barras cilíndricas, quadradas ou barras chatas, geometrias comuns na fabricação de componentes resistentes ao 
desgaste e ferramentas de conformação de metal (McElvenny et al., 2017). 
 
 
 
Fig. 2(a). Rota Convencional de Processamento de metal-duro. Adaptado de Durit. Fig. 3(b). lustração 
esquemática do processo de extrusão e/ou de moldagem por injeção de metal-duro, Adaptado de 
Muniandy, Amin e Ibrahim (2017). 
 
A exposição ocupacional dos trabalhadores na indústria de fabricação de metais-duros (WC-Co), ferramentas 
de corte que são utilizadas nas técnicas da usinagem para produtos metálicos, vem sendo estudada desde a 
década de 60. O metal-duro é classificada como um grupo de compósitos que consiste predominantemente na 
fase particulada de carbonetos de tungstênio duro (WC) ligada juntamente com cobalto como um aglutinante. O 
níquel e outros carbonetos, na forma de pó metálico, também podem ser adicionados na mistura (Svartengren et 
al., 2017). O Brasil já está enfrentado este novo desafio no que diz respeito à saúde ocupacional, ou seja, 
exposição dos trabalhadores na fabricação de metal-duro, faz se necessário aplicar procedimentos preventivos 
para os efeitos indesejados, como a doença por metal-duro (DPMD) (Alves e Della Rosa, 2003). 
 
 
 
 
Fig. 2(a). Micrografia eletrônica de varredura (MEV) do compósito em pó, mistura WC-12%Co, em massa. 
Fig. 2(b). Ilustração esquemática da microestrutura de WC-Co por sinterização por fase líquida (LPS), 
Adaptado de Muniandy, Amin e Ibrahim (2017). 
96 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
A principal utilização industrial do Co encontra-se na produção de ligas metálicas, nas quais a exposição 
ocorre durante o processo de moagem do minério, mistura do pó com os outros componentes, sinterização e 
posterior usinagem do aço na produção de ferramentas e peças para maquinários, tais como brocas e discos 
para polimento. Algumas aplicações das ligas de cobalto e demais elementos químicos, encontram-se na Tabela 
1. Um terço do Co é utilizado na produção de outras formas químicas, como catalisadores e pigmentos (Alves e 
Della Rosa, 2003). 
 
Tabela 1. Tipos de ligas, composição e utilização industrial (Alves e Della Rosa, 2003). 
 
Tipo de liga Componentes químicos Aplicação 
Superligas resistentes à 
corrosão 
cobalto, cromo, níquel, tungstênio, 
tântalo, alumínio, titânio e zircônio 
lâminas de corte 
Ligas magnéticas cobalto, níquel, alumínio, cobre e titânio indústria eletroeletrônica 
Aços de alta resistência cromo e cobalto (25-65%) 
peças de equipamentos que 
necessitam de aço altamente 
resistente ao calor, tais como 
turbinas de aviões 
Aços com propriedades 
especiais 
cromo, níquel, molibdênio e 65% de 
cobalto 
implantes cirúrgicos 
Metal-duro produzido por 
processo de “sinterização” 
pó de cobalto, ligante na produção de 
ligas com o carbeto de tungstênio e/ou 
titânio, tântalo, nióbio e molibdênio 
lâminas de corte, brocas e discos 
para polimento de diamantes 
 
1.2 Trato respiratório e a exposição de material particulado sólido suspenso no ambiente de trabalho 
 
Do ponto de vista da higiene e segurança do trabalho e da toxicologia ocupacional, considera-se a via 
respiratória como sendo a mais importante via de penetração de particulados, ou aerodispersóides, e agentes 
químicos no organismo humano. Todo materialparticulado em suspensão no ambiente, ao adentar no trato 
respiratório do trabalhador exposto a esses aerodispersóides, dependendo de seu Diâmetro Aerodinâmico (DA), 
poderá ou não penetrar no trato respiratório, como representado na Fig. 3(a) e (b) esquemática elaborada por 
Colacioppo (2020). 
 
 
 
Fig. 3 (a) Estrutura do aparelho respiratório humano e; (b). Penetração nas vias aéreas de material 
particulado em suspensão no ar (Colacioppo, 2020). 
 
Os materiais na forma de particulados sólidos suspenso no ar de ambientes de trabalho, classificam-se em 
três classes (FUNDACENTRO, 2009; Colacioppo, 2020): 
1) Particulado inalável (ou total, ou poeira total) é considerado todo material existente em suspensão no ar 
e com possibilidade de ser inalado, ou seja, penetrar nas vias aéreas do trabalhador. Não se refere a todo o 
material particulado existente no ar, apenas as partículas com DA inferior a cerca 100 micra (μm) que tem 
probabilidade significativa de penetração, probabilidade esta que aumenta com a diminuição do DA. Desta forma, 
não se consideram adequadas as denominações, particulado total ou poeira total, embora esta última tenha sido 
utilizada na NR-15. 
2) Particulado de penetração torácica, é a fração do particulado inalável composta por partículas com DA 
inferior a cerca de 25 μm, que quando inaladas, não ficam retidas nas vias aéreas superiores (nariz e garganta) 
e possuem probabilidade significativa de atingem a traqueia e brônquios, que se encontram localizados no tórax, 
daí a sua denominação. 
3) Particulado respirável, é a fração do particulado inalável composta por partículas com DA inferior a cerca 
10 μm que quando inaladas, não ficam retidas nas vias aéreas superiores (nariz e garganta) e nem na traqueia e 
brônquios, possuindo probabilidade significativa de atingirem as vias aéreas profundas que são os alvéolos 
pulmonares, onde se realiza a troca gasosa (CO2 x O2), ou respiração pulmonar, daí a sua denominação. 
97 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
As mudanças nos tamanhos das partículas podem alterar a via e a intensidade de absorção. No caso de 
nanopartículas (nm), suas propriedades podem ser muito diferentes do mesmo material em tamanhos grandes. 
Por exemplo, o dióxido de titânio (TiO2, CAS 13463-67-7), quando em forma de nanopartículas, tem efeitos 
inflamatórios pulmonares que não podem ser observados quando a exposição se dá na partícula do material com 
diâmetro ordinário (Buschinelli; Kato, 2011) 
As partículas insolúveis podem ficar retidas e posteriormente expectoradas (junto com o muco) ou mesmo 
exaladas (com o ar expirado) ou ainda deglutidas, somando-se à possível penetração por via digestiva. Partículas 
com diâmetro aerodinâmico (DA) inferior a 10 micra (μm), como no caso dos pós-metálicos de metal-duro, 
oferecem probabilidade significativa de atingir os alvéolos pulmonares, sendo que esta probabilidade ainda 
aumenta com a diminuição do DA. Ao atingir os alvéolos dependendo da solubilidade na mucosa diferentes efeitos 
podem ser observados conforme apresentados nas Fig. 4(a) e 4(b), (Colacioppo, 2020). 
 
 
 
Fig. 4 (a) Penetração de partículas que atingem as vias aéreas superiores e torácicas; Fig. 4 (b). 
Penetração e efeitos de partículas que atingem os alvéolos pulmonares (Colacioppo, 2020). 
 
As partículas insolúveis quando depositadas na região final dos brônquios e alvéolos sendo que o máximo 
de deposição a ser alcançado por partículas em torno de 1 a 2 micra (µm), que podem ser eliminadas com a 
reação do tecido pulmonar, através dos macrófagos, que consistem em células sanguíneas especiais (de cerca 
de 100 a 200 μm) que quando liberadas, podem englobar, destruir a partícula ou simplesmente mantê-la inerte 
(fagocitose). A situação se complica com o aumento da quantidade de partículas ou ainda quando a partícula não 
fica inerte, no caso dos carbonetos, classificados como insolúveis, podem despertar outros mecanismos de defesa 
imunológica do organismo, mas, estes mecanismos por vezes acabam por desencadear uma pneumoconiose, 
doença esta que modifica a estrutura do tecido pulmonar e por consequente perda da capacidade de respiração 
pulmonar sendo que as mais conhecidas são a silicose provocada pela sílica (SiO2) e a asbestose provocada 
pelo asbesto ou amianto (Colacioppo, 2020). 
São apresentadas nas Fig. 5(a), (b), e (c), as análises por EDS dos pós-metálicos de cobalto, níquel 
carbonila e carboneto de tungstênio para a mistura de ligas de metal-duro, WC-Co e WC-Ni, evidenciando os 
tamanhos dos particulados menores (DA) que 10 micra (µm), portanto poeiras respiráveis. Na Fig. 5 (a) e (c), as 
imagens obtidas por Backscattered Electron Image (elétrons retroespalhados) e na Fig. 5 (b) e (d), imagens 
obtidas por SEI (elétrons secundários), ficando clara a identificação dos agentes químicos. 
 
 
 
Fig. 5(a) Cobalto em pó; 5(b) Níquel carbonila em pó. 5(c) Carboneto de tungstênio em pó. 
 
Para a coleta desses pós-metálicos, o sistema de coleta se dá no próprio trabalhador, posicionando-se o 
dispositivo de coleta na altura da zona respiratória, conforme apresentado na Fig. 6(a) e 6(b). Este tipo de coleta 
deve ser utilizado para estimar a exposição dos trabalhadores. Na seleção dos trabalhadores para coleta 
individual, deve-se caracterizar e selecionar o trabalhador que apresente o maior risco para cada atividade 
(FUNDACENTRO, 2009). 
 
98 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
 
Fig. 6 (a) Coleta individual com a bomba de amostragem (pessoal) – frente 5 (d). Coleta individual 
(pessoal) – costas (FUNDACENTRO, 2009). 
 
O instrumento portátil apresentado na Fig. 6(a), uma bomba de amostragem, que deve ser leve e que 
forneça uma vazão de até 6,0 L/min, com bateria recarregável e blindada contraexplosão. A bomba deve possuir 
um sistema automático de controle de vazão com capacidade para mantê-la constante, dentro de um intervalo de 
± 5%, durante o tempo de coleta. Com relação ao dispositivo de coleta dos particulados, é composto por um 
conjunto de porta-filtro, suporte do filtro, filtro de membrana e, quando necessário e um separador de partículas; 
deve ser posicionado na altura da zona respiratória, para estimar a exposição dos trabalhadores, de maior risco 
de exposição, com relação à fonte geradora de material particulado, o tempo de exposição, a sua mobilidade, as 
diferenças de hábitos operacionais e a movimentação do ar no ambiente de trabalho (FUNDACENTRO, 2009). 
 
A FUNDACENTRO (2009) recomenda as seguintes situações para coleta dos particulados: 
 
 particulado inalável, Fig. 7(a), utilizar um dispositivo de coleta projetado para selecionar partículas com DA 
diâmetro aerodinâmico de até 100 micra (μm) com 50% de eficiência de coleta. 
 particulado torácico, Fig. 7(b), utilizar um separador projetado para selecionar partículas menores que 25 
μm com 50% de eficiência de coleta em partículas com DA de 10 μm. 
 particulado respirável, Fig. 7(c), utilizar um separador, do tipo ciclone, projetado para selecionar partículas 
menores que 10 μm com 50% de eficiência de coleta em partículas com DA de 4 μm. 
 
Para a análise dos particulados suspenso no ar, esses dispositivos, conforme apresentados na Fig. 7(a), 
(b), (c) e (d), recomenda-se que sejam utilizados para sílica cristalizada, carvão vegetal, negro de fumo, madeira, 
cereais, farinhas e partículas não especificadas de outra maneira (PNOS). No caso dos metais-duros e pesados, 
o dispositivo de coleta recomendado é o IOM, separador e coletor de material particulado inalável, apresentado 
na Fig. 8, pois garantem que o tamanho das partículas coletadas, correspondam a fração inalável, definida pela 
norma ISO 7708 e a norma Europeia EM 481. Na Tabela 2, são apresentados os parâmetros para coleta e análise 
dos particulados, até que outra recomendação seja especificada pela FUNDACENTRO (2009). 
 
 
 
 
Fig. 7 (a) Dispositivode coleta para particulado total (cassete); (b). Dispositivo de coleta para 
particulados torácico e respirável; (c) Dispositivo de coleta para particulado respirável (alumínio) e (d) 
Dispositivo de coleta tipo IOM particulado inalável (FUNDACENTRO, 2009). 
 
99 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Nestes dispositivos apresentam, de forma geral, o anel de vedação, suporte do filtro, filtro da membrana, 
parte central do porta-filtro, cassete para 2 membranas, podendo ser de PVC ou EC, parte superior do porta-filtro 
com orifício de entrada de 4mm, tampa do porta-filtro e o plugue. Esses dispositivos de medição quantitativa, no 
Brasil, podem ser efetuados por profissionais da área da segurança do trabalho: técnicos, tecnólogos e 
engenheiros, que se preocupam mais com medições diretas e indiretas, para o controle ambiental e prevenção; 
sobre as doenças e efeitos causados nos trabalhadores com relação ao ar contaminado, as responsabilidades 
ficam por conta dos profissionais da área da medicina do trabalho, abrangendo os médicos, enfermeiros e 
técnicos de enfermagem, conforme descrito nas normas regulamentadoras do ministério do trabalho e nas leis 
de profissão regulamentada (FUNDACENTRO, 2009). 
 
Tabela 2. Parâmetros para coleta e análise de material particulado suspenso no ar (FUNDACENTRO, 2009). 
 
COLETA ANÁLISE 
Fração Dispositivo de coleta e vazão da bomba 
Técnica 
analítica 
Método de 
referência 
Total 
a) Filtro de membrana de Éster de celulose (EC), 0,8 μm de 
poro, ou de PVC, 5 μm de poro, 37 mm de diâmetro; b) 
Porta-filtro com face fechada de 2 ou 3 corpos, com vazão 
de 1 L/min a 4 L/min 
ICP-AES NIOSH 7300 
Total 
a) Filtro de membrana de EC, 0,8 μm de poro, ou de PVC, 
5 μm de poro, 37 mm de diâmetro; b) Porta-filtro com face 
fechada, de 2 ou 3 corpos, com vazão de 2 L/min 
ICP-AES 
Espectrofotometria 
(absorção atômica) 
OSHA ID-125G 
OSHA ID-121 
Inalável 
a) Filtro de membrana de EC, 0,8 μm de poro, 25 mm de 
diâmetro para o porta-filtro tipo IOM, ou 37 mm de diâmetro 
para o dispositivo cônico. b) Porta-filtro tipo IOM, com vazão 
de 2 L/min; ou dispositivo cônico, com vazão de 3,5 L/min 
HSE-METAL-DUROHS 
Existem vários métodos específicos 
 
A análise gravimétrica recomendada pela FUNDACENTRO (2001), fornece subsídios para a proposição 
de medidas de controle ou para a verificação de sua eficiência. A Tabela 3, apresenta os valores de eficiências 
de coleta, em massa, para as diferentes frações de material particulado. A coleta de material particulado total 
deve ser efetuada quando não houver indicação de coleta de material particulado nas frações inalável, torácica 
ou respirável. Na tabela 3, presenta os valores de eficiências de coleta, em massa, para as diferentes frações de 
material particulado, Fig.7(d), dispositivo de coleta tipo IOM para particulado inalável (FUNDACENTRO, 2009) 
 
Tabela 3. Fração de particulado respirável (FUNDACENTRO, 2009). 
 
Diâmetro aerodinâmico da partícula (μm) % Massa de particulado respirável (R) 
1. 100 
2. 97 
3. 91 
4. 74 
5. 50 
6. 30 
7. 17 
8. 9 
9. 5 
10. 1 
 
1.3 Doenças ocupacionais por metal-duro (WC-Co) e metal-pesado (W-Ni) 
 
A exposição aos pós-metálicos de WC-Co e W-Ni podem causar diferentes formas de doença pulmonar, 
desde asma a diversos padrões intersticiais no pulmão. Os profissionais da área da medicina do trabalho, 
classificaram como DPMD, Doença pulmonar por metal-duro; além disso, a exposição por via oral pode causar 
efeitos gastrintestinais (náusea, vômito e diarreia) e no sangue, dano no fígado e dermatite alérgica. A DPMD é 
uma entidade rara e a publicação de casos ocorridos no Brasil está ou encontra-se escassa, constituída pela 
descrição do CID, código internacional de doenças, mesmo em trabalhadores com risco ocupacional. Variam na 
literatura dados sobre a prevalência e a incidência da doença entre indivíduos expostos a metais-duros (Mizutani 
et al. 2016). 
A pneumoconiose por exposição a metal-duro foi primeiramente descrita por Liebow e Carrington em 1969, 
sendo incluída entre as pneumonias intersticiais idiopáticas. A ERS - Sociedade Europeia Respiratória e a 
comunidade médica, reconheceram essa situação como pneumoconiose causada pela inalação de cobalto ou de 
uma liga de cobalto e outros metais-pesados, sendo, então, excluída da classificação original. Apesar de haver 
outros componentes na liga de metal-duro, o cobalto é o principal a induzir a doença pulmonar. Alguns autores 
afirmam que a doença intersticial se desenvolve apenas quando a exposição ao cobalto ocorre em associação 
100 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
com a exposição aos carbonetos de tungstênio ou ao pó de diamante, Fig. 8. Um pequeno número dos 
trabalhadores expostos desenvolve a DPMD, geralmente após 10 a12 anos de exposição, também podendo 
ocorrer precocemente (Moreira, et al; 2010). 
 
 
 
Fig. 8. Radiografia e análise macrofágica de um profissional afetado por fibrose intersticial causada por 
exposição aos metais-duros (WC-Co) e metais-pesados (W-Ni) (Chiappino, 2003). 
 
Wallner et al. (2017), investigaram as causas de morte entre os trabalhadores de uma fábrica de metais-
duros na Áustria, para trabalhadores empregados desde 1965 e após 1970, com acompanhamento até o final do 
ano de 2014. O foco foi relacionado a exposição ao cobalto, sendo avaliada por meio da higiene ocupacional e 
análise clínica. Durante aproximadamente 46 anos, observação 177 mortes de trabalhadores que trabalharam 
diretamente com a exposição de metal-duro, Destes, 159 foram confirmados pelo registro de mortalidade e 
informada a causa de óbitos; sendo 49 desses, morreram de câncer de pulmão, três doenças pulmonares 
crônicas. 
Morfeld et al. (2017), investigaram a exposição de trabalhadores (antigos e atuais) em relação ao cobalto 
e tungstênio, em três fabricantes de metais-duros, na Alemanha. Dados históricos de higiene ocupacional, foram 
extraídos para reconstrução de um perfil de um grupo de exposição homogêneo, ou similares, durante o período 
de 1970 e 2012. A análise analítica, consistiu em 6.865 trabalhadores, sendo 5.212 (75,9%) homens e 1.653 
(24,1%) mulheres. A exposições individuais e concentrações médias de exposição cumulativas, foram estimadas 
para cobalto, níquel e tungstênio, como poeiras respirável e inalável; sendo: as concentrações médias de níquel 
inalável a longo prazo foram baixas em cerca de 0,01 mg.m-3 (mediana) e 0,02 mg.m-3 (média). Para cobalto 
inalável, foram encontradas 0,04 mg.m-3 (mediana) e 0,07 mg.m-3 (média), respectivamente. As concentrações 
inaláveis de tungstênio foram de 0,2 mg.m-3 (mediana) e 0,4 mg.m-3 (média). A concentração média a longo prazo 
da poeira respirável foi estimada em cerca de 0,25 mg.m-3 (mediana) e 0,35 mg.m-3 (média); para a fração de 
poeira inalável, foram obtidos os resultados nos trabalhadores observados, em aproximadamente 1,3 mg.m-3 
(mediana) e 1,7 mg.m-3 (média). Os estudos de Morfeld et al. (2017) não afirmaram evidências de riscos elevados 
de câncer de pulmão nos trabalhadores expostos ao cobalto e tungstênio, alegaram limitações metodológicas e 
as averiguações foram incompletas, nas causas de mortes, que impedem um estudo conclusivos sobre os efeitos 
da exposição aos metais-duros, riscos de mortalidades total e/ou por causas específicas. 
McElvenny et al (2017), investigaram 1.538 trabalhadores, disponíveis para análise, expostos aos pós-
metálicos de metal-duro, em 2 fabricas, na Inglaterra, onde preparavam desde as misturas dos pós-metálicos 
para o processo de compactação e produção de produtos sinterizados, num período de 1980 a 2014, sendo 85% 
sexo masculino e nascidos antes de 1950. Ocorreram 177 mortes durante o período de estudos, sendo que 19 
trabalhadores morreram por câncer de pulmão, todas ocorridas em homens. Nesta pequena amostragem de 
trabalhadores na manufatura industrial de metal-duro,não afirmaram que o emprego na indústria de metal-duro 
aumenta o risco de morte por câncer de pulmão ou qualquer outra causa de morte. Afirmaram que a análise 
combinada internacional fornece conclusões mais firmes sobre o risco de mortalidade na indústria de metal-duro. 
Mizutani et al. (2016), descreveram que durante os períodos de estudos, no Brasil, de 2010 a 2013, 320 
pacientes foram atendidos no Serviço de Doenças Respiratórias Ocupacionais da Divisão de Pneumologia do 
Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, na cidade 
de São Paulo. Desses 320 trabalhadores, 5 (1,56%) foram diagnosticados com DPMD. A média de idade ao 
diagnóstico foi de 42,0 ± 13,6 anos. Todos os pacientes eram do sexo masculino e estavam trabalhando no 
momento da avaliação inicial. O tempo de exposição ocupacional, aos agentes nocivos WC-Co, foi de 11,4 ± 8,0 
anos. Dentre as ocupações relatadas, 1 paciente trabalhava com manutenção de ferramentas industriais, 2 eram 
afiadores de ferramentas de corte industriais, e 2 eram operadores de retíficas. Após o diagnóstico de DPMD, os 
5 profissionais foram afastados da exposição ocupacional, para estabilização e até a melhora da função pulmonar, 
receberam tratamentos específicos. Dois pacientes tiveram melhoras clínicas. Um paciente foi incluído em lista 
de transplante pulmonar, porém faleceu antes de sua efetivação e os demais apresentaram progressão da DPMD. 
Alves e Della Rosa (2003), afirma que o Brasil não incluiu, todavia, um BEI para exposição dos pós-
metálicos de cobalto, níquel, tungstênio e outros carbonetos, na fabricação de metais-duros e pesados, na Norma 
Regulamentadora n.º 7, (NR 07 PCMSO), Programa de Controle Médico de Saúde Ocupacional, os estudos 
toxicológicos podem levar à utilização de um indicador biológico para exposições ao cobalto e seus compostos. 
Os efeitos tóxicos observados nas exposições a diferentes compostos de cobalto são mais pronunciados nos 
101 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
pulmões, na forma de asma brônquica e fibrose. A relação dose-efeito e dose-resposta, bem como os valores de 
referência para a população sadia e não ocupacionalmente exposta, levou a ACGIH dos Estados Unidos a propor 
desde 1995 a utilização de um BEI (Biological Exposure Indice) para este tipo de exposição. 
Moreira et al. (2010), afirmam que são reconhecidas, atualmente, três entidades patológicas relacionadas 
à inalação de poeiras de metais-duros: asma ocupacional; doença pulmonar intersticial, que ocorre em duas 
variedades — forma não específica e pneumonite interalveolar de células gigantes e uma alveolite do tipo alérgica 
ou pneumonite de hipersensibilidade. Essa última ocorre na fase aguda da exposição, sendo considerada uma 
fase inflamatória precoce e reversível da fibrose pulmonar. 
A ACGIH (2021), classifica as substâncias em 5 grupos: A1 – Carcinogênico para humanos; A2 – 
Carcinogênico para animais; A3 – Carcinogênico para animais em condições especiais; A4 – Não classificável 
como carcinogênico para humanos e A5 – Não suspeito de carcinogênico para humanos. Para os produtos 
químicos, aplicados no processo de fabricação de metal-duro, as informações de carcinogenicidade foram 
fornecidas, Tabela 3, segundo os códigos de classificação dado pela ACGIH, que anualmente atualizam essas 
informações. 
 
Tabela 3. Classificação de carcinogenicidade ACGIH (2021). 
 
Agentes Químicos CAS (2020) Notações Base TLV 
Cobalto [7440-78-4] DSEN; RSEN; A3; BEI Mudanças na função Pulmonar 
Cobalto carbonila [10210-68-1] - Edema pulmonar e danos no baço 
Níquel carbonila [13463-39-3] A3 Inflamação no trato respiratório 
Ferro pentacarbonila [13463-40-6] - 
Edema pulmonar; Prejudica o CNS 
(sistema central nervoso); 
Tungstênio [7440-33-7] - Dano pulmonar 
Carboneto de Silício 
Fibras (whiskers) 
[409-21-2] A2 
Inflamação no trato respiratório, 
mesothelioma; câncer 
Metal-duro (WC-Co) [7440-48-4] RSEN; A2 Pneumonia 
WC [12070-12-1] RSEN; A2 Pneumonia 
Etileno glicol (MEG) [107-21-1] A4 Inflamação no trato respiratório 
Parafina [8002-74-2] - Inflamação no trato respiratório; náusea 
Metanol [67-56-1] PELE; BEI 
Dor de cabeça; danos aos olhos; tontura; 
náusea 
Acetona [64-64-1] A4; BEI 
Inflamação no trato respiratório, irritação 
nos olhos; prejudica o CNS 
Heptano [142-82-5] - 
Prejudica o CNS e Inflamação no trato 
respiratório. 
Xileno [1330-20-7] A4; BEI 
Inflamação no trato respiratório, irritação 
nos olhos; prejudica o CNS 
Hexano [592-41-6] PELE; BEI 
Prejudica o CNS, irritação nos olhos e 
neuropatia periférica 
Tolueno [1088-88-3] OTO; A4; BEI 
CNS, deficiência visual e auditiva; 
prejudica o sistema reprodutivo feminino; 
perda de gravidez. 
Álcool etílico (Etanol) [64-17-5] A3 Inflamação no trato respiratório 
Álcool Isopropílico [108-20-3] - 
Inflamação no trato respiratório e irritação 
nos olhos 
 
O valor de IPVS – Imediatamente perigoso para vida ou saúde, serviu como parâmetro para toxicidade aguda 
mais importante em saúde ocupacional. Em meados da década de 1970, a OSHA e o NIOSH dos Estados Unidos 
estabeleceram o valor IPVS (IDLH) para muitas substâncias. É a concentração da substância no ar ambiente a 
partir da qual há risco evidente de morte, ou de causar efeito(s) permanente(s) à saúde, ou de impedir um 
trabalhador de abandonar uma área contaminada (Buschinelli; Kato, 2011). Para exposições por inalação, os 
efeitos no trato respiratório podem ser considerados como efeitos críticos. A evidência de carcinogenicidade do 
cobalto em humanos foi considerada inadequada e não pode ser avaliada quantitativamente, mas um fator de 
segurança extra a ser adicionado nas exposições estimadas a partir de outros efeitos pode ser necessário. Os 
riscos para o desenvolvimento de pneumoconiose são provavelmente dependentes das características físicas e 
químicas das partículas contendo cobalto transportadas pelo ar, mas essas informações foram ausentes na 
maioria dos estudos. Fazem alguns anos do reconhecimento que existe um risco excessivo de pneumoconiose 
quando a exposição ao pó contendo cobalto excede 100 μg.m-3. Recentemente, concentrações 
consideravelmente mais baixas que ocorrem na indústria de produção de diamantes e de cobalto deram origem 
a tais consequências. A irritação das membranas mucosas pode ocorrer a partir de 5 μg.m-3 (Nordberg, 1994). 
102 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
1.4 Limites de tolerâncias, avaliação qualitativa e quantitativa de exposição aos agentes químicos 
 
Os efeitos causados pelas exposições a agentes químicos de curto ou longo prazo nos ambientes de 
trabalho são levados em conta para o estabelecimento de limites de exposições ocupacionais (LEO’s). Os critérios 
para definição de LEO’s variam de uma instituição para outra e apenas alguns deles possuem valores legais em 
seus países. No Brasil (2019), os LEO’s são denominados “Limites de Tolerância” (LT’s), sendo definidos como 
“a concentração ou intensidade máxima ou mínima, relacionada com a natureza e o tempo de exposição ao 
agente, que não causará danos à saúde do trabalhador, durante a sua vida laboral”, e encontram-se estabelecidos 
na forma de portarias e normas regulamentadoras (Buschinelli; Kato, 2011). 
No artigo 189 da CLT (Brasil, 1943), consideram-se atividades ou operações insalubres aquelas que, por 
sua natureza, condições ou métodos de trabalho, exponham os empregados a agentes nocivos à saúde, acima 
dos limites de tolerância fixados em razão da natureza e da intensidade do agente e do tempo de exposição aos 
seus efeitos. Porém, esse texto, foi editado pela Portaria MTb nº 3.214, de 08 de junho de 1978, com o título NR 
15 - Atividades e Operações Insalubres”, de forma a regulamentar os artigos 189 a 196 da Consolidação das Leis 
do Trabalho - CLT, conforme redação dada pela Lei n.º 6.514, de 22 de dezembro de 1977, que alterou o CapítuloV (da Segurança e da Medicina do Trabalho) da CLT. Nesta nova redação, descreveu-se que a avaliação 
quantitativa de agentes aos quais os trabalhadores estão expostos no ambiente de trabalho, exige a determinação 
da concentração ambiental, no caso dos agentes químicos. Devem ser realizadas avaliações quantitativas para 
agentes químicos (Anexo n° 11) e poeiras minerais (Anexo n° 12), gerando direito ao adicional de insalubridade 
aos trabalhadores, incidente sobre o salário-mínimo regional, equivalente a: 40%, para insalubridade de grau 
máximo; 20%, para insalubridade de grau médio; e 10%, para insalubridade de grau mínimo, conforme item 15.2 
da NR15 (Brasil, 2019). 
Comparando-se os valores de limites de tolerâncias da NR 15 (Brasil,2019), TLV-TWA da ACGIH (2021) e 
IPVS, pode-se ter uma ideia dos riscos ocupacionais de longo, médio e de curto prazo. Há também o anexo 13 
(Agentes químicos), porém a avaliação refere-se de forma qualitativa, ou seja, cuja insalubridade se caracteriza 
por inspeção realizada no local de trabalho, ou seja, o nexo causal entre o exercício profissional e a manipulação 
do produto. A relação das atividades e operações envolvendo os agentes químicos, para o processo de fabricação 
do metal-duro, considera a manipulação de cromo, o emprego de produtos contendo hidrocarbonetos aromáticos 
como solventes ou em limpeza de peças e outros compostos de carbono, neste caso os solventes contendo 
hidrocarbonetos aromáticos, a parafina ou outras substâncias cancerígenas afins. No anexo 13 da NR15, 
encontra-se em destaque o termo “operações diversas”, que neste estudo de caso, inclui a metalização ou 
revestimento metálico, a pistola, ou seja, a aspersão térmica de cromo duro e carbonetos (Brasil, 2019). 
Os limites de tolerâncias, considerados excedidos quando a média aritmética das concentrações 
ultrapassarem os valores estipulados na Tabela 2. 
 
Tabela 2. Limites de tolerâncias NR15 (anexo 11) e ACGIH (2021), valores máximos de exposição aos 
agentes químicos (pós-metálicos), vapores orgânicos e solventes aromáticos. 
 
Agentes Químicos CAS (2020) 
L.T (NR15) 
Brasil (48 h) 
Grau de 
insalubridade 
ACGIH (40 h) 
(TLV-TWA) 
ACGIH (15 min) 
(TLV-STEL) 
Cobalto [7440-78-4] - - 0,02 mg.m-3 - 
Cobalto carbonila [10210-68-1] - - 0,1 mg.m-3 - 
Níquel carbonila [13463-39-3] - - - 0,05 ppm 
Ferro pentacarbonila [13463-40-6] - - 0,1 ppm 0,2 ppm- 
Negro de Fumo [1333-86-4] 3,5 mg.m-3 Máximo 3,5 mg.m-3 
Tungstênio [7440-33-7] - - 3 mg.m-3 - 
Carboneto de Silício 
Fibras (whiskers) 
[409-21-2] - - 
3 mg.m-3 
0,1 f/cc 
- 
Metal-duro (WC-Co) [7440-48-4] - - 0,005 mg.m-3 - 
WC [12070-12-1] - - 0,005 mg.m-3 - 
Etileno glicol (MEG) [107-21-1] - - 25 ppm 50 ppm 
Parafina [8002-74-2] - - 2 mg.m-3 - 
Metanol [67-56-1] - - 200 ppm 250 ppm 
Acetona [64-64-1] 780 ppm mínimo 250 ppm 500 ppm 
Heptano [142-82-5] - - 400 ppm 500 ppm 
Xileno [1330-20-7] 78 ppm médio 20 ppm 150 ppm 
Hexano [592-41-6] - - 500 ppm 1000 ppm 
Tolueno [1088-88-3] - - 20 ppm - 
Querosene [8008-20-6] - - 200 mg.m-3 - 
Álcool etílico (Etanol) [64-17-5] 780 ppm mínimo - 1000 ppm 
Álcool Isopropílico [108-20-3] 310 ppm médio 250 ppm 310 ppm 
 
103 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Os limites da ACGIH, nos EUA, legalmente não possuem valor, pois denominam-se TLV; referem-se “às 
concentrações de substâncias químicas no ar, às quais, acredita-se, a maioria dos trabalhadores podem estar 
expostos, repetidamente, dia após dia, durante toda uma vida de trabalho sem sofrer efeitos adversos à saúde”. 
A ACGIH (2021), afirma que os valores não se reconhecem como linhas divisórias entre condições seguras e 
perigosas e adverte que os trabalhadores podem ainda estar sujeitos a exposições dérmicas. Há três tipos: os 
limites TWA ou média ponderada no tempo; os limites STEL ou limites de exposição para curto-prazo; e o TLV-
C (Ceiling), valor-teto de exposição (Buschinelli; Kato, 2011). 
O limite por média ponderada no tempo (TLV-TWA) é a concentração média dos valores encontrados ao 
longo da jornada de trabalho (8 horas diárias, 40 horas semanais) e geralmente varia em função de inúmeras 
variáveis dos ciclos produtivos e ambientais. O limite de exposição por média ponderada de 15 minutos (TLV-
STEL) não deve ocorrer mais de quatro vezes ao dia e é suplementar ao TLV-TWA. O limite de exposição Ceiling 
é a concentração máxima que não deve ser excedida em qualquer momento da exposição no trabalho. 
Geralmente é definida para substâncias irritantes e sua definição é a mesma do valor-teto da legislação brasileira. 
Os valores de exposição em curto prazo (15 minutos) TLV-STEL, se caracterizou como importantes para as 
substâncias irritantes e asfixiantes (Buschinelli; Kato, 2011). O TLV-STEL não substitui o TLV-TWA (ACGIH, 
2021), sendo um complemento da média ponderada pelo tempo, que permite uma avaliação das flutuações. Os 
TLV´s na ACGIH (2021), estabelecidos para trabalhadores, levando-se em conta para uma exposição de 8 horas 
por dia e 40 horas semanais; enquanto para LT NR15 (Brasil, 2019), a exposição estabelecida prevê 48 horas. 
Colacioppo (2020) descreve a fórmula para adaptação dos limites de tolerâncias às jornadas não usuais 
de Brief & Scala, que leva em consideração a extensão da jornada de trabalho como determinante para a redução 
proporcional do LEO, para cálculo do fator de redução (FC): 
 
𝑇𝐿𝑉𝑐𝑜𝑟𝑟𝑖𝑔𝑖𝑑𝑜 = 𝑇𝐿𝑉𝑠𝑢𝑏𝑠𝑡â𝑛𝑐𝑖𝑎 x FC (1) 
 
O fator de correção obtida na expressão (1) para uma mesma jornada de trabalho é o mesmo para todas 
as substâncias descrita na Tabela 2. 
 
FC =
40
ℎ
.
(168−ℎ)
128
 (2) 
 
Onde h representa o número de horas da jornada e poderia ser aplicado a um LEO tido como média 
ponderada pelo tempo ou teto, com exceção dos agentes que produzissem irritação apenas. Este fator FC foi 
utilizado para adaptação da lista dos TLV´s de 1977 e que passaram a constituir o Quadro 1 do Anexo 11 da NR 
15 (BRASIL, 2019). Apenas para melhor entendimento desta correção (FC), ao refazer o cálculo verificou-se que 
existiu discrepância no fator utilizado (f = 0,78) e o fator que pode ser calculado (f = 0,75) (Colacioppo, 2020) 
Para a maioria das substâncias os TLV's, ou LEO's, deve considerar os valores médios calculados como 
concentrações médias ponderadas pelo tempo, CMPT, ou seja, cada concentração deve ser ponderada pelo 
tempo que foi medida, considerando-se toda a jornada de trabalho inclusive períodos de concentração zero: 
 
𝐶𝑀𝑃𝑇 =
(𝑇1×𝐶1)+(𝑇2×𝐶2)+(𝑇3×𝐶3)+⋯+(𝑇𝑁×𝐶𝑁) 
∑𝑇𝑁
 (3) 
 
Onde: MPT = Média Ponderada pelo Tempo, C = Concentração do agente, e T = Tempo que a concentração 
existiu ou tempo de exposição de um trabalhador a esta concentração. 
 
O valor máximo permitido para exposição é calculado pela expressão (4), onde: TLV. = limite de tolerância 
para o agente químico e F.D. = fator de desvio (Brasil, 2019). 
 
𝑉𝑚á𝑥𝑖𝑚𝑜 = 𝑇𝐿𝑉 × 𝐹𝐷 (4) 
 
A Fundacentro (2016), alerta com relação a mais de uma substância (exposições múltiplas dos 
trabalhadores no ambiente de trabalho) deve-se avaliar os efeitos aditivos de exposição em vez de considerar o 
efeito isolado de cada substância. Se essas substâncias apresentarem efeitos tóxicos similares sobre o mesmo 
órgão ou sistema (fígado, rim, sistema nervoso central etc.), devem ser considerados os efeitos aditivos, na 
expressão matemática (Brasil, 2019): 
 
𝐶𝑚
𝑇𝑚
=
𝐶1
𝑇1
+
𝐶2
𝑇2
+⋯+
𝐶𝑛
𝑇𝑛
 (5) 
 
Na expressão (5) C m, e Tm, concentração e limite de exposição da mistura, C1,2,..., n, significa concentração 
de cada substância química, T1,2,..., n, seu respectivo limite de exposição (TLV ou LEO). Se as substâncias não 
apresentarem efeitos tóxicos similares sobre o mesmo órgão ou sistema (fígado, rim, sistema nervoso central 
etc.), considerar, para a seleção do respirador, o maior FPMR calculado (FUNDACENTRO, 2016). 
104 
E-Book “Materiais metálicos: Composição, fabricação, propriedadese desempenho” 
Tabela 3. Limites de tolerâncias NR15 (anexo 11) e ACGIH, valores máximos de exposição aos agentes 
químicos (pós-metálicos). 
L.T 
(ppm ou mg.m-3) 
F.D. 
0 a 1 3,00 
1 a 10 2,00 
10 a 100 1,50 
100 a 1000 1,25 
Acima de 1000 1,10 
 
Os LEO’s estabelecidos para concentrações de gases e vapores ou material particulado na atmosfera do 
ambiente do trabalho. As unidades em ppm válidas somente para gases e vapores. A relação entre massa do 
material particulado, gases ou vapores e volume do ar é expresso em mg m-3 Os valores em LEO de gases e 
vapores podem ser expressos em ppm ou mg m-3 e foram estabelecidos para as condições normais de 
temperatura e pressão (CNTP). Para converter de uma unidade para outra, precisamos do peso molecular da 
substância (expressa em Dalton – Da – ou g.mol-1, sendo 1 Da = 1 g.mol-1). Isso serve para se comparar 
resultados de avaliações obtidas nas CNTP’s fornecidos em unidades diferentes entre si ou diferentes de LEO’s 
(Buschinelli; Kato, 2011). 
A fórmula de conversão está baseada na pressão barométrica de 760 mm de mercúrio e 25 ºC: 
 
TLV(𝑚𝑔.𝑚−3) =
TLV(𝑝𝑝𝑚) 𝑥 Peso molecular (𝑠𝑢𝑏𝑠𝑡â𝑛𝑐𝑖𝑎) 
24,45
 (6) 
 
Para a higiene ocupacional, saúde e ambiental, se faz importante identificar os efeitos que ocorrem em 
uma exposição relativamente baixa, ou seja, os efeitos críticos podem ser vistos como cruciais para uma ação 
preventiva. O banco de dados limitado disponível sobre a toxicidade do cobalto torna difícil selecionar efeitos 
críticos (Nordberg, 1994). 
A ACGIH (2021) recomenda um Limite de tolerância de 10 mg.m-3 para particulados “inertes”, ou não 
classificáveis de outra forma (Colacioppo, 2020). A ACGIH adverte que “os TLV’s não representam uma linha fina 
de separação entre um ambiente de trabalho saudável e não saudável, ou um ponto no qual ocorrerá um dano à 
saúde”. Os TLV’s não protegerão adequadamente todos os trabalhadores, e sim minimizar os efeitos indesejados 
sobre a saúde. Alguns trabalhadores podem apresentar desconforto ou até efeitos adversos mais sérios à saúde 
quando expostas a substâncias químicas em concentrações iguais ou mesmo inferiores aos limites de exposição. 
A ACGIH também divulga, para cada substância, publicações complementares ao livro do TLV, estudos técnicos 
que justificam os valores estabelecidos (Buschinelli; Kato, 2011). 
 
1.5 Equipamentos de proteção respiratória para poeiras metálicas 
 
Buschinelli e Kato (2011), menciona que a OSHA exige que, para o trabalhador estar em um ambiente com 
concentração do agente químico superior ou igual ao IPVS, ele deve estar protegido com respiradores com 
reserva de ar ou ar mandado. A preocupação principal é com substâncias corrosivas, asfixiantes ou com efeitos 
agudos sobre o sistema nervoso central. Este parâmetro é derivado de dados obtidos com animais de laboratório 
e com acidentes ocorridos com trabalhadores expostos, quando disponíveis, e expresso em ppm ou mg.m-3. 
Moreira et al. (2010), acompanharam um paciente de 27 anos, que trabalhava há 8 anos como afiador de 
ferramentas de metal-duro (serra, serrotes e facas de corte), trabalhava por oito horas diárias, equivalente a 40 
horas semanais, sem o uso do EPI, ou EPR - equipamento de proteção respiratória. Esse profissional utilizava 
no processo de retificação/afiação um rebolo diamantado sintético, em um ambiente fechado. Baseado na história 
desse trabalhador, nos exames de imagem (radiografia de tórax) e no exame anatomopatológico, foi feito o 
diagnóstico de pneumoconiose por metal-duro ou fibrose pulmonar. O tratamento da pneumopatia por exposição 
a metal-duro envolve o afastamento completo da exposição ao agente nocivo e corticoterapia em doses altas. 
Quando já existe fibrose pulmonar extensa, uma apresentação de estudo de caso raro, não há significativa 
resposta ao tratamento. 
O EPI se faz obrigatório por parte do trabalhador, de acordo com a Norma Regulamentador nº. 6 – (NR 06-
EPI) Equipamentos de proteção individual, destinado à proteção de riscos suscetíveis de ameaçar a segurança 
e a saúde no trabalho. A empresa é obrigada a fornecer aos empregados o EPI adequado ao risco, de forma 
gratuita, em perfeito estado de conservação e funcionamento, mediante orientação de um profissional 
tecnicamente habilitado. Além disso, o empregador deve exigir o uso do EPI por parte do trabalhador, orientar e 
treiná-lo sobre o uso adequado, guarda e conservação. O Trabalhador deve usar o EPI apenas para a finalidade 
que se destina, deve cumprir as determinações do empregador sobre o uso adequado, entre outros (Brasil, 2018). 
Nesta norma NR 06-EPI (Brasil, 2018) descrevem os tipos EPI’s para proteção respiratória, disponíveis no 
mercado, como seguem: 1) respiradores purificadores de ar não motorizados, as peças semifaciais filtrantes 
(PFF) do tipo PFF1, PFF2 e PFF3, ou com filtros P1, P2 e P3, para proteção das vias respiratórias contra poeiras, 
névoas, fumos e radionuclídeos; 2) respiradores purificadores de ar motorizados, com vedação facial tipo peça 
semifacial ou facial inteira para proteção das vias respiratórias; 3) de adução de ar tipo linha de ar comprimido, 
105 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
4) respiradores de fuga; tipo bocal e; 5) os de adução de ar tipo máscara autônoma; este último, específico para 
trabalhos em ambientes ou atmosferas Imediatamente Perigosas à Vida e a Saúde (IPVS). 
O EPR visa a proteção do usuário contra a inalação de ar contaminado ou de ar com deficiência de oxigênio. 
O EPR adequado à exposição a agentes químicos é aquele que reduz a exposição do usuário a valores abaixo 
dos valores considerados aceitáveis, como, por exemplo, o Limite de Exposição Ocupacional (LEO). Para a 
seleção do respirador com nível de proteção adequado à exposição, é necessário conhecer o Fator de Proteção 
Mínimo Requerido (FPMR) para o respirador (FUNDACENTRO, 2016), o qual foi determinado pela expressão: 
 
FPMR =
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎çã𝑜 𝑀é𝑑𝑖𝑎
𝑇𝐿𝑉 (𝐴𝐶𝐺𝐼𝐻) 𝑜𝑢 𝐿𝑇 (𝑁𝑅15)
 (7) 
 
A FUNDACENTRO (2016) recomenda calcular a concentração mais crítica de exposição prevista nas 
operações de rotina ou de emergência é maior do que o limite de exposição ocupacional aplicável (LEO), ou seja, 
utilizando a expressão (6); ou obedecendo a regulamentos ou legislação específica. Uma vez determinado o 
FPMR, a seleção é feita escolhendo o EPR, conforme apresentado na Tabela 4. Se o FPMR for menor que 1, 
não é necessário o uso de respirador, exceto para aerossóis, como os particulados ou fibras, exemplo: asbesto, 
sílica, poeiras metálicas, entre outros. 
 
Tabela 4. Fatores de proteção atribuídos (FPA) (FUNDACENTRO, 2016). 
 
Tipo de respirador 
Tipos de coberturas das vias respiratórias 
Com vedação facial Sem vedação facial 
Peça semifacial Peça facial inteira Capuz outros 
A - Purificador de ar 
não motorizado 10 100 - - 
motorizado 50 1000 1000 25 
B – De adução de ar 
B1 – Linha de ar comprimido 
 
de demanda sem pressão positiva 10 100 - - 
de demanda com pressão positiva 50 1000 - - 
de fluxo contínuo 50 1000 1000 25 
B2 – Máscara autônoma (circuito 
aberto ou fechado) 
 
de demanda sem pressão positiva 10 100 - - 
de demanda com pressão positiva - 10000 
 
A seleção do EPR é feita escolhendo (Tabela 5) um respirador que possua Fator de Proteção Atribuído 
(FPA) maior do que o FPMR, Com base na Tabela 4, deve-se selecionar um respirador ou tipo de respirador, 
considerando a Tabela 5, para a escolha final, a adequação do respirador ao usuário, à tarefa (o tipo de trabalho 
a ser realizado, o nível de esforço físico, a duração e a frequência da tarefa, necessidades quanto à mobilidade, 
comunicação e visão etc.) e ao ambiente de trabalho. Se o contaminante for irritante aos olhos ou sua 
concentração no local de trabalho for tal que cause danos aos olhos, selecionar um respirador com peça facial 
inteira, capuz ou capacete (FUNDACENTRO, 2016). 
O Programade proteção respiratória (PPR) da FUNDACENTRO (2016) apresenta um roteiro de seleção e 
procedimentos para a seleção dos respiradores para uso rotineiro que permite obter o FPMR e o FPA pelo método 
das bandas de controle, sendo baseado em conceitos e parâmetros técnico-científicos modernos, segundo 
tendências internacionais, não havendo, contudo, equivalência com o critério legal, que exige o conhecimento da 
concentração mais crítica de exposição prevista. Se o agente químico, gerado mecanicamente, for um particulado, 
poeiras ou névoas, recomenda-se a utilização de filtros mecânicos tipo classe P1 ou peça semifacial filtrante para 
partículas PFF1, se o FPMR for igual a 5. Se o FPMR for menor ou igual 10), para particulados gerado 
mecanicamente ou termicamente gerado (fumos), usar filtro classe P2 ou peça semifacial filtrante para partículas 
PFF2, o for névoa à base de tinta, esmalte ou verniz, contendo solvente orgânico, usar filtro combinado: filtro 
químico contra vapores orgânicos e filtro para partículas classe P2. Para os respiradores com peça facial inteira, 
o FPA é 100 somente quando equipado com, no mínimo, filtro P2; não se deve utilizar filtro P1 com esse tipo de 
respirador. o FPA é 1000 para respiradores com cobertura das vias respiratórias que cobrem a face, a cabeça e 
se estendem até os ombros e para capuzes considerados com vedação facial, possuem uma peça semifacial em 
seu interior. No caso dos metais-duros e metais pesados, substâncias com limite de exposição menor ou igual a 
0,05 mg.m-3, deve-se usar filtro classe P3 (ou PFF3 se FPMR for menor que 10) (FUNDACENTRO, 2016). 
 
106 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Tabela 5. Cobertura das vias respiratórias (FUNDACENTRO, 2016) 
 
Tipos Exemplos 
peça semifacial filtrante (PFF) sem e com 
válvula de exalação. 
 
coberturas das vias respiratórias 
cobrindo a boca, o nariz e o queixo (ISO 
16975.1) 
 
coberturas das vias respiratórias 
cobrindo a face (ISO 16975.1) 
 
coberturas das vias respiratórias 
cobrindo a cabeça (ISO 16975.1) 
 
 
O FPA se valida quando o respirador for utilizado conforme as recomendações contidas no PPR (seleção 
correta, ensaio de vedação, treinamento, política da barba etc.) e com a ficha do Certificado de Aprovação (CA) 
do EPI, de acordo com a NR 06 EPI (Brasil, 2018). O FPA não é aplicável para respiradores de fuga. Se o 
contaminante for irritante aos olhos ou a sua concentração no local de trabalho for tal que cause danos aos olhos, 
conforme indicado Tabela 3, selecionar um respirador com peça facial inteira, capuz ou capacete 
(FUNDACENTRO, 2016). 
 
2. AVALIAÇÃO DAS CONDIÇÕES DO AMBIENTE DE TRABALHO 
 
Seguem algumas imagens, Fig.9 até a Fig.20, que se referem as etapas de fabricação de ferramentas e 
produtos em metais-duros e/ou metais-pesados, de uma empresa metalúrgica em São Paulo. Trata-se de uma 
empresa brasileira cuja classificação nacional das atividades econômicas (CNAE), possui nexo com os números 
25.32-2 – Produção de artefatos estampos de metal, Metalurgia do pó e 25.43-8 - Fabricação de ferramentas, 
conforme descrito na Norma regulamentadora Nº 04 (NR 04 SESMT) Serviços Especializados em Engenharia de 
Segurança e em Medicina do Trabalho (Brasil, 2016). A inspeção no local de trabalho ou avaliação das condições 
do ambiente de trabalho, se deu forma qualitativa, de modo a tornar compatível permanentemente o trabalho 
preventivo, preservação da vida e evitar as doenças (DPMD) nos trabalhadores. 
Nesta etapa, Fig. 9(a), o trabalhador estava realizando a manipulação e uma mistura dos pós-metálicos, 
de forma manual, com as mãos, tendo o contato direto com o pó, onde através da manipulação produzirá a 
suspensão dos pós, que podem ser inalados, tragados ou entrar em contato direto com a pele ou olhos. 
 
 
 
Fig. 9(a). Pesagem do pós-metálicos; (b). Mistura dos pós-metálicos com solventes; e (c). Enchimento da 
mistura híbrida no moinho de bolas de alta energia. 
107 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Na Fig. 9(b), o trabalhador adicionou solventes aromáticos (líquidos inflamáveis), podendo ser utilizados 
diversos, de acordo com a composição química das ligas WC-Co ou WC-Ni, os álcoois (isopropílico, etano, 
metanol, entre outros) e os hidrocarbonetos (querosene, heptano, hexano, nafta, entre outros). 
Na Fig.9(c), o trabalhador está adicionando essa mistura híbrida (pós e solvente) ao equipamento de 
moagem de alta energia denominado Moinho Atritor, sendo feita a moagem com bolas de metal-cerâmica, e a 
homogeneização dos pós-metálicos, variando o tempo de 1 hora até 6 horas, dependendo da quantidade de 
material adicionado. A capacidade máxima deste equipamento é de 500 kg de adição da mistura e os particulados 
de WC-Co e WC-Ni podendo variar de 0,1 a 10 micra (µm), conforme aplicação do produto. 
Na Fig. 10(a), o trabalhador faz o descarregando da mistura híbrida do moída e homogeneizada do moinho 
Atritor, Fig.10(b), em seguida foi feita a decantação, para separar o líquido do sólido, o excesso de líquido. Nesta 
etapa o operador tem contato direto com os produtos químicos e solventes, Fig. 10(c), resultando em uma mistura 
híbrida, o pó misturado com solventes quando inalado pode ocasionar irritação das vias respiratórias. Relato do 
trabalhador evidencia irritação e rachaduras na pele, partes das mãos e braços. 
 
 
 
Fig. 10(a). descarga da mistura moída com solvente aromático; (b) Moinho Attritor de alta energia; e (c). 
fechamento da válvula do moinho Atrittor e decantação para separação do sólido e líquido. 
 
Após a decantação e a retirada do excesso de líquido do recipiente, a carga é colocada em cima de um 
carrinho de transporte, Fig. 11 (a), para o setor de secagem. Na Fig. 11 (b), o trabalhador retira o pós-metálico 
umedecido do recipiente, na forma de lama, colocando em muflas abertas para vaporização do solvente, no qual 
denomina-se “Banho Maria”. Após algumas horas de secagem, Fig. 11(c), o trabalhador recolhe o pó seco, a uma 
temperatura de aproximadamente 120ºC. Neste setor, percebe-se um odor muito forte de solvente no meio 
ambiente de trabalho. Na etapa de vaporização o operador foi exposto aos agentes nocivos como: vapores 
aromáticos gerados pelo processo de secagem e inalação de pós-metálicos. Há registros de incidentes neste 
setor, princípios de incêndio, queima dos pós-metálicos e riscos de explosão devido a quantidade de vapores. 
 
 
 
 
 
Fig. 11(a). – Transporte da massa mistura para outro departamento.; (b) colocação da mistura dentro de 
um forno para vaporização do álcool; e (c). Secamento da mistura. 
 
Após a secagem dos pós-metálicos, foi realizado o peneiramento e a adição de aglutinantes como a 
parafina, Monoetilenoglicol (MEG) e o polietilenoglicol (PEG), Fig. 12(a). Esses aglutinantes são introduzidos na 
mistura para facilitar a escoabilidade e compressibilidade na etapa de compactação, Fig. 12(b). A Fig. 12(c), 
apresenta um trabalhador realizando a montagem de uma matriz móvel para compactação, com a punção inferior, 
o punção superior e o fixo central. Os riscos ambientais destacam-se por: riscos de acidentes, ergonômicos e 
inalação de pós-metálicos. 
 
108 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
 
Fig. 12(a). Setor de peneiramento e aglutinação e; (b) Processo de prensagem com matriz móvel. e (c). 
Montagem da matriz de compactação móvel. 
 
Após a etapa de compactação, os compactados a verde, Fig. 13(a) seguem para o setor de pré-
sinterização e continuam o processo, sendo colocados em caçambas de grafite Fig. 13 (b) e depois colocados 
em um forno com atmosfera de hidrogênio a temperaturas que podem variar de 750 de até 1000 ºC. Essa etapa 
consiste na remoção do aglutinante (parafina ou hexano ou MEG ou PEG), a fim de obter propriedades de 
resistências à ruptura para facilitar na próxima etapa, chamada de pré-usinagem. Nestaetapa o trabalhador 
encontrou-se exposto aos agentes nocivos: inalação de pó de grafite, fumos, óxidos e gases tóxicos proveniente 
da eliminação do aglutinante, riscos de incêndio ou até explosão conforme relatos dos trabalhadores. 
 
 
 
Fig. 13(a). Peças compactadas a verde; (b) Preparação e colocação do compactado em caçambas de aço 
para sua entrada no forno com atmosfera de hidrogênio; e (c). Fornos de pré-sinterização. 
 
A após 72 horas dentro do forno de pré-sinterização (atmosfera de hidrogênio), os compactados a verde 
são encaminhados para o setor de pré-usinagem, considerada a segunda etapa mais crítica para a área da 
segurança do trabalho com relação a liberação de aerodispersóides no meio ambiente de trabalho. Na Fig. 14(a), 
(b) e c compactado a verde sendo torneado. Nos detalhes das imagens, percebe-se a dispersão do pó residual 
visível em cima do carrinho de avanço e no barramento do torno mecânico. 
 
 
 
Fig. 14(a). Torneamento de uma bucha; (b) Placa de torno de movimento para execução do torneamento 
de um cilindro. e (c). tarugo de grande dimensão para torneamento. 
 
O operador executa cortes nos compactados a verde (blanks) com um disco diamantado específico 
conforme apresentado na Fig. 15 (a), em uma peça grande e Fig. 15 (b). Percebe-se, neste setor, a geração de 
muito aerodispersóides no ambiente de trabalho, a falta do uso de EPR por parte da grande maioria dos 
trabalhadores e a falta do uso de luvas de látex, foram percebidos, conforme apresentado na Fig. 15 (c). 
 
109 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
 
 
Fig. 15(a). Pré-usinagem de tarugos de misturas compactadas, (b) corte de blanks cilíndricos de metal-
duro compactado e (c) profissional apresentando as mãos impregnadas de pós-metálicos de metal-duro. 
 
Na Fig. 16(a) é apresentada uma peça sendo usinada pela técnica de fresamento CNC, é uma ferramenta 
de corte rotativa anatômica na forma de compactada a verde e na Fig. 16 (b), um trabalhador aplicado um jato de 
gás de nitrogênio em baixa vazão para eliminação do excesso de pó residual nos cantos vivos da peça. 
 
 
 
Fig. 16(a). Fresamento CNC em 3 eixos; (b) peça a verde acabada; e (c). limpeza da peça a verde para 
remoção de pós impregnados nos cantos ou rebaixo da peça, com nitrogênio gasoso em baixa pressão. 
 
O próximo passo é a sinterização, sendo utilizados dois tipos de fornos: um a vácuo, Fig.17(a) e o outro 
sinterHIP, Fig.17(b), onde o ciclo térmico total leva em torno de 12 horas com uma temperatura podendo variar 
de 1350 a 1500ºC, dependendo da liga de WC-Co ou WC-Ni. Nesta etapa o forneiro somente foi exposto aos 
riscos de acidentes e a radiação não-ionizante, através de um pirômetro para avaliar a temperatura do forno, 
leitura direta na observação da incandescência de um filete de tungstênio. A Fig. 17 (c) o produto sinterizado em 
bruto, pronto para ir para o setor de retificação. 
 
 
 
Fig. 17(a). parte interno de um forno de Sinterização a vácuo; (b) produto sendo colocado no forno sínter 
HIP; e (c) produto sinterizado no forno sínter HIP 
 
No setor de retificação, encontram-se máquinas como a retifica plana, cilíndrica universal (externo e interno) 
retífica centerless (sem centro) e afiadoras, de modo geral. Para a retificação plana, Fig. 18(a) foi realizado o 
desbaste e acabamento superficial da altura das peças. Na Fig. 18(b) uma retificador de máquina operatriz, a 
retífica cilíndrica externa; executando a remoção do sobremetal do diâmetro externo da peça. Neste processo foi 
possível ver a geração de vapores d’água, formando neblinas e/ou pulverizados. Na Fig. 18(c) a operação é a 
retificação do furo interno da peça sinterizada, tornando em uma ferramenta especial acabada. Os trabalhadores 
no processo de retificação de metal-duro muitas vezes se deparam com a necessidade de utilizarem fluidos de 
corte à base de água, óleo solúvel de corte ou não, constatou-se que estes poderiam encontrar-se contaminados 
110 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
por Mycobacterium immunogenum, considerados mico bactérias não tuberculosas, causando pneumonite de 
hipersensibilidade (Mizutani et al. 2016). 
 
 
 
 
Fig. 18 (a). Retifica Plana.; (b) Retifica Cilíndrica. e (c). Retifica Cilíndrica Universal. 
 
Existem outras técnicas a serem utilizadas no processo de fabricação de produtos em metais-duros e 
metais-pesado, como o uso de jateamento seco para a limpeza de peças em bruto 19(b) e (c), eletroerosão com 
o meio líquido de resfriamento, a base de querosene, Fig. 19(a). Dependendo do tipo, geometria, classe, raio de 
canto e tamanho da pastilha, pode ser elaborado um eletrodo para o desbaste com descarga elétrica e ajustado 
de acordo com o projeto final. 
 
 
 
Fig. 19(a). processo de eletroerosão por penetração, (b) processo de jateamento em peças de METAL-
DURO (c). Acúmulo de poeiras de SiC no chão. 
 
Na Fig.19(a), é apresentada um operador de eletroerosão que tem o contato com o meio aquoso, o 
querosene e está exposto a vapores de querosene sem a devida proteção do maquinário (enclausuramento) e 
sem o EPI. Na Fig. 19 (a), é apresentada o processo de jateamento a seco, podendo ser com pó de SiC 
(Carboneto de Silício) ou com esfera de vidro (sílica ou quartzo) Percebe-se no local de trabalho, na Fig. 19(b), 
acúmulo de material particulado no piso e em cima da bancada; a falta de sistema de exaustão e sem ventilação 
para a remoção do aerodispersóides proveniente do jateamento. 
 
3. CONCLUSÕES 
 
Com o surgimento do TLV-TWA da ACGIH de 0,005 mg.m-3 para metais-duros contendo cobalto, carbonetos 
de tungstênio e ou ligas cobalto, na forma de pós-metálicos, caracterizando uma notação como sensibilização 
respiratória e doença ocupacional, a pneumoconiose, é possível realizar a avaliação quantitativa, o que não era 
possível antes de 2016. No Brasil, era realizada somente a avaliação qualitativa, conforme a NR15, ou seja, com 
a inspeção no local de trabalho mediante da comprovação de laudo técnico elaborado por um engenheiro ou 
médico do trabalho conforme definido pela CLT. Para a prevenção da saúde do trabalhador, o nível de ação deve 
estar abaixo de 50% do Limite de Tolerância, 0,0025 mg.m-3. Acima do limite de tolerância, caracteriza-se 
insalubridade de grau máximo, em que o profissional terá o direito de 40% de adicional de insalubre sobre o 
salário-mínimo regional; e acima do valor máximo de 0,015 mg.m-3, para um fator de desvio igual a 3, uma vez 
ultrapassado, caracteriza risco grave e iminente. Os setores mais críticos, na geração de aerodispersóides na 
fabricação de produtos e ferramentas de metais-duros, são os setores de peneiramento e usinagem. Os diâmetros 
aerodinâmicos dos particulados inferiores a 10 µm, poeiras respiráveis, podem implicar no surgimento da DPMD, 
conforme relatados por profissionais da área da medicina do trabalho. A prevenção à saúde desses trabalhadores, 
na indústria analisada, se dá através da limitação do tempo de exposição aos pós-metálicos e no uso correto do 
EPR, que está em função do tamanho do particulado dinâmico e do FPMR. A DPMD ocorre devido as exposições 
elevadas de concentrações de aerodispersóides e poderá surgir depois muitos anos. Neste trabalho identificou-
111 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
se também a necessidade e a importância do treinamento dos trabalhadores, mas não apenas dos que atuam 
diretamente com o produto, mas das equipes multidisciplinares da gestão, segurança e medicina do trabalho. 
 
4. LISTA DE SÍMBOLOS E ABREVIATURAS DE TERMOS 
 
BEI -Biological Exposure Indice, tradução (Índice de exposição biológica) 
BEIp - BEI para carboneto aromático policíclico. 
DA - Diâmetro Aerodinâmico dos particulados. 
DSEN: Sensibilização Dérmica. 
DPMD - Doença pulmonar por metal-duro. 
EC – Éster de celulose. 
EPI – Equipamento de proteção individual. 
EPR - Equipamentode proteção respiratória. 
IPVS – Imediatamente Perigoso para vida ou saúde, tradução de IDLH (Immediately Dangerous to Life or 
Health). 
LEO – Limites de Exposição Ocupacional. 
LT – Limite de tolerância. 
mg.m-3 – miligramas por metro cúbico de ar. 
NHO - Norma de Higiene Ocupacional. 
NIOSH - National Institute for Occupational Safety and Health. 
NR – Norma regulamentadora. 
OSHA - Occupational Safety and Health Administration. 
PELE - contribuição potencial da exposição por via cutânea para a exposição total. 
PFF - peças semifaciais filtrantes. 
PNOS - partículas não especificadas de outra maneira 
ppm – partes de vapor ou gás por milhão de partes de ar contaminado. 
PVC – Policloreto de vinila. 
RSEN: Sensibilizante respiratório. 
SEN: Sensibilizante. 
STEL - Short-Term Exposure Limit - limites de exposição para curto-prazo. 
TLV - Threshold Limit Values, concentrações de substâncias químicas no ar. 
TWA - Time-Weighted Average - média ponderada no tempo. 
WC-Co – Liga de carboneto de tungstênio e cobalto, denominada metal-duro. 
W-Ni - Liga de tungstênio e níquel, denominada metal-pesado. 
 
5. AGRADECIMENTOS 
 
Os autores agradecem a UFRN, a Rede PDIMat pelo apoio e participação do EngBrasil 2021, ao responsável 
e aos trabalhadores que permitiram o acesso aos setores da fábrica sem interferir na rotina de trabalho durante 
o período de avaliação e inspeção. 
 
6. REFERÊNCIAS 
 
Abd-Elghany, A.A; Daoush, W. M.; El-Kady, O. A.; Ghanem, M.A. and El-Nikhaily, A. E., (2018) “Fabrication, 
Microstructure, Hardness and Magnetic Properties of (W:Ti)C-Ni Cemented Carbides using Atomized Ni Powder” 
Global Journal of Researches in Engineering: (G) Industrial Engineering. Volume XVIII Issue I Version I. 
ACGIH - American Conference of Governmental Industrial Hygienists (2021) “TLVs and BEIs: based 
documentation of threshold limit values for chemical substances and physical agents & biological exposure 
indices” Cincinnati (OH); 
Alam, M.E.; Wang, J.; Henager Jr., C.H.; Setyawan, W.; Odette, G.R.; (2021) “The effect of hot rolling on the 
strength and fracture toughness of 90W–7Ni3Fe tungsten heavy metal alloys” Materials Science & Engineering A 
doi: https://doi.org/10.1016/j.msea.2021.141738. 
Alves, A. N. L.; Della Rosa, H. V. 2003 "Exposição ocupacional ao cobalto: aspectos toxicológicos". Revista 
Brasileira de Ciências Farmacêuticas Brazilian Journal of Pharmaceutical Sciences vol. 39, n. 2, abr./jun., 2 
Brasil. Decreto-lei nº 5.452, de 1 de maio de 1943. Aprova a consolidação das leis do trabalho. Brasília. 
Disponível em: < http://www.planalto.gov.br/ccivil_03/decreto-lei/del5452.htm> acesso em: 
26/09/2021 
Brasil. Ministério do Trabalho e Previdência. (2016) “NR-4 - Serviços Especializados em Engenharia de 
Segurança e em Medicina do Trabalho” Portaria MTPS 510, de 29/04/2016. Brasília. Disponível em: 
<https://www.gov.br/trabalho-e-previdencia/pt-br/composicao/orgaos-especificos/secretaria-
de-trabalho/inspecao/seguranca-e-saude-no-trabalho/normas-regulamentadoras/nr-
04.pdf>Acesso em: 26/09/2021. 
http://www.planalto.gov.br/ccivil_03/decreto-lei/del5452.htm
https://www.gov.br/trabalho-e-previdencia/pt-br/composicao/orgaos-especificos/secretaria-de-trabalho/inspecao/seguranca-e-saude-no-trabalho/normas-regulamentadoras/nr-04.pdf
https://www.gov.br/trabalho-e-previdencia/pt-br/composicao/orgaos-especificos/secretaria-de-trabalho/inspecao/seguranca-e-saude-no-trabalho/normas-regulamentadoras/nr-04.pdf
https://www.gov.br/trabalho-e-previdencia/pt-br/composicao/orgaos-especificos/secretaria-de-trabalho/inspecao/seguranca-e-saude-no-trabalho/normas-regulamentadoras/nr-04.pdf
112 
E-Book “Materiais metálicos: Composição, fabricação, propriedades e desempenho” 
Brasil. Ministério do Trabalho e Previdência. (2018) “NR-7 - Programa de Controle Médico de Saúde 
Ocupacional” Portaria MTb 1031, de 06/12/2018. Brasília. Disponível em: < https://www.gov.br/trabalho-e-
previdencia/pt-br/composicao/orgaos-especificos/secretaria-de-trabalho/inspecao/seguranca-
e-saude-no-trabalho/ctpp-nrs/norma-regulamentadora-no-7-nr-7>Acesso em: 03/10/2021. 
Brasil. Ministério do Trabalho e Previdência. (2018) “NR-6 - Equipamento de Proteção Individual” Portaria 
MTb 877, de 24/10/2018. Brasília. Disponível em: < https://www.gov.br/trabalho-e-previdencia/pt-
br/composicao/orgaos-especificos/secretaria-de-trabalho/inspecao/seguranca-e-saude-no-
trabalho/ctpp-nrs/norma-regulamentadora-no-6-nr-6>Acesso em: 03/10/2021. 
Brasil. Ministério do Trabalho e Previdência. (2019) “NR-15 - Atividades e operações insalubres” Portaria 
SEPRT N.º 1.359, DE 09 de dezembro de 2019. Brasília: Disponível em: < https://www.gov.br/trabalho-e-
previdencia/pt-br/composicao/orgaos-especificos/secretaria-de-trabalho/inspecao/seguranca-
e-saude-no-trabalho/normas-regulamentadoras/nr-15.pdf> Acesso em: 26/09/2021. 
Buschinelli, J. T.; Kato, M. (2011) “Manual para interpretação de informações sobre substâncias químicas” 
Fundacentro, São Paulo. Disponível em: <http://antigo.fundacentro.gov.br/biblioteca/biblioteca-
digital/publicacao/detalhe/2013/3/manual-para-interpretacao-das-informacoes-sobre-
substancias-quimicas> Acesso em: 26/09/2021. 
CAS Chemical Abstract Service. Chemical Registry. 2020 Disponível em: https://web.cas.org/cgi-
bin/regreport.pl acesso em 03/01/2021. 
Colacioppo, S. “Higiene e Toxicologia Ocupacional” (2020). Disponível em ABHO 
https://www.abho.org.br/livro-higiene-e-toxicologia/ Acesso: 03/10/2021 
EUROPEAN COMMITTEE FOR STANDARDIZATION. EN 481 (1993). “Workplace Atmospheres: Size 
Fraction Definitions for Measurement of Airborne Particles. Brussels: BSI, 1993. 
Fernandes, C.M.; Senos, A.M.R. Cemented carbide phase diagrams: A review. Int. Journal of Refractory 
Metals and Hard Materials, 29 (2011) 405–418. 
FUNDACENTRO (2001) "Norma de Higiene Ocupacional NHO 03 - Método de Ensaio: Análise Gravimétrica 
de Aerodispersóides Sólidos Coletados Sobre Filtros e Membrana" Disponível em: 
<http://antigo.fundacentro.gov.br/biblioteca/normas-de-higiene-
ocupacional/publicacao/detalhe/2013/3/nho-03-metodo-de-ensaio-analise-gravimetrica-de-
aerodispersoides-solidos-coletados-sobre> Acesso: 05/10/2021 
FUNDACENTRO (2009) "Norma de Higiene Ocupacional NHO 08 - Coleta de Material Particulado Sólido 
Suspenso no Ar de Ambientes de Trabalho" Disponível em: 
<http://antigo.fundacentro.gov.br/biblioteca/normas-de-higiene-
ocupacional/publicacao/detalhe/2013/3/nho-0-coleta-de-material-particulado-solido-
suspenso-no-ar-de-ambientes-de-trabalho> Acesso 05/10/2021 
FUNDACENTRO (2016) "Programa de Proteção Respiratória: Recomendações, seleção e uso de 
respiradores" Disponível em: < http://antigo.fundacentro.gov.br/biblioteca/biblioteca-
digital/publicacao/detalhe/2016/6/programa-de-protecao-respiratoria> Acesso 08/10/2021 
García, J.; Collado Ciprés, V.; Blomqvist, A.; Kaplan, B. (2018). Cemented carbide microstructures: A review. 
International Journal of Refractory Metals and Hard Materials. 80. 40-68. 10.1016/j.ijrmhm.2018.12.004. 
Mcelvenny, D.; MacCalman, L.; Sleeuwenhoek, A.; Davis, A.; Miller, B.; Alexander, C.; Cowie, H.; Cherrie, J.; 
Kennedy, K.; Esmen, N.; Zimmerman, S.; Buchanich, J.; Marsh, G. (2017). “Mortality Among Hardmetal Production 
Workers: UK Cohort and Nested Case–Control Studies”. Journal of Occupational and Environmental Medicine. 
59. 1. 10.1097/JOM.0000000000001036. 
Mizutani, R. F.; Terra-Filho, M. Lima, E.; Freitas, C.S.G., Chate, R. C.; Kairalla, R. A.; Carvalho-Oliveira, R.; 
Santos, U. P. (2016) "Doença pulmonar por metal-duro: uma série de casos. J Bras Pneumol. 2016;42(6):447-
452 https://doi.org/10.1590/S1806-37562016000000260. 
Moreira, M.A.; Cardoso, A. R.O.; Silva, D.G.S.T.; Queiroz, M.C.C.A.M.; Oliveira, A.A.; Noleto, T.M.A.; (2010) 
"Hard metal pneumoconiosis with spontaneous bilateral pneumothorax". J Bras Pneumol. 2010 Jan-
Feb;36(1):148-51. English, Portuguese. doi: 10.1590/s1806-37132010000100020. PMID: 20209319. 
Morfeld, P.; Groß, J. V.; Erren, T. C.;

Mais conteúdos dessa disciplina