Buscar

Livro Texto imunologia - Unidade III (3)

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 79 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 79 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 79 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

148
Unidade III
Unidade III
7 RESPOSTA IMUNE A PATÓGENOS
7.1 Resposta imune a bactérias
Bactérias são microrganismos unicelulares, procariotos, que têm parede celular. Existem diversos 
tipos de bactérias, e a maioria delas não causa nenhum tipo de malefício à saúde humana. No entanto, 
existem bactérias patogênicas que são amplamente difundidas e causam desde simples infecções locais 
até graves patologias responsáveis por óbitos.
Mesmo após a descoberta dos antibióticos, que ocorreu em 1928, quando o médico e professor 
escocês Alexander Fleming descobriu a penicilina, as infecções bacterianas continuam sendo uma das 
principais ameaças à saúde pública. Um exemplo é a tuberculose, que tem como agente etiológico o 
Mycobacterium tuberculosis, um bacilo altamente transmissível e contagioso. Estima-se que uma pessoa 
na fase bacilífera da doença possa infectar até cinquenta pessoas suscetíveis. Porém em decorrência dos 
nossos mecanismos de defesa imunológica e da existência de uma vacina, a BCG, a maioria das pessoas 
não manifesta os sinais clínicos da doença, mesmo após entrar em contato com o bacilo.
As superfícies celulares são muito distintas entre os diferentes grupos de bactérias e, por esse motivo, 
o reconhecimento e o desencadeamento da resposta imune é muito variável. Esses microrganismos 
apresentam paredes celulares com características estruturais distintas, que se diferem entre as bactérias 
Gram-positivas, Gram-negativas, micobactérias e espiroquetas. As bactérias Gram-negativas, por 
exemplo, são suscetíveis à lise desencadeada pelo sistema complemento, pois apresentam uma bicamada 
lipídica externa.
No entanto, a forma mais comum de eliminação da maioria das bactérias ocorre a partir da fagocitose.
Proteoglicanos Lipopolissacarídeos
Espaço 
periplásmico
Espaço 
periplásmico
Membrana 
plasmática
Membrana 
externa
Membrana 
plasmáticaFosfolipídeos
Fosfolipídeos
Porina
Ácido lipotecóico Ácido tecóico
Gram positivo Gram negativo
Figura 82 – Diferenças entre as superfícies externas das bactérias Gram-positivas e das bactérias Gram-negativas
149
IMUNOLOGIA BÁSICA
As diferentes moléculas que estão na superfície das bactérias que serão reconhecidas como antígeno 
pelo sistema imunológico, consequentemente desencadeando a resposta imune para a eliminação 
dos patógenos.
Além da parede celular, as bactérias apresentam outras estruturas, como os flagelos e as fimbrias, 
que, muitas vezes, atuam como fatores de virulência. Muitas delas também apresentam uma cápsula 
mucoide que protege as bactérias da fagocitose, o que caracteriza uma forma de evasão do sistema 
imunológico. Apesar de agirem na proteção contra a resposta imunológica, essas estruturas algumas 
vezes serão os locais alvos do reconhecimento e da ação dos anticorpos.
A patogenicidade das bactérias depende de vários fatores, e esses microrganismos podem ser:
• tóxicos, mas sem capacidade invasiva;
• invasores, na ausência ou não de toxicidade;
• produtores de diversas enzimas que são consideradas fatores de virulência;
• capazes de se “esconder” do sistema imunológico, com mecanismos de evasão.
Tais mecanismos determinam a letalidade e a gravidade da infecção bacteriana. Às vezes, as doenças 
podem cursar de forma assintomática, ou com poucos sintomas, ou sintomática, ou letal, a depender da 
combinação dos fatores de patogenicidade apresentada pelo patógeno.
A toxicidade bacteriana normalmente está associada à produção de toxinas que atuam na destruição 
dos tecidos do hospedeiro. As toxinas podem também estar associadas a fatores de disseminação, 
normalmente enzimas. Bactérias que são toxigênicas e não invasivas têm como importante via da 
defesa imunológica a neutralização das toxinas pelos anticorpos. Já nas infecções por bactérias que são 
invasivas, apenas neutralizar as toxinas pelos anticorpos não é suficiente para a sua eliminação.
Em alguns casos, a manifestação da doença ocorre apenas pela liberação de uma toxina pela 
bactéria. É o que acontece, por exemplo, na intoxicação alimentar, onde a Staphylcoccus aureus 
libera uma toxina nos alimentos. A toxina, quando ingerida, causa irritação na mucosa intestinal e, 
consequentemente, diarreia.
Outras doenças bacterianas nas quais toxina é responsável pelas manifestações clínicas são o 
botulismo e o tétano. Os microrganismos envolvidos nessas doenças são bacilos Gram-positivos, do 
gênero Clostridium, produtores de toxinas e capazes de formar esporos.
As bactérias invasivas, por sua vez, destroem os tecidos durante o processo infeccioso. Nesses casos, a 
eliminação do patógeno é essencial. Exemplos importantes de doenças causadas por bactérias invasivas 
são a tuberculose e a shiguelose.
Os seres humanos estão todo dia em contato com diferentes tipos de bactérias. Algumas são 
suficientemente virulentas para desencadear uma doença, enquanto outras são neutralizadas pelo 
sistema imunológico. Independentemente da virulência da bactéria, para que a doença se manifeste, a 
primeira linha de defesa do organismo deve ser rompida.
150
Unidade III
A primeira linha de defesa do organismo são as barreiras naturais do nosso organismo, que foram 
estudadas na unidade II deste livro-texto.
A pele, por exemplo, quando intacta, é impermeável para a maioria das bactérias. Além disso, 
ela é responsável pela produção de ácidos graxos tóxicos a diversos microrganismos. Algumas cepas 
bacterianas têm sua patogenicidade atrelada ao fato de conseguirem sobreviver na pele.
Além de entrarmos em contato com milhares de patógenos diariamente, nosso corpo é colonizado 
por milhares de microrganismos comensais que fazem parte da nossa microbiota e proporcionam uma 
barreira protetora contra patógenos. É estimado que o corpo humano possua dez vezes mais células 
microbianas do que humanas, e o local mais ricamente povoado por bactérias é o intestino.
Atualmente, diversos pesquisadores em todo o mundo estão estudando o microbioma intestinal, 
utilizando técnicas de sequenciamento de RNA ribossômico. Essa microbiota, além de diversa, é 
individual, e uma das suas funções é proteger o corpo de agentes etiológicos, seja por competição 
nutricional, seja por produzir proteínas antimicrobianas, as colicinas.
Mesmo a nossa microbiota, em casos de desequilíbrio (disbiose), pode desencadear respostas 
inflamatórias. Por isso, o organismo tenta impedir que haja o contato entre as bactérias e o epitélio do 
intestino, a partir da produção de mucinas, que são peptídeos antimicrobianos, e da secreção de IgA 
proveniente dos MALT. Quando uma bactéria comensal consegue romper essas barreiras, ela precisa ser 
capturada pelas células dendríticas intestinais, o que ativa a resposta imune local, que envolve as ações 
de células T CD4+ e linfócitos T reguladores.
Área perifolicular Macrófagos Lâmina própria
Cél. dendriticas
Cél. de 
Paneth
LTsB
Placa de Peyer
Ácido retinoico
Cél. caliciforme
Mucina
Camada 
de muco
Microbiota
TLR
Célula M
Enterócitos
Junções firmes 
(tight junctions)
ZMCG
LTreg
Célula Th1: IFN-g
Célula Th17
IL-17
IL-21
IL-22
Figura 83 – Microbiota e imunidade
151
IMUNOLOGIA BÁSICA
As células microbianas do intestino não estão em contato íntimo com os enterócitos, as células 
intestinais ficam protegidas por uma camada de muco, no intestino há vários componentes da resposta 
imune, os linfócitos intraepiteliais, células dendríticas, macrófagos, alta concentração de IgA, entre 
outros, que servem como barreira contra a entrada de bactérias patogênicas no hospedeiro.
Se uma bactéria, por qualquer motivo, “vence” a primeira linha de defesa, ocorre ativação de outros 
mecanismos da imunidade inata. O início da resposta ocorre com o reconhecimento dos padrões 
moleculares associados a patógenos (PAMPs), que estudamos na unidade I deste livro texto, pelos 
receptores de reconhecimento padrão (RRP). Nas bactérias Gram-negativas, o ativador principal da 
resposta imune será o LPS (lipopolissacerídeo) da sua superfície, que é uma molécula comgrande 
capacidade de gerar resposta inflamatória. A presença do LPS resulta na liberação de citocinas, tais 
como IL-1, IL-6 e TNF, que, em grandes quantidades, podem ocasionar até mesmo o choque séptico.
ITAM-ITIM independent
DC-SIGN
L-SIGN
SIGN-R1
MGL
LSECtin
Langerin
MR
DEC-205
b-glucan
Bactéria Fungi Parasites Self-antigens Viruses
GlcNac
Mannose
Fucose
Monosodium urate
Galactose
High mannose
High fucose
A B C D
ITIM-coupled
DCIR
MICL
CLEC-12B
ITAM-coupled
MINCLE
MDL-1
DECTIN-2
DCAR
hemITAM
Dectin-1
CLEC-2
SIGN-R3
CLEC9A
Figura 84 – Padrões moleculares associados a patógenos (PAMPs) 
e receptores de reconhecimento padrão (RRP)
Os patógenos são percebidos pelas células da resposta imune inata pelos RRP, que reconhecem os 
PAMPs, esses podem ser diversas moléculas com açúcares, que estão presente nessa ilustração. Outras 
moléculas também são PAMPs.
152
Unidade III
 Lembrete
O choque séptico é uma manifestação clínica caracterizada por 
distúrbios inflamatórios e hemodinâmicos, mas nem sempre ocasionada 
por um agente infecioso.
Não é só o LPS que é capaz de estimular a resposta imune. As bactérias Gram-positivas, por exemplo, 
não têm LPS, mas também desencadeiam uma intensa resposta inflamatória. Nesse caso, os PAMPs 
são os peptideoglicanos, os ácidos tecoicos da parede celular, as lipoproteínas e a flagelina, que é uma 
proteína que constitui os flagelos e até mesmo o DNA microbiano.
Na resposta imune inata contra bactérias, a participação do sistema complemento ocorrerá 
especialmente pela ativação pela via alternativa, independentemente de linfócitos. Essa estratégia 
permite a eliminação de algumas bactérias, principalmente as Gram-negativas, que são suscetíveis ao 
ciclo lítico, resultando na ruptura do patógeno e em sua eliminação. A ativação do complemento libera 
o complemento C5a, o que atrai para o local neutrófilos. Consequentemente, ocorre a degranulação 
dos mastócitos e a liberação de histamina e de leucotrienos, que aumentam a permeabilidade vascular.
Figura 85 – Ataque da membrana de patógenos pelo sistema do complemento
As proteínas do sistema do complemento que fazem parte da resposta imune inata, irão formar 
um poro de ataque a membrana que resulta em sua lise e consequente eliminação, a ativação do 
complemente por essa via, a via alternativa, é mais comum nas bactérias Gram-negativas, que possuem 
um revestimento externo de bicamada lipídica.
Além disso, as bactérias podem ser opsonizadas pela a ligação dos derivados clivados de C3, o 
que favorece a interação dos fagócitos com o microrganismo. Algumas bactérias irão ativar o sistema 
complemento, mas o complexo lítico será desprendido da superfície microbiana sem causar a ruptura da 
célula. São exemplos dessas bactérias a Escherichia coli, a Salmonella spp. e a Pseudomonas spp.
153
IMUNOLOGIA BÁSICA
Como dito anteriormente, os componentes microbianos são importantes para o sistema imunológico 
reconhecer as bactérias e atrair os fagócitos por quimiotaxia. As principais células envolvidas são os 
macrófagos, fagócitos que apresentam atividade microbicida e capacidade de recrutar neutrófilos ou 
monócitos para o tecido infectado. Os fagócitos são atraídos para o local da infecção não apenas pelos 
componentes bacterianos, como, por exemplo, as metioninas formiladas, mas também pelos produtos 
do sistema do complemento, das quimiocinas e das citocinas.
Glicoproteína Sialil-Lewis X modificada
Integrina (estado de baixa afinidade)
Integrina (estado 
de baixa afinidade)
Rolagem
Leucócito
Adesão estávelAtivação da integrina 
pelas quimiocinas
Migração através 
do endotélio
PECAM-1 
(CD31)
P-selectina E-selectina Proteoglicano
Quimiocinas
Micróbios
Macrófagos com 
micróbios
Citocinas 
(TNF, IL-1)
Fibrina e fibronectina 
(matriz extracelular)
Ligante de integrina 
(ICAM-1)
Figura 86 – Resposta imune inata
Após a fagocitose do patógeno, os macrófagos liberam quimiocinas e citocinas que atraem mais 
células de defesa para o local da infecção. Tais células, os leucócitos, ligam-se no endotélio vascular e 
rolam através do endotélio. Integrinas ativadas pela ação das quimiocinas fazem com que ocorra uma 
ligação estável e, consequentemente, a passagem da célula da corrente sanguínea para o tecido. Esse 
evento, nomeado de diapedese, faz parte da resposta imune inata contra patógenos.
O receptor utilizado para a ligação do antígeno aos fagócitos irá determinar a eficiência da 
captação. Pode haver desencadeamento de mecanismos microbicidas ou, de maneira alternativa, 
favorecimento para o patógeno à evasão da resposta imune. Como diferentes receptores participam 
desse reconhecimento, ocorre indução de resposta imune de forma bastante variada, o que diminui a 
chance de evasão.
Após a fagocitose, com a formação do fagossomo, os mediadores microbicidas são entregues a partir 
da fusão com outras vesículas intracelulares como, por exemplo, o lisossomo. As vias de eliminação 
pelos fagócitos podem ou não ser dependentes da geração de intermediários reativos de oxigênio, 
como, por exemplo, o óxido nítrico. Pode ocorrer a explosão oxidativa, com influxo de íons de K+, o que 
ativa proteases, que serão as responsáveis pela a eliminação do patógeno fagocitado.
154
Unidade III
Lisossomo
Fagolisossomo
Fagossomo
Receptores
Bactérias
Figura 87 – Fagocitose
A bactéria é reconhecida pelo fagócito pelos RRP e é fagocitada formando o fagossomo, vesículas 
intracelulares, como o lisossomo se fundem ao fagossomo, formando o fagolisossomo, as enzimas 
lisossomais são liberadas e degradam a bactéria.
Há algumas proteínas, como as defensinas, que têm peptídeos catiônicos ricos em arginina e 
cisteína. Elas são encontradas nos grânulos dos neutrófilos e apresentam propriedades antimicrobianas, 
e a integração com a membrana lipídica microbiana leva à ruptura da célula e, consequentemente, à 
destruição do patógeno.
Além das defensinas, outros peptídeos que apresentam função antimicrobiana são:
• catecidinas, que regulam a vitamina D;
• proteogrinas, que se ligam ao LPS;
• catepsina G e azurocidina, ambas relacionadas a elastases.
Há, ainda, outros mecanismos que auxiliam na eliminação dos microrganismos. Por exemplo, após a 
fusão dos fagossomo com o lisossomo, ocorre acidificação do pH, o que torna o ambiente ótimo para as 
enzimas que irão degradar as bactérias fagocitadas.
155
IMUNOLOGIA BÁSICA
Outra estratégia de eliminação é a limitação ao acesso de fontes nutricionais para as bactérias 
que estão no meio intracelular. A disponibilidade de ferro intracelular, por exemplo, é um mecanismo 
importante na interação entre o hospedeiro e o patógeno, uma vez que o ferro influencia a expressão 
de vários genes de fatores de virulência. Com isso, sequestrar ferro é uma estratégia antimicrobiana 
eficiente principalmente para bactérias intracelulares.
A captura do ferro pela proteína lactorferrina inibe o crescimento microbiano e reduz a formação 
de biofilme. O ferro também tem papel em funções imunológicas do hospedeiro, na geração de óxido 
nítrico e no desenvolvimento de linfócitos T. Por outro lado, o excesso de ferro propicia o crescimento de 
algumas bactérias, como as Gram negativas Salmonella spp. e Yersinia spp., e da bactéria M. tuberculosis.
Os macrófagos também liberam citocinas pró-inflamatórias, tais como IL-1 e TNF, o que aumenta 
a capacidade adesiva do endotélio vascular, favorecendo a diapedese, que é a migração das células de 
defesa pelo endotélio para o foco da infecção. Além dos macrófagos, outras células, como o próprio 
epitélio, os neutrófilos e os mastócitos, são importantes na liberação de citocinas pró-inflamatórias.
Após a liberação das citocinas IL-1, IL-6 e TNF, é iniciada a resposta de fase aguda, com o aumento 
da produção de componentes do sistema do complemento e de outras proteínas, como por exemplo, a 
CRP, que é uma opsonina que tem como função melhorar a fagocitose da bactéria.
As citocinas liberadas pelos fagócitos, principalmente a IL-12e a IL-18, também estimulam as células 
NK, que irão liberar uma grande quantidade de IFN-g.
Todos os eventos descritos até agora ocorrem ainda antes da expansão clonal dos linfócitos T, ou 
seja, são eventos independentes de célula T e fazem parte da resposta imune inata.
Quando não ocorre a eliminação do agente infeccioso após a ativação e a ação da resposta imune 
inata, o reconhecimento do patógenos libera sinais que vão iniciar a resposta imune mediada por 
linfócitos, ou seja, a resposta imune adquirida ou adaptativa, que é específica para cada microrganismo.
As células dendríticas têm papel essencial na ativação da resposta por linfócitos. O contato dessas 
células com as bactérias, que resulta em fagocitose, induz a migração de células dendríticas para os 
linfonodos pelas vias aferentes linfáticas, para que ocorra a apresentação de antígenos para os linfócitos 
T CD4+ näives. As células dendríticas irão apresentar o antígeno, após o seu processamento, ligado ao 
complexo MHC II. A apresentação de antígenos foi descrita em detalhes da unidade II.
Os macrófagos também apresentam antígenos na molécula do complexo MHC, porém essa 
apresentação será muito mais importante no local da infecção, para a ativação de linfócitos “não virgens”, 
ou seja, aqueles que já reconheceram o antígeno anteriormente. Os linfócitos B, após a ativação pelas 
células dendríticas, também podem agir como células apresentadoras de antígenos para os linfócitos T 
CD4+, via apresentação via MHC II.
156
Unidade III
Receptor de 
reconhecimento de 
padrão endócítico
Citocinas
(interleucina - 1, 6, 12)
Molécula MHC classe II
Peptídeo
Ativação
CD28
B7
Célula apresentadora de antígeno
Receptor de célula T
Célula T quiescente
Patógeno
Padrão molecular associado 
a patógenos (PAMP)
Receptores do tipo Troll
Figura 88 – Apresentação do antígeno microbiano para o linfócito T
As células fagocíticas reconhecem o patógeno, PAMP, por um RRP, o patógeno será fagocitado, e 
após o processamento, as células apresentadoras de antígenos irão apresentar o peptídeo através da 
molécula do MHC classe II, as células dendríticas apresentam para os linfócitos näives e as demais células 
como os macrófagos, podem apresentar para células “não virgens”, o ligação da molécula do MHC com 
o TCR, irá precisar da participação dos co-estimuladores, B7 e CD28 para a ativação do linfócito T CD4+.
Como vimos anteriormente, os macrófagos são os principais fagócitos que participam da resposta 
imune inata contra as bactérias. A ativação que envolve a ação do IFN-g resulta em um potente 
estimulador de diversas vias microbicidas. Antes do início da resposta imune adaptativa, ainda durante 
a resposta imune inata, a produção do IFN-g é feita pelos linfócitos NK. A partir do estabelecimento 
da resposta imune adaptativa, as células responsáveis pela secreção desse mediador passam a ser os 
linfócitos T CD4+ que se diferenciaram no padrão Th1. Por isso, dizemos que o padrão Th1 da imunidade 
adaptativa, que estudamos em detalhes na Unidade II deste livro-texto, é pró-inflamatória. Ocorre, 
ainda, a ativação de linfócitos B, que irão exercer a função efetora de produção de IgG, responsáveis por 
opsonizar as bactérias e favorecer ainda mais a fagocitose.
A ativação dos macrófagos também ocorre pelo contato direto com o linfócito T CD4+, por interação 
CD40-CD40L, o que efetiva a apresentação dos antígenos fagocitados e ligados ao MHC II. Isso resulta 
na expansão clonal, que aumenta a quantidade de linfócitos específicos a fim de que haja a consolidação 
da resposta imune adaptativa para a eliminação da bactéria.
157
IMUNOLOGIA BÁSICA
Recentemente, foi descrito que a subfamília de linfócitos Th17 medeia as ligações com neutrófilos, 
outro fagócito importante para o combate às bactérias. Esse grupo de linfócitos produz IL-17 e IL-22, 
citocinas que atuam nos mecanismos de resistência às bactérias extracelulares e aos fungos, e estão 
presentes principalmente nas superfícies das mucosas.
As funções biológicas principais da IL-17 são o recrutamento e a diferenciação de neutrófilos. No 
entanto, essa citocina também atua nas células epiteliais, que, em resposta, produzem quimiocinas. A 
IL-22, por sua vez, tem como função a indução da produção de peptídeos microbicidas.
Sinal 2
Microorganismos CD4 TCR CD28 B7.1.
B7.2
Receptor 
de citocinas
Célula 
dendrítica
Citocinas Anticorpo
Sinal 1
CD40
CD40L
LB LT
Expansão clonal
Figura 89 – Apresentação de antígeno e ativação de linfócitos T e B
Dois sinais serão necessários para a ativação dos linfócitos, o primeiro sinal é o próprio antígeno, 
apresentado por uma molécula de MHC ao TCR. Já o segundo sinal ocorre por interações de moléculas 
co-estimulatórias, e por estímulo de citocinas.
Os anticorpos produzidos e secretados pelos linfócitos B são importantes no processo de eliminação 
das bactérias. O papel dos anticorpos na resposta imune contra bactérias envolve:
• a inibição da ligação da bactéria às células das mucosas;
• a neutralização de toxinas;
158
Unidade III
• o bloqueio das enzimas responsáveis pela degradação da matriz extracelular, o que evita a 
disseminação da bactéria;
• a inibição da motilidade, ao se ligar ao flagelo, o que controla a disseminação da bactéria;
• o direcionamento da ação do sistema do complemento, a partir da opsonização das bactérias.
Vale notar que alguns anticorpos da classe IgM de ocorrência natural podem bloquear estruturas 
comuns das bactérias, como a fosforilcolina.
Contudo, algumas bactérias conseguem evitar a ação dos anticorpos. Além disso, há patógenos que 
criam mecanismos para evitar a sua eliminação pelo sistema imunológico. Esses mecanismos envolvem:
• repelir as quimiocinas, secretando repelentes;
• haver presença de cápsula mucoide que os protegem da fagocitose;
• inibir a fusão do lisossomo ao fagossomo após a sua entrada na célula por fagocitose;
• liberar a enzima catalase, que hidrolisa o peróxido de hidrogênio, o que impede sua ação 
antimicrobiana.
• haver escape do fagossomo e multiplicação no citoplasma, mecanismo também realizado pelas 
micobactérias.
Além disso, algumas micobactérias podem liberar lipoarabomanana, que bloqueia a capacidade dos 
macrófagos em responder ao IFN-g.
As bactérias que conseguem sobreviver dentro das células, as intracelulares, podem proliferar dentro 
do próprio fagossomo ou escapar para o citoplasma, por liberarem enzimas que irão romper a membrana 
do fagossomo. Essas bactérias ficam “escondidas” do sistema imunológico, mas, mesmo assim, o sistema 
imunológico pode combatê-las por autofagia, que é a captura da bactéria no sistema lisossômico. Há, 
também, bactérias que têm mecanismos que promovem sua captura por células não fagocíticas, como 
os hepatócitos, as células epiteliais e as células de Schwan, escapando, assim, da fagocitose e outros 
mecanismos microbicidas.
As células não fagocíticas que são infectadas poderão ser eliminadas pelos linfócitos T CD8+ 
citotóxicos. Com a morte da célula, os microrganismos do meio intracelular são liberados. A resposta 
imune pelos linfócitos citotóxicos vai ocorrer contra células não fagocíticas, e a apresentação de 
antígenos tem um papel importante nesse processo. Nesse caso, ocorre apresentação dos antígenos 
via MHC I. Em alguns casos, se houver a ruptura das células infectadas do hospedeiro pelas células 
citotóxicas, o microrganismo que está no seu interior será eliminado, devido à atividade de granulisina, 
que é um peptídeo antibacteriano armazenado nos grânulos desses linfócitos.
Apesar de a resposta imune ser essencial para conter uma infecção, evitando o agravamento de uma 
patologia e, consequentemente, a morte do hospedeiro, ela pode causar um dano colateral, devido à 
159
IMUNOLOGIA BÁSICA
liberação excessiva de citocinas, o que resulta em dano tecidual e pode ser fatal. A forma mais grave de 
manifestação clínica, nesses casos, é o choque séptico endotóxico, que é mais comum quando o agente 
etiológico éuma bactéria Gram-negativa, pois a presença de LPS na superfície do microrganismo resulta 
em liberação excessiva de TNF-α.
O choque é um quadro sistêmico, com manifestações clínicas que alteram a hemodinâmica, com 
vasodilatação, diminuição da pressão arterial e, consequentemente do débito cárdico, o que leva a um 
menor aporte sanguíneo para os órgãos vitais. Junto com as alterações hemodinâmicas, pode ocorrer a 
febre, a coagulação intravascular disseminada (CID) e a necrose hemorrágica. Apesar da ocorrência de 
sepse ser mais comum na resposta imune contra bactérias Gram-negativas, ela também pode ocorrer 
quando o agente infeccioso é uma bactéria Gram-positiva, pois o que determina a manifestação clínica 
não é o tipo do microrganismo e sim a “tempestade de citocinas”.
Para compensar essa fase hiper-responsiva e evitar a morte, a resposta imune precisa mudar para 
hiporresponsiva, o que ocorre pela produção de IL-10, uma citocina anti-inflamatória, e TGF-β, que irá 
“desligar” a resposta imune. Contudo, essa mudança de perfil de citocinas pode deixar o hospedeiro 
suscetível a uma infecção secundária.
CD14
IL-12
IL-2
TCR
MHC II
Superantígeno
IL-18
IL-1β IFN-g
IFN-g
TNF-α TNF-α TNF-α IL-1β
LBP
Macrófago
Endotoxina
Endotélio
Estimulação
Célula T
CD4+
Bactéria gram-negativa Bactéria gram-positiva
Figura 90 – Citocinas da sepse
Independentemente do tipo de microrganismo, a resposta imune com produção rápida e em grande 
quantidade de citocinas, ocasionando em secreção exacerbada de TNF-α, poderá resultar em choque 
séptico. Outras citocinas estarão presentes, como IFN-g, IL-2, IL-1. A ação principal da TNF- α será no 
endotélio, o que causa as alterações hemodinâmicas descritas.
160
Unidade III
Estruturas das bactérias nomeadas de superantígenos, que apresentam alta toxicidade, estimulam a 
liberação massiva de citocinas. Os superantígenos ligam-se às regiões variáveis dos TCRs dos linfócitos 
T, comumente fora da fenda de ligação do antígeno. Com isso, ocorre uma reação cruzada com as 
moléculas de MHC das células apresentadoras de antígenos.
Um exemplo de superantígeno bacteriano é a toxina da síndrome do choque tóxico -1 (TSST-1), 
liberada pelas Staphylococcus aureus. Essa toxina tem a capacidade de, sozinha, desencadear o quadro 
clínico de choque, que pode ser acompanhado de púrpura fulminante e CID, devido à rápida liberação 
de grande quantidade de IL-2, TNF-α e TNF-β.
Além dos danos agudos da resposta imune exacerbada, pode haver lesões teciduais no hospedeiro, 
ocasionadas pela cronicidade da infecção e pela ausência da eliminação do microrganismo.
A persistência de um microrganismo no meio intracelular, sem a sua correta eliminação, faz com que 
aconteça o recrutamento e a diferenciação dos macrófagos e dos linfócitos T, de forma constante, o que 
pode resultar na formação do granuloma, classicamente associados às infecções bacterianas crônicas, 
mas também induzidos por parasitas e por moléculas de origem não infecciosa.
O granuloma é uma inflamação crônica, que é comum e muito bem descrita para o M. tuberculosis, 
agente etiológico da tuberculose. Nos casos de cronificação do patógeno, o pulmão do hospedeiro irá 
apresentar lesões teciduais importantes e necrose caseosa.
Célula T
Neutrófilo
Célula 
epitelioide
Célula 
espumosa
Célula gigante
Célula B
Célula NK
Macrófago
Célula 
dendrítica
Bactérias
Figura 91 – Inflamação crônica, granuloma
161
IMUNOLOGIA BÁSICA
A persistência do patógeno com a manutenção do processo inflamatório torna a infecção crônica 
e pode induzir a formação do granuloma. Células de defesa serão atraídas para o local da infecção. 
Como o patógeno não será eliminado, as células como macrófagos, células epitelioides, células gigantes 
e linfócitos continuam migrando para o local. Os fibroblastos formam uma cápsula que reveste o 
granuloma. Com o passar do tempo e a persistência da infecção, haverá lesão tecidual e perda de função 
no local pela resposta inflamatória constante.
A hipoestimulação do sistema imunológico também vem sendo relacionada a diversas doenças, que 
estão associadas ao excesso de higiene.
Acredita-se que o excesso de limpeza faz com que nosso sistema imunológico seja pouco estimulado 
e, com isso, ele permanece desregulado. Além do excesso de higiene, a vacinação e o uso de antibióticos 
também reduzem a necessidade de resposta imune.
As doenças associadas ao excesso de higiene são as alergias, as doenças intestinais inflamatórias 
e algumas condições autoimunes. Já foi comprovado que crianças que crescem em países em 
desenvolvimento e, consequentemente, ficam em contato com um número maior de bactérias, possuem 
uma microbiota mais rica e não desenvolvem facilmente as doenças ditas atópicas.
A hipótese da higiene era associada aos primeiros anos de desenvolvimento infantil, mas algumas 
teorias descrevem que isso pode ser precedido por programação imune ainda in utero, onde infecções 
e estresse inflamatório da gestante irão influenciar diretamente o recém-nascido. Se essa hipótese 
for comprovada, a saúde materna na gestação será o mais importante para a geração de uma prole 
imunocompetente e sem desregulação nas respostas do sistema imunológico.
7.2 Resposta imune a fungos
Os fungos são seres uni ou pluricelulares, eucariotos, com parede celular rígida, composta por 
quitinas, glicanas ou mananas. Existem diversas espécies fúngicas, sendo que a maioria absoluta é 
saprofítica e constitui os bolores.
Apenas uma pequena quantidade de espécies é patogênica aos seres humanos, e a maioria depende 
das condições imunológicas do hospedeiro para desencadear a doença. São considerados, portanto, 
patógenos oportunistas. Apesar de as infecções fúngicas poderem causar patologias em indivíduos 
sadios, as infecções oportunistas são as mais importantes, principalmente porque o número de indivíduos 
imunocomprometidos vem aumentando de forma significativa.
O que torna as doenças fúngicas importantes do ponto de vista clínico é o fato de não existirem 
vacinas nem fármacos antifúngicos eficientes, que não causem efeitos colaterais no hospedeiro.
162
Unidade III
 Observação
São considerados indivíduos imunocomprometidos: portadores do HIV, 
transplantados, pacientes em tratamento de câncer, pacientes recebendo 
quimioterapia e usuários de imunossupressores e corticoides a longo prazo.
Uma infecção fúngica é nomeada de micose. Dependendo do local que acometem e das manifestações 
clínicas, elas podem ser divididas conforme mostrado a seguir.
• Micoses superficiais, que atingem a camadas mais superficiais da pele e cabelos e não geram 
resposta imune, como, por exemplo, as tineas e piedras capilares.
• Micoses cutâneas, que atingem tecidos queratinizados, com resposta inflamatória local.
• Micoses subcutâneas, que são geralmente infecções em tecidos mais profundos, associadas a 
infecções de feridas.
• Micoses sistêmicas, que se manifestam de forma disseminada, normalmente com o foco inicial 
no pulmão. Por serem causados por fungos saprofíticos, os hospedeiros entram em contato com 
esses microrganismos por inalação de estruturas de reprodução assexuada desses fungos.
Assim como descrito para as bactérias, muitas vezes um organismo entrará em contato com um 
fungo e não irá desenvolver a doença em si. As infecções fúngicas que apresentam manifestação 
clínica mostram uma imunidade antifúngica que envolve a participação de neutrófilos, macrófagos e 
subfamílias de células T CD4+, responsáveis por regular a atividade de linfócitos Th1 e Th17.
As respostas imunes inatas para infecções fúngicas incluem defensinas e fagócitos, e apresentam 
mecanismos semelhantes ao combate a bactérias. São importantes mecanismos de defesas contra 
fungos as colectinas, tais como a MBL, e as proteínas surfactantes A e D, que podem ligar, agregar e 
opsonizar fungos para os fagócitos.
Os neutrófilos e os macrófagos são as principais células no combate às infecções fúngicas. A 
degranulação dessas células, coma liberação de material tóxico, é efetiva contra hifas indigeríveis. Já 
as leveduras ou os conídios serão digeridos por fagocitose. Outro evento importante a ser mencionado 
é a explosão oxidativa.
As respostas são dependentes do reconhecimento de PAMPs da parede celular fúngica por moléculas 
de reconhecimento padrão solúveis ligadas às células. O TLR, os receptores de manose e do sistema 
complemento, têm papeis importantes na defesa:
• o TLR2 reconhece as fosfolipomananas fúngicas, as leveduras de Candida e as hifas 
de Aspergillus;
163
IMUNOLOGIA BÁSICA
• o TLR4/CD14 reconhece a Candida, o Aspergillus fumigatus e a cápsula de glicuronixilomanana de 
Criptococcus.
Após a fagocitose, as células dendríticas migram para os linfonodos, onde será iniciada a resposta 
imune adaptativa. Na figura a seguir, está ilustrada a entrada de um Aspergillus sp. por vias aéreas, 
o reconhecimento pelos receptores solúveis e celulares e a migração das células apresentadoras de 
antígenos até os linfonodos.
Capilar
Monócito NK
Célula dendrítica
Linfonodo
Receptores celular
Lúmen
Membrana basal
Epitélio das vias aéreas
Via aérea
Inalação
Macrófago 
alveolar
Receptores solúveis
PMN
Figura 92 – Infecção fúngica e reposta imune
Após a inalação dos fungos, haverá o reconhecimento dos PAMPs por receptores solúveis e celulares 
no epitélio pulmonar, após as APCs irão migrar até os linfonodos, com o início da resposta adaptativa. 
Além disso células de defesa dos capilares serão direcionadas para o tecido infectado, inflamando.
As células mieloides do intestino e das mucosas das vias aéreas têm diversos receptores do tipo 
lectina-1. Esses receptores estão envolvidos no reconhecimento do patógeno que será fagocitado e na 
explosão respiratória, que induz a produção de citocinas, dentre elas o TNF, as quimiocinas inflamatórias 
e as prostagladinas.
164
Unidade III
A imunidade mediada por linfócitos T é crítica para a resistência aos fungos, pois esses 
microrganismos são altamente imunogênicos. Podem ocorrer respostas exageradas, que incluem reações 
de hipersensibilidade na pele. Há um papel protetor dominante de resposta de células T CD4+Th1, que 
induz a ativação dos fagócitos.
As respostas mediadas por anticorpos, por sua vez, não são importantes. A presença de anticorpos 
contra antígenos de fungos tem maior relevância no diagnóstico e nos estudos epidemiológicos do que 
no prognóstico de evolução clínica da doença.
 Lembrete
Detectamos IgG nas fases tardias das doenças e nos pacientes já curados 
e, também, como anticorpo relacionado com a memória imunológica. Nas 
doenças ativas, detectamos IgM.
A resistência a infecções fúngicas, portanto, será dependente principalmente de imunidade celular, 
mediada por linfócitos TCD4+ Th1. Os linfócitos T CD8+ e as células dendríticas também são necessárias, 
só que em menor proporção.
Alguns indivíduos apresentam maior suscetibilidade para desenvolver infecções fúngicas, como, 
por exemplo, as crianças com imunodeficiência primária ou com síndrome de hiper-IgE. Aumento nos 
níveis de IL-10, com redução de IFN-g, também está relacionado ao aumento da susceptibilidade às 
micoses sistêmicas.
Apesar de haver diversos mecanismos de defesas contra os fungos, eles apresentam, muitas 
vezes, mecanismos de fuga ou evasão do sistema imunológico. Alguns exemplos estão descritos no 
quadro a seguir.
Quadro 4 – Mecanismos de alguns fungos para a evasão do sistema imune
Fungo Componente fúngico Mecanismo de evasão
Cryptococcus neoformans Cápsula de polissacarídeo Inibe a fagocitose
Candida sp. β-glicanas da parede celular Torna o fungo menos imunorreativo, faz variação antigênica
Histoplasma capsulatum É intracelular obrigatório Evade a eliminação após a fagocitose
Dermatófitos Remodelação do metabolismo celular do hospedeiro Suprimem a resposta por linfócitos T
Apesar de as respostas aos fungos serem tão complexas quanto aquelas contra bactérias, elas ainda 
são relativamente pouco compreendidas e novas abordagens imunológicas vêm sendo desenvolvidas 
para prevenir e tratar as infecções fúngicas. Uma informação importante é que fármacos antifúngicos 
precisam de assistência do sistema imunológico para atuarem. Atualmente, diversos estudos sugerem 
165
IMUNOLOGIA BÁSICA
o uso de terapia gênica, a redução de imunossupressão e a administração de citocinas para auxiliar no 
tratamento das infecções fúngicas.
7.3 Resposta imune a vírus
Os vírus são acelulares, intracelulares obrigatórios e dependem completamente de um hospedeiro 
para a sua replicação. Por isso, estão no limite entre ser um organismo vivo ou não. Quando não estão 
no interior de uma célula, são chamados de vírion ou de partícula viral.
Para que ocorra a replicação viral, o maquinário enzimático e as moléculas da célula que o vírus 
infecta serão utilizados para duplicar o material genético e sintetizar suas proteínas, que vão ser parte 
da sua estrutura e do seu revestimento. Por isso, as infecções virais dificilmente contam com um 
medicamento específico para o seu tratamento, pois, em muitos casos, para a eliminação da infecção 
viral, a opção é eliminar a célula infectada.
Quando o vírus rompe as barreiras físicas do sistema imunológico e consegue acessar o organismo 
de um hospedeiro, tentará evadir a resposta imune, ou seja, superar o sistema de defesa do hospedeiro 
para conseguir estabelecer uma infecção e replicar-se, disseminando-se para outros tecidos.
Como descrito na unidade I, a defesa inicial contra qualquer patógeno corresponde às barreiras 
físicas. Para as infecções virais, essa premissa também é real, pois o vírus precisará romper essas barreiras 
para que uma infecção ocorra. Quando elas são rompidas, ocorrem a infecção e a resposta inflamatória, 
com ativação de células dendríticas e dos macrófagos, e produção de diversas citocinas, quimiocinas e 
peptídeos microbianos, que irão deixar o local infectado em um estado antiviral, além de direcionarem 
a resposta imune para o local da infecção.
A reposta inata atua na infecção viral a partir da produção de citocinas, como os IFNs tipo 1 e o 
TNF-α. As defensinas e as células NK, os neutrófilos e os macrófagos também serão ativados nessa fase. 
Todos os eventos iniciais, junto com o resultado da resposta imunológica, irão sinalizar para que se 
iniciem os mecanismos da resposta imune adaptativa, que é mais efetiva para o combate da infecção e 
a geração de memória contra reinfecções.
No âmbito da resposta imune inata, as mucinas e outras proteínas competem pelos receptores 
celulares com os vírus, o que impede a infecção das células. As defensinas e as catelicinas também são 
peptídeos que atuam como agentes antivirais de amplo espectro e modulam a resposta inflamatória no 
local. Elas são produzidas por células epiteliais e por neutrófilos em resposta a um agente infeccioso.
Outras substâncias podem ser produzidas para atuar na proteção de infecções respiratórias por 
vírus, como, por exemplo, aquelas desencadeadas pelo H1N1 e pelo Influenza. As secreções do trato 
respiratório são ricas em proteínas surfactantes colectinas (SP)-A e SP-D. Essas moléculas se ligam a 
carboidratos de diferentes patógenos, prevenindo a ocorrência das síndromes respiratórias.
Dentre as citocinas envolvidas no combate viral, os IFN-1 possuem papel crucial no combate à 
infecção. Essa é a defesa mais importante nos estágios iniciais de uma infecção viral. Essa citocina 
166
Unidade III
pode ser produzida por quase todas as células do corpo quando infectada com um vírus. No sistema 
imunológico, temos as células especializadas dendríticas plasmacitoides, que são especializadas na 
secreção dessas citocinas, mesmo sem estarem infectadas.
Para que haja a produção de IFN-1, o vírus precisa ser reconhecido a partir de padrões moleculares 
característicos, que serão reconhecidos pelos receptores citoplasmáticos, expressos por quase todas as 
células e pelos membros da família de receptores do tipo toll (TLRs), que estão tantona superfície das 
células quanto no meio intracelular, em endossomos ou lisossomos.
Com a ativação dos TLRs, ocorre a ativação de uma via de sinalização que envolve a ativação de 
fatores de transcrição (o IRF03 e o NFκB). Esses fatores de transcrição irão se translocar para o núcleo 
e ativar a transcrição do IFN-1 e de citocinas inflamatórias. Após a liberação do IFN-1, a sua ação se 
desenvolve tanto na célula que o produziu como nas que estão ao redor, o que impede a entrada do 
vírus nas células.
TRAM
TLR4
IKKe TBK1
IFN-β
Núcleo
Citoplasma
DsRNA
Poly I:C
Extracelular
Endossoma TIRAP
TLR4
LPS
MD2
TLR3
TRAM
Figura 93 – Via de sinalização para a transcrição de IFN
Após ativação do TLR e via de sinalização levará a produção de fatores de transcrição, entre eles o 
IRF03, que no núcleo da célula propicia a transcrição do mRNA para a posterior tradução em IFN.
167
IMUNOLOGIA BÁSICA
Os IFNs aumentam a expressão de um grande número de genes que irão codificar proteínas de 
resposta antiviral, como, por exemplo, as enzimas dependentes de dsRNA proteína cinase P (PKR), que 
têm a função de inibir a tradução de mRNA viral e iniciar a apoptose celular, e a 2`,5`-oligoadenilato 
sintase, que ativa endonucleases latentes, marcando o RNA viral para a degradação.
Além da inibição direta da replicação viral, o IFN tipo 1 também ativa macrófagos e células NK, o que 
aumenta a sua função como citocina antiviral e auxilia na ativação de respostas adaptativas, a partir 
do favorecimento da expressão de molécula MHC pelas células dendríticas e da regulação da atividade 
dos linfócitos T e B.
Pela importância da citocina na limitação e no combate da infecção viral, o IFN-α é usado no 
tratamento da Hepatite C, quando a infecção se torna crônica no fígado e não curável. O uso do 
interferon no tratamento deixa as células no estado antiviral, o que impede a disseminação do vírus nos 
hepatócitos e previne a ocorrência de cirrose e carcinomas no fígado.
Além das citocinas, outro componente importante da resposta imune inata no combate de infecções 
virais são as células NK, que são citotóxicas para células infectadas pelos vírus.
Os vírus podem ser detectados pelas células NK após aproximadamente dois dias do início da 
infecção. Elas irão agir eliminando as células infectadas e, como o vírus depende do maquinário do 
hospedeiro para sua replicação, a eliminação das células infectadas impede que a infecção seja mantida. 
Além do efeito citotóxico, as células NK produzem citocinas, IFN-g e TNF-α, que são imunomoduladoras, 
ativam macrófagos e regulam a resposta das células dendríticas.
Perforinas
Efeitos 
imunomoduladores
IFN-g
IFN-α
IFN-β
NK
NK
Figura 94 – Células NK na infecção viral
168
Unidade III
Ao reconhecerem uma célula infectada por vírus, as células NK vão agir em dias frentes de eliminação 
na infecção, uma é a destruição da célula infectada pela liberação de perforinas, a outra será a liberação 
de IFN com efeitos imunomoduladores.
A ativação das células NK é feita de forma não específica, por diversas citocinas, entre elas os IFN 
tipo 1, IL-12, IL-5, IL-18, e também por diversos receptores de ativação e inibição. Os receptores de 
inibição da NK normalmente reconhecem ligantes expressos nas células normais, sem infecção, como, 
por exemplo, as moléculas do MHC I.
Já os receptores ativadores das células NK, como, por exemplo, o NKp44 e o NKp46, reconhecem 
proteínas e glicoproteínas virais nas células hospedeiras e aumentam a resposta a estresse ou a proteínas 
virais. As células ainda podem ser ativadas após ligação com anticorpos na célula-alvo, uma vez que as 
células NK estão entre os principais mediadores de citotoxicidade por células dependentes de anticorpos.
Os macrófagos também exercem papel importante no combate das infecções virais. Eles atuam 
em três níveis para destruir o vírus e as células infectadas por vírus: fazem fagocitose, matam células 
infectadas e produzem moléculas antivirais, como o TNF-α, óxido nítrico e IFN-α.
O sistema do complemento tem função importante na neutralização de alguns vírus livres. O 
complemento pode danificar o envelope, em um processo denominado virólise. Alguns vírus podem 
ativar o sistema do complemento diretamente pela via clássica, mas a função do complemento não é 
essencial para o combate de infecções virais. Contudo, os anticorpos ativam o sistema complemento 
e as células efetoras para mediarem a destruição das células infectadas pelos vírus. O complemento, 
quando ativado, desencadeia a montagem do complexo de ataque à membrana na célula infectada do 
hospedeiro, mas, para que esse evento seja efetivo, é necessária uma alta densidade de antígenos virais 
na membrana.
Os linfócitos T aparecem após aproximadamente quatro dias do início da replicação viral. Mas é o 
linfócito T CD8+ a célula com papel mais importante nas infecções por vírus.
Os anticorpos também participam da resposta adaptativa e demoram em média sete dias para 
aparecerem na corrente sanguínea. Vale lembrar que a ação dos anticorpos é restrita aos antígenos 
extracelulares, o que diminui sua eficácia contra os vírus que são intracelulares obrigatórios, mas 
importantes para garantir a geração de memória imunológica.
Apesar de os anticorpos não conseguirem agir no meio intracelular, eles podem neutralizar a 
infectividade dos vírus, a partir da formação de uma barreira que impede a disseminação viral na corrente 
sanguínea. Qualquer proteína viral na célula infectada pode estimular a produção de anticorpos, mas 
somente anticorpos que são direcionados contra as glicoproteínas que são expressas no envelope ou na 
membrana da célula infectada são importantes para o controle da infecção.
A molécula de anticorpo da classe IgA, que se concentra na superfície das mucosas, atua na 
prevenção contra reinfecção. Vesículas com IgA irão interagir com aquelas que contêm vírus, 
neutralizando o patógeno.
169
IMUNOLOGIA BÁSICA
A maioria das respostas de anticorpos é T-dependente, ou seja, precisa dos linfócitos T CD4+ para 
que aconteça a mudança de classe e maturação de afinidade. O linfócito T CD4+ também ajuda na 
ativação das respostas dos linfócitos do T CD8+, no recrutamento e na ativação de macrófagos nos locais 
da infecção.
O alvo das células T CD8+ são as células infectadas por vírus, uma vez que a função efetora é 
a citotoxicidade. O reconhecimento das células infectadas acontece pela molécula do MHC I, que 
apresenta peptídeos de origem viral em sua fenda na superfície das células. Trata-se de um mecanismo 
altamente seletivo e eficiente.
Quando o TCR dos linfócitos T CD8+ reconhece um peptídeo na molécula MHC I, serão ativadas 
as funções efetoras dessa célula, que irá matar a célula-alvo pela liberação de perforinas e granzimas, 
entre outras proteínas citolíticas, ou pela ligação de fatores solúveis como o IFN-g e o TNF-α, que podem 
atacar o vírus sem ocasionar a morte celular. Esse último mecanismo é essencial quando o vírus está 
muito disseminado, pois, nesses casos, se o linfócito T CD8+ matasse todas as células infectadas, seria 
letal para o hospedeiro.
Para finalizar, as células T CD8+ também têm a função de memória imunológica e serão efetivas no 
controle de reinfecção com o vírus, neutralizando o vírus invasor, contendo a infecção e impedindo sua 
disseminação para outros tecidos.
Para manter a infecção e garantir sua sobrevivência, os vírus se utilizam de diversos mecanismos de 
evasão de sistema imune. Essa evasão é importante para a persistência do vírus no hospedeiro por um 
período longo, mesmo nas infecções agudas ocasionadas por vírus. Esse prolongamento no tempo de 
infecção permite que o vírus seja transmitido para novos hospedeiros. Os mecanismos de evasão viral 
compreendem:
• dificultar a resposta imune do hospedeiro;
• evitar o reconhecimento da defesa imune;
• resistir ao controle por mecanismo efetor.
Em algumas infecções virais, ocorre dano disseminado das funções imunológicas do hospedeiro. Um 
exemploé a infecção pelo HIV, na qual ocorrre uma disfunção generalizada do sistema imunológico, o 
que dificulta o controle da replicação viral. Esses eventos têm impacto na sobrevivência do hospedeiro, 
ao mesmo tempo em que permitem a persistência do vírus no organismo. A manutenção prolongada da 
infecção irá causar a síndrome da imunodeficiência adquirida (AIDS).
Alguns vírus podem bloquear a produção de IFN-1 ou prejudicar o recrutamento de células dendríticas 
plasmocitoides para os sítios de infecção. Os vírus utilizam também estratégias para romper a produção 
de quimiocinas, que são importantes para o tráfego celular e viral, ao codificar proteínas homólogas 
aos receptores de quimiocinas ou às próprias quimiocinas, inibindo sua ação. Um exemplo de vírus que 
utiliza esses mecanismos para evadir o sistema imunológico é o Herpes Vírus.
170
Unidade III
Para que haja o estabelecimento de uma infecção persistente, os vírus precisam de mecanismos que 
dificultem a ação dos linfócitos T CD8+. Em algumas infecções virais, ocorre uma elaborada estratégia 
que leva à redução das moléculas de MHC I, o que faz com que o vírus se “esconda” no meio intracelular, 
sem que os linfócitos T CD8+ consigam agir contra a infecção.
Algumas estratégias de escape dos vírus estão resumidas na tabela a seguir.
Quadro 5 – Estratégia dos diferentes vírus para reduzir 
a expressão das moléculas do MHC classe I
Vírus Estratégia
HIV-1
Supressão da síntese.
Reciclagem da molécula MHC classe 1 na superfície da célula.
EBV Redução da geração de epítopos peptídicos no citoplasma.
HSV-1 Bloqueio da captação de peptídeos pelo retículo endoplasmático.
CMV Bloqueio da maturação. Montagem e migração do complexo do MHC trimolecular.
Adaptado de: ROITT (2014).
Além de estratégias que evitam o reconhecimento do vírus pelo hospedeiro, há estratégias virais de 
resistência ao controle pelos mecanismos efetores, que incluem dificultar a sinalização do IFN ou até 
mesmo interromper as defesas intracelulares que são induzidas pelo IFN. Os vírus adenovírus, poxvírus 
e herpesvírus codificam receptores solúveis que irão interferir na função do TNF e prevenir a ruptura 
das células.
Pode ocorrer o desenvolvimento de tolerância imunológica para o vírus, o que resulta na falha 
da montagem da resposta específica pelos linfócitos T. A resposta em indivíduos imunologicamente 
maduros pode ser dificultada por um evento nomeado de exaustão ou desorientação, no qual as células 
se tornam progressivamente defeituosas do ponto de vista funcional.
Os vírus podem, ainda, entrar em estado latente, infectar locais do organismo em que há pouco 
acesso da resposta adaptativa, como, por exemplo, o cérebro, ou, também, diminuir a visibilidade das 
células infectadas pelas células efetoras do hospedeiro. As mutações, que resultam em grande variação 
antigênica, também são importantes.
Em uma infecção latente, os vírus conseguem se manter no hospedeiro por longos períodos. Quase 
não há produção de proteínais virais, o que o mantém invisível para as células de função efetora. 
Esporadicamente, o vírus volta a se replicar, para que ocorra a sua disseminação e a manutenção 
da infecção.
Apesar da necessidade da resposta imune nas infecções virais, pode haver consequências 
imunopatológicas em resposta a esse combate. Respostas antivirais inadequadas podem resultar em 
reações autoimunes.
Um exemplo comum de imunopatologia pela infecção viral é a ocorrência da dengue grave, ou 
hemorrágica. Devido à hipercitocinemia, ou “tempestade” de citocinas, ocorrem alterações na cascata 
da coagulação e aumento da permeabilidade vascular. Outra resposta exacerbada que ocorre na dengue 
171
IMUNOLOGIA BÁSICA
grave é uma reação cruzada por produção de anticorpos. Nosso organismo produz anticorpos contra 
a proteína viral NS-1, que são fracamente neutralizantes para o vírus, mas reage de forma inespecífica 
com o endotélio, o que agrava os distúrbios hemodinâmicos e favorece a infectividade. O que podemos 
concluir, nesse exemplo, é que a resposta imune inadequada e exacerbada contra a infecção pelo vírus 
da dengue tem um papel decisivo no agravamento da doença.
Quando a produção de anticorpos é ineficiente para neutralização, a formação dos imunocomplexos 
ocorre. Imunocomplexos são macromoléculas insolúveis que se precipitam nos capilares sanguíneos. 
Em contanto com o endotélio vascular, eles têm a capacidade de ativar a resposta inflamatória, com 
dano tecidual. Esse tipo de resposta inadequada é a hipersensibilidade do tipo III, que será descrita com 
detalhes ainda nesta unidade.
Além dos danos teciduais, as infecções virais podem provocar autoimunidade, quando os danos 
induzidos pelos vírus provocam respostas inflamatórias e reconhecimento das células do tecido saudável, 
com consequente destruição tecidual. Outra causa é o mimetismo molecular, que ocorre quando um 
fragmento de uma proteína viral é homólogo a uma sequência própria, que será reconhecida como 
patógeno e irá desencadear a quebra da tolerância imunológica a antígenos próprios. Esses mecanismos 
serão mais bem descritos ainda nesta unidade.
7.4 Resposta imune a protozoários e helmintos
Os protozoários são unicelulares eucariotos podem se reproduzir de maneira assexuada ou sexuada 
e vivem em diferentes locais no intestino, no sistema circulatório, dentro de células, como os eritrócitos 
ou macrófagos, e em órgãos como o fígado e o baço, além do sistema músculo esquelético e do trato 
genital. Outra característica comum desses parasitas é que muitos deles irão depender de vetor artrópode 
para a sua transmissão. O Tripanossoma cruzi, o Plasmodium sp. e o Leishmania sp. são alguns exemplos.
Os helmintos, por sua vez, são seres multicelulares, com reprodução de tipo sexuada. Alguns dos 
helmintos podem causar doenças nos seres humanos: entre eles, estão alguns cestoides, nematódeos 
e trematódeos. Esses seres são comumente nomeados de vermes e vivem com maior frequência 
nos intestinos, embora alguns possam habitar a corrente sanguínea e os vasos linfáticos, além de 
alguns órgãos.
Por serem animais, têm o ciclo de vida complexo. Sua entrada no organismo pode ser por ingestão 
de ovos e pela penetração ativa das larvas em pele e mucosas.
A resistência imunológica contra uma doença parasitária é variável e controlada por inúmeros genes, 
ou seja, pode ser genética, mas o fator genético sozinho não explica o porquê de alguns indivíduos 
serem mais suscetíveis que outros para o desenvolvimento das doenças parasitárias. A carga parasitária 
no momento do contágio também é importante para determinar o curso da infecção.
Não é interessante para nenhum parasita a morte do seu hospedeiro, pois o parasita também iria a 
óbito. Por isso, muitas vezes, essas patologias apresentam curso crônico, o que garante a transmissão 
para outros hospedeiros suscetíveis e permite a manutenção da infecção por longos períodos. Por 
isso, durante o curso da doença, a resposta imune irá alternar-se desde a imunossupressão até a 
imunopatologica.
172
Unidade III
Frente à presença de helmintos, ocorre ativação tanto da resposta imune inata quanto da adaptativa, 
com a participação de vários mecanismos efetores. Nos casos de reinfecções, nem sempre os mecanismos 
de resposta imune serão os mesmos e, além disso, na maioria das vezes não haverá a formação de 
memória imunológica.
Em algumas infecções helmínticas, pode ocorrer um processo nomeado “imunidade concomitante”, 
que acontece quando a resposta imune inicial não é eficiente para eliminar a infecção, mas torna 
o organismo resistente a outras invasões por parasitas, principalmente vermes da mesma espécie. Já 
resposta imune humoral será mais importante para os parasitas que habitam o meio extracelular, como 
os que vivem em fluidos corporais e na corrente sanguínea, ou até mesmo no intestino.
Na resposta imune inata, as células dendríticas irão determinar o fenótipo da resposta adquirida 
contra parasitas. Mais uma vez, os receptores de reconhecimentopadrão serão importantes no 
reconhecimento dos PAMPs. Outras proteínas têm a função de opsoninas, como as ficolinas, as colectinas 
e as pentaxinas. O reconhecimento desses patógenos é inespecífico, mas, mesmo assim, a ativação de 
TLR-2 por componentes parasitários desencadeia respostas imunes diversas. Algumas dessas respostas 
desencadeiam o desenvolvimento de células dendríticas maduras, com a indução de resposta de células 
Treg e de células Th1 para o Schistossoma mansoni e o Triponossoma cruzi, respectivamente.
Os receptores do sistema complemento, em particular o CR3, suprimem a secreção de IL-12, que 
tem um efeito supressor da resposta imune. Contudo, esse receptor sozinho não é ativado, precisa de 
cooperação de outros receptores (a maioria, receptores Fc, que irão possibilitar a morte dos patógenos).
A resposta imune celular será mediada por linfócitos T CD4+, assim como pelos linfócitos T CD8+, 
variando de acordo com o estágio evolutivo e o tipo de parasita. Alguns exemplos podem ser vistos na 
malária, na qual o linfócito T CD8+ é importante na eliminação das formas intracelulares de Plasmodium 
que residem nos hepatócitos, ainda na fase pré-eritrocítica. Contudo, esses linfócitos não são eficazes 
na fase eritrocítica, pois os eritrócitos não apresentam molécula MHC I, por não apresentarem núcleo. 
Outro exemplo é a resposta ao T. cruzi e ao Toxoplasma gondii, que envolve os linfócitos T CD4+ e T 
CD8+, mas também as células NK e a produção de anticorpos. Já para a expulsão dos nematódeos, será 
essencial a ação dos linfócitos T CD4+ e não há evidências da mesma função para os linfócitos T CD8+.
A produção de citocinas varia de acordo com os tipos de linfócitos T CD4+ que forem ativadas. Os 
linfócitos Th1 estão mais envolvidos na morte e na eliminação de parasitas intracelulares, enquanto 
os linfócitos Th2 mais na eliminação de parasitas extracelulares. As citocinas não atuam somente em 
células efetoras para estimular a capacidade citotóxica ou citolítica, mas também agem como fatores de 
crescimento para aumentar o número de células de defesa, ao mesmo tempo em que quimiocinas irão 
atrair mais células para o local da infecção.
Em infecções helmínticas, o perfil de eosinófilos e mastócitos da mucosa é importante, e essas 
células podem proliferar em resposta à IL-5 ou à IL-3, respectivamente. Um exemplo da complexidade 
da resposta contra protozoários está ilustrado a seguir.
173
IMUNOLOGIA BÁSICA
Ativação de 
macrófagos
Eliminação do 
parasita
Radical de 
oxigênio livres
Óxido nítrico 
sintetase
Óxido nítrico
Disseminação 
parasitária
Inibição 
IL-10
IL-12
IL-4
IL-4
IL-10
TGF-β
IFN-g
TNF-α
IL-2
Inibição 
Figura 95 – Resposta imune a leishmaniose
Após a entrada do protozoário no organismo, as formas promastigotas fagocitadas evoluem para 
amastigota, que estará no intracelular de células fagocíticas, será necessário a participação de células 
T com a produção de diferentes citocinas, para a posterior ativação de macrófagos e células TCD4+ TH2.
A resposta imune mediada por linfócito T contra protozoários e helmintos depende da espécie do 
animal infectado, da localização e da complexidade do ciclo de vida. A resposta imune aos helmintos 
dependerá da secreção de citocinas Th2, de IgE e dos eosinófilos.
Algumas infecções helmínticas desviam a resposta imune. A IL-12, por exemplo, atua como inibidor 
da produção de citocinas de Th2, IL-4 e IL-5, o que previne a produção de IgE e o desenvolvimento de 
mastócitos e de eosinófilos, todos importantes para a eliminação do parasita.
Em outras infecções, ocorre o isolamento do parasita pelas células inflamatórias. Os antígenos 
no local do foco da infecção estimulam a liberação de citocinas inflamatórias, ocorrendo infiltração 
de diversas células imunes, que formam um granuloma. Um exemplo é quando ovos de S. mansoni 
se alojam no fígado e ocorre o “cercamento” do ovo, sem sua eliminação. Os macrófagos que são 
acumulados no local liberam fatores fibrinogênicos que estimulam a produção de tecido granulomatoso 
e a formação de fibrose.
O linfócito T também é essencial para a formação do granuloma e da cápsula de fibrose. A formação 
do granuloma serve para isolar o parasita do organismo do hospedeiro, mas, em contrapartida, o 
estímulo inflamatório a longo prazo ocasiona uma lesão tecidual, com cicatrização, o que leva à perda 
de função do tecido.
174
Unidade III
Figura 96 – Formação do granuloma ao redor do ovo de Squistossoma mansoni
A inflamação crônica, caracterizada pela formação do granuloma, é resultado da incapacidade da 
resposta imune em eliminar o ovo do hospedeiro.
Os parasitas podem liberar substâncias que estimulam a proliferação de linfócito B. Por isso, não é 
incomum que provoque uma hipergamaglobulinemia não específica. Os níveis totais de anticorpos se 
elevam, e é comum ter elevação de IgM e IgG. Contudo, o que irá determinar se a resposta imune será 
dependente ou independente de anticorpos será a espécie do parasita e do hospedeiro.
Os anticorpos que são produzidos de forma específica podem atuar diretamente nos protozoários, 
causando danos ou ativação do sistema complemento, podem neutralizar o parasita, impedindo a 
ligação a uma nova célula do hospedeiro e, ainda, podem estimular a fagocitose por macrófagos.
Estimulação crônica
Produção IL-4
IgE liga-se ao helminto Ativação mastócitos
Receptores Fce
IgC e IgA - FceR Secreção grânulos
(proteína básica/catiônica)
CD4 TH2
Célula B
ADCC: Citotoxidade medaida por células dependente de anticorpos
Imunidade adaptativa contra helmintos
Helminto
Helminto
IgE
IgEIL-4
IL-5
Figura 97 – Resposta imune contra parasitas mediada por anticorpos
175
IMUNOLOGIA BÁSICA
Os anticorpos serão produzidos após a ativação dos linfócitos TCD4 TH2 ativados liberarem as citocinas 
que ativam os linfócitos B para produzirem IgE, o anticorpo liga nos próprios parasitas, ativam mastócitos, 
participam da defesa imune contra patógenos, servem como opsonina e ativam o complemento.
 Observação
O IgE é o principal anticorpo produzido contra helmintos. Liga-se aos 
mastócitos, que liberam enzimas para destruir os parasitas. Outras classes, 
como IgA e IgG, também participam da resposta imune.
Em várias infecções, é difícil distinguir a resposta mediada por célula da mediada por anticorpos, 
pois elas irão atuar em conjunto contra o parasita.
Os parasitas que são extracelulares e são menores podem ser eliminados diretamente pelos 
macrófagos por fagocitose e, em algumas infecções, a secreção de fatores citotóxicos é eficaz, mesmo 
sem o englobamento do organismo. Além disso, os macrófagos podem liberar TNF-α e IL-1, que 
interagem com outros tipos de células e tornam as células-alvo resistentes aos parasitas.
Outras células que podem ser estimuladas pelos macrófagos, pela liberação de IL-12, são os linfócitos 
NK. Eles liberam IFN-g e TNF-α.
O TNF-α é uma citocina importante na defesa contra protozoários e helmintos, pois ativa macrófagos, 
eosinófilos e plaquetas. No entanto, pode ser nocivo ao hospedeiro em altas concentrações. Por 
exemplo, na infecção pelo protozoário Plasmodium falciparum, a gravidade das manifestações clínicas 
está diretamente relacionada com a concentração dessa citocina. Quanto maior a produção, maior a 
probabilidade de que o quadro clínico evolua para malária severa.
Outra célula importante na resposta aos parasitas é o neutrófilo, que pode fagocitar os parasitas 
por mecanismos dependentes ou independentes de oxigênio. Essas células apresentam uma variedade 
de proteínas citotóxicas em seus grânulos, as defensinas, seprocidinas e catelicidinas, que agem 
principalmente nos organismos internalizados. A ativação dos neutrófilos se dá mediante a secreção 
IL-8, IFN-g, TNF-α e GM-CSF. Além disso, os neutrófilos têm receptores Fc e do complemento, e podem, 
portanto, fazer parte da reação de citotoxicidade celular mediada por anticorpos.
Outra célula associada com as defesas parasitárias, em especial nas helmínticas,são os eosinófilos. 
Eles estão relacionados com a eliminação de parasitas que são muito grandes para serem fagocitados. A 
eosinofilia elevada normalmente é acompanhada aos níveis aumentados de IgE, sendo que ambos são 
marcadores de doenças parasitárias.
Os mecanismos que levam à destruição dos helmintos pelos eosinófilos podem ou não depender 
de oxigênio. Quando ocorre perturbação em sua membrana, em resposta a citocinas, TNF-α e GM-CSF, 
ocorre a liberação do conteúdo dos seus grânulos.
176
Unidade III
Os mediadores liberados pelos mastócitos irão atrair os eosinófilos para o local, estimulando ainda 
mais a sua atividade. Além de estimular e atrair os eosinófilos, os mastócitos apresentam atividade 
importante nas mucosas intestinais, a partir da alteração da permeabilidade do epitélio, o que deixa o 
ambiente hostil para a sobrevivência de alguns helmintos.
As plaquetas também podem destruir muitos tipos de parasitas, pois têm ação efetora e atividade 
citotóxica. Destroem principalmente os estágios larvários dos helmintos da classe trematódeos e 
protozoários como o T. gondii e o T. cruzi.
Anticorpos 
neutralizantes e IgE
Ativação de 
eosinófilos
CD4 TCR CD28 B7.1. B7.2 Citocinas AnticorpoCélula dendrítica IgE+antígeno
Dgranulação de 
mastócitos
Supressão da ativação 
de macrófagos
Th2
IL-4
IL-5
IL-10
Figura 98 – Resposta Imune com a participação de IgE, eosinófilos e mastócitos
As APCs irão apresentar antígenos ao linfócito T CD4+, ocorre a liberação de citocinas que irão ativar 
os linfócitos B, que irá secretar IgE, o anticorpo se liga a receptores nos eosinófilos e mastócitos que 
liberam o conteúdo de seus grânulos.
Para que uma infecção parasitária consiga evoluir, os organismos infectantes precisam de mecanismos 
de evasão à resposta imune e, por isso, desenvolveram, durante a sua evolução, várias formas de escape. 
Os parasitas precisam resistir à ação destrutiva do sistema do complemento ou impedir sua eliminação 
por reativos de oxigênios. Para isso, alguns protozoários podem se alojar no interior das células, como, 
por exemplo, a Leishmania sp. e o T. gondii.
177
IMUNOLOGIA BÁSICA
Alguns protozoários conseguem evadir a ação efetora dos anticorpos específicos, pois fazem variação 
antigênica em sua superfície, ao longo do seu ciclo de vida, ficando “disfarçados” da resistência imune. 
Cada vez que os parasitas mudam de fase evolutiva ou fase do ciclo, a variação antigênica faz com que 
o sistema imunológico entenda que é um novo parasita, reiniciando o processo de combate. Os parasitas 
podem também adquirir uma camada superficial com os antígenos do próprio hospedeiro e, assim, o 
sistema imune irá reconhecer o parasita como “próprio” e não realizará a sua eliminação por anticorpos 
nem pelo sistema do complemento.
Já os parasitas que habitam o meio extracelular “se escondem” da resposta imune de outras maneiras, 
como, por exemplo, os protozoários intestinais que evoluem para a forma cística e os helmintos adultos 
que induzem à formação de um envoltório de colágeno que os protege.
Helmintos podem, ainda, dispor de estratégias físicas de proteção, como cutículas externas, 
tegumento espesso, cobertura superficial frouxa. Podem, ademais, secretar proteases que irão clivar os 
anticorpos produzidos pelo hospedeiro antes de que ocorra a ação efetora.
Além disso, alguns parasitas podem produzir moléculas que afetam o fenótipo da resposta imune 
em seu próprio benefício, ao mudar o perfil de citocinas, diminuir a expressão de moléculas da classe do 
MHC, aumentar a produção de prostaglandinas e secretar inibidores de proteases. Esta última estratégia 
afeta diretamente o processamento de antígenos e, consequentemente, reduz a apresentação de 
moléculas MHC. Podem produzir moléculas semelhantes às citocinas, mimetizando a ação do TGF-β, do 
fator de inibição de migração e do fator liberador de histaminas, todos anti-inflamatórios.
Os antígenos solúveis de parasitas, quando liberados em grandes quantidades, podem comprometer 
as respostas do hospedeiro por um processo chamado de distração imune. O hospedeiro irá realizar a 
defesa contra esses antígenos, permitindo que os parasitas se desenvolvam livres da resposta imune.
Por fim, alguns parasitas suprimem a inflamação ou a resposta imune por imunossupressão, o que é 
uma característica principalmente de infecções crônicas por helmintos. Por exemplo, a esquistossomose 
e a filariose conseguem reduzir a resposta aos antígenos dos parasitas. Tênias e amebas podem coexistir 
por anos no intestino, sem que haja nenhuma manifestação clínica nem resposta imune. Acredita-se 
que a capacidade dos parasitas suprimirem as respostas imunes hiperativas ocorra devido à indução de 
células T reguladoras (Treg).
A imunossupressão que os parasitas causam explica o porquê de as pessoas infectadas serem mais 
suscetíveis a outras infecções parasitárias ou por outros patógenos, como bactérias e vírus. É muito 
comum a presença de comorbidades nesses pacientes, como, por exemplo, malária e febre amarela, 
doenças causadas por protozoário e vírus, respectivamente, o que aumenta a mortalidade dos hospedeiros.
Nas infecções por protozoários, como a malária, a tripossonomíase e a leishmaniose visceral, há 
elevação exagerada no número de células de defesa, os macrófagos e linfócitos, o que leva ao aumento 
do fígado e do baço. Trata-se da hepatoesplenomegalia, em resposta à intensa inflamação. As alterações 
vistas pela infecção por microfilárias, que causam a filariose ou elefantíase, são consequência da resposta 
imune à presença de vermes na corrente linfática dos hospedeiros.
178
Unidade III
Outra forma de imunopatologia que acontece pela presença de parasitas é a formação de 
imunocomplexos, que são solúveis e acabam por precipitar-se nas microvasculaturas, como, por 
exemplo nos rins, causando uma síndrome nefrótica. O excesso de produção de IgE liberado nas 
infecções por helmintos pode ter graves efeitos pela estimulação de mastócitos com liberação de 
histaminas, o que irá manifestar-se como uma resposta de hipersensibilidade do tipo I, que pode 
agravar-se até o choque anafilático.
Autoanticorpos liberados como resultado da ativação policlonal foram detectados contra eritrócitos, 
linfócitos e DNA e, além disso, alguns anticorpos podem realizar reações cruzadas contra tecidos dos 
hospedeiros. Exemplos são a cardiopatia e a megalia chagásica.
 Saiba mais
Para entender como a resposta imune acontece nas infecções, 
recomendamos a leitura do artigo a seguir.
MACHADO, P. R. L. et al. Mecanismos de resposta imune às infecções. 
An Bras Dermatol. Rio de Janeiro, v. 79, n. 6, p. 647-664, nov/dez. 2004. 
Disponível em: https://bit.ly/2R9GIN9. Acesso em: 7 maio 2021.
Exemplo de aplicação
Para o biomédico, conhecer mais acerca dos mecanismos imunológicos, é necessário correlacionar 
os aspectos abordados nas disciplinas de microbiologia básica e clínica. Pense nisso e faça as associações 
necessárias para o seu aprendizado e aprimoramento.
8 IMUNOPATOLOGIA
8.1 Reações de hipersensibilidade
Os transtornos de hipersensibilidade referem-se a uma ativação excessiva ou inadequada do sistema 
imunológico. A ativação do sistema imunológico normalmente leva a respostas de células T, que 
protegem o corpo contra o ataque de microrganismos, e produção de anticorpos. As alterações causadas 
por respostas imunológicas são denominadas, coletivamente, reações de hipersensibilidade.
Historicamente, os transtornos de hipersensibilidade são subdivididos em quatro tipos:
• transtornos do tipo I, mediados por IgE;
• transtornos do tipo II, mediados por anticorpos;
179
IMUNOLOGIA BÁSICA
• transtornos imunológicos do tipo III, mediados por complemento;
• transtornos do tipo IV, mediados por células T1, 7,10.
Essas categorias diferem em termos do tipo da resposta imunológica que causa a lesão e da natureza 
e a localização do antígeno que é alvo da resposta. A alergia ao látex, por exemplo, pode decorrer de 
resposta de hipersensibilidademediada por IgE ou mediada por células T.
8.1.1 Hipersensibilidade imediata – Tipo I
As reações de hipersensibilidade do tipo I são mediadas por IgE, que começam rapidamente, com 
frequência em minutos do contato com um antígeno. Esses tipos de reações a antígenos com frequência 
são chamadas de reações alérgicas. Na resposta alérgica, os antígenos, em geral, são denominados 
alérgenos, incluem-se proteína do pólen, ácaros, fragmentos de pele ou de pelos de animais, alimentos 
e substâncias químicas como a penicilina.
A exposição ao alérgeno pode ocorrer por meio de inalação, ingestão, injeção ou contato cutâneo. 
Dependendo da porta de entrada, as reações do tipo I podem ocorrer como uma reação local ou atópica, 
que é meramente incômoda (por exemplo, rinite sazonal) ou muito debilitante (asma), ou como uma 
reação sistêmica e potencialmente fatal (anafilaxia).
Dois tipos de células são importantes para a reação de hipersensibilidade do tipo I: células T auxiliares 
do tipo 2 (TH2) e mastócitos ou basófilos. Existem dois subgrupos das células T auxiliares, TH1 e TH2, que 
se desenvolvem do mesmo linfócito T CD4+ precursor. As TH1 diferenciam-se na resposta a micróbios 
e estimulam a diferenciação de células B em plasmócitos produtores de IgM e IgG. A diferenciação 
das células do tipo TH2 ocorre em resposta a alérgenos e helmintos (parasitas intestinais). As citocinas 
(IL-4, IL-5, IL-13) secretadas por células TH2 estimulam a diferenciação de células B em plasmócitos 
produtores de IgE, atuam como fatores de crescimento para mastócitos e recrutam e ativam eosinófilos.
Os mastócitos, que são células teciduais, e os basófilos, que são células sanguíneas, derivam de 
células precursoras hematopoéticas. Os mastócitos e os basófilos têm grânulos que contêm mediadores 
que são liberados a fim de iniciar os primeiros eventos nas reações de hipersensibilidade do tipo I. 
Esses mediadores são pré-formados nas células ou são ativados através de processamento enzimático. 
Os mastócitos, normalmente, encontram-se distribuídos pelo tecido conjuntivo, em especial em áreas 
abaixo da pele, em mucosas dos tratos respiratório, gastrointestinal e genitourinário, e em vasos 
sanguíneos e linfáticos adjacentes. Essa localização os deixa próximos de superfícies que são expostas 
a antígenos ambientais e parasitas. Os mastócitos, em diferentes partes do corpo e até mesmo em um 
único local, podem ter diferenças significativas no conteúdo e na sensibilidade de mediadores a agentes 
que produzem desgranulação de mastócitos.
As reações de hipersensibilidade do tipo I começam com a sensibilização de mastócitos ou basófilos. 
Durante a sensibilizacão ou estágio de preparo (priming), anticorpos IgE específicos para o alérgeno 
aderem a receptores na superfície de mastócitos e de basófilos. Com a exposição subsequente, o 
alérgeno sensibilizante liga-se à IgE associada à célula e desencadeia uma série de eventos que causam 
180
Unidade III
a desgranulação dos mastócitos ou dos basófilos sensibilizados, provocando a liberação de seus 
mediadores pré-formados. Os mastócitos também são a fonte de produtos da membrana derivados de 
lipídios (por exemplo, prostaglandinas e leucotrienos) e citocinas que participam na resposta continuada 
ao alérgeno.
Muitas reações de hipersensibilidade do tipo I, como a asma brônquica, apresentam duas fases bem 
distintas, descritas a seguir.
• Uma resposta primária ou de fase inicial, caracterizada por vasodilatação, extravasamento vascular 
e contração de musculatura lisa.
• Uma resposta secundária ou tardia, caracterizada por infiltração mais intensa dos tecidos por 
eosinófilos e outras células inflamatórias agudas e crônicas, além de destruição tissular na forma 
de lesão celular epitelial.
A resposta primária ou de fase inicial em geral ocorre em torno de cinco a trinta minutos de 
exposição ao antígeno e decai em sessenta minutos. É mediada por desgranulação de mastócitos e 
liberação de mediadores pré-formados. Esses mediadores incluem histamina, acetilcolina, adenosina, 
mediadores quimiotáticos e enzimas como quimase e tripsina, as quais provocam a geração de cininas. A 
histamina é um potente vasodilatador, que aumenta a permeabilidade de capilares e vênulas e provoca 
contração de musculatura lisa e constrição brônquica. A acetilcolina produz contração de musculatura 
lisa brônquica e dilatação de pequenos vasos sanguíneos. As cininas, que são um grupo de potentes 
peptídeos inflamatórios, precisam ser ativadas através de modificação enzimática. Uma vez ativados, 
esses mediadores peptídicos produzem vasodilatação e contração da musculatura lisa.
A resposta secundária ou tardia ocorre em cerca de duas a oito horas e perdura alguns dias. Decorre 
da ação de mediadores lipídicos e citocinas envolvidos na resposta inflamatória. Os mediadores lipídicos 
derivam de fosfolipídios da membrana de mastócitos, que são degradados, formando ácido araquidônico. 
Este, por sua vez, é o composto original a partir do qual os leucotrienos e as prostaglandinas são sintetizados. 
Eles produzem respostas semelhantes à histamina e à acetilcolina, embora, comparativamente, seus 
efeitos sejam tardios e prolongados. Os mastócitos também produzem citocinas e fatores quimiotáticos 
que induzem à entrada de eosinófilos e leucócitos no local do contato com o alérgeno, contribuindo 
para a resposta inflamatória.
Nesse momento, é importante observar que nem todas as respostas mediadas por IgE produzem 
desconforto e doença. A hipersensibilidade do tipo I, particularmente a resposta tardia, desempenha um 
papel de proteção no controle de infecções parasitárias. Os anticorpos IgE lesam diretamente as larvas 
desses parasitas por recrutarem células inflamatórias e provocarem citotoxicidade celular dependente 
de anticorpos. Esse tipo de reação de hipersensibilidade do tipo I é particularmente importante em 
países em desenvolvimento, nos quais um número significativo da população se encontra infestado por 
parasitas intestinais.
181
IMUNOLOGIA BÁSICA
8.1.2 Reações anafiláticas sistêmicas
A anafilaxia é uma reação de hipersensibilidade sistêmica potencialmente fatal caracterizada por 
edema disseminado, choque vascular secundário à vasodilatação e dificuldade respiratória. Decorre 
da presença de antígeno introduzido por injeção, picada de inseto ou absorção através da superfície 
epitelial da pele ou da mucosa gastrointestinal. O nível de gravidade depende do nível de sensibilização. 
Até mesmo pequenas quantidades de antígeno podem ser o suficiente para causar anafilaxia em uma 
pessoa muito sensível. Dentro de minutos após a exposição, ocorre o desenvolvimento de prurido, 
urticária e eritema cutâneo, sucedidos logo depois por broncoespasmo.
CD4
IL-4
Antígeno
Célula B
TH2
IL-3, IL-5
Plasmócito 
secretor de IgE
Anticorpo
MastócitoRecrutamento 
de eosinófilos
Sensibilização 
de mastócito
Liberação de citocinas
Recrutamento e ativação 
de células inflamatórias
Fosfolipídeios da membrana
Ácido araquidônico
Prostaglandinas Leucotrienos
Degranulação e liberação 
de mediadores
Resposta inicial primária
Vasodilatação
Lesão vascular
Espasmo de músculo liso
Resposta tardia secundária
Edema de mucosa
Secreção de muco
Infiltração de leucócitos
Lesão epitelial
Broncoespasmo
Figura 99 – Reação de hipersensibilidade mediada por IgE do tipo I
182
Unidade III
A estimulação da diferenciação de células B por uma célula T auxiliar do tipo 2 (TH2) estimulada por 
antígeno leva à produção de plasmócitos de IgE e à sensibilização de mastócitos. A ligação subsequente 
do antígeno produz desgranulação do mastócito sensibilizado com liberação de mediadores pré-
formados, levando a uma resposta primária ou de fase inicial. O recrutamento de eosinófilos por células 
T (TH2), além da liberação de citocinas e fosfolipídios da membrana a partir do mastócito, acarreta uma 
resposta secundária ou tardia.
8.1.3 Hipersensibilidade imediata – Tipo II
As reações de hipersensibilidade do tipo II são mediadas

Continue navegando