Buscar

unidade 5

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 23 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 23 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 23 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Organelas biossintéticas: o retículo 
endoplasmático e os ribossomas
APRESENTAÇÃO
A célula apresenta diversas organelas e cada uma desempenha a sua função específica. Uma 
delas atua como uma rede de síntese, modificação e distribuição de substâncias no interior da 
célula. Essa organela é a fábrica de membranas e produz a maioria dos lipídeos e muitas 
proteínas da célula. Nesta Unidade de Aprendizagem estudaremos o retículo endoplasmático e 
os ribossomos e descobriremos que eles atuam na biossíntese de moléculas celulares. 
Bons estudos.
Ao final desta Unidade de Aprendizagem, você deve apresentar os seguintes aprendizados:
Definir as características e as funções do retículo endoplasmático e dos ribossomos.•
Verificar as diferentes condições em que ocorre a síntese de proteínas nos ribossomos.•
Identificar os processos pelos quais o retículo endoplasmático orienta a síntese, a 
modificação e a distribuição de proteínas.
•
DESAFIO
O retículo endoplasmático (RE) rugoso apresenta diversas funções, como glicosilação inicial das 
glicoproteínas, síntese de fosfolipídeos, proteólise da sequência de aminoácidos (que é o o sinal 
para a introdução das proteínas nas cisternas do RE) e a principal função, que é segregar do 
citosol as proteínas destinadas à exportação, ou para uso intracelular em organelas. Toda síntese 
de proteínas começa em polirribossomo (conjunto de ribossomos) livres no citosol. O RNA 
mensageiro das proteínas destinadas à segregação no RE contém uma sequência de 15-60 
aminoácidos de comprimento, chamada de sequência-sinal.
Com base nessa afirmativa, avalie as perguntas a seguir e explique suas respostas.
a) Qual é a função das sequências-sinal?
b) Considere uma proteína que contém um sequência-sinal para o RE em sua porção 
aminoterminal e uma sequência de localização nuclear no meio da estrutura proteica. 
Qual seria o destino dessa proteína?
INFOGRÁFICO
Os ribossomos são os responsáveis pela tradução do mRNA, que dá origem a todas as proteínas 
celulares. Algumas vezes, as proteínas em formação têm sequências de endereçamento ao 
retículo endoplasmático e, assim, o ribossomo é deslocado para a membrana do retículo rugoso 
e completa a síntese proteica. As demais permanecem no citosol e são sintetizadas ali mesmo. 
Mas por que algumas proteínas são sintetizadas no citosol e outras no retículo endoplasmático? 
O local de síntese tem influência no empacotamento da proteína e na distribuição da mesma pela 
célula. Vamos ver como?
CONTEÚDO DO LIVRO
Os ribossomos são os componentes celulares responsáveis pela síntese de todas as proteínas 
presentes nas células e no líquido extracelular. Eles podem ser encontrados livres no citosol ou 
aderidos à membrana do retículo endoplasmático. O retículo endoplasmático, por sua vez, é uma 
organela que apresenta diferentes funções celulares, como armazenamento de cálcio, 
processamento e distribuição de proteínas.
Nesse capítulo, você aprenderá um pouco mais sobre a estrutura e funções dessas duas organelas 
celulares. Além disso, você entenderá como pode ocorrer a síntese de proteínas e como essas 
moléculas podem ser modificadas e distribuídas pelo retículo endoplasmático.
Boa leitura. 
BIOLOGIA 
CELULAR
Daikelly Iglesias Braghirolli
Organelas biossintéticas: 
o retículo endoplasmático 
e os ribossomos
Objetivos de aprendizagem
Ao final deste texto, você deve apresentar os seguintes aprendizados:
 � Definir as características e as funções do retículo endoplasmático (RE) 
e dos ribossomos.
 � Verificar as diferentes condições em que ocorre a síntese de proteínas 
nos ribossomos.
 � Identificar os processos pelos quais o RE orienta a síntese, a modificação 
e a distribuição de proteínas.
Introdução
Os ribossomos e o RE desempenham importantes funções celulares. 
Os ribossomos são responsáveis pela síntese de todas as proteínas pre-
sentes nas células e no líquido extracelular. Enquanto isso, o RE é uma 
organela com funções também relacionadas à síntese proteica, assim 
como ao processamento e à distribuição de proteínas. Ele também ar-
mazena íon cálcio e participa da produção de lipídios. 
Neste capítulo, você compreenderá quais são as principais funções 
e características dos ribossomos e do RE. Além disso, você identificará 
como a síntese de proteínas pode acontecer e como o RE atua na sua 
modificação e distribuição.
Estrutura e função do retículo endoplasmático e 
dos ribossomos
O RE é uma organela presente em células eucarióticas, que apresenta função 
central na produção de proteínas e lipídios. Além disso, essa organela também 
atua como um reservatório do íon Ca2+.
O RE é uma organela formada por um sistema de membranas duplas, 
lipoproteicas, mergulhadas no citosol. Essa organela se encontra espalhada 
por toda a célula e sua estrutura varia em relação a sua organização. As suas 
membranas podem formar uma rede de túbulos ramificados e sacos achata-
dos, chamados cisternas (Figura 1). Também podem formar vacúolos, que 
armazenam diferentes moléculas e vesículas, estruturas independentes em 
formas de bolsas, que podem se destacar da membrana. Tais estruturas estão 
em constante mudança e podem se transformar um no outro. As cisternas, por 
exemplo, ao armazenar algumas substâncias, podem ter sua membrana dupla 
distendida e, assim, assumir um aspecto de vacúolo. Os túbulos e as cisternas 
são interconectados e suas membranas são contínuas à membrana nuclear 
externa. Assim, o RE se estende da membrana nuclear por todo o citoplasma, 
constituindo a maior organela da maioria das células eucarióticas. A membrana 
dupla do RE é contínua e representa mais da metade das membranas totais de 
uma célula animal. O espaço interno do RE é único, sendo chamado de lúmen 
ou espaço cisternal. Esse espaço pode ocupar até 10% do volume celular total 
(ALBERTS et al., 2017; COOPER; HAUSMAN, 2007).
Como citado anteriormente, o RE apresenta várias funções vitais às células, 
estando presente em praticamente todos os tipos celulares. Porém, cada tipo 
celular pode apresentar demandas funcionais diferentes, de acordo com suas 
características. Assim, o RE apresenta variações estruturais em algumas 
regiões, que se tornam bastante especializadas, a fim de cumprir algumas 
demandas celulares específicas. Dois exemplos são os domínios chamados 
retículo endoplasmático rugoso (RER) e retículo endoplasmático liso (REL) 
(Figura 1). O RER, ou RE granuloso, corresponde a regiões do RE cobertas por 
ribossomos em sua membrana externa. Enquanto isso, o REL corresponde a 
regiões do RE não associadas a ribossomos (ALBERTS et al., 2017; COOPER; 
HAUSMAN, 2007). A membrana do REL é contínua à do RER e, normal-
mente, se dispõe na forma de túbulos que se anastomosam (JUNQUEIRA; 
CARNEIRO, 2017). Em algumas áreas do REL, ocorre o desprendimento de 
vesículas, contendo proteínas ou lipídios, para o transporte até o complexo de 
Golgi. Essas áreas são chamadas de RE transicional (ALBERTS et al., 2017).
Organelas biossintéticas: o retículo endoplasmático e os ribossomos2
O RER apresenta como função principal a separação do citosol e o armaze-
namento de proteínas que são destinadas à exportação ou ao uso intracelular. 
Ainda, o RER realiza a modificação de proteínas, como glicosilação, hidroxi-
lação, sulfatação e fosforilação. Além disso, essa organela realiza a síntese de 
fosfolipídios, a síntese de proteínas integrais da membrana celular e a montagem 
de proteínas formadas por várias cadeias polipeptídicas. Enquanto isso, o 
REL realiza a produção de fosfolipídios para todas as membranas celulares. 
Ainda, de acordo com o tipo celular, o REL é o local onde ocorre a produção 
de hormônios esteroides e processos de biotransformação como conjugação, 
oxidação e metilação (JUNQUEIRA; CARNEIRO, 2017).
Uma outra função do RE é o armazenamento do íon cálcio. O lúmen do RE 
apresenta uma alta quantidade de proteínas que se ligam ao Ca2+, possibilitando 
o seu armazenamento. Células musculares apresentamo REL modificado, 
que é denominado retículo sarcoplasmático. O retículo sarcoplasmático é 
responsável por liberar e armazenar cálcio durante a contração das fibras 
musculares (ALBERTS et al., 2017). 
O RER é encontrado em grandes quantidades nas células que apresentam alta produ-
ção e secreção de proteínas. Assim, essa organela é abundante em células acinosas 
do pâncreas, que secretam enzimas digestivas, em fibroblastos, que apresentam 
alta produção de colágeno, e em plasmócitos, que secretam as imunoglobulinas 
(JUNQUEIRA; CARNEIRO, 2017). 
Enquanto isso, o REL é abundante naquelas células que participam e apresentam alto 
metabolismo lipídico. As células dos testículos e ovários, que produzem hormônios 
esteroides como testosterona e progesterona, apresentam alta quantidade do REL. 
Os hepatócitos também exibem alta quantidade dessa organela. Essas células são 
as principais responsáveis pelo processo de biotransformação, no qual substâncias 
lipofílicas são metabolizadas em produtos mais hidrofílicos, a fim de facilitar a sua 
excreção. Dessa forma, essas reações são empregadas para a inativação de substâncias 
exógenas ao organismo e para a inativação de determinados hormônios, ocorrendo, 
predominantemente, no REL (COOPER; HAUSMAN, 2007; JUNQUEIRA; CARNEIRO, 2017).
3Organelas biossintéticas: o retículo endoplasmático e os ribossomos
Os ribossomos são partículas ribonucleicas, isto é, são complexos formados 
por ácido ribonucleico (RNA) e proteínas. Eles desempenham função central 
na síntese de proteínas, realizando a “leitura” das moléculas de RNA mensa-
geiro (mRNA) e promovendo a ligação entre aminoácidos. Essas organelas 
não apresentam membrana e são responsáveis pela síntese de todas as pro-
teínas integrais e solúveis, encontradas nas células e no espaço extracelular. 
Os ribossomos podem ser encontrados associados ao RE ou livres no citoplasma 
(Figura 1). Eles são compostos por três ou quatro tipos diferentes de RNA, 
chamados RNA ribossomais (rRNA) e cerca de 83 proteínas diferentes, sendo 
organizados em duas subunidades, uma maior e outra menor (ALMEIDA; 
PIRES, 2014) (LODISH et al., 2014). Os ribossomos de células eucariontes, 
por exemplo, são denominados ribossomos 80S. Eles são formados por uma 
subunidade maior, denominada 60S, e uma subunidade menor, chamada 40S. 
Enquanto isso, células procariontes, como as bactérias, apresentam ribosso-
mos 70S formados pelas subunidades 50S e 30S. A unidade S (Svedberg) 
expressa a taxa de sedimentação do ribossomo. Ela considera a velocidade de 
sedimentação da partícula e a aceleração utilizada no processo (ALMEIDA; 
PIRES, 2014).
Em células eucariontes, a maior parte do rRNA que compõe as duas subu-
nidades dos ribossomos é produzida no nucléolo, enquanto as proteínas são 
produzidas no citoplasma. Essas proteínas migram em direção ao núcleo e 
nesse compartimento se associam aos rRNA. Após, as subunidades maiores e 
menores, já prontas, migram por meio dos poros nucleares para o citoplasma 
celular (JUNQUEIRA; CARNEIRO, 2017).
No link a seguir, você poderá aprender um pouco mais sobre o RER e o REL e comparar 
diferentes tecidos do nosso organismo em relação à presença dessas organelas.
https://qrgo.page.link/JWUKH
Organelas biossintéticas: o retículo endoplasmático e os ribossomos4
Figura 1. RER, REL e ribossomos. Observe que o RER apresenta ribossomos aderidos a sua 
membrana externa.
Fonte: Adaptada de VectorMine/Shutterstock.com.
Célula
Retículo endoplasmático 
liso
Retículo endoplasmático 
rugoso Cisternas
Núcleo Envelope nuclear
Poros nucleares
Ribossomos
5Organelas biossintéticas: o retículo endoplasmático e os ribossomos
Diferentes condições em que ocorre 
a síntese de proteínas
As proteínas são moléculas formadas, predominantemente, por aminoácidos, 
que executam funções estruturais, bem como atuam como efetores de grande 
parte dos processos celulares. Elas são produzidas de acordo com as infor-
mações contidas no ácido desoxirribonucleico (DNA), a partir do processo 
de tradução (COOPER; HAUSMAN, 2007).
Todas as proteínas são sintetizadas nos ribossomos. Esse complexo se liga 
ao mRNA e, a partir disso, o processo de tradução inicia. Apesar da síntese 
proteica iniciar com a tradução do mRNA, para que se torne uma proteína 
funcional, a cadeia peptídica formada pode precisar passar por diferentes 
modificações, como enovelamento e adição de grupamentos químicos. Muitas 
dessas modificações ocorrem no RE (COOPER; HAUSMAN, 2007).
A síntese de proteínas pode ocorrer em ribossomos livres ou em ribossomos 
associados ao RE. Proteínas que ficarão livres no citosol ou serão incorporadas 
no núcleo celular, mitocôndrias, peroxissomos e cloroplastos (presentes nas 
células vegetais) são produzidas em ribossomos livres. Ao final do processo de 
tradução, essas proteínas são liberadas diretamente no citosol. Enquanto isso, 
os ribossomos aderidos à membrana do RE produzem proteínas específicas, 
destinadas à secreção ou à incorporação ao RE, complexo golgiense, lisossomos 
ou membrana plasmática (COOPER; HAUSMAN, 2007).
O destino das proteínas que são produzidas normalmente é definido por 
sequências de aminoácidos específicas, presentes na sua estrutura primária. 
É importante destacar que toda a síntese de proteínas inicia em ribossomos 
livres do citosol celular. Porém, quando as proteínas são direcionadas ao lúmen 
do RE durante o processo de tradução, os ribossomos são, primeiramente, 
associados à membrana do RE. Esse processo é mediado pela “sequência sinal”, 
uma sequência de aminoácidos presentes na extremidade amino-terminal da 
cadeia peptídica que está sendo sintetizada pelo ribossomo. Essa sequência 
apresenta 20 aminoácidos, sendo que vários deles são apolares (ALBERTS 
et al., 2017; COOPER; HAUSMAN, 2007).
Organelas biossintéticas: o retículo endoplasmático e os ribossomos6
Dessa forma, o RE captura as proteínas do citosol, à medida que elas são 
produzidas. Ele pode capturar proteínas transmembrana e proteínas solúveis 
em água. As proteínas transmembrana são parcialmente translocadas para a 
membrana do RE e se inserem nela. Essas proteínas podem permanecer na 
membrana do RE, assim como podem ser direcionadas à membrana da célula 
ou à membrana de outras organelas. Enquanto isso, as proteínas solúveis em 
água são totalmente transportadas para o interior do retículo. Essas proteínas 
são secretadas para o exterior celular, são direcionadas ao interior de outras 
organelas ou permanecem no lúmen do próprio RE (ALBERTS et al., 2017).
O direcionamento de proteínas ao lúmen do RE pode ocorrer enquanto elas 
ainda estão sendo sintetizadas, por meio do processo chamado “transporte 
simultâneo à tradução”, ou também, após sua tradução ter sido completada no 
citosol, por meio do processo denominado “transporte posterior à tradução”. 
Nas células eucariontes, normalmente ocorre o transporte simultâneo à tra-
dução. Enquanto isso, o transporte posterior à tradução ocorre normalmente 
em leveduras (COOPER; HAUSMAN, 2007).
No transporte simultâneo à tradução, a sequência sinal é guiada para o 
RE por meio de dois componentes-chaves: a partícula de reconhecimento 
de sinal (SRP) e o receptor SRP, presente na membrana do RE. A SRP é um 
complexo formado por seis polipeptídeos e um RNA citoplasmático pequeno. 
Essa partícula transita entre o RE e o citosol celular, ligando-se à sequência-
-sinal e à subunidade maior do ribossomo. Ao se ligar, a SRP causa uma 
pausa temporária do processo de tradução, até que o ribossomo seja ligado à 
membrana do RE. Essa pausa na tradução evita que a cadeia peptídica seja 
liberada no citosol celular.
A SRP ligada ao ribossomo migra em direção ao RE, onde estabelece 
ligação com o receptor de SRP, presente na membrana do RE. O estabeleci-
mento dessa ligação faz com que o complexo SRP-ribossomo interaja com 
uma proteína translocadora, presente na membrana do RE. Em seguida, a SRP 
e o receptor de SRP são liberados e a cadeia polipeptídica é transferidapara 
o lúmen do RE. A transferência da cadeia polipeptídica para o interior dessa 
organela ocorre por meio de um canal proteico presente em sua membrana, 
chamado translócon. À medida que a cadeia crescente de aminoácidos é 
7Organelas biossintéticas: o retículo endoplasmático e os ribossomos
transportada para o lúmen do RE, o processo de tradução continua. Ao final, a 
sequência sinal da cadeia é clivada por uma enzima peptidase sinal, liberando 
a cadeia polipeptídica no lúmen do RE (Figura 2) (COOPER; HAUSMAN, 
2007; ALBERTS et al., 2017).
Figura 2. Transporte de proteínas simultâneo à tradução. Note que a SRP se liga à sequência 
sinal do peptídeo em crescimento e ao receptor de SRP, presente na membrana do RE.
Fonte: Alberts et al. (2017, p. 674).
Enquanto isso, o transporte posterior à tradução, isto é, quando a proteína 
é transferida ao RE após a sua tradução completa, não requer a SRP. Nesse 
mecanismo, as proteínas são produzidas em ribossomos livres no citosol e 
suas sequências-sinal são reconhecidas por receptores distintos, associados 
ao translócon na membrana do RE. Para que possam entrar no translócon, 
as proteínas precisam ser mantidas em uma conformação não dobrada. Essa 
conformação é mantida por proteínas chaperonas citosólicas Hsp70. Um outro 
tipo de chaperona Hsp70, chamada BiP, também participa do transporte pelo 
translócon. Essa proteína está presente no interior do RE e é responsável 
por puxar o polipeptídeo para dentro do RE, por meio do canal (COOPER; 
HAUSMAN, 2007).
Organelas biossintéticas: o retículo endoplasmático e os ribossomos8
A sequência sinal ou peptídeo sinal corresponde a uma sequência de aminoácidos pre-
sentes na extremidade amino-terminal da cadeia peptídica que está sendo produzida 
e que determina o seu direcionamento. Essa hipótese foi demonstrada pelo biólogo 
Günter Blobel, que o fez ganhar o Prêmio Nobel de Medicina, em 1999. 
No link a seguir, você poderá aprender um pouco mais sobre a hipótese de sinal.
https://qrgo.page.link/H7q6V
O papel do retículo endoplasmático na síntese, 
modificação e distribuição de proteínas
Como vimos anteriormente, o RE apresenta um grande papel no que se refere 
à síntese, ao processamento e à distribuição de proteínas. No que se refere à 
distribuição, o RE atua translocando proteínas transmembrana em direção à 
membrana celular e a membranas de organelas presentes nas células. Além 
disso, o RE atua na secreção de proteínas e no transporte proteico para o 
interior de organelas celulares (ALBERTS et al., 2017). 
As proteínas transmembrana, também chamadas de proteínas integrais de 
membrana, são proteínas que atravessam a bicamada lipídica. O deslocamento 
dessas proteínas inicia com a sua inserção na membrana do RE. Após, elas 
seguem seu destino, sendo transportadas por meio das próprias membranas, por 
meio do caminho: RE complexo golgiense membrana plasmática ou endosso-
mos lisossomos. As proteínas transmembrana podem se orientar de diferentes 
formas por meio da membrana, como também podem transpassar a membrana 
em um número variável de vezes. As diferentes orientações das proteínas são 
determinadas no momento que a cadeia polipeptídica é transportada para o 
lúmen do RE (COOPER; HAUSMAN, 2007). 
As proteínas solúveis podem seguir a chamada “via secretora” (Figura 3). 
Por meio dessa via, elas são secretadas para o meio extracelular ou são des-
tinadas a diferentes compartimentos celulares. A via secretora inicia com a 
síntese proteica no RER. Após, as proteínas são destinadas para o complexo 
golgiense e, a partir deste, são deslocadas em vesículas secretoras para o 
exterior celular ou para os compartimentos intracelulares específicos.
9Organelas biossintéticas: o retículo endoplasmático e os ribossomos
Figura 3. Representação da via secretora. Logo após sua síntese, as proteí-
nas se deslocam do RE para o complexo golgiense. Após, essas proteínas 
seguem seu destino, sendo transportadas no interior de vesículas.
Fonte: Adaptada de Alberts et al. (2017).
O papel do retículo endoplasmático na modificação e 
no dobramento das proteínas
O RE é a organela na qual as proteínas são dobradas para adquirirem suas 
formas tridimensionais. Proteínas com estrutura quaternária, isto é, que são 
formadas por mais de uma subunidade, são também montadas no RE. No lúmen 
dessa organela também ocorrem modificações proteicas como glicosilações, 
formação de ligações dissulfeto e adição de grupos glicolipídicos. Assim, 
muitas das proteínas encontradas no lúmen do RE estão em trânsito. Ali elas 
são processadas e encaminhadas ao seu destino final. Esse processamento 
ocorre por proteínas residentes no RE (ALBERTS et al., 2017; COOPER; 
HAUSMAN, 2007).
O transporte das proteínas para o lúmen do RE ocorre em sua forma não 
dobrada. O dobramento das cadeias polipeptídicas ocorre no interior dessa 
organela, com o auxílio das proteínas chaperonas. As chaperonas Hsp70, por 
exemplo, se ligam às cadeias polipeptídicas e atuam como mediadoras de 
seu dobramento e, também, de sua montagem, quando a proteína resultante 
é formada por mais de uma subunidade.
Organelas biossintéticas: o retículo endoplasmático e os ribossomos10
Durante o dobramento, ligações dissulfeto podem ser formadas entre os 
resíduos de cisteína que formam a cadeia peptídica. Diferentemente do citosol, 
o interior do RE apresenta um meio oxidante, o qual favorece a formação 
das ligações dissulfeto. Além disso, o RE apresenta, em seu lúmen, a enzima 
proteína dissulfeto isomerase. Essa enzima catalisa a oxidação dos grupos 
sulfidrila (-SH) presentes no grupo lateral dos resíduos de cisteína, levando 
à formação das ligações dissulfeto. Praticamente todas as proteínas encon-
tradas no interior das organelas e no meio extracelular apresentam ligações 
dissulfeto entre seus resíduos de cisteína, que são formadas no RE (COOPER; 
HAUSMAN, 2007; ALBERTS et al., 2017).
A glicosilação de proteínas também é uma função biossintética muito 
importante realizada pelo RE. A glicosilação corresponde à reação na qual 
pequenos açúcares são ligados covalentemente às proteínas, levando à formação 
das chamadas glicoproteínas. Essa reação ocorre, normalmente, enquanto a 
cadeia polipeptídica é transportada para o interior do RE. Os oligossacarídeos 
ficam armazenados na membrana do RE, ligados ao lipídio dolicol e, então, 
são ligados à cadeia polipeptídica. Essa ligação frequentemente ocorre nos 
grupamentos amino (-NH2) da cadeia lateral dos resíduos de asparagina, o que 
leva à formação dos chamados oligossacarídeos ligados ao N. Para ser ligado 
à proteína, o oligossacarídeo é liberado do dolicol, por meio do rompimento 
da ligação entre os dois, uma ligação pirofosfato. Ao ser rompida, essa ligação 
libera uma grande quantidade de energia que é, então, utilizada para a reação 
de glicosilação. Essa reação é catalisada por uma enzima também presente na 
membrana do RE, a oligossacaril transferase. Além da ligação à asparagina, 
os oligossacarídeos também podem ser ligados ao grupo hidroxila da cadeia 
lateral de resíduos de serina, treonina ou hidroxilisina (COOPER; HAUSMAN, 
2007; ALBERTS et al., 2017).
Muitas das proteínas são montadas ou dobradas incorretamente (mais 
de 80%). Assim, uma outra função bastante importante do RE é a análise 
da estrutura das proteínas e a degradação daquelas que foram dobradas in-
corretamente. Nesse processo, o desafio é selecionar somente tais proteínas 
para a degradação. Assim, as proteínas montadas ou dobradas incorretamente 
devem ser distinguidas daquelas que ainda estão sendo montadas. Muitas 
vezes, os oligossacarídeos ligados ao grupamento -NH2 da asparagina atuam 
como marcadores para essa seleção. Eles funcionam como “cronômetros”, 
relacionando o tempo que uma proteína pode permanecer no RE (ALBERTS 
et al., 2017). As mesmas proteínas que auxiliam no dobramento das proteínas, 
no lúmen do RE, também podem atuar como “sensores” para o enovelamento 
11Organelas biossintéticas: o retículoendoplasmático e os ribossomos
ou montagem incorreta de proteínas. Um exemplo é a proteína chaperona BiP, 
que, além de atuar “puxando” as cadeias polipeptídicas para o interior do 
RE, também reconhece proteínas que foram enoveladas de forma incorreta 
ou cadeias polipeptídicas que ainda não foram unidas aos seus complexos 
oligoméricos. Tais proteínas se se ligam às cadeias dobradas incorretamente 
e as mantêm no RE, não deixando que sejam transportadas pelo complexo 
golgiense ou sigam seu destino final. Em vez disso, elas encaminham essas 
proteínas para uma via de degradação. Normalmente, as proteínas enoveladas 
de forma incorreta acabam sendo transportadas do RE para o citosol celular 
por meio dos canais translócon. No citosol, essas proteínas são marcadas com 
ubiquitina e degradadas no proteossomo (ALBERTS et al., 2017; COOPER; 
HAUSMAN, 2007).
No link a seguir você poderá ler um pouco mais sobre o direcionamento de proteínas, 
mediado pelo RE.
https://qrgo.page.link/NBeVs
ALBERTS, B. et al. Biologia molecular da célula. 6. ed. Porto Alegre: Artmed, 2017. 
ALMEIDA, L. M. de; PIRES, C. Biologia celular: estrutura e organização molecular. São 
Paulo: Érica; Saraiva, 2014. (Série Eixos).
COOPER, G. M.; HAUSMAN, R. E. A célula: uma abordagem molecular. 3. ed. Porto 
Alegre: Artmed, 2007.
JUNQUEIRA, L. C.; CARNEIRO, J. Histologia básica: texto e atlas. 13. ed. Rio de Janeiro: 
Guanabara Koogan, 2017.
LODISH, H. et al. Biologia celular e molecular. 7. ed. Porto Alegre: Artmed, 2014.
Organelas biossintéticas: o retículo endoplasmático e os ribossomos12
DICA DO PROFESSOR
Esse vídeo traz um resumo dos principais tópicos desta Unidade e servirá, principalmente, para 
você entender a estrutura e a função do retículo endoplasmático e dos ribossomos como 
organelas biossintéticas. Bons estudos!
Conteúdo interativo disponível na plataforma de ensino!
EXERCÍCIOS
1) Os ribossomos e o retículo endoplasmático atuam no processo de síntese proteica. Em 
relação ao seu papel neste processo, considere as seguintes afirmativas: 
I. A associação de ribossomos ao retículo endoplasmático é o que permite a síntese 
proteica; 
II. No processo de síntese proteica os ribossomos fazem a leitura de moléculas de 
mRNA; 
III. Muitas proteínas se tornam funcionais apenas após passarem por modificações 
realizadas nos ribossomos; 
IV. A ocorrência da síntese proteica no retículo endoplasmático gera a via secretora. 
Quais são verdadeiras? 
A) I e II
B) II e IV
C) II e III
D) III e IV
E) I, II e IV
2) O retículo endoplasmático (RE) pode ser dividido em RE liso e RE rugoso. A síntese 
de lipídios ocorre no: 
A) Complexo de Golgi.
B) Mitocôndria.
C) Citoesqueleto.
D) Retículo endoplasmático liso.
E) Retículo endoplasmático rugoso.
3) A organela bem desenvolvida apenas em células de certos órgãos, como o fígado e as 
gônadas, é: 
A) Complexo de Golgi.
B) Lisossomos.
C) Retículo endoplasmático rugoso.
D) Vacúolos.
E) Retículo endoplasmático liso.
4) Sobre as funções dos tipos de retículo endoplasmático (RE), pode-se afirmar que: 
A) O RE rugoso está relacionado com o processo de síntese de esteroides.
B) O RE liso tem como função a síntese de proteínas.
C) O RE conhecido como agranular tem muitos ribossomos aderidos a sua superfi ́cie 
citosólica.
D) O RE rugoso participa dos processos de desintoxicação do organismo.
E) O RE rugoso está ligado à síntese de proteína.
5) A melhor definição para ribossomo é: 
A) Maior sistema de endomembranas. Consiste em uma extensa rede interconectada de 
vesi ́culas e túbulos achatados que se estendem através do citosol.
B) Grande complexo de RNA ribossomal e protei ́nas que se associam com o mRNA e 
catalisam a síntese de proteínas. É organizado em uma subunidade maior e 
uma subunidade menor.
C) Fina camada de moléculas de lipídios e proteínas associadas que envolve todas as células e 
limita muitas organelas.
D) Organela ligada à membrana interna que contém enzimas digestivas. Geralmente essas 
enzimas são ativadas em pH ácido dessas organelas.
E) Organela ligada à membrana, com o tamanho aproximado a de uma bactéria, em que 
ocorre a fosforilação oxidativa e produz a maior parte de ATP nas células eucarióticas.
NA PRÁTICA
Os ribossomos catalisam a síntese de proteínas que podem ser detectadas a partir de mostras de 
tecido biológico pela técnica de western blot. Essa técnica consiste, basicamente, na análise do 
conteúdo de proteínas específicas de lisados celulares ou homogenados teciduais. As amostras 
são aplicadas em gel de poliacrilamida com uma diferença de potencial. As proteínas migram 
nesse gel de acordo com o seu tamanho: proteínas maiores migram de forma mais lenta que 
proteínas menores. Depois de separadas de acordo com seus tamanhos, as proteínas são 
transferidas para uma membrana que permite a incubação com anticorpos: primeiramente é 
realizada a incubação com o denominado anticorpo primário, que reconhece a proteína de 
interesse; por fim, é realizada a incubação com o anticorpo secundário, que reconhece o 
anticorpo primário e é acoplado a algum fator que permita a sua detecção. Finalmente é 
realizada a revelação das bandas: quanto maior e mais densa a banda, maior a quantidade da 
proteína de interesse na amostra.
SAIBA MAIS
Para ampliar o seu conhecimento a respeito desse assunto, veja abaixo as sugestões do 
professor:
Veja como a técnica de western blot pode auxiliar na investigação de anormalidades 
proteicas presentes no sangue:
Conteúdo interativo disponível na plataforma de ensino!
Conheça mais sobre o retículo endoplasmático e as possíveis doenças ligadas a ele:
Conteúdo interativo disponível na plataforma de ensino!
Quer saber mais a respeito dos ribossomos? Acesse este blog específico:
Conteúdo interativo disponível na plataforma de ensino!

Outros materiais