Buscar

E-Book Completo_Química Analítica Quantitativa_CENGAGE_V2(VERSÃO DIGITAL)

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 81 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 81 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 81 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

QUÍMICA ANALÍTICA
QUANTITATIVA
QUÍMICA ANALÍTICA
QUANTITATIVA
ORGANIZADOR FABIO DE PÁDUA FERREIRA
ORGANIZADOR FABIO DE PÁDUA FERREIRA
Quím
ica analítica quantitativa 
GRUPO SER EDUCACIONAL
Química analítica quantitativa é uma obra direcionada para estudantes 
das áreas de farmácia, química, bioquímica e correlatas.
Além de abordar assuntos triviais, a obra traz matéria introdutória ao 
processo quantitativo, e conteúdo sobre análise titulométrica, técnicas 
eletroanalíticas e métodos de separação.
Após a leitura, o leitor vai identi�car e aprender como manusear equipa-
mentos utilizados em análises químicas; descobrir a importância da quími-
ca analítica quantitativa para diferentes áreas da ciência, principalmente 
para as ciências farmacêuticas; interpretar curvas de titulação e aprender 
a realizar cálculos empregados em titulação; discutir as principais 
aplicações das técnicas titolumétricas nos campos do meio ambiente, 
farmácia e saúde; veri�car as principais aplicações das técnicas eletro-
analíticas em diferentes campos da ciência; conhecer os fundamentos da 
espectrofotometria e suas aplicações; aprimorar os conhecimentos sobre 
cromatogra�a gasosa e cromatogra�a líquida de alta e�ciência; saber uma 
variedade de técnicas e metodologias para proceder com separações 
analíticas, e muito mais.
Aproveite a leitura do livro. 
Bons estudos!
gente criando futuro
I SBN 9786555581232
9 786555 581232 >
C
M
Y
CM
MY
CY
CMY
K
QUÍMICA 
ANALÍTICA 
QUANTITATIVA
Todos os direitos reservados. Nenhuma parte desta publicação poderá ser reproduzida ou 
transmitida de qualquer modo ou por qualquer outro meio, eletrônico ou mecânico, incluindo 
fotocópia, gravação ou qualquer outro tipo de sistema de armazenamento e transmissão de 
informação, sem prévia autorização, por escrito, do Grupo Ser Educacional. 
Diretor de EAD: Enzo Moreira
Gerente de design instrucional: Paulo Kazuo Kato 
Coordenadora de projetos EAD: Manuela Martins Alves Gomes
Coordenadora educacional: Pamela Marques
Equipe de apoio educacional: Caroline Guglielmi, Danise Grimm, Jaqueline Morais, Laís Pessoa
Designers gráficos: Kamilla Moreira, Mário Gomes, Sérgio Ramos,Tiago da Rocha
Ilustradores: Anderson Eloy, Luiz Meneghel, Vinícius Manzi 
 
Ferreira, Fábio de Pádua.
Química analítica quantitativa / Fábio de Pádua Ferreira. – São Paulo: Cengage – 2020.
 Bibliografia.
 ISBN 9786555581232
 1. Química 2. Química analítica 3. Farmácia-Bioquímica.
Grupo Ser Educacional
 Rua Treze de Maio, 254 - Santo Amaro 
CEP: 50100-160, Recife - PE 
PABX: (81) 3413-4611 
E-mail: sereducacional@sereducacional.com
“É através da educação que a igualdade de oportunidades surge, e, com 
isso, há um maior desenvolvimento econômico e social para a nação. Há alguns 
anos, o Brasil vive um período de mudanças, e, assim, a educação também 
passa por tais transformações. A demanda por mão de obra qualificada, o 
aumento da competitividade e a produtividade fizeram com que o Ensino 
Superior ganhasse força e fosse tratado como prioridade para o Brasil.
O Programa Nacional de Acesso ao Ensino Técnico e Emprego – Pronatec, 
tem como objetivo atender a essa demanda e ajudar o País a qualificar 
seus cidadãos em suas formações, contribuindo para o desenvolvimento 
da economia, da crescente globalização, além de garantir o exercício da 
democracia com a ampliação da escolaridade.
Dessa forma, as instituições do Grupo Ser Educacional buscam ampliar 
as competências básicas da educação de seus estudantes, além de oferecer-
lhes uma sólida formação técnica, sempre pensando nas ações dos alunos no 
contexto da sociedade.”
Janguiê Diniz
PALAVRA DO GRUPO SER EDUCACIONAL
Autoria
Fábio de Pádua Ferreira
Licenciado em Química pela Universidade de Coimbra (UC) e pela Universidade Federal de 
Uberlândia (UFU), Mestre em Química Analítica pela Universidade Federal de Uberlândia. Atuou 
no desenvolvimento de genossensor eletroquímico para quantificar bactérias e na purificação e 
caracterização de proteínas envolvidas em amiloidoses.
SUMÁRIO
Prefácio .................................................................................................................................................8
UNIDADE 1 - Introdução ao processo analítico quantitativo ...........................................................9
Introdução.............................................................................................................................................10
1. Introdução à química analítica quantitativa ...................................................................................... 11
2. Materiais e equipamentos empregados na análise quantitativa ......................................................15
3. Erros em análises químicas ............................................................................................................... 18
4. Análise estatística de dados .............................................................................................................. 20
5. Amostragem ...................................................................................................................................... 22
PARA RESUMIR ..............................................................................................................................25
REFERÊNCIAS BIBLIOGRÁFICAS ......................................................................................................26
UNIDADE 2 - Análise titulométrica .................................................................................................27
Introdução.............................................................................................................................................28
1 Introdução as técnicas titulométricas ............................................................................................... 29
2 Soluções padrão e indicadores empregados na titulação ..................................................................32
3 Cálculos volumétricos ....................................................................................................................... 35
4 Métodos Titulométricos ................................................................................................................... 36
5 Aplicações quantitativas da análise titulométrica .............................................................................. 41
PARA RESUMIR ..............................................................................................................................43
REFERÊNCIAS BIBLIOGRÁFICAS ......................................................................................................44
UNIDADE 3 - Técnicas eletroanalíticas ...........................................................................................45
Introdução.............................................................................................................................................46
1. Introdução à Eletroquímica .............................................................................................................. 47
2. Técnicas eletroanalíticas e instrumentação ..................................................................................... 50
3. Métodos eletroquímicos ................................................................................................................... 52
4. Introdução aos Métodos Espectroscópicos ...................................................................................... 54
5. Espectroscopia Atômica .................................................................................................................... 56
PARA RESUMIR ..............................................................................................................................59
REFERÊNCIAS BIBLIOGRÁFICAS ......................................................................................................60
UNIDADE 4- Métodos de separação ..............................................................................................63
Introdução.............................................................................................................................................64
1. Introdução às Técnicas de Separação ................................................................................................ 65
2. Métodos e técnicas de extração ....................................................................................................... 67
3. Fundamentos das técnicas cromatográficas ..................................................................................... 68
4. Cromatografia gasosa........................................................................................................................ 70
5. Cromatografia líquida ....................................................................................................................... 73
PARA RESUMIR ..............................................................................................................................77
REFERÊNCIAS BIBLIOGRÁFICAS ......................................................................................................78
Química analítica quantitativa apresenta em suas quatro unidades o conteúdo 
parcialmente descrito a seguir, além de conceitos-chave já conhecidos na área.
Introdução ao processo quantitativo, a primeira unidade, apresenta as 
características da análise quantitativa e seu emprego em diferentes áreas da ciência. 
Os princípios e as aplicações da quimiometria em análises químicas e procedimentos 
de amostragem empregados para obter amostras nos estados sólido e líquido também 
são tratados aqui.
A segunda unidade, Análise titulométrica, aborda as características das titulações, 
incluindo o uso de diferentes tecnologias e equipamentos, avanços e seu emprego 
analítico em diferentes campos da ciência. O leitor vai aprender as principais técnicas 
titulométricas, as características da curva de titulação, materiais de referência e os 
procedimentos para preparação de soluções padrão.
Na sequência, a terceira unidade, Técnicas eletroanalíticas, discute os fundamentos 
e a instrumentação utilizados na eletroanálise, verifica os campos e as áreas de 
aplicação, os materiais usados no desenvolvimento de eletrodos e de plataformas 
analíticas, e as tecnologias empregadas para aprimorar as técnicas eletroquímicas. O 
leitor conhecerá, também, os métodos espectroscópicos.
Fechando a obra, a quarta e última unidade, Métodos de separação, trata das 
principais técnicas e instrumentação utilizadas na separação, no isolamento e na 
purificação dos componentes de amostras. Os métodos de extração em fase e muitos 
outros assuntos também são discutidos aqui.
Este é apenas um panorama do conteúdo que o leitor vai estudar. Agora é com 
você! Sucesso!
PREFÁCIO
UNIDADE 1
Introdução ao processo analítico 
quantitativo
Olá,
Você está na unidade Introdução ao processo quantitativo. Conheça aqui as principais 
características da análise quantitativa, bem como seu emprego em diferentes áreas da 
ciência, em especial nas ciências farmacêuticas. Conheça os procedimentos necessários 
para garantir análises sistemáticas e confiáveis, medidas para reduzir diferentes tipos de 
erro e ferramentas de análise estatísticas para interpretar resultados obtidos.
Veja também os princípios e aplicações da quimiometria em análises químicas e 
procedimentos de amostragem adotados para obter amostras representativas nos 
estados sólido e líquido.
Bons estudos!
Introdução
11
1. INTRODUÇÃO À QUÍMICA ANALÍTICA 
QUANTITATIVA
A química analítica é uma ciência que engloba um conjunto de métodos, técnicas e 
instrumentação, empregados com a finalidade de identificar, isolar e quantificar espécies em 
amostras. Eles têm grande aplicabilidade em diferentes campos da ciência, agronegócio, indústria 
e na medicina.
A análise quantitativa desempenha um papel de grande importância em campos como ciências 
forenses, biológicas e farmacêuticas. Por exemplo, a determinação quantitativa dos íons potássio, 
cálcio e sódio em fluidos biológicos possibilita estudar o papel dessas espécies na condução de sinais 
nervosos, assim como estudar processos de contração e relaxamento muscular. A concentração de 
elementos minoritários em amostras de vários locais possibilita o rastreio das rotas de comércio 
pré-históricas de ferramentas e armas confeccionadas. Muitos cientistas e pesquisadores têm 
dedicado seu tempo nos laboratórios reunindo informações quantitativas sobre sistemas que são 
importantes para suas respectivas pesquisas (SKOOG et al., 2006). 
Segundo Görög (2006), graças ao desenvolvimento de uma ampla gama de métodos 
analíticos nas últimas décadas, como os métodos cromatográficos e espectroscópicos e suas 
combinações, a identificação e determinação seletiva e quantitativa de espécies e impurezas 
tornou-se possível e economicamente viável. Assim, a análise de impurezas se tornou um campo 
de grande importância para as ciências farmacêuticas, visando a garantir um padrão qualidade 
aos medicamentos.
Os pesquisadores, atualmente, têm focado em minimizar os efeitos adversos provenientes 
da ação de produtos indesejados produzidos durante suas preparações e desenvolvimento 
de um medicamento. Após estabelecer o perfil farmacológico-toxicológico da substância, os 
farmacologistas, clínicos e autoridades de registro de medicamentos podem consider seus efeitos 
benéficos e adversos para o organismo humano, com base na relação benefício/risco assim 
obtida, tomando posteriormente a decisão quanto à possibilidade de introduzir em terapia. 
1.1 Métodos Analíticos Quantitativos
A química analítica quantitativa pode ser abordada utilizando métodos clássicos e métodos 
instrumentais. Os métodos clássicos foram muito utilizados no passado, quando grande maioria 
das análises químicas era realizada separando os componentes de interesse em uma amostra por 
precipitação, extração ou destilação.
12
Utilize o QR Code para assistir ao vídeo:
Para análises qualitativas, os componentes separados eram tratados com reagentes que 
produziam produtos que podiam ser reconhecidos por suas cores, pontos de ebulição ou fusão, 
solubilidades em uma série de solventes, odores, atividades ópticas ou índices de refração.
Para análises quantitativas, a quantidade de analito era muitas vezes determinada por 
gravimetria ou por medidas volumétricas. Nos procedimentos volumétricos, também chamados 
titrimétricos, era obtido o volume ou massa de um reagente padrão necessário para reagir 
completamente com o analito.
Esses métodos ainda são utilizados, no entanto, com o advento dos métodos instrumentais, 
que possibilitaram análises mais rápidas, precisas e confiáveis, pode-se observar que a utilização 
de métodos clássicos tem diminuído com o passar do tempo (SKOOG et al., 2006).
De acordo com Skoog et al. (2006), no início do século XX, os cientistas começaram a explorar 
outros fenômenos que não os usados nos métodos clássicos para resolver problemas analíticos. 
Assim, medições de propriedades físicas do analito, como condutividade, potencial na superfície 
de eletrodos, absorção ou emissão de luz e fluorescência começaram a ser utilizadas para 
análises quantitativas. Além disso, técnicas cromatográficas e eletroforéticas altamente eficientes 
começaram a substituir a destilação, extração e precipitação pela separação de componentes 
de misturas complexas antes de sua determinação qualitativa ou quantitativa. Esses métodos 
mais recentes para separar e determinar espécies químicas são conhecidos coletivamente como 
métodos instrumentais de análise.
13
Segundo Skoog et al. (2006), os métodos analíticos podem ser classificados de acordo com 
a natureza da medida adotada na análise. Métodos que determinam a massa do analito ou de 
algum composto relacionado quimicamente a ele são classificados métodosgravimétricos.
Utilize o QR Code para assistir ao vídeo:
Métodos volumétricos
Mede-se o volume da solução contendo reagente em quantidade suficiente para reagir com 
todo analito presente.
Métodos eletroanalíticos
Envolvem a medida de propriedades elétricas, como corrente, potencial, impedância, 
resistência e carga elétrica.
Métodos espectroscópicos
Baseiam-se na medida da interação entre a radiação eletromagnética e os átomos ou as 
moléculas do analito.
Outros métodos
FIQUE DE OLHO
Nos últimos anos, temos observado o crescimento e difusão dos métodos instrumentais 
de análise, que têm acompanhado o desenvolvimento das indústrias de eletrônicos e 
computadores. Segundo Austin (2010), os sistemas miniaturizados emergiram como um 
componente importante da química analítica e atingiram um nível de maturidade que agora 
14
Podem incluir a medida de outras grandezas, como razão massa-carga de moléculas por 
espectrometria de massas, entalpia de reação, condutividade térmica de amostras, atividade 
óptica e índice de refração.
1.2 Química analítica quantitativa aplicada nas ciências farmacêuticas
De acordo com Pimenta (2003), o fenômeno da globalização observado nos últimos anos 
tem impactado de forma significativa a indústria farmacêutica. Novos medicamentos vêm sendo 
produzidos e comercializados para mercados globais. Com isso, os regulamentos relacionados ao 
controle de qualidade de medicamentos sofreram consideráveis mudanças, passando a exigir uma 
série de análises adicionais. Esta situação contribuiu para o desenvolvimento de metodologias 
analíticas, com aplicação em grande escala e possibilitando resultados rápidos e económicos.
Ahuja e Scypinski (2010) enfatizam que o emprego regular de análises químicas em diferentes 
etapas da produção de medicamentos possibilita garantir maior qualidade e controle de produção. 
Testes bem planejados, com metodologia e instrumentação adequadas, possibilitam produzir 
medicamentos de elevada qualidade.
Para produzir um fármaco com essas características, é imprescindível compreender interações 
de substâncias medicamentosas com excipientes, especialmente quando estão presentes 
solventes residuais, além de entender as possíveis reações de degradação que podem ocorrer no 
produto formulado sob várias condições que podem ser encontradas durante o armazenamento 
e o transporte.
A qualidade dos medicamentos depende do cumprimento de um conjunto de normas e 
procedimentos nas etapas de fabricação desses compostos. O controle de qualidade da matéria-
prima, do processo de fabricação, dos produtos acabados e seu armazenamento deve estar 
de acordo com práticas que asseguram que esses medicamentos cumpram a lei em termos de 
segurança, para que estes medicamentos apresentem a identidade, a potência, a qualidade e 
pureza características (PIMENTA, 2003). Dessa forma, é importante realizar análises químicas 
frequentes, em diferentes etapas do processo de produção do fármaco, visando a garantir um 
produto com especificações e qualidade confiáveis.
De acordo com Görög (2006) os efeitos adversos dos medicamentos podem se originar de duas 
formas distintas: devido a efeitos colaterais que podem ser considerados propriedades inerentes 
e não podem ser influenciados pela qualidade do medicamento e devido a impurezas presentes.
Essas impurezas podem ser materiais fisiologicamente tóxicos, que têm potencial de contribuir 
para o processo de efeito colateral do medicamento. O perfil de impureza de um material 
medicamentoso depende da rota de síntese e de outros fatores, o que pode tornar imprevisível o 
perfil de efeitos colaterais, influenciando adversamente a segurança da terapia medicamentosa. 
15
Portanto, ao estimar o perfil de impureza de um material medicamentoso e estabelecer limites 
estritos para as impurezas, esse perigo pode ser minimizado.
2. MATERIAIS E EQUIPAMENTOS EMPREGADOS 
NA ANÁLISE QUANTITATIVA
De acordo com Harris (2012), durante os experimentos situações de risco podem ocorrer. 
A principal regra de segurança é familiarizar-se com os perigos e não realizar procedimentos 
considerados perigosos. Em casos de operações que representem riscos, é importante, 
primeiramente, discuti-las, prosseguindo apenas quando as precauções necessárias forem tomadas.
Além disso, antes de realizar o trabalho, é importante familiarizar-se com os recursos de 
segurança do laboratório. Itens como óculos de proteção devem ser utilizados o tempo todo, 
visando a proteger os olhos de líquidos e vidro. As lentes de contato, por sua vez, não são 
recomendadas no laboratório, pois os vapores podem ficar presos entre a lente e o olho. Para 
proteger a pele de derramamentos e chamas, é aconselhável que você use um jaleco resistente, 
além de luvas de borracha, ao despejar ácidos concentrados. Solventes orgânicos, ácidos 
concentrados e amônia concentrada devem ser manuseados em uma capela com exaustor e é 
sugerido que os derramamentos imediatamente limpos, para evitar o contato acidental de outras 
pessoas. É fundamental, também, nunca consumir alimentos no laboratório.
Com relação aos equipamentos utilizados na química analítica, a sua variedade é 
impressionante: há desde os simples e baratos até os complexos e caros. A instrumentação usada 
para medir massa e grande parte do equipamento usado para medir volume são importantes 
para todas as técnicas analíticas (HARVEY, 2000).
Segundo Patnaik (2004), a pesagem é o procedimento mais comum e mais fundamental 
durante uma análise química. As balanças de laboratório de hoje incorporam os mais recentes 
avanços em eletrônica, mecânica de precisão e ciência de materiais. Nesse caso, os ganhos para o 
pesquisador incluem a facilidade de uso, versatilidade e precisão das medidas.
De acordo com Harvey (2000), uma grande variedade de materiais de vidro pode ser 
empregada para aferir volumes e a precisão da medida depende do tipo usado. Béqueres, pipetas 
e cilindros graduados são equipamentos comumente usados para medir volumes e podem 
ser encontrados em todos os tipos de laboratório. Para medidas mais precisas, instrumentos 
automatizados estão disponíveis.
2.1 Equipamentos para medidas de massa 
Segundo Harvey (2000), a massa de um material pode ser obtida usando uma balança, cujo 
16
tipo mais comum é a balança eletrônica. Várias precauções ajudam a minimizar erros na medição 
da massa de um objeto: as balanças devem ser colocadas em superfícies pesadas para minimizar 
o efeito das vibrações no ambiente circundante e devem ser mantidas em uma posição nivelada.
As balanças analíticas são sensíveis o suficiente para medir a massa de uma impressão digital. 
Por esse motivo, os materiais colocados em uma balança normalmente devem ser manuseados 
usando pinças e espátulas. As amostras líquidas voláteis devem ser pesadas em um recipiente 
coberto, para evitar a perda de amostra por evaporação. As correntes de ar podem afetar 
significativamente a mensuração da massa de uma amostra, então, para evitá-las, as portas de 
vidro da balança devem estar fechadas. Uma amostra que seja mais fria ou mais quente do que 
o ar circundante criará correntes de ar convectivas que afetarão adversamente a medição de sua 
massa. Finalmente, as amostras secas em um forno devem ser armazenadas em um dessecador 
para evitar que reabsorvam a umidade da atmosfera.
De acordo com Patnaik (2004), o usuário da balança deve prestar atenção especial aos 
seguintes aspectos:
• Selecionar a balança adequada para uma finalidade específica.
• Entender as funções e os recursos do instrumento e usá-los corretamente para obter seu 
melhor desempenho.
• Saber como verificar a precisão e a funcionalidade de uma balança através da instalação 
correta, cuidado e manutenção.
• Utilizar técnicas adequadas e eficientes nas operações de pesagem e calibração.
• Aplicar um julgamento adequado na interpretação dos resultados da pesagem.
2.2 Equipamentos para medidas de volume
De acordo com Skoog et al. (2006), a medida precisa de volumesapresenta grande 
importância para um método analítico. O volume pode ser determinado de maneira confiável 
com instrumentos como pipeta, bureta e frascos volumétricos. As pipetas e as buretas são, 
normalmente, calibradas para manusear volumes específicos, enquanto os frascos volumétricos 
são calibrados para conter um dado volume.
Harvey (2000) enfatiza que as pipetas e frascos volumétricos fornecem um meio mais preciso 
para medir o volume, enquanto um volumétrico é projetado para conter um volume especificado 
de solução a uma temperatura determinada, geralmente a 20 °C, quando cheio até a marca de 
calibração, também denominado menisco.
Os balões volumétricos são utilizados na preparação de soluções com concentrações exatas. 
Assim, o reagente é transferido para o balão volumétrico e é adicionada uma quantidade 
17
suficiente de solvente para dissolver o reagente. Após a dissolução do reagente, acrescenta-se 
solvente adicional em várias porções, misturando a solução após cada adição. O ajuste final do 
volume ao menisco pode ser feito usando uma pipeta.
A pipeta é usada para fornecer um volume específico de solução. Diferentes modelos de 
pipetas estão disponíveis comercialmente. As pipetas fornecem os meios mais precisos para 
fornecer um volume conhecido de solução. De acordo com Harvey (2000), são necessárias três 
precauções importantes ao trabalhar com pipetas e frascos volumétricos. 
• O equipamento deve estar limpo, e soluções de limpeza podem ser utilizadas.
• Ao encher uma pipeta ou balão volumétrico, definir o nível do líquido exatamente pelo 
menisco, que deve ser deslocado e colocado no nível dos olhos para evitar erros.
• Antes de usar uma pipeta ou balão volumétrico, é recomendado enxaguá-lo com várias 
pequenas porções da solução cujo volume está sendo medido, evitando que qualquer 
líquido residual remanescente na pipeta ou no balão volumétrico seja removido
A bureta é um tubo de vidro fabricado com precisão, com graduações que permitem medir o 
volume de líquido fornecido através da torneira (a válvula) na parte inferior. Ao ler o nível do líquido 
em uma bureta, seu olho deve estar na mesma altura que a parte superior do líquido. Caso seus 
olhos não estejam no mesmo nível do líquido, ocorre um erro de leitura chamado de paralaxe, que 
ocorre pois a superfície da maioria dos líquidos forma um menisco côncavo (HARRIS, 2012).
2.3 Caderno de laboratório
O caderno de laboratório é um item imprescindível para cientistas e pesquisadores que 
realizam análises químicas. De acordo com Baccan (1988), o caderno de laboratório deve conter 
uma descrição completa e precisa de todo o trabalho a ser realizado.
De modo geral, o estudante deve usar o caderno para anotar suas observações e conclusões, 
e deve acostumar-se a escrever as equações químicas à medida em que são realizadas na prática. 
Tudo deve ser anotado, mesmo que o experimento ocorra mal ou não apresente o resultado 
esperado, pois, eventualmente, essas informações poderão ser úteis em análises posteriores.
Harris (2012) descreve que um dos maiores erros cometidos por cientistas é escrever cadernos 
incompletos ou ininteligíveis, e uma excelente maneira para evitar isso é escrever sempre frases 
completas. Os estudantes iniciantes costumam achar útil escrever uma descrição completa 
de um experimento, com seções que tratam de propósito, métodos, resultados e conclusões. 
Porém devem lembrar que organizar um caderno para inserir dados numéricos antes de ir ao 
laboratório é uma excelente maneira de se preparar para um experimento e que um bom caderno 
de anotações indicará tudo o que foi feito e o que você observou, assim, permitirá que você ou 
qualquer outra pessoa repita o experimento. 
18
3. ERROS EM ANÁLISES QUÍMICAS
Segundo Skoog et al. (2006), as medidas realizadas em química analítica inevitavelmente 
envolvem erros e incertezas, mas apenas alguns deles ocorrem devido a falhas cometidas pelo 
analista. Os erros mais comuns estão associados a padronizações ou calibrações malfeitas, 
incertezas nos resultados e variações aleatórias. Para minimizar esses erros, podem ser realizadas 
calibrações frequentes, assim como padronizações e análises de amostras conhecidas. Os erros 
nas medidas são uma parte inerente das análises quantitativos, desta forma, é tecnicamente 
impossível realizar uma análise química que seja totalmente livre de erros ou incertezas, portanto, 
o pode ser feito é minimizar os erros e estimar sua grandeza com uma exatidão aceitável.
De acordo com Harris (2012), alguns erros de laboratório são mais óbvios do que outros, 
mas há erros associados a todas as medições. O melhor a se fazer, em uma análise química, é 
aplicar cuidadosamente uma técnica que a experiência nos diz ser confiável. A repetição de um 
método de medição indica a reprodutibilidade da medição e, se os resultados da medição da 
mesma quantidade, por métodos diferentes, estiverem de acordo, ficaremos confiantes de que 
os resultados são precisos, o que significa que estão próximos do valor verdadeiro.
Harvey (2000) enfatiza que os dois tipos mais comuns de erros são os erros aleatórios e erros 
sistemáticos.
Os erros que afetam a precisão de uma análise são chamados erros sistemáticos e são 
caracterizados por um desvio sistemático do valor verdadeiro, isto é, todas as medições individuais 
são muito grandes ou muito pequenas (SKOOG et al., 2006).
O erro aleatório faz com que os dados se distribuam de forma mais ou menos simétrica em 
torno do valor médio, afetando a precisão do método (SKOOG et al., 2006).
3.1 Erros sistemáticos
Segundo Harris (2012), o erro sistemático, também chamado de erro determinado, surge 
de uma falha no equipamento ou do design de um experimento. Se você realizar o experimento 
novamente exatamente da mesma maneira, o erro será reproduzível. Em princípio, o erro 
sistemático pode ser descoberto e corrigido, embora isso possa ser difícil.
Por exemplo, considere que um medidor de pH padronizado incorretamente produz um erro 
sistemático. Suponha que você pense que o pH do buffer usado para padronizar o medidor é 7,00, 
mas na verdade é 7,08, com isso, todas as suas leituras de pH serão 0,08 unidades de pH muito 
baixas. Quando você lê um pH de 5,60, o pH real da amostra é de 5,68. Esse erro sistemático pode 
ser descoberto usando um segundo tampão de pH conhecido para testar o medidor.
19
Harvey (2000) descreve que os erros sistemáticos podem ser divididos em quatro categorias: 
erros de amostragem, erros de método, erros de medição e erros pessoais. A descrição destes 
tipos de erros pode ser observada no quadro seguinte.
Quadro 1 - Tipos de erros sistemáticos 
Fonte: HARVEY, 2000; SKOOG et al., 2006 (adaptado).
#ParaCegoVer: A tabela apresenta os tipos de erros sistemáticos e tem quatro linhas e duas 
colunas. Na coluna da esquerda, há o tipo de erro e, na da direita, sua respectiva descrição. O 
primeiro erro é “Amostragem”, e a descrição correspondente é “ocorrem quando a estratégia de 
amostragem falha em fornecer uma amostra representativa. Isso é especialmente importante em 
amostras de materiais heterogêneos”. O segundo erro é “Método”, cuja descrição é “surgem do 
comportamento químico ou físico não ideal de sistemas analíticos”. O terceiro é “Instrumentais”, 
e tem como descrição “são causados pelo comportamento não ideal de um instrumento, por 
calibrações falhas, ou pelo uso de condições inadequadas”. O quarto e último erro é chamado 
“Pessoais”, cuja descrição é “resultam da falta de cuidado, falta de atenção ou limitações pessoais 
do analista. Erros pessoais podem ser minimizados com a devida precaução”.
3.2 Erros aleatórios
Harris (2012) descreve que o erro aleatório, também chamado erro indeterminado, surge 
de variáveis não controladas na medição. O erro aleatório tem igual chance de ser positivo ou 
negativo. Skoog et al. (2006) afirma que os erros aleatórios existem em todas as medidas e jamais 
podem ser totalmente eliminados, sendo muitas vezes, a maiorfonte de incertezas em uma 
determinação. Esses erros são provocados por muitas variáveis incontroláveis, sendo assim, parte 
inevitável de toda análise.
A maioria dos fatores contribuintes do erro aleatório não pode ser claramente identificada, e, 
mesmo que seja possível identificar tais fontes de incertezas, geralmente é impossível medi-las, 
porque a maioria delas é tão pequena que não podem ser detectadas individualmente. O efeito 
cumulativo das incertezas individuais, entretanto, faz com que as réplicas de medidas flutuem 
aleatoriamente em torno da média do conjunto de dados.
20
Segundo Skoog et al. (2006), para avaliar os erros aleatórios, podem ser utilizados métodos 
estatísticos, que, geralmente, se baseiam na premissa de que os erros aleatórios contidos em 
resultados analíticos seguem uma distribuição gaussiana.
4. ANÁLISE ESTATÍSTICA DE DADOS
Segundo Harvey (2000), nas análises quantitativas, geralmente são realizadas leituras 
replicadas. As medições experimentais sempre contêm alguma variabilidade, neste sentido, a 
estatística fornece ferramentas para aceitar conclusões com alta probabilidade de serem corretas 
e rejeitar conclusões que não são. Se um experimento é repetido muitas vezes, e se os erros 
são puramente aleatórios, os resultados tendem a se agrupar simetricamente sobre um valor 
médio. Quanto mais vezes o experimento é repetido, mais próximos os resultados se aproximam 
de uma curva suave ideal, chamada distribuição gaussiana, que possibilita estimar parâmetros 
que descrevem um grande conjunto a partir do pequeno conjunto de resultados (HARRIS, 2012).
Os cálculos estatísticos são empregados pelos cientistas visando a aprimorar a qualidade 
de medidas experimentais. Segundo Skoog et al. (2006), as aplicações mais comuns dos testes 
estatísticos no tratamento de resultados analíticos incluem:
• Definir o intervalo de confiança das medidas, que consiste no intervalo numérico ao re-
dor da média de um conjunto de réplicas de resultados analíticos, na qual se espera que 
a média da população possa estar contida, com uma certa probabilidade.
• Determinar o número necessário de réplicas para assegurar que uma média experimen-
tal esteja contida em uma certa faixa, com um determinado nível de probabilidade.
• Estimar a probabilidade de uma média experimental e um valor verdadeiro.
• Determinar se a precisão de dois conjuntos de resultados é diferente, dentro de um dado 
nível de probabilidade.
• Obter a análise de variância, que consiste em comparar médias de mais de duas amostras, 
para determinar se as diferenças nas médias são reais ou resultado de erros aleatórios.
4.1 Média e desvio padrão
Duas informações estatísticas de grande importância são a média e o desvio padrão. A média 
aritmética de uma medida é a soma dos valores medidos divididos por n, o número de medições, 
como observado na equação a seguir.
21
O desvio padrão mede a proximidade com que os dados estão agrupados em relação à média. 
Quanto menor o desvio padrão, mais próximos os dados são agrupados sobre a média. 
De acordo com Harvey (2000), em muitos casos, relatar apenas a média é insuficiente porque 
isso falha em indicar a incerteza na medição. A inclusão do desvio padrão, ou outra medida 
de dispersão, fornece as informações necessárias sobre a incerteza na medição da massa, no 
entanto, para a comparação de métodos, essas informações são insuficientes. O desenvolvimento 
de um método eficiente requer a capacidade de prever o verdadeiro valor central e a verdadeira 
disseminação da população sob investigação, a partir de uma amostragem limitada dessa 
população. 
4.2 Introdução à quimiometria 
O termo quimiometria foi usado pela primeira vez em 1971, para descrever o crescente uso de 
modelos matemáticos, princípios estatísticos e outros métodos baseados em lógica, inicialmente, 
no campo da química analítica. A quimiometria é um campo interdisciplinar que envolve 
estatística multivariada, modelagem matemática, ciência da computação e química analítica. 
Algumas das principais áreas de aplicação da quimiometria incluem calibração, validação e teste 
de significância, otimização de medições químicas e procedimentos experimentais e a extração 
do máximo de informações químicas a partir de dados analíticos (EINAX, 2007).
A quimiometria utiliza métodos matemáticos e estatísticos para o tratamento de dados de 
análises químicas. De acordo com Mass et al. (2010), os métodos de calibração multivariada 
concentram-se no estabelecimento e aplicação de modelos matemáticos que relacionam sinais 
instrumentais multivariados, com concentrações de analitos ou propriedades da amostra. 
Enquanto na calibração univariada, um único valor numérico (escalar, dados de ordem zero) por 
amostra é registrado e analisado, a calibração multivariada trabalha com matrizes de dados, cada 
vez mais complexas, por amostra, e permite estimativas quantitativas analíticas em sistemas de 
múltiplos componentes sem seletividade.
22
Dentro da quimiometria, a calibração multivariada ganhou destaque para tratamento de 
dados espectrais, as ferramentas de classificação dos dados podem ser usadas com o objetivo de 
reconhecer padrões ou utilizar a multidimensionalidade da resposta analítica do instrumento de 
medição, na forma de calibração multivariada.
5. AMOSTRAGEM
A etapa de amostragem é sempre uma operação de grande importância durante a análise. 
O objetivo é obter uma amostra representativa, que deve ser uma réplica em miniatura da 
composição e da distribuição granulométrica do objeto de análise. Os métodos de amostragem 
podem apresentar diferentes graus de complexidade e podem variar de acordo com a substância 
que está sendo investigada (PATNAIK, 2004).
Skoog et al. (2006) enfatizam que a etapa de amostragem limita a exatidão do método, 
principalmente quando o material a ser analisado é constituído por um grande volume de um 
líquido ou sólido não homogêneos. As etapas envolvidas na obtenção de uma amostra consistem 
em identificar uma população, coletar uma amostra bruta e reduzir a amostra bruta para uma 
amostra de laboratório, esta última consiste desde em alguns gramas até, no máximo, algumas 
centenas de gramas. A amostra bruta é a coleção de unidades individuais de amostragem e 
precisa ser representativa do todo em composição e na distribuição do tamanho das partículas. 
É sugerido que a amostra bruta pese não mais que o necessário. Segundo Skoog et al. (2006), o 
peso da amostra bruta pode ser determinado:
• Pela incerteza que pode ser tolerada entre a composição da amostra bruta e a do todo.
• Pelo grau de heterogeneidade do todo.
• Pelo nível do tamanho de partícula no qual a heterogeneidade se inicia.
Conforme Harris (2012), a seleção de um método apropriado de amostragem ajuda a garantir 
que uma análise seja precisa. Uma estratégia de amostragem adequada garante que as amostras 
sejam representativas do material do qual são retiradas. É importante perceber que os erros de 
amostragem são completamente independentes dos erros de análise.
FIQUE DE OLHO
A combinação de técnicas analíticas já consolidadas com a quimiometria possibilitou 
significativos avanços na análise química. Segundo Roggo et al. (2007), a espectroscopia 
no infravermelho próximo associado à quimiometria tem sido amplamente utilizada pela 
indústria farmacêutica, sendo considerado uma ferramenta empregada no controle de 
qualidade.
23
De acordo com Skoog et al. (2006), do ponto de vista estatístico, os principais objetivos do 
processo de amostragem são:
• Obter um valor que seja uma estimativa da média da população sem tendências, desta 
forma, todos os membros da população devem apresentar uma probabilidade próxima 
de estarem incluídos na amostra.
• Obter uma variância que seja uma estimativa sem vieses da variância da população, des-
ta forma, os limites de confiança válidos para a média podem ser encontrados.
5.1 Amostragem e armazenamento de sólidos e líquidos 
De acordo com Harvey (2000), umplano de amostragem normalmente envolve três etapas: 
remover fisicamente a amostra de sua população-alvo, preservar a amostra e preparar a 
amostra para análise. Como a amostragem expõe a população-alvo a possíveis contaminações, o 
dispositivo de amostragem deve ser inerte e limpo.
Depois que uma amostra é retirada de uma população-alvo, existe o risco de que ela sofra 
uma alteração química ou física. Esse é um problema sério, pois as propriedades da amostra não 
serão mais representativas da população-alvo, e, por esse motivo, as amostras geralmente são 
preservadas antes de serem transportadas para o laboratório para análise. Mesmo quando as 
amostras são analisadas em campo, a preservação ainda pode ser necessária.
Patnaik (2004) descreve que soluções líquidas podem ser amostradas com relativa facilidade, 
desde que o material possa ser misturado minuciosamente por meio de agitadores ou pás de 
mistura. Após uma mistura adequada, as amostras podem ser retiradas do topo e do fundo e 
combinadas em uma amostra que é completamente misturada novamente, originando a amostra 
final, a qual será utilizada na análise.
Para amostragem de líquidos em tambores, garrafões ou garrafas, pode ser utilizado 
um tubo de extremidade aberta com comprimento suficiente para atingir 3 mm do fundo do 
recipiente e com diâmetro suficiente para conter de 0,5 a 1,0 L. A maioria das técnicas analíticas, 
particularmente aquelas usadas para uma análise quantitativa, exige que o analito esteja em 
solução. Amostras sólidas, ou pelo menos os analitos em uma amostra sólida, devem ser levados 
à solução (HARVEY, 2000).
De acordo com Harvey (2000), exemplos típicos de amostras sólidas incluem partículas 
grandes, como as encontradas em minérios; partículas menores, como solos e sedimentos, 
comprimidos; e cápsulas utilizadas na distribuição de produtos farmacêuticos, polímeros, metais 
laminados, tecidos para biópsia e muitos outros. Ao contrário de gases e líquidos, cujas amostras 
geralmente exigem pouca preparação, as amostras sólidas muitas vezes precisam de algum 
processamento antes da análise.
24
Isso ocorre devido à variação amostral, que é a variação de observações em uma única amostra, 
é uma função do número de partículas amostradas, não da sua massa combinada. Para populações 
extremamente heterogêneas constituídas por partículas grandes, a amostra bruta pode ser muito 
grande para ser analisada. Reduzir o tamanho médio de partícula da amostra permite que o mesmo 
número de partículas seja amostrado com uma massa combinada menor e mais gerenciável.
5.2 Tratamentos para amostras sólidas
Uma grande variedade de amostras sólidas precisa ser reduzida para etapas subsequentes 
da análise, e o procedimento deve ser sistemático, padronizado e originar amostras uniformes. A 
redução no tamanho das partículas pode ser obtida por meio de uma ampla variedade de métodos 
e equipamentos. A trituração é uma técnica simples e amplamente empregada nos laboratórios 
de análise, se amostra for homogênea e dura, a moagem será difícil, se for heterogênea e macia 
a moagem será mais fácil.
De acordo com Harvey (2000), o esmagamento e a trituração usam de força mecânica para 
quebrar partículas maiores em partículas menores. A diminuição do tamanho das partículas 
aumenta a área de superfície disponível e, com o aumento da área de superfície, existe um risco 
de perda de componentes voláteis, um problema agravado pela exposição de porções da amostra 
à atmosfera, onde a oxidação pode alterar a composição da amostra.
Além disso, pode ocorrer uma contaminação durante a abrasão mecânica. As partículas mais 
macias são reduzidas mais facilmente, e podem ser perdidas como poeira, antes que o restante 
da amostra tenha sido processado. Isso é um problema, pois a distribuição do analito pode não 
ser uniforme entre partículas de tamanho diferente. 
Harvey (2000) enfatiza que, para garantir que as partículas sejam reduzidas a um tamanho 
uniforme, é recomendado utilizar uma peneira e, após moagem, a amostra deve ser misturada, 
visando a torná-la mais homogênea.
Utilize o QR Code para assistir ao vídeo:
25
Nesta unidade, você teve a oportunidade de:
• descobrir a importância da química analítica quantitativa para diferentes áreas da 
ciência, em especial para as ciências farmacêuticas;
• identificar e aprender como manusear equipamentos utilizados em análises químicas;
• conhecer ferramentas matemáticas para interpretar dados e produzir informações 
confiáveis;
• identificar as principais fontes de erros durante análises e quais os procedimentos 
para minimizá-los;
• conhecer procedimentos e equipamentos usados durante amostragem e na 
manipulação de amostras sólidas.
PARA RESUMIR
AHUJA, S.; SCYPINSKI, S. Handbook of modern pharmaceutical analysis. 2. ed. San Diego: 
Academic Press, 2010.
AUSTIN, D. E. Miniaturization of Analytical Systems: Principles, Designs and Journal of 
the American Chemical Society. American Chemical Society, [s.l.], v. 132, n. 19, p. 6864-
6864, 2010.
BACCAN, N. et al. Introdução à semimicroanálise qualitativa. 2. ed. Campinas: Editora da 
Unicamp, 1988.
EINAX, J. W. Practical guide to chemometrics. Analytical and Bioanalytical Chemistry, 
[s.l.], v. 388, n. 3, p. 511, 2007.
GÖRÖG, S. The importance and the challenges of impurity profiling in modern pharma-
ceutical analysis. Trends in analytical chemistry, [s.l.], v. 25, n. 8, p. 755-757, 2006.
HARRIS, D. C. Análise química quantitativa. 8. ed. Rio de Janeiro: LTC, 2012.
HARVEY, D. Modern Analytical Chemistry. New York: The McGraw-Hill Companies Inc., 
2000.
MASS, S. et al. Application of chemometric methods to environmental analysis of organic 
pollutants: a review. Talanta, [s.l.], v. 80, n. 3, p. 1052-1067, 2010.
PATNAIK, P. Dean’s analytical chemistry handbook (McGraw-Hill Handbooks). 2. ed. New 
York: McGraw-Hill Education, 2004.
PIMENTA, A. M. Controlo de formulações farmacêuticas baseado em sistemas de exacti-
dão aferida. 2003. 209p. Dissertação (Doutorado em Farmácia) - Universidade do Porto, 
Porto.
ROGGO, Y. et al. A review of near infrared spectroscopy and chemometrics in pharma-
ceutical technologies. Journal of pharmaceutical and biomedical analysis, [s.l.], v. 44, n. 3, 
p. 683-700, 2007.
SKOOG, D. A. et al. Fundamentos de química analítica. 8. ed. trad. São Paulo: Thompson 
Learning, 2006.
REFERÊNCIAS BIBLIOGRÁFICAS
UNIDADE 2
Análise titulométrica
Olá,
Você está na unidade Análise titulométrica. Conheça aqui as principais características 
das titulações, incluindo o uso de diferentes tecnologias e equipamentos, avanços e 
seu emprego analítico em diferentes campos da ciência. Conheça as principais técnicas 
titulométricas, as características da curva de titulação, materiais de referência e os 
procedimentos para preparação de soluções padrão.
Veja também quais são os indicadores de ponto estequiométrico e quais os cálculos 
comumente empregados nas titulações e as principais aplicações das técnicas 
titulométricas utilizadas na análise quantitativa. 
Bons estudos!
Introdução
29
1 INTRODUÇÃO AS TÉCNICAS TITULOMÉTRICAS 
A titulação apareceu pela primeira vez como um método analítico no início do século XVIII. 
Ao contrário da gravimetria, inicialmente, a titulação não recebeu ampla aceitação como técnica 
analítica.
Muitos químicos analíticos proeminentes do final do século XIX preferiram a gravimetria 
ao invés da titulação e poucos dos textos de referência daquela época incluem métodos 
titulométricos. No início do século XX, no entanto, a titulação começou a substituir a gravimetria 
como sendo o método analítico mais usado.
Curiosamente, a gravimetria de precipitação se desenvolveu na ausência de uma teoria da 
precipitação. A relação entre a massa do precipitado e a massa do analito, denominada fator 
gravimétrico, foi determinada experimentalmente por meio de massas conhecidas do analito, a 
partir de uma padronização externa. Os fatores gravimétricos não puderam ser calculados usandoa estequiometria das reações de precipitação, porque ainda não estavam disponíveis fórmulas 
químicas e pesos atômicos. Ao contrário da gravimetria, o crescimento e a aceitação da titulação 
requeriam uma compreensão mais profunda da estequiometria, termodinâmica e equilíbrio 
químico. No início do século XX, a exatidão e a precisão dos métodos de titulação eram comparáveis 
às da gravimetria, estabelecendo a titulação como uma técnica analítica aceita (HARVEY, 2000).
1.1 Titulometria
Segundo Skoog et al. (2006), titulações são amplamente utilizadas para realizar análises 
químicas, podem ser usadas determinar espécies ácidas, básicas, oxidantes, redutoras, íons 
metálicos, proteínas e muitas outras. As titulações têm como base a reação entre o analito e um 
reagente padrão, com concentração predefinida, conhecido como agente titulante. A reação é de 
estequiometria conhecida e reprodutível.
O volume do titulante necessário para reagir completamente, como o analito alvo, é determinado 
e usado para obter a quantidade do analito. Uma titulação baseada em volume pode requerer um 
instrumento preciso para medir volumes, como a bureta. Nas titulações coulométricas, é obtida a 
quantidade necessária de cargas para consumir completamente o analito.
Em qualquer titulação, existe o ponto de equivalência química, experimentalmente chamado 
ponto final. Segundo Harris (2012), os métodos para determinar o ponto final incluem detectar 
uma mudança repentina na tensão, ou corrente, entre um par de eletrodos, monitorar a absorção 
de luz por reagentes ou produtos e observar uma alteração na cor do indicador. Um indicador é 
um composto com uma propriedade física, geralmente a cor, que muda abruptamente perto do 
ponto de equivalência, o que é causado pelo desaparecimento do analito ou pelo aparecimento 
de excesso de titulante.
30
Utilize o QR Code para assistir ao vídeo:
A figura a seguir apresenta um analista realizando o procedimento de titulação ácido-base 
utilizando equipamentos clássicos.
Figura 1 - Titulação de uma solução utilizando indicadores ácido-base 
Fonte: SUKJAI PHOTO, Shutterstock, 2020.
#ParaCegoVer: Na imagem, o operante demonstra controlar a eluição de solução titulante. 
Após agitação do frasco erlenmeyer, é possível verificar a mudança de coloração da solução, que 
indica o ponto estequiométrico. É recomendado conduzir o experimento em triplicata.
FIQUE DE OLHO
Um número cada vez maior de laboratórios tem empregado instrumentação para detectar 
os pontos finais de titulações, visando minimizar erros de natureza humana. De acordo com 
Skoog et al. (2006), entre os instrumentos mais usados, podem ser citados os colorímetros, 
turbidímetros, monitores de temperatura, refratômetros, voltímetros e medidores de 
condutividade.
31
De acordo com Harris (2012), a diferença entre o ponto final e o ponto de equivalência é uma 
fonte de erro inevitável na titulação. Estima-se o erro de titulação com uma titulação em branco, 
na qual é realizado o mesmo procedimento sem analito. 
1.2 Curva de titulação 
Segundo Harris (2012), para cada tipo de titulação, é possível construir um gráfico mostrando 
como o pH muda à medida que o titulante é adicionado. O pH pode ser medido com um sensor de 
pH, como o eletrodo de vidro, ou por meio de indicadores. De acordo com Atkins e Jones (2006), 
no ponto estequiométrico, a quantidade de íons OH- ou H+ adicionada como titulante é igual à 
quantidade dessas espécies iônicas inicialmente presentes no analito.
De acordo com Harvey (2000), uma curva de titulação fornece uma imagem visual de como 
o pH muda conforme adicionamos titulante. Essa curva pode ser obtida experimentalmente 
utilizando um eletrodo de pH na solução que contém o analito, monitorando o pH à medida que o 
titulante é adicionado. A curva de titulação também pode ser calculada considerando as reações 
responsáveis pela mudança no pH.
As curvas de titulação, porém, não são exclusivas de uma titulação ácido-base. Qualquer curva 
de titulação que segue a mudança na concentração de uma espécie na reação de em função do 
volume de titulante tem a mesma forma sigmoidal geral. Alguns exemplos de curvas de titulação 
podem ser observados na figura a seguir.
Figura 2 - Curvas de titulação de análises 
Fonte: magnetix, Shutterstock, 2020.
32
#ParaCegoVer: Na imagem, podem ser observadas quatro curvas de titulação diferentes. A 
primeira à esquerda foi obtida pela titulação de ácido fraco com base forte; à sua direita, uma 
base fraca titulada com ácido forte; abaixo, uma titulação de bases fortes com ácidos fortes e à 
sua esquerda, de ácidos fortes com bases fortes. 
Harris (2012) enfatiza que, nas curvas de titulação, o ponto de equivalência é sempre a parte 
mais íngreme da curva. Cada curva de titulação depende da constante de dissociação ácida e das 
concentrações de reagentes, portanto, o ácido for muito fraco, ou se apresentar em concentrações 
muito baixas, pode ser difícil determinar o ponto de equivalência com precisão. Dessa forma, não 
é prático titular um ácido ou uma base quando sua força é muito fraca ou sua concentração é 
muito diluída.
2 SOLUÇÕES PADRÃO E INDICADORES 
EMPREGADOS NA TITULAÇÃO
A validade de um resultado analítico depende do conhecimento da quantidade de um dos 
reagentes utilizados. Se o titulante é preparado dissolvendo uma quantidade pesada de reagente 
puro em um volume conhecido de solução, sua concentração pode ser calculada. Chamamos esse 
reagente de padrão primário quando ele é puro o suficiente para ser pesado e usado diretamente. 
Muitos reagentes usados como titulantes não estão disponíveis como padrões primários, e, 
nesses casos, sugere-se proceder com a padronização da solução, que consiste em preparar uma 
solução titulante e, posteriormente, utilizá-la para titular um analito que é um padrão primário. 
Esse procedimento possibilita determinar a concentração de titulante, neste caso, o titulante com 
concentração determinada se torna uma solução padrão (HARRIS, 2012).
Harvey (2000) descreve as etapas de seleção e padronização de titulantes ácidos e básicos. 
A maioria dos titulantes comuns à base de ácido não está prontamente disponível como padrão 
primário e deve ser padronizada antes de poder ser usada em uma análise quantitativa. A 
padronização pode ser realizada titulando uma quantidade conhecida de um padrão primário 
ácido ou básico apropriado.
De acordo com Atkins e Jones (2006), um método simples para acompanhar uma titulação 
ácido-base são os indicadores ácido-base, que são corantes solúveis em água, cuja cor depende 
do pH. A rápida mudança no pH, que ocorre no ponto de equivalência em uma titulação, é 
sinalizada pela mudança instantânea da cor do corante em resposta ao pH. 
33
Utilize o QR Code para assistir ao vídeo:
2.1 Padrão primário
De acordo com Skoog et al. (2006), um padrão primário é um composto altamente purificado 
que serve como material de referência para diferentes métodos analíticos, entre eles os métodos 
titulométricos ou de massa. A precisão do método intimamente ligada as propriedades desse 
composto. Skoog et al. (2006) descreve que as principais características de um padrão primário são:
• Elevada pureza e qual método usado para confirmar a pureza.
• Estabilidade à atmosfera.
• O material não deve sofrer alterações com as variações na umidade.
• Custo baixo.
• Boa solubilidade razoável no meio de titulação.
Os reagentes químicos são vendidos em muitos graus de pureza. De acordo com Harris (2012), 
os materiais empregados na química analítica, geralmente apresentam grau de pureza definido 
pelo Comitê de Reagentes Analíticos da American Chemical Society (ACS). Análises de impurezas 
devem ser especificadas, além de que devem aparecer no frasco de reagente. Para proteger a 
pureza dos reagentes químicos usados nas análises químicas, é recomendado:
• Evitar colocar uma espátula em frasco de reagente.
• Nunca colocar reagente não utilizado de volta no frasco de reagente.
• Recolocara tampa na garrafa imediatamente após o uso.
• Armazenar produtos químicos em um local fresco e escuro, longe da luz solar.
34
2.2 Padrão secundário
De acordo com Skoog et al. (2006), como apenas alguns compostos preenchem os requisitos 
dos padrões primários disponíveis comercialmente, compostos menos puros são utilizados 
muitas vezes no lugar de um padrão primário. Caso a pureza desses compostos seja estabelecida 
por análise química, essas substâncias são denominadas padrão secundário e podem ser usadas 
como material de referência para os métodos titulométricos de análise. Para estabelecer a 
pureza desses padrões secundários deverá ser realizada uma análise cuidadosa. Um titulante, 
que é padronizado contra um padrão secundário ou outra solução padrão, pode ser denominado 
solução padrão secundário. A concentração de uma solução padrão secundário está sujeita a 
incertezas maiores que a da solução padrão primário. 
2.3 Indicadores
Os indicadores são espécies que apresentam mudança na coloração durante o ponto 
estequiométrico de uma titulação. Segundo Atkins e Jones (2006), o indicador deve ser escolhido 
mediante análise de seu ponto final, que deve ser próximo do ponto estequiométrico da titulação. 
Como por exemplo, a fenolftaleína, que apresenta um ponto estequiométrico próximo de 9, pode 
ser usada na titulação de um ácido fraco com uma base forte. Já o alaranjado de metila, que muda 
de cor em um pH de 3,2 a 4,4, pode ser utilizado na titulação de bases fracas com ácidos fortes. 
Para as titulações envolvendo ácidos e bases fortes, sugere-se indicadores que apresentem ponto 
final próximo de pH 7. 
O quadro a seguir apresenta os principais indicadores usados em titulações, a faixa de pH da 
mudança de cor, cor na forma ácida e cor na forma básica.
Quadro 1 - Mudanças de cor dos indicadores 
Fonte: Atkins e Jones (2006, p. 493).
35
Os indicadores ácido-base são geralmente ácidos fracos, que apresentam uma determinada 
coloração na forma de ácido e outra cor na forma de base conjugada. Quando a concentração do 
indicador na forma protonada se apresenta em maior quantidade, a solução tem a cor da forma 
ácida do indicador. Quando há excesso na forma base conjugada, a solução adquire cor da forma 
básica do indicador (HARVEY, 2000). 
3 CÁLCULOS VOLUMÉTRICOS 
Conforme Skoog et al. (2006), a concentração de uma solução pode ser expressa de vários 
modos. Para as soluções padrão usadas em titulometria, geralmente emprega-se a concentração 
molar ou normalidade.
Concentração molar
Fornece o número de mols de um reagente contido em um litro de solução.
Normalidade
Fornece o número de equivalentes do reagente no mesmo volume. 
De acordo com Atkins e Jones (2006), o método mais comum de preparar soluções de 
concentração molar específica é transferindo a massa conhecida do sólido para um balão 
volumétrico, um frasco calibrado com volume específico, e, em seguida, adicionar água até 
encher o balão na marca específica.
3.1 Concentração molar da solução padrão
Segundo Skoog et al. (2006), a maioria dos cálculos volumétricos é baseada em dois pares 
de equações simples que são derivadas das definições de mol e concentração molar (Ca). Para a 
espécie química A, considerando um volume de solução (V), podemos escrever:
3.2 Cálculo da concentração molar a partir dos dados de padronização
Considere uma titulação de uma solução contendo 50 mL de HCl, na qual foi utilizado como 
titulante uma solução de Ba(OH)2 0,02M, foram consumidos 29,7 mL de solução titulante. Para 
36
calcular a concentração da solução de HCl, primeiramente é importante escrever a equação 
química da reação para obter a porção estequiométrica, que será:
Ba(OH)2 + 2 HCl → BaCl2 + 2H2O
Neste caso, a proporção estequiométrica é de 2 mols HCl para 1 mol de Ba(OH)2, para 
determinar a massa de HCl basta aplicar a Equação 3, descrita anteriormente. Note que como a 
concentração está em mol/L, o volume inicial de HCl teve que ser convertido de mL para litros.
Quantidade de Ba(OH)2 = 0,0297 (L) x 0,02 (mol/L) = 0,000594 moles de Ba(OH)2
Para se obter o número de mols de HCl, basta multiplicar esse resultado pela proporção 
estequiométrica determinada inicialmente:
1 mol Ba(OH)2 --------- 2 HCl
0,000594 moles ---------- x
X = 0,001188 moles de HCl
Para obter a concentração molar da solução de HCl, basta dividir o valor de moles de HCl pelo 
volume de solução em litros.
De acordo com Skoog et al. (2006, p. 326), qualquer combinação de gramas, mols e litros pode 
ser substituída por qualquer combinação análoga expressa em miligrama, milimols e mililitros.
4 MÉTODOS TITULOMÉTRICOS 
Skoog et al. (2006) explicam que a titulometria engloba um grupo de métodos analíticos 
baseados na determinação da quantidade de um reagente de concentração conhecida, necessária 
para reagir completamente com o analito. Os métodos titulométricos incluem um abrangente e 
amplo grupo de procedimentos quantitativos. Os métodos mais comuns de titulometria são os 
métodos volumétricos, gravimétricos e coulométricos.
A titulometria volumétrica envolve a medida de volume de uma solução de concentração 
conhecida, necessária para reagir essencial e completamente com o analito.
A titulometria gravimétrica difere unicamente em relação ao fato de que a massa do reagente 
é medida em vez do seu volume.
37
Na titulometria coulométrica, é medida uma corrente elétrica de grandeza conhecida que 
consome o analito, e, nesse caso, são medidos o tempo requerido e a carga total para completar 
a reação
Os métodos titulométricos podem ser classificados em quatro grupos, com base no tipo de 
reação envolvida. Esses grupos incluem titulações ácido-base, no qual um titulante ácido ou 
básico reage com um analito que é uma base ou um ácido; titulações complexométricas, que 
envolvem uma reação de complexação metal-ligante; titulações redox, em que o titulante pode 
ser um agente oxidante ou redutor; e, por fim, titulações de precipitação, nas quais o analito e o 
titulante reagem para formar um precipitado. Apesar da diferença na química, todas as titulações 
compartilham várias características comuns (HARVEY, 2000).
4.1 Titulações ácido-base
As titulações ácido-base, também conhecidas como titulações de neutralização, são 
usualmente empregadas para determinar as quantidades de ácidos e bases. Outra aplicação 
importante consiste em monitorar o progresso das reações que produzem ou consomem 
íons hidrogênio. As soluções padrões de ácidos e bases fortes são geralmente utilizadas na 
determinação de analitos ácidos ou básicos. As titulações de neutralização dependem da reação 
química entre o analito e um reagente padrão, o ponto de equivalência química é localizado por 
um indicador químico ou um método instrumental (SKOOG et al., 2006).
 De acordo com Atkins e Jones (2006), na titulação de uma base forte com um ácido forte, 
ou de um ácido forte com uma base forte, observa-se uma mudança lenta no pH durante o 
início da titulação, posteriormente o pH muda rapidamente, passando pelo valor 7 no ponto 
estequiométrico, em seguida muda lentamente novamente. O ponto de equivalência ocorre 
quando o titulante adicionado é exatamente o suficiente para a reação estequiométrica com o 
analito. Conforme Harris (2012), na titulação de qualquer base forte com qualquer ácido forte, 
existem três regiões da curva de titulação que requerem diferentes tipos de cálculos:
• Antes do ponto de equivalência, onde o pH da solução é determinado pelo excesso de OH-.
• No ponto de equivalência, no qual a quantidade de H+ é apenas o suficiente para reagir com 
todos os OH- produzindo H2O. Neste caso o pH é determinado pela dissociação da água.
• Após o ponto de equivalência, o pH é determinado pelo excesso de H+ na solução.
4.2 T itulações de precipitação
De acordo com Harvey (2000), a titulação por precipitação pode ser definida como uma 
titulação onde o analito e o titulante formam um precipitado insolúvel. Uma das primeiras 
titulações de precipitaçãofoi desenvolvida no final do século XVIII, para a análise de K2CO3 e 
38
K2SO4 em potássio, utilizando como titulante Ca(NO3)2, formando um precipitado de CaCO3 e 
CaSO4.
O ponto final foi sinalizado observando quando a adição de titulante deixou de gerar 
precipitado adicional. A importância da titulação de precipitação como método analítico atingiu 
seu auge no século XIX, quando vários métodos foram desenvolvidos para determinar os íons Ag+ 
e halogenetos.
Skoog et al. (2006) descrevem que a titulometria de precipitação é uma das técnicas analíticas 
mais antigas, no entanto, devido à baixa velocidade de formação da maioria dos precipitados, 
poucos agentes precipitantes podem ser usados em titulometria. O titulante precipitante mais 
amplamente utilizado é o nitrato de prata, empregado na determinação de haletos, ânions 
semelhantes aos haletos, ácidos graxos e vários ânions inorgânicos bivalentes e trivalentes. Os 
métodos titulométricos que utilizam nitrato de prata são comumente denominados métodos 
argentométricos.
Muitas reações de precipitação que são úteis como técnicas de separação ou para análise 
gravimétrica não atendem requisitos para a titulação. Segundo Patnaik (2004), as reações de 
precipitação precisam atender a alguns requisitos, como:
• a taxa de reação deve ser suficientemente rápida, principalmente na titulação de solu-
ções diluídas e nas mediações do ponto final;
• a estequiometria deve ser exata, pois a coprecipitação é uma possível fonte de erro.
Para aumentar a taxa de precipitação, às vezes é benéfico trocar solventes ou aumentar 
a temperatura. Ao adicionar um excesso de reagente e a titulação reversa, pode ser possível 
tirar vantagem de uma precipitação mais rápida na direção reversa. Ao escolher um método de 
detecção de ponto final que não exija que o equilíbrio seja alcançado nas imediações do ponto 
final, pode-se tirar vantagem de uma taxa de reação mais rápida em pontos removidos do ponto 
final (PATNAIK, 2004).
39
Utilize o QR Code para assistir ao vídeo:
4.3 Titulações de óxido-redução
De acordo com Harvey (2000), as titulações redox foram introduzidas logo após o 
desenvolvimento da titulação ácido-base. Os métodos mais antigos aproveitavam o poder 
oxidante do cloro. Em 1787, Claude Berthollet introduziu um método para a análise quantitativa 
da água de cloro, com base em sua capacidade de oxidar soluções do corante índigo, que é incolor 
em seu estado oxidado.
Antes do ponto de equivalência, a solução permanece clara devido à oxidação do índigo. 
Após o ponto de equivalência, no entanto, o índigo não reagido confere uma cor permanente 
à solução. O número de métodos titulométricos redox aumentou em meados do século XIX, 
com a introdução de MnO4–, Cr2O72– e I2 como titulantes oxidantes e de Fe2+ e S2O32– como 
titulantes redutores. Mesmo com a disponibilidade desses novos titulantes, a aplicação rotineira 
da titulação redox apresenta como limitação a falta de indicadores adequados.
As curvas de titulação redox são obtidas de maneira mais conveniente, plotando o potencial 
redox E da solução titulada contra o excesso relativo de redutor ou oxidante no eixo x (PATNAIK, 
2004). Assumindo que ambas as meias-reações são reversíveis, os potenciais redox podem ser 
calculados por meio da equação de Nernst, da seguinte maneira:
Primeiramente, considere as duas semirreações, de oxidação do analito alvo (A) e de redução 
do agente titulante (T). Temos, para cada uma delas, um potencial E:
Ared → Aox + e-, EAox/Ared
Tox + e- → Tred, E Tox/Tred
Após cada adição de titulante, a reação entre o analito e o titulante atinge um estado de 
40
equilíbrio. O potencial eletroquímico da reação nesse ponto é igual para as duas semirreações, 
logo, o potencial para qualquer meia reação pode ser usado para monitorar o progresso da 
titulação.
E Tox/Tred = EAox/Ared
Segundo Harvey (2000), antes do ponto de equivalência, a mistura de titulação consiste em 
quantidades apreciáveis das formas oxidada e reduzida do analito, mas muito pouco titulante 
que não reagiu. Neste caso, o potencial é mais bem calculado usando a equação de Nernst para a 
semirreação do analito. Considerando Eº o potencial padrão do par redox, temos as de Nerst para 
o analito e para o titulante respectivamente:
Harvey (2000) enfatiza que após o ponto de equivalência, o potencial é mais fácil de 
calcular usando a equação de Nernst para a meia reação do titulante, uma vez que quantidades 
significativas de suas formas oxidada e reduzida estão presentes.
4.4 Titulações de complexação
Segundo Skoog et al. (2006), os métodos titulométricos baseados na formação de complexos 
são denominados métodos complexométricos. Utilizados há mais de um século, sua aplicação 
em química analítica apresentou um crescimento notável com o desenvolvimento de uma classe 
particular de compostos de coordenação chamados quelatos.
Os quelatos são produzidos quando uma espécie se coordena com dois ou mais grupos 
doadores de um único ligante para formar um anel heterocíclico. Um ligante que possui um único 
grupo doador de elétrons, como a amônia, é chamado unidentado, enquanto aquele que possui 
dois grupos disponíveis para ligações covalentes é denominado bidentado. Existem, também, 
agentes quelantes tridentados, tetradentados e pentadentados.
Patnaik (2004) descreve que uma titulação complexométrica é baseada na reação 
estequiométrica de um agente complexante com outra espécie para formar um complexo. Nesse 
tipo de titulação, tanto a concentração do quelato quanto do analito podem ser acompanhadas. 
O ponto final é detectado utilizando um indicador ou método instrumental apropriado. As 
titulações complexométricas podem ser classificadas em titulações diretas, titulações reversas, 
titulações de substituição ou métodos indiretos.
41
De acordo com Skoog et al. (2006), o ácido etilenodiaminotetracético (EDTA) é o titulante 
complexométrico mais utilizado nos laboratórios de análises químicas. Harris (2012) enfatiza que 
utilizando titulação direta ou por meio de uma sequência de reações indiretas, praticamente 
todos os elementos da tabela periódica podem ser medidos com EDTA. O EDTA é um sistema 
hexaprótico, designado H6Y2+. As soluções padrão de EDTA podem ser preparadas pela 
dissolução de quantidades pesadas de H4Y e Na2H2Y.2H2O e diluídas com água deionizada em 
balão volumétrico até a marca. A primeira pode ser considerada padrão primário, enquanto a 
segunda é padrão secundário. O material de referência certificado usado para padronizar o EDTA 
ou verificar a composição de uma solução padrão de EDTA é o carbonato de cálcio.
5 APLICAÇÕES QUANTITATIVAS DA ANÁLISE 
TITULOMÉTRICA
De acordo com Terra e Rossi (2005), a Associação Oficial dos Químicos Analíticos – em inglês, 
Association of Official Analytical Chemists – é uma organização internacional reconhecida, 
fundada em 1884, que tem como objetivo validar e aprovar métodos para análises de alimentos, 
medicamentos e produtos agrícolas.
Uma grande variedade de métodos titulométricos foram reconhecidos pela organização. 
Esses métodos englobam a quantificação de diversos compostos, íons e elementos, além de 
índices como de acidez e basicidade, em várias matrizes de alimentos, medicamentos e produtos 
agrícolas. A maioria desses métodos se relaciona com a determinação de compostos orgânicos.
5.1 Aplicações da titulometria redox
A titulação redox tem sido usada para a análise de uma ampla gama de analitos inorgânicos. 
Embora muitos desses métodos tenham sido substituídos por métodos modernos, alguns 
continuam sendo listados como métodos padrão de análise. A titulação redox, porém, costuma 
ser pouco empregada nos laboratórios modernos. Ainda assim, apresenta diversas aplicações 
importantes, como na avaliação da cloração do abastecimento público de água (HARVEY, 
2000). Por essa razão, continua sendo empregada em laboratórios ambientais, farmacêuticos e 
industriais.
Skoog et al. (2006) descrevem que um dos métodos a analíticosmais amplamente utilizados 
na indústria e no comércio é o procedimento de titulação de Karl Fischer, empregado na 
determinação de água em inúmeros tipos de amostras sólidas e líquidas. O método baseia-se em 
uma reação redox que é relativamente específica para a água. Esse método tem sido aplicado a 
determinações de água em muitos ácidos orgânicos, álcoois, ésteres, éteres, anidridos e haletos.
42
5.2 Aplicações da titulometria ácido-base
De acordo com Harvey (2000), embora muitas aplicações quantitativas da titulação por ácido-
base tenham sido substituídas por outros métodos analíticos, a aplicação dessa titulação na 
análise de compostos inorgânicos e orgânicos ainda tem sido empregada em muitos laboratórios 
pelo mundo.
A titulação por ácido-base é um método padrão para a análise quantitativa de muitos ácidos e 
bases inorgânicos. Soluções padrão de NaOH podem ser usadas na análise de ácidos inorgânicos, 
enquanto soluções padrão de HCl podem ser usadas para a análise de bases inorgânicas.
Segundo Skoog et al. (2006), vários elementos importantes presentes em sistemas orgânicos 
e biológicos são convenientemente determinados por métodos que envolvem uma titulação 
ácido-base como etapa final. Na maioria dos casos, os elementos suscetíveis a esse tipo de análise 
são ametais e incluem o carbono, o nitrogênio, o cloro e o flúor, bem como alguns outros menos 
comuns.
Utilize o QR Code para assistir ao vídeo:
FIQUE DE OLHO
A determinação de nitrogênio total proposta por Kjeldahl em 1883 ainda tem sido 
empregada em muitos laboratórios de análise, sendo considerada uma técnica confiável. 
Segundo Galvani e Gaertner (2006), a técnica possibilita a determinação indireta de proteínas 
em várias amostras biológicas, teor de nitrogênio total e avaliação de teor nutricional.
43
Nesta unidade, você teve a oportunidade de:
• conhecer as principais características de diferentes técnicas titulométricas e os fun-
damentos que regem este tipo de análise;
• interpretar curvas de titulação e aprender a realizar cálculos empregados em titula-
ção;
• conhecer diferentes métodos para acompanhar titulações, desde técnicas instru-
mentais até os indicadores, enfatizando quais equipamentos e materiais indicados 
para cada tipo de técnica;
• aprender sobre metodologias e materiais usados na preparação de soluções padrão 
primário e secundário utilizando em análises quantitativas;
• discutir as principais aplicações das técnicas titolumétricas nos campos do meio 
ambiente, farmácia e saúde. 
PARA RESUMIR
ATKINS, P. W.; JONES, L. Princípios de química: questionando a vida moderna e o meio 
ambiente. 3. ed. Porto Alegre: Bookman, 2006. 
GALVANI, F.; GAERTNER, E. Adequação da metodologia Kjeldahl para determinação de 
nitrogênio total e proteína bruta. Embrapa Pantanal-Circular Técnica (INFOTECA-E), 
Corumbá, Mato Grosso, 2006.
HARRIS, D. C. Análise química quantitativa. 8 ed. Rio de Janeiro: LTC, 2012.
PATNAIK, P. Dean’s analytical chemistry handbook. McGraw-Hill Handbooks. 2. ed. New 
York: McGraw-Hill Education, 2004.
SKOOG, D. A. et al. Fundamentos de química analítica. 8. ed. trad. São Paulo: Thompson 
Learning, 2006.
TERRA, J.; ROSSI, A. V. Sobre o desenvolvimento da análise volumétrica e algumas 
aplicações atuais. Química Nova, São Paulo, v. 28, n. 1, p. 166-171, 2005.
REFERÊNCIAS BIBLIOGRÁFICAS
UNIDADE 3
Técnicas eletroanalíticas 
Introdução
Olá,
Você está na unidade Técnicas eletroanalíticas. Conheça aqui os fundamentos e 
instrumentação utilizados na eletroanálise, verificando os campos e áreas de aplicação, 
materiais utilizados no desenvolvimento de eletrodos e de plataformas analíticas, bem 
como novas tecnologias usadas para aprimorar as diferentes técnicas eletroquímicas. 
Além disso, seja introduzido aos métodos espectroscópicos, com o estudo de regiões 
espectrais, espectrofotometria e espectrometria de massas.
Aprenda conceitos-chave de células eletroquímicas, sensores eletroquímicos, métodos 
espectroscópicos e diferentes aplicações para métodos eletroquímicos e espectroscópicos.
Bons estudos!
47
1. INTRODUÇÃO À ELETROQUÍMICA 
A eletroquímica é a área da química que se preocupa com a inter-relação dos efeitos elétricos 
e químicos. Grande parte desse campo lida com o estudo de alterações químicas causadas pela 
passagem de uma corrente elétrica e a produção de energia elétrica por reações químicas. 
De fato, o campo da eletroquímica abrange uma enorme variedade de fenômenos diferentes, 
como por exemplo na eletroforese e no estudo da corrosão, utilizando uma grande variedade de 
dispositivos, como os sensores eletroanalíticos, baterias e células de combustível e associando-se 
constantemente com tecnologia, como na galvanoplastia de metais e a produção de alumínio e 
cloro em grande escala (BARD; LARRY, 2001).
As reações químicas observadas em eletroquímica estão, na maioria das vezes, associadas 
a reações de óxido-redução. Segundo Atkins e Jones (2006), as células eletroquímicas são os 
dispositivos mais utilizados no estudo de reações redox em técnicas eletroanalíticas. As células 
eletroquímicas são classificadas em células galvânicas, também denominadas células voltaicas, e 
células eletrolíticas.
Nas células galvânicas, uma reação espontânea é usada para gerar corrente elétrica, costuma-
se evitar o contato entre os eletrodos nesse tipo de célula eletroquímica, podendo ser citado 
como exemplo asbaterias.
As células eletrolíticas são aquelas que se baseiam na eletrólise, possibilitando determinar 
o potencial necessário para ocorrer eletrólise, neste tipo célula eletrolítica os eletrodos são 
comumente colocados no mesmo compartimento.
Os métodos eletroquímicos modernos incluem instrumentação e técnicas sensíveis, seletivas, 
rápidas, de fácil utilização e com grande aplicabilidade nas ciências farmacêuticas. Como regra 
geral, muitos dos compostos ativos de fármacos podem ser facilmente oxidados ou reduzidos em 
contraste com os excipientes das formas de dosagem farmacêuticas. As medidas eletroquímicas 
fornecem informações qualitativas e quantitativas.
Assim, os compostos podem ser detectados seletivamente por métodos eletroquímicos. 
Essa seletividade depende da faixa de potencial acessível, do número de compostos ativos nessa 
faixa e da amplitude dos sinais. As vantagens dos métodos eletroquímicos são a preparação da 
amostra e a falta de interferências dos excipientes nas formas de dosagem farmacêutica (USLU; 
OZKAN, 2011).
1.1 Fundamentos das Técnicas Eletroanalíticas
As técnicas eletroanalíticas são empregadas no estudo de sistemas químicos por várias razões. 
Por meio delas, são obtidos importantes dados termodinâmicos da reação, pode ser realizado o 
48
estudo de radicais intermediários e análises de soluções contendo quantidades vestigiais de íons 
metálicos ou espécies orgânicas de interesse biológico. Também existem pesquisas em que as 
propriedades eletroquímicas dos próprios sistemas são de interesse primário, por exemplo, na 
bioeletroquímica, área que estuda reações eletroquímicas aplicada a sistemas biológicos (BARD; 
LARRY, 2001).
De acordo com Harris (2012), quando elétrons de uma reação redox fluem através de um 
circuito elétrico, é possível adquirir informações sobre a reação medindo corrente e potencial 
elétrico. A corrente elétrica é proporcional à taxa de reação, e a tensão da célula é proporcional 
à mudança de energia livre para a reação eletroquímica. Em técnicas eletroquímicas, como a 
voltametria, é possível observar que reações químicas acontecem em potenciais específicos, sendo 
possível utilizar a técnica para identificar reagentes. A quantidade de carga que flui a cada segundo 
através de um circuito é chamada de corrente. A unidade de corrente é o ampere (A). Uma corrente 
de 1 ampere representa uma carga de 1 coulomb por segundo, fluindo além de um ponto em um 
circuito. O potencial elétrico (E), entre dois pontos, descreve o trabalho necessário, ou que pode ser 
feito, ao mover uma carga elétrica

Outros materiais