Buscar

FMT4302504_Aula_SPM-AFM

Prévia do material em texto

01 e 03 de novembro 
Técnicas de Caracterização de Materiais – 4302504 
 
 
2º Semestre de 2016 
 
Instituto de Física 
Universidade de São Paulo 
 
 
 
Professores: 
 Antonio Domingues dos Santos 
 Manfredo H. Tabacniks 
 
 
Microscopias 
Caracterização dos Materiais 
Energia / 
Momento 
Matéria 
 
Propriedade 
a ser 
caracterizada 
 
Fótons 
Íons 
Átomos 
Elétrons
Neutrons
Prótons 
Fótons 
Íons 
Átomos 
Elétrons
Neutrons
Prótons 
Energia / 
Momento 
Matéria 
•Microscopias de Sonda Local 
 (SPM) 
Nature Nanotechnology, 1 (2006) 3 
+ 
Caracterização dos Materiais 
Energia / 
Momento 
Matéria 
 
Propriedade 
a ser 
caracterizada 
 
Interação 
matéria-
matéria, 
(ou 
radiação-
matéria) 
Detectam-
se forças 
ou corrente 
elétrica (ou 
intensidade 
luminosa) 
Energia / 
Momento 
Matéria 
•Microscopias de Sonda Local 
 (SPM) 
Nature Nanotechnology, 1 (2006) 3 
+ 
Caracterização dos Materiais SPM 
Interação Ponta-Amostra 
Caracterização dos Materiais SPM 
Interação Ponta-Amostra 
Microscópio de tunelamento 
eletrônico (STM) 
Caracterização dos Materiais SPM 
Um pouco de história 
Heinrich Rohrer and Gerd K. Binnig, 
scientists at IBM's Zurich Research 
Laboratory in Switzerland, are awarded the 
1986 Nobel Prize in physics for their work in 
scanning tunneling microscopy. Binnig and 
Rohrer were recognized for developing the 
powerful Scanning Tunneling Microscopy 
technique. They shared the award with 
German scientist Ernst Ruska, designer of 
the first Electron Microscope. 
US Pat. 4343993. 
IBM. J. Res. Dev. v.30, N4, 355 (1986) 
Experimental setup of first AFM from paper Binnig, Quate and 
Gerber (Phys.Rev.Lett.56,930 (1986)). 
Despite of the great success of the Scanning Tunneling Microscopy it was 
obvious that STM has fundamental disadvantage - with STM one can 
investigate only the conductive or conductive layers coated samples. 
 
This disadvantage was overcomed due to the invention of atomic force 
microscope by Binnig (US Pat. 4724318). He was first who have guessed 
that under interaction with sample surface macroscopic cantilever 
provided with sharp tip can be bended by atomic forces to sufficiently 
large amount to be measured by the common facilities. In first 
embodiment to measure tip displacement was used STM 
(Phys.Rev.Lett.56,1986,930-933). 
http://www.ntmdt.com/spm-principles/view/stm-techniques
http://www.ntmdt.com/spm-principles/view/stm-techniques
http://www.ntmdt.com/spm-principles/view/stm-techniques
Caracterização dos Materiais SPM 
Um pouco de história 
Russell Young and his co-workers Fredric Scire and John Ward 
(left to right) with the Topografiner. It must be noted however 
that as long as in 1966 Russell Young has stated idea about an 
opportunity to acquire the surface topography with usage of 
current between surface and sharp metallic tip. In 1971 he have 
published paper about device called Topographiner, which 
contained all major assemblies of Scanning Probe Microscope. 
Phys. Rev. Lett. V. 27, N 14, 1971, P. 922-924 
Rev. Sc. Instr. V. 43, N 7, 1972, P. 999-1011 
Phys. Rev. Lett. 27, 922–924 (1971) 
Observation of Metal-Vacuum-Metal Tunneling, Field Emission, and the Transition Region 
Russell Young, John Ward, and Fred Scire 
National Bureau of Standards, Washington, D. C. 20234 
Received 26 August 1971; published in the issue dated 4 October 1971 
 
We report what we believe are the first observations of metal-vacuum-metal tunneling. A field emitter is 
brought close to a metal surface and the current-voltage characteristic is measured in three regions: the 
Fowler-Nordheim region, the intermediate region, and-and the metal-vacuum-metal region. 
© 1971 The American Physical Society 
URL: http://link.aps.org/doi/10.1103/PhysRevLett.27.922 
DOI: 10.1103/PhysRevLett.27.922 
http://publish.aps.org/search/field/author/Russell Young
http://publish.aps.org/search/field/author/John Ward
http://publish.aps.org/search/field/author/Fred Scire
Caracterização dos Materiais SPM 
Interação Ponta-Amostra 
Microscópio de força atômica (AFM) 
Fig. 2 Schematic sketch of AFM from Patent "Atomic Force 
Microscope" 
(US RE37,299). 
 
For registration of cantilever bending many methods was used, but 
currently mostly useful and widely used is method invented by Amer and 
Meyer (see Fig. 2) 
US Pat. RE37,299 (Reissued Pat. No. 5,144,833) 
amostra magnética
fibra óptica 
metalizada
sistema de varrredura
da amostra (XYZ)
afinada e
lock-in
piezo-stack
gerador 
de sinais
diapasão
bloco metálico
laser 
Fotodiodo 
segmentado 
Diapasão de quartzo 
(tuning-fork) 
Caracterização dos Materiais SPM 
Interação Ponta-Amostra 
Microscópio de força 
atômica (AFM) 
Caracterização dos Materiais SPM 
Interação Ponta-Amostra 
Microscópio de força 
atômica (AFM) 
• Desenvolvemos uma nova unidade de AFM, operando no modo 
“tapping”. Neste caso o diapasão foi montado na horizontal. Para os 
testes iniciais, usamos pontas de tungstênio. Construímos as células 
eletroquímicas para a corrosão de fios de W e preparação da pontas. 
Pontas de tungstênio para AFM 
Microscópio de força atômica 
Imagem topográfica 
Imagem de erro 
Imagem de fase 
Nanopartículas de 
cobre 
Imagem 
topográfica 
Imagem de fase 
Caracterização dos Materiais SPM 
Interação Ponta-Amostra 
Microscópio de força atômica (AFM) 
• Scanning Probe Microscopies (SPM) 
Software 
 Functions: 
- Control of the system 
- Image acquisition 
- Image processing 
 Disponibility: 
- Software dedicated 
- WSXM from Nanotec 
- Open Source GXSM Software 
(Linux) 
Tip-sample distance control 
- Contact mode 
- Tapping mode 
- Shear-force mode 
Image construction 
- Feedback control signal 
- Direct measurement of any 
specific signal 
 (amplitude or phase) 
- Retrace method 
• Scanning Probe Microscopies (SPM) 
Piezo-electric Scanner 
- Tube 
- Flexure 
- Bimorphes 
• Scanning Probe Microscopies (SPM) 
Feedback Control 
P 
I 
Signal 
Setpoint 
error 
Proportional 
Integral 
Z-piezo 
output 
Caracterização dos Materiais SPM 
Modo de Operação 
Microscópio de força 
atômica (AFM) 
- Modo de contato 
- Modo “tapping” 
(intermitente) 
““ver simuladores”” 
Caracterização dos Materiais SPM 
Modo de Operação 
Microscópio de força 
atômica (AFM) 
- Força normal 
- Força lateral 
Microscópio de força magnética (MFM) 
Caracterização dos Materiais SPM 
Modo de Operação 
Microscópio de força 
atômica (AFM) 
- Força normal 
- Força lateral 
Caracterização dos Materiais SPM 
Microscópio de força atômica (AFM) 
Caracterização dos Materiais 
Nature Nanotechnology, 6 (2011) 191 
SPM 
Comparação entre técnicas 
Microscópio 
ótico 
AFM MEV 
STM 
Caracterização dos Materiais SPM 
DME - Danish Micro Engineering A/S 
 Herlev, Denmark 
PSIA Corp. 
 Sungnam, Korea 
JPK Instruments AG 
 Berlin, Germany 
QuantomiX 
 Nes-Ziona, Israel 
NT-MDT, Molecular Devices and Tools for Nanotechnology, 
 Moscow, Russia 
Quesant Instruments, 
 Agoura Hills, CA 
Molecular Imaging Corporation, 
 Phoenix, AZ. 
RHK Technology, Inc., 
 Rochester Hills, MI 
Nanosurf AG, 
 Liestal, Switzerland 
Surface Imaging Systems GmbH, 
 Herzogenrath, Germany 
Nanotec Electronica 
 Madrid, Spain 
Triple-O Microscopy GmbH, 
 Potsdam, Germany 
Novascan Technologies, Inc. 
 Ames, IA 
Veeco Metrology Group 
 Woodbury, NY 
Omicron Vacuumphysik GmbH, 
 Taunusstein, Germany 
Veeco Metrology Group was formed through the merger of Digital Instruments, Santa Barbara, CA and TM Microscopes, formerly ThermoMicroscopes, 
Inc., Sunnyvale, CA Merged brands also include Topometrix and Park Scientific Instruments. 
http://www.dme-spm.dk/
http://www.dme-spm.dk/
http://www.dme-spm.dk/
http://www.dme-spm.dk/
http://www.dme-spm.dk/
http://www.advancedspm.com/http://www.advancedspm.com/
http://www.advancedspm.com/
http://www.advancedspm.com/
http://www.jpk-instruments.de/
http://www.jpk-instruments.de/
http://www.jpk-instruments.de/
http://www.quantomix.com/
http://www.ntmdt.ru/
http://www.ntmdt.ru/
http://www.ntmdt.ru/
http://www.quesant.com/
http://www.molec.com/
http://www.rhk-tech.com/
http://www.nanosurf.com/
http://www.nanosurf.com/
http://www.nanosurf.com/
http://www.sis-gmbh.com/
http://www.nanotec.es/
http://www.nanotec.es/
http://www.nanotec.es/
http://www.triple-o.de/
http://www.triple-o.de/
http://www.triple-o.de/
http://www.triple-o.de/
http://www.triple-o.de/
http://www.triple-o.de/
http://www.triple-o.de/
http://www.triple-o.de/
http://www.novascan.com/
http://www.novascan.com/
http://www.novascan.com/
http://www.veeco.com/
http://www.veeco.com/
http://www.veeco.com/
http://www.omicron.de/index2.html
http://www.omicron.de/index2.html
http://www.omicron.de/index2.html
http://www.omicron.de/index2.html
Using a form of atomic force microscopy, researchers 
can differentiate the chemical bonds in a single 
molecule of nanographene. [IBM)] 
Inventors reveal road to atomic force microscopy

Continue navegando