Buscar

Livro Senai Desenho Tecnico

Prévia do material em texto

Curso Técnico em Eletromecânica
Desenho Técnico Aplicado 
à Eletromecânica
Armando de Queiroz Monteiro Neto
Presidente da Confederação Nacional da Indústria
José Manuel de Aguiar Martins
Diretor do Departamento Nacional do SENAI
Regina Maria de Fátima Torres
Diretora de Operações do Departamento Nacional do SENAI
Alcantaro Corrêa
Presidente da Federação das Indústrias do Estado de Santa Catarina
Sérgio Roberto Arruda
Diretor Regional do SENAI/SC
Antônio José Carradore
Diretor de Educação e Tecnologia do SENAI/SC
Marco Antônio Dociatti
Diretor de Desenvolvimento Organizacional do SENAI/SC
Confederação Nacional das Indústrias
Serviço Nacional de Aprendizagem Industrial
Curso Técnico em Eletromecânica
Desenho Técnico Aplicado 
à Eletromecânica
Reginaldo Motta
Florianópolis/SC
2010
É proibida a reprodução total ou parcial deste material por qualquer meio ou sistema sem o prévio 
consentimento do editor. Material em conformidade com a nova ortografia da língua portuguesa.
Equipe técnica que participou da elaboração desta obra
Coordenação de Educação a Distância
Beth Schirmer
Revisão Ortográfica e Normatização
Contextual Serviços Editoriais
Coordenação Projetos EaD
Maristela de Lourdes Alves
Design educacional, Ilustração, 
Projeto Gráfico Editorial, Diagramação 
Equipe de Recursos Didáticos 
SENAI/SC em Florianópolis
Autor
Reginaldo Motta
Ficha catalográfica elaborada por Luciana Effting CRB14/937 - Biblioteca do SENAI/SC Florianópolis
 
SENAI/SC — Serviço Nacional de Aprendizagem Industrial
Rodovia Admar Gonzaga, 2.765 – Itacorubi – Florianópolis/SC
CEP: 88034-001
Fone: (48) 0800 48 12 12
www.sc.senai.br 
Ficha catalográfica elaborada por Luciana Effting CRB14/937 - Biblioteca do SENAI/SC Florianópolis 
 
 
M921d 
Motta, Reginaldo 
Desenho técnico aplicado à eletromecânica / Reginaldo Motta. – 
Florianópolis : SENAI/SC, 2010. 
55 p. : il. color ; 28 cm. 
 
Inclui bibliografias. 
 
1. Desenho técnico - Eletromecânica. 2. Desenho geométrico. 3. Desenho 
industrial. 4. Geometria plana. I. SENAI. Departamento Regional de Santa 
Catarina. II. Título. 
 
CDU 744:621 
 
Prefácio
Você faz parte da maior instituição de educação profissional do estado. 
Uma rede de Educação e Tecnologia, formada por 35 unidades conecta-
das e estrategicamente instaladas em todas as regiões de Santa Catarina.
No SENAI, o conhecimento a mais é realidade. A proximidade com as 
necessidades da indústria, a infraestrutura de primeira linha e as aulas 
teóricas, e realmente práticas, são a essência de um modelo de Educação 
por Competências que possibilita ao aluno adquirir conhecimentos, de-
senvolver habilidade e garantir seu espaço no mercado de trabalho. 
Com acesso livre a uma eficiente estrutura laboratorial, com o que existe 
de mais moderno no mundo da tecnologia, você está construindo o seu 
futuro profissional em uma instituição que, desde 1954, se preocupa em 
oferecer um modelo de educação atual e de qualidade. 
Estruturado com o objetivo de atualizar constantemente os métodos de 
ensino-aprendizagem da instituição, o Programa Educação em Movi-
mento promove a discussão, a revisão e o aprimoramento dos processos 
de educação do SENAI. Buscando manter o alinhamento com as neces-
sidades do mercado, ampliar as possibilidades do processo educacional, 
oferecer recursos didáticos de excelência e consolidar o modelo de Edu-
cação por Competências, em todos os seus cursos.
É nesse contexto que este livro foi produzido e chega às suas mãos. 
Todos os materiais didáticos do SENAI Santa Catarina são produções 
colaborativas dos professores mais qualificados e experientes, e contam 
com ambiente virtual, mini-aulas e apresentações, muitas com anima-
ções, tornando a aula mais interativa e atraente. 
Mais de 1,6 milhões de alunos já escolheram o SENAI. Você faz parte 
deste universo. Seja bem-vindo e aproveite por completo a Indústria 
do Conhecimento.
Sumário
Conteúdo Formativo 9
Apresentação 11
12 Unidade de estudo 1
Introdução ao 
Desenho Técnico
Seção 1 - Forma do objeto
Seção 2 - Caligrafia
Seção 3 - Instrumentos
Seção 4 - Normas
22 Unidade de estudo 2
Projeção Ortogonal
Seção 1 - Vistas ortográficas
Seção 2 - Aplicação de linhas
Seção 3 - Dimensionamento 
e cotagem
Seção 4 - Escalas
Seção 5 - Croqui/esboço
Seção 6 - Vistas auxiliares
Seção 7 - Perspectiva
13
13
14
15
32 Unidade de estudo 3
Cortes, Seções e 
Rupturas
Seção 1 - Cortes e seções
Seção 2 - Hachuras
Seção 3 - Corte total
Seção 4 - Corte em desvio
Seção 5 - Corte parcial
Seção 6 - Meio-corte
Seção 7 - Omissão de corte
Seção 8 - Seções
Seção 9 - Rupturas
40 Unidade de estudo 4
Desenho de Conjunto
Seção 1 - Explosão da mon-
tagem
Seção 2 - Detalhamento de 
montagem representação de 
elementos de máquina
44 Unidade de estudo 5
Tolerância 
Geométrica 
e Dimensional
Seção 1 - Tolerância geomé-
trica de forma, orientação, 
posição e batimento 
Seção 2 - Rugosidade: indica-
ção de estado de superfície
Seção 3 - Desenho técnico 
arquitetônico 
Seção 4 - Escalas
Finalizando 53
 
Referências 55
 
33
33
34
35
35
36
36
37
39
23
24
25
27
27
28
29
41
42
45
49
50
51
8 CURSOS TÉCNICOS SENAI
Conteúdo Formativo
9DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
Carga horária da dedicação
Carga horária: 60h
Competências
Interpretar projetos de sistemas mecânicos, por meio da elaboração de desenho 
técnico mecânico.
Conhecimentos 
 ▪ Caligrafia técnica, formatos e instrumentais utilizados no desenho eletromecânico.
 ▪ Desenho geométrico.
 ▪ Figuras e construções geométricas.
 ▪ Escalas.
 ▪ Dimensionamento/cotagem.
 ▪ Projeção ortogonal (vistas essenciais): cortes, seções, rupturas, croquis, desenho 
de conjuntos, representação de elementos de máquinas, tolerâncias geométrica, 
rugosidade, perspectivas.
 ▪ Desenho técnico arquitetônico: planta baixa.
 ▪ Catálogos técnicos.
Habilidades
 ▪ Interpretar e aplicar normas técnicas regulamentadoras e preservação ambiental.
 ▪ Elaborar desenhos técnicos eletromecânicos.
 ▪ Identificar os elementos de máquinas.
 ▪ Interpretar desenho, catálogos e manuais de sistemas eletromecânicos.
 ▪ Interpretar tolerâncias dimensionais, tolerâncias geométricas e simbologia de 
rugosidade.
 ▪ Interpretar desenho técnico arquitetônico (planta baixa).
Atitudes
 ▪ Zelo no manuseio dos equipamentos e instrumentos de medição.
 ▪ Responsabilidade socioambiental.
 ▪ Adoção de normas de saúde.
 ▪ Segurança do trabalho e preservação ambiental.
 ▪ Proatividade e trabalho em equipe.
 ▪ Organização e conservação do laboratório e equipamentos.
Apresentação
DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
Nas indústrias em geral o desenho é uma ferramenta de grande impor-
tância. O desenho técnico difere do desenho artístico, pois há normas 
e critérios que devem ser seguidos. No desenho artístico as formas são 
variadas e não se requer um traço rigoroso, porém o desenhista deve ter 
uma visão espacial, criatividade e raciocínio lógico.
O resultado de um desenho é permitir a visualização de imagens e peças 
sem a necessidade da presença física da mesma, para que ela possa ser 
fabricada exatamente em sua forma e proporção.
Este material está voltado ao desenho técnico aplicado à eletromecânica. 
Para um aprofundamento maior, será necessário que você pesquise em 
livros e normas técnicas e, principalmente, a prática, que faz com que o 
desenhista tenha visão e raciocínio lógico, compreendendo facilmente 
qualquer desenho.
Reginaldo Motta
Reginaldo Motta é graduado 
em Administração de Empresas 
pela Unerj Jaraguá do Sul e pós-
graduando em Engenharia de 
Produção pela Fundação Uni-
versitária de Blumenau (FURB). 
Possui formação técnica em 
Mecânica, Desenhos e Projetos 
pela Associação Beneficente da 
Indústria Carbonífera de Santa 
Catarina (SATC). Atua na área de 
metal mecânica, em engenharia 
de processos, desenvolvimento 
de produtos, projetos mecâni-
cos, metrologia,melhoria con-
tínua, controle da qualidade, 
controle estatístico de processo.
11
Unidade de 
estudo 1
Seções de estudo 
Seção 1 – Forma do objeto
Seção 2 – Caligrafia
Seção 3 – Instrumentos 
Seção 4 – Normas
13DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
SEÇÃO 1
Forma do objeto
Nesta seção você estudará as for-
mas do objeto, entendendo como 
é possível descrevê-los e também 
como o desenho é representado, 
a forma correta dos desenhos 
técnicos, suas particularidades e 
outras informações essenciais no 
estudo da forma do objeto. 
Para descrevermos um objeto é 
possível fazê-lo de forma manu-
al, sem instrumentos e sem escala, 
chamado de croqui ou esboço, ou 
por meio de instrumentos de de-
senho. 
Alguns dos instrumentos mais 
usados são: régua de 30 cm, ré-
gua T, escalímetro, esquadro de 
45°, esquadro de 30°, compasso e 
transferidor. 
O desenho é representado por 
meio de linhas que mostram su-
perfícies e contornos dos objetos, 
simbologias, dimensões e notas 
que formam um conjunto descri-
to como desenho técnico. 
A Associação Brasileira de Nor-
mas Técnicas (ABNT) padroni-
za a forma correta dos desenhos 
técnicos e suas particularidades, 
devendo ser consultada sempre 
que possível para sanar eventuais 
dúvidas. 
O desenvolvimento da capacida-
de de interpretação e representa-
ção de desenhos é uma forma de 
desenvolver não só a criativida-
de e a coordenação motora, mas 
igualmente o raciocínio e princi-
palmente a visão espacial, sendo 
esta última a mais importante. 
Visão espacial significa você imaginar a partir de linhas do desenho 
e das vistas ortográficas a peça em três dimensões. Da mesma forma 
ao contrário, observando uma peça ou um desenho em perspectiva, 
imaginar as vistas do desenho.
Nesta seção você aprendeu sobre as formas do objeto e sua represen-
tação. Continue seus estudos na próxima seção conhecendo a caligrafia 
técnica.
SEÇÃO 2
Caligrafia
Na seção 2 você aprenderá sobre a caligrafia técnica e sua importância 
como complemento ao desenho técnico. Você terá acesso a um resumo 
da NBR 8402 e ao dimensionamento da caligrafia técnica.
A caligrafia técnica é um elemento importante no complemento de um 
desenho técnico, indicando informações necessárias à compreensão do 
desenho, como números, anotações e listas de materiais. É importante 
também para a apresentação final do desenho. 
A Tabela 1 mostra um resumo da ABNT NBR 8402: execução de cará-
ter para escrita em desenho técnico, sendo que, na prática, a escrita 
é visual, mantendo uma uniformidade no tamanho das letras maiús-
culas e minúsculas, inclinadas 15° à direita ou vertical, e conforme a 
importância da anotação. A altura da letra pode ser variada, usada 
para indicar um corte, uma legenda, uma lista de materiais. 
Introdução ao Desenho Técnico
14 CURSOS TÉCNICOS SENAI
Tabela 1 - Dimensionamento da Caligrafia Técnica
Característica Dimensões
Altura das letras maiúsculas h 3,5 7 10
Altura das letras minúsculas c 2,5 5 7
Distância mínima entre linhas 
de base
b 5 10 14
Distância mínima entre 
palavras
e 2,1 4,2 6
Fonte: ABNT (1994, p. 2).
Figura 1 - Dimensionamento Caligrafia
Fonte: ABNT (1994, p. 2).
Figura 2 - Caligrafia Técnica: Escrita Vertical
Fonte: ABNT (1994, p. 3).
Figura 3 - Caligrafia Técnica: Escrita Inclinada
Fonte: ABNT (1994, p. 3).
Nesta seção você teve acesso a informações sobre caligrafia. Você estu-
dou os principais assuntos envolvendo o tema, com figuras que exempli-
ficaram o conteúdo estudado. 
SEÇÃO 3
Instrumentos 
Nesta seção, como continuação 
de seus estudos, você irá conhe-
cer os instrumentos, entendendo 
sobre a necessidade deles na exe-
cução de desenhos.
Para executar um desenho rápido 
e preciso, a utilização de instru-
mentos de desenho é necessária. 
A qualidade dos instrumentos 
também é fundamental para um 
bom resultado final. Alguns ins-
trumentos mais utilizados são: 
 ▪ régua T;
 ▪ régua paralela;
 ▪ jogo de esquadros (um com 
ângulos de 30°, 60° e 90°, e outro 
com ângulos de 45°;
 ▪ lápis ou lapiseira;
 ▪ escalímetro;
 ▪ compasso;
 ▪ transferidor;
 ▪ gabaritos de circunferências de 
elipses;
 ▪ curva francesa.
Você acabou de estudar os instru-
mentos, tendo acesso, inclusive, 
aos mais utilizados. 
15DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
SEÇÃO 4
Normas 
Agora que você já tem um bom 
conhecimento introdutório sobre 
desenho técnico, é importante se 
aprofundar nas normas técnicas, 
que têm por finalidade padroni-
zar termos, conceitos e formas 
de execução entre aqueles que a 
utilizam.
Na área de desenho técnico, são 
aplicadas várias normas. A As-
sociação Brasileira de Normas 
Técnicas (ABNT) normatiza a 
forma correta de execução do 
desenho técnico, também cha-
mada de NBR (Norma Brasileira 
de Regulamentação) ou NBR M 
(referindo-se a normas válidas ao 
MERCOSUL). Ela se orienta a 
partir de normas internacionais e 
padroniza de forma mais clara a 
linguagem para utilização no Bra-
sil. 
Qualquer dúvida ou aprofunda-
mento em desenho técnico, as 
normas de ABNT deverão ser 
analisadas para esclarecimentos. 
Abaixo seguem algumas normas 
empregadas neste material que 
podem ser consultadas para maio-
res esclarecimentos:
 ▪ NBR 10126: cotagem em 
desenho técnico;
 ▪ NBR 10068: folha de dese-
nho;
 ▪ NBR 10582: apresentação da 
folha para desenho técnico;
 ▪ NBR 13142: dobramento de 
cópia;
 ▪ NBR 8196: desenho técnico;
 ▪ NBR 8402: execução de 
caráter para escrita em desenho 
técnico;
 ▪ NBR 6158: sistema de tole-
râncias e ajustes;
 ▪ NBR 6173: terminologia de 
tolerância e ajustes;
 ▪ NBR 6409: tolerâncias geo-
métricas: tolerâncias de forma, 
orientação, posição e batimento: 
generalidades, símbolos, defini-
ções em desenho.
Formato do papel
Os desenhos devem ser dimen-
sionados em folhas padronizadas. 
Os formatos recomendados para 
o desenho técnico são normati-
zados pela ABNT (NBR 10068: 
folha de desenho, leiaute e dimen-
sões) e são chamados de folhas 
padrão da série A. 
O formato padrão é baseado num 
retângulo de área igual a 1 m² e 
de lados medindo 841 x 1189 mm 
(Figura 4). Esse formato é o pa-
drão A0 (A zero). 
O padrão A1 deriva do formato 
A0, e os outros padrões (A2, A3, 
A4) derivam sempre do anterior.
Figura 4 - Padrão A0
Fonte: ABNT (1987, p. 2).
O formato A0 possui as di-
mensões de 841 mm x 1.189 
mm. Para obter o padrão A1, 
deve-ser dividir ao meio o 
comprimento de 1.189 mm 
(resultado = 594 mm) ficando 
o padrão A1 com as dimen-
sões: 594 mm x 841 mm. 
Para obter o padrão A2, deve-
se dividir ao meio o compri-
mento de 841 mm, do forma-
to A1, ficando o novo padrão 
A2 com as dimensões: 420 x 
594 mm, e assim, sucessiva-
mente para obter os demais 
formatos.
Abaixo, as dimensões para os for-
matos da série A:
Tabela 2 - Formatos da Série “A”
Designação
Dimensões 
(mm)
A0 841 x 1.189
A1 594 x 841
A2 420 x 594
A3 297 x 420
A4 210 x 297
Fonte: ABNT (1987, p. 2).
16 CURSOS TÉCNICOS SENAI
Obs.: dimensões de referência 
NBR 10068 (ABNT, 1987).
Referência por malhas
Para permitir uma fácil localização 
de detalhes do desenho, devem 
ser colocadas na parte externa da 
folha colunas com números ao 
longo da margem inferior e supe-
rior, e letras ao longo da margem 
esquerda e direita. A largura das 
colunas deve ter no mínimo 25 
mm e no máximo 75 mm, deven-
do ser distribuídas pela complexi-
dade dos detalhes do desenho em 
quantidade par. 
Os números e as letras devem es-
tar centralizados dentro da malha 
(Figura 7).
Figura 7 - Sistema de Referência por 
Malhas
Fonte: ABNT (1987, p. 3).
Margem
A margem é limitada pelo contorno externo da folha. As margens es-
querda e direita devem ser dimensionadas conforme a Tabela 3.
Tabela 3 - Margem Padrão das Folhas
Formato Margem esquerda Margem direita
A0 25 10
A1 25 10
A2 25 7
A3 25 7
A4 25 7
Fonte: ABNT (1987, p. 3).
Marcas de centro
Nos formatos da série A devem ser executadas quatro marcas de centro 
com uma linha localizada no centro da folha, no lado da margem exter-
na, estendendo-se 5 mmem direção ao centro da folha (figuras 5 e 6).
Figura 5 - Padrão A4: Modelo Paisagem
Fonte: ABNT (1987, p. 3)
Figura 6 - Padrão A4: Modelo Retrato
Fonte: ABNT (1987, p. 3).
17DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
DICA 
Caso prático: um cliente envia um desenho para um fornecedor 
em outro Estado. O fornecedor tem algumas dúvidas em relação 
ao detalhamento da peça, e fica difícil o entendimento por tele-
fone. Porém quando indicada a malha do desenho (número da 
coluna e letra da linha), com referência ao detalhe da sua dúvida, 
fica mais fácil a localização do detalhe no desenho.
Figura 8 - Exemplo de Referência do Desenho por Malhas: Indicação da Ma-
lha (Coluna 2 x Letra C)
Legenda
A legenda deve ser executada do lado direito inferior da folha, com di-
mensionamento de 178 mm de comprimento nos formatos A4, A3 e A2 
(Figura 9), e 175 mm nos formatos A1 e A0 (Figura 10). Deve conter na 
legenda a identificação do desenho, como: número da peça, código de 
material, descrição da peça, descrição do material, logomarca, escala do 
desenho principal, responsável, desenhista, projetista, aprovação, datas, 
descrição do projeto, indicação de primeiro diedro, entre outras. 
Pode-se incluir ou excluir itens da legenda, dependendo da neces-
sidade de quem a utiliza. Como por exemplo: tabela de tolerâncias 
lineares.
18 CURSOS TÉCNICOS SENAI
Figura 9 - Modelo de Legenda para os Formatos A4, A3 e A2
Figura 10 - Modelo de Legenda para os Formatos A1 e A0
As legendas podem conter informações adicionais como mostrado no 
modelo abaixo, um quadro de tolerância linear referente à norma NBR 
2768-1/2000. 
Figura 11 - Modelo de Legenda para os Formatos A4, A3 e A2, com Quadro 
de Tolerância Linear
19DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
Dobramento da folha 
Independente do formato, o resultado final da folha dobrada sempre 
será um formato A4.
Deve-se dobrar a folha, verticalmente, na linha final da legenda, ou 178 
mm (para os formatos A2, A3 e A4), ou a 175 mm (para os formatos 
A1 e A0).
Figura 12 - Dobramento Formato A0 
Fonte: Adaptado de ABNT (1999).
20 CURSOS TÉCNICOS SENAI
Figura 13 - Dobramento Formato A1 
Fonte: Adaptado de ABNT (1999).
Figura 14 - Dobramento Formato A2 
Fonte: Adaptado de ABNT (1999).
21DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
Figura 15 - Dobramento Formato A3 
Fonte: Adaptado de ABNT (1999).
Nesta seção você estudou as normas da ABNT. Teve acesso a um caso 
prático e a figuras ilustrativas relacionadas ao que você viu nesta seção.
Nesta unidade você estudou o desenho técnico e com isso pôde conhe-
cer assuntos importantíssimos para o seu curso, como as normas para 
desenhos técnicos da ABNT, os instrumentos, as formas de objeto e a 
caligrafia. Figuras ilustrativas, exemplos e dicas tornaram esta unidade 
dinâmica e prática de ser estudada. 
Faça uma revisão dos principais tópicos e em seguida comece a Unidade 2.
Unidade de 
estudo 2
Seções de estudo 
Seção 1 – Vistas ortográficas
Seção 2 – Aplicação de linhas
Seção 3 – Dimensionamento e cotagem
Seção 4 – Escalas 
Seção 5 – Croqui/esboço
Seção 6 – Vistas auxiliares
Seção 7 – Perspectiva
23DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
Projeção Ortogonal
SEÇÃO 1
Vistas ortográficas 
Nesta seção você estudará as vis-
tas ortográficas. Por meio de uma 
abordagem prática você aprende-
rá a respeito deste assunto, enten-
dendo sobre projeção, inclusive 
aprendendo qual é a projeção 
adotada no Brasil. Preste atenção 
às dicas e estude!
Esta etapa inclui:
 ▪ projeção no 1° diedro;
 ▪ projeção no 3° diedro;
 ▪ projeção ortogonal;
 ▪ vistas principais do desenho.
Projeção no 1° diedro
A projeção no 1° diedro é repre-
sentada pelas vistas:
 ▪ frontal; 
 ▪ superior (representada abaixo 
da vista frontal); 
 ▪ e pela vista lateral esquerda 
(representada no lado direito da 
vista frontal).
A figura na legenda da folha indi-
ca que o desenho está no 1° die-
dro. 
Figura 16 - Projeção no 1° Diedro
Fonte: ABNT (1995, p. 1).
Projeção no 3° diedro
A projeção no 3° diedro mostra as 
seguintes vistas:
 ▪ frontal;
 ▪ inferior (representada abaixo 
da vista frontal);
 ▪ lateral direita (representada no 
lado direito da vista frontal).
No Brasil, adota-se a projeção no 
3° diedro representada pela Fi-
gura 17, sendo importante que a 
legenda contenha o símbolo do 
método de projeção ortográfica.
Projeção ortogonal
As vistas ortográficas represen-
tam um conjunto de uma ou mais 
vistas correlacionadas entre si. 
Cada vista mostra um detalhe di-
ferente da forma do objeto.
Para a confecção das vistas, deve-
se projetar linhas auxiliares de re-
ferência para alinhar perfeitamen-
te as vistas do desenho.
É possível analisar uma peça a 
partir de seis vistas ortográficas, 
conforme mostrado na Figura 
17, porém apenas três vistas são 
necessárias para representar uma 
peça (Figura 19).
Vistas principais do de-
senho
Um objeto pode ser observado 
a partir de seis planos ou vistas, 
conforme representado pela Fi-
gura 17:
Figura 17 - Vistas Ortográficas
O objeto deve ser denominado e 
distribuído conforme Figura 18, 
sendo:
a. vista frontal;
b. vista superior;
c. vista lateral esquerda;
d. vista lateral direita;
e. vista inferior;
f. vista posterior.
Figura 18 - Distribuição das Vistas 
Ortográficas
24 CURSOS TÉCNICOS SENAI
A vista mais importante deve ser 
usada como vista frontal (Figura 
19, letra A), seguida das vistas: 
 ▪ superior (posicionada abaixo 
da vista frontal) (Figura 19, letra 
B);
 ▪ lateral (esquerda, posicionada 
no lado direito da vista frontal) 
(Figura 19, letra C). 
Figura 19 - Vistas Ortográficas Princi-
pais
A escolha das vistas depende da 
complexidade da peça, devendo 
os seguintes critérios serem ana-
lisados:
 ▪ uso do menor número de 
vistas (quando a peça for muito 
simples poderão ser omitidas 
vistas desnecessárias; 
 ▪ não repetir detalhes;
 ▪ ocultar linhas tracejadas des-
necessárias;
 ▪ sempre que possível, manter 
o padrão das três vistas princi-
pais (frontal, superior e lateral 
esquerda);
 ▪ quando a peça for complexa, 
poderão ser usadas tantas vistas 
quanto necessário para esclareci-
mento de sua forma;
 ▪ independente da escolha das 
vistas, estas devem estar ali-
nhadas na horizontal e vertical, 
com um espaço entre elas de no 
mínimo 20 mm para que possam 
ser dimensionadas (cotas).
Representação do desenho em uma única vista
Figura 20 - Representação Correta de uma Única Vista de um Eixo
Figura 21 - Representação Incorreta de Vistas de um Eixo
Nesta seção você estudou sobre 
vistas ortográficas. Continue com 
o seu estudo, agora com o assun-
to aplicação de linhas na próxima 
seção.
SEÇÃO 2
Aplicação de linhas
Esta seção aborda a aplicação de 
linhas, explicando sua finalidade. 
Você conhecerá os critérios de 
representação com o auxílio de fi-
guras para o correto aprendizado 
do assunto.
As linhas de um desenho indicam 
sua exata representação (Figura 
23), e para facilitar a interpreta-
ção, os seguintes critérios devem 
ser adotados (Figura 22): 
a. linha contínua larga – utili-
zada em contornos e arestas 
visíveis;
25DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
b. linha contínua fina – indica-
da para linhas de cotas, auxilia-
res, de chamada, hachuras e de 
centros curtas;
c. linha tracejada – serve para 
contornos e arestas não visí-
veis;
d. linha de centro ou linha de 
simetria – linha representada 
por um traço e um ponto al-
ternado, usada para linhas de 
centro, de simetria e trajetórias.
Figura 22 - Tipos de Linhas
Fonte: ABNT (1984, p. 2).
Figura 23 - Interpretação de Aplicação das Linhas
Fonte: Francesco (1978, p. 7-24). 
O dimensionamento de uma peça 
é representado por meio de linhas 
e números, mostrando a dimen-
são da peça, de determinado ele-
mento, seja um plano, uma reta, 
um círculo ou um ângulo. 
Deve-se atentar para que a cota 
represente o valor dimensional 
de funcionamento da peça, sendo 
que sem a cota ou com sua repre-
sentação incorreta, o resultado 
será uma montagemcom interfe-
rência. 
As cotas devem ser colocadas di-
retamente no desenho, de forma 
completa e sem repetições, distri-
buídas nas três vistas ortográficas 
ou nas vistas representadas. 
As cotas devem manter a mesma 
unidade de medida, não podendo 
alterar, mesmo que em detalhe 
ampliado.
Elementos de cotagem
Linha auxiliar ou de chama-
da
A linha auxiliar é uma linha pro-
longada da aresta da peça além da 
linha de cota. Deve haver um li-
geiro espaço entre a linha auxiliar 
e o contorno da peça.
As linhas de chamada devem ser 
perpendiculares ao elemento di-
mensionado, podendo ser inclina-
das a 60° quando necessário. 
Sempre que possível, as linhas 
auxiliares e as linhas de cota não 
devem ser interrompidas.
As linhas de centro ou simetria 
podem ser usadas como linhas de 
chamada.
Linha de cota 
É a linha na qual é colocado o 
valor da peça. De preferência, as 
linhas de cota e auxiliares não de-
vem se cruzar, caso ocorra, não 
devem ser interrompidas no cru-
zamento.
Nesta seção você aprendeu sobre aplicações de linhas. Havendo dúvidas, 
revise o conteúdo apresentado. 
SEÇÃO 3
Dimensionamento e 
cotagem
A Seção 3 apresenta um estudo 
de dimensionamento e cotagem. 
Uma abordagem em tópicos so-
bre esta etapa do desenho técnico 
torna esta seção dinâmica e dará 
praticidade ao estudo do tema. 
Acompanhe as etapas de estudos 
da unidade. 
Cotagem
Para que a peça possa ser con-
feccionada, são necessárias infor-
mações tais como: dimensões da 
peça, símbolos, especificações de 
materiais, tolerâncias e acabamen-
tos. Isso é chamado de cotagem 
do desenho.
26 CURSOS TÉCNICOS SENAI
O valor de dimensionamento da 
cota deve ser colocado no centro 
da cota.
A linha de cota deve ser uma linha 
fina, para que não contraste com 
as linhas de contorno do desenho. 
Setas (limites da cota)
Nas extremidades da linha de 
cota devem ter setas ou traços 
oblíquos. Num desenho técnico 
formal deve ser utilizado somente 
um tipo, não podendo ser alterna-
do. 
A seta mais correta é a seta de ca-
beça cheia, com dimensão máxi-
ma de 3 mm de comprimento. 
Cota
É representada pelos valores nu-
méricos da peça, localizada na 
linha de cota, sempre acima e 
posicionada no centro. Deve es-
tar localizada na vista que melhor 
indique o objeto dimensionado e 
este deve, sempre que possível, 
estar fora do desenho. Há auto-
res que defendem a colocação 
de algumas cotas dentro da peça, 
desde que traga mais clareza do 
objeto cotado. 
Quando cotada no interior da 
peça, e esta estiver hachurada, re-
presentando um corte, a hachura 
deverá ser interrompida no local 
da cota. 
Não devem ser utilizadas como 
linha de cota, a linha de contorno 
e a linha de centro. 
Deve-se evitar também a cotagem 
em linhas não visíveis. 
Figura 24 - Linhas de Cota
Fonte: ABNT (1987, p. 3).
Figura 25 - Cotagem Linear: Exemplo de Cotagem de uma Peça Simples 
Fonte: ABNT (1987, p. 4).
Figura 26 - Cotagem de Ângulos
Fonte: ABNT (1987, p. 5).
27DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
Esta seção trouxe um estudo prá-
tico em relação ao dimensiona-
mento e à cotagem. Na próxima 
seção você estudará as escalas. 
SEÇÃO 4
Escalas 
Nesta seção você estudará sobre 
escalas, aprendendo que existem 
tipos de escala e estudando cada 
um deles.
Os objetos possuem tamanhos 
diferenciados, e para desenhá-los 
dentro dos formatos padrão é 
necessário reduzi-los ou ampliá-
los conforme a conveniência. Os 
desenhos devem estar dispostos 
de forma que não pareçam muito 
pequenos, dificultando o enten-
dimento, e nem muito grande, se 
não houver muitos detalhes. Exis-
tem as escalas natural, de amplia-
ção e de redução representadas 
por dois números separados por 
dois-pontos (ex.: 1:1 escala natu-
ral). 
Escala natural
É a escala na qual a peça é dese-
nhada em tamanho real. Repre-
sentada na legenda pelo campo 
escala 1:1, ou abreviada Esc. 1:1.
Escala de redução
Quando uma peça for maior do 
que o formato da folha onde será 
desenhada, ela deverá ser reduzi-
da em relação às suas dimensões 
reais. Uma vez escolhida a escala, 
todas as dimensões da peça de-
vem ser divididas por ela. 
Exemplos de escala de redução: 
1:2; 1:2,5; 1:5; 1:10; 1:20; 1:50; 
1:100. 
Escala de ampliação
Quando uma peça é pequena 
demais para o formato da folha 
onde será desenhada, ela deve ser 
ampliada. Uma vez escolhida a es-
cala, todas as dimensões da peça 
devem ser multiplicadas por ela.
Exemplos de escala de ampliação: 
2:1; 2,5:1; 5:1; 10:1; 20:1; 50:1; 
100:1.
A peça deve ser desenhada 
nas medidas resultantes da 
escala e o dimensionamento 
das cotas deve ser os valores 
reais da peça. Dessa forma, a 
pessoa que irá fabricar a peça 
não necessita calcular para 
ver a medida real da peça.
SEÇÃO 5
Croqui/esboço
O croqui, também chamado de 
esboço ou rascunho, é um traça-
do da peça à mão livre, sem es-
cala, sem instrumentos, depen-
dendo somente da habilidade do 
desenhista em traçar uma linha 
perfeita. 
O croqui é utilizado quando se 
precisa coletar as informações de 
uma peça no local, numa máqui-
na, por exemplo, sem que haja 
necessidade de desligá-la ou des-
montá-la. As informações são ob-
tidas por meio de instrumentos de 
medição, desenhadas à mão livre 
e, posteriormente, colocadas em 
desenho técnico formal. Deve-se 
obedecer às regras do desenho 
técnico, como cotas e utilização 
das linhas. 
O croqui deve ser feito somente 
nos seguintes casos:
 ▪ in loco, com a finalidade de 
obter o desenho de uma peça na 
máquina para que a mesma seja 
confeccionada; 
 ▪ esboço da ideia de um equipa-
mento qualquer, com as dimen-
sões principais da máquina;
 ▪ detalhamento de uma peça 
para fabricação;
 ▪ após o esboço concluído, o 
mesmo deve ser redesenhado em 
folha-padrão, com instrumentos 
e na escala adequada, aplicando 
símbolos, notas, informações 
adicionais para a fabricação da 
mesma; 
 ▪ há casos em que o croqui pode 
ser utilizado para fabricação, 
porém não é recomendado, pois 
pode ocasionar alguns problemas 
como falta de atualização, infor-
mações incorretas, interpretação 
errada pelo fato de o desenho 
estar à mão livre, entre outros.
Figura 27 - Esboço à Mão livre/Croqui
Esta seção fez um estudo sobre o 
croqui, muito usado para coletar 
informações de uma peça no lo-
cal.
28 CURSOS TÉCNICOS SENAI
SEÇÃO 6
Vistas auxiliares
Você estudará agora as vistas au-
xiliares, muito utilizadas em casos 
em que as peças possuem planos 
inclinados. As figuras ilustrativas 
darão suporte ao aprendizado 
nesta seção.
Nas projeções normais para re-
presentação do desenho no 1º 
diedro, os planos da peça estão 
paralelos, porém há casos em que 
as peças possuem planos inclina-
dos, sendo que quando projetados 
para as vistas normais do dese-
nho, a face não aparece em ver-
dadeira grandeza e então ocorre 
uma deformação por causa de sua 
inclinação. Nesses casos, aplica-
se a vista auxiliar, utiliza-se uma 
das vistas em que aparece a face 
inclinada, projeta-se uma linha de 
referência e, por fim, desenha-se a 
face em verdadeira grandeza. Não 
há necessidade de desenhar toda a 
peça na vista auxiliar, somente o 
plano inclinado. 
Figura 28 - Vista Auxiliar
Nesta seção você estudou sobre as vistas auxiliares, entendendo quando 
deve ser utilizada e visualizando o conteúdo estudado por meio figuras 
ilustrativas. 
Continue o estudo da unidade, avançando para a Seção 7, que abordará 
o tema perspectiva.
29DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
SEÇÃO 7
Perspectiva
Nesta seção você estudará a perspectiva, tendo acesso a um conteúdo 
que envolve perspectiva isométrica, perspectiva isométrica de uma cir-
cunferência e perspectiva cavaleira.
Esta seção contempla os itens seguintes. Acompanhe. 
Perspectiva isométrica
A peça é desenhada de tal forma que mostra três de suas faces: frontal, 
superior e lateral esquerda. 
A base de uma perspectiva isométrica são três linhas, sendo duas inclina-
das a 30° e outra perpendicular ao vértice das outras duas. 
Deve-se marcar nessas três linhas a medida docomprimento, a largura e 
a altura; após, deve-se traçar linhas paralelas nesses pontos.
Deve-se executar os procedimentos seguintes.
1. Criar três eixos, sendo dois a 30° e um perpendicular aos vértices.
2. Marcar nos três eixos as medidas de comprimento, largura e altura.
3. Para dar forma à peça, deve-se construir linhas paralelas aos três 
eixos iniciais.
4. É importante o uso de esquadros de 30°e 45°, régua T, ou régua 
normal 30 cm.
Figura 29 - Linhas: Perspectiva
Figura 30 - Cubo e
Isométrica Perspectiva
Figura 31 - Exemplo Perspectiva
Figura 32 - Exemplo de Isométrica 
Perspectiva
30 CURSOS TÉCNICOS SENAI
Perspectiva isométrica de uma circunferência
O resultado de uma perspectiva da circunferência é uma elipse. Sua 
construção parte de um quadrado desenhado em perspectiva, cujo lado 
é o diâmetro da circunferência (passo 1). Deve-se achar os pontos mé-
dios (centro das linhas) e unir o vértice do quadrado aos pontos médios 
opostos ao vértice (passo 1 e 2). Por último, deve-se traçar os raios (pas-
so 3 a 6).
Figura 33 - Detalhamento de Perspectiva de uma Circunferência
Figura 34 – Sequência (1, 2, 3) para Desenhar um Círculo em Perspectiva
Figura 35 - Sequência (1, 2, 3) para Desenhar um Círculo em Perspectiva
Figura 36 - Sequência (4, 5) para 
Desenhar um Círculo em Perspectiva
Figura 37 - Aplicação da Perspectiva de 
uma Circunferência
31DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
Perspectiva cavaleira
Na perspectiva cavaleira uma face 
da peça é desenha exatamente de 
frente, em verdadeira grandeza. 
As outras faces são projetadas 
obliquamente, inclinadas a 30°, 
45° ou 60°. 
Quando escolher a repre-
sentação de um desenho em 
perspectiva cavaleira?
Quando a face frontal con-
ter detalhes, principalmente 
objetos circulares, para que 
sejam representados em ver-
dadeira grandeza.
Figura 38 - Perspectiva isométrica 
Figura 39 - Perspectiva Cavaleira
Com o estudo das perspectivas, 
você concluiu a última seção da 
Unidade 2.
Nesta unidade foi feito um estu-
do da projeção ortogonal. O tema 
foi abordado por meio de seções, 
o que tornou o conteúdo muito 
acessível. 
Na próxima unidade você estu-
dará cortes, seções e rupturas. É 
importante que, ao final de cada 
unidade, você revise os principais 
tópicos, fixando melhor os conte-
údos. 
Unidade de 
estudo 3
Seções de estudo 
Seção 1 – Cortes e seções
Seção 2 – Hachuras
Seção 3 – Corte total
Seção 4 – Corte em desvio
Seção 5 – Corte parcial
Seção 6 – Meio-corte
Seção 7 – Omissão de corte
Seção 8 – Seções
Seção 9 – Rupturas
33DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
Cortes, Seções e Rupturas
SEÇÃO 1
Cortes e seções
Nesta seção você estudará cortes 
e seções.
Uma peça com muitos detalhes, 
representada por linhas não visí-
veis ou linhas tracejadas, pode di-
ficultar o entendimento e a leitura 
do desenho. Portanto, nesses ca-
sos, são empregados o sistema de 
cortes para cada situação específi-
ca, representando com exatidão o 
detalhe interno da peça.
Você acabou de estudar os cortes 
e seções. De maneira simples e di-
reta teve acesso ao assunto.
SEÇÃO 2
Hachuras
Esta seção apresentará um estudo 
das hachuras, que são represen-
tações do material em regiões de 
corte. 
Segundo a Norma 12298 (ABNT, 
1992), hachuras são representa-
ções do material em regiões de 
corte. Todo desenho representa-
do em corte deve conter hachu-
ras, sendo específicas para cada 
tipo de material. 
Na eletromecânica, como os ma-
teriais mais comuns são aços ou 
ferro fundidos, a representação da 
hachura é feita por meio de linhas 
paralelas, inclinadas a um ângulo 
de 45°, com distância proporcio-
nal à superfície da peça, no míni-
mo 0,7 mm, dentro da seção em 
corte. 
Numa mesma peça, a hachura deve estar na mesma direção. Quando da 
representação do corte em desenho de conjunto, contendo mais de uma 
peça cortada, a representação do corte é feita por meio de hachuras em 
sentidos opostos ou em espaçamentos diferentes.
Figura 40 - Hachuras Conforme Tipo de Material
Fonte: Strauhs (2007, p. 82). 
Você acabou de estudar na Seção 2 as hachuras. Viu o que são hachuras, 
como devem estar representadas e onde devem estar localizadas. Con-
tinue o estudo desta unidade, avançando para a Seção 3, que aborda o 
corte total.
34 CURSOS TÉCNICOS SENAI
SEÇÃO 3
Corte total
Você estudará agora o corte total, que deve ser representado em uma das 
vistas do desenho por uma linha traço-ponto. A maneira como isso deve 
ser feito é o que você verá nesta seção.
O corte total deve ser representado em uma das vistas do desenho por 
uma linha traço-ponto, sendo que esta linha ultrapassa toda a peça, em 
sentido longitudinal ou em sentido transversal. Nas extremidades da li-
nha de corte devem conter setas que mostram o sentido em que o corte 
é observado, assim como também letras que indicam onde o corte será 
representado.
Chama-se indicação do corte a região por onde passa a linha traço-
ponto e representação do corte a vista que mostra o corte com a ha-
chura.
Figura 41 - Representação de Corte Total: Longitudinal
Figura 42 - Representação de Corte Total: Transversal
Nesta seção você estudou o corte total, aprendendo como ele deve ser 
representado. A seguir estude sobre corte e desvio, tema da Seção 4.
35DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
SEÇÃO 4
Corte em desvio
Agora que você já estudou o corte total e sabe o que significa e como 
deve ser representado, estudará nesta seção o corte em desvio, que será 
usado quando os detalhes da peça não estiverem alinhados, ou quando 
não for possível um corte total mostrar todos os detalhes internos da 
peça.
Quando os detalhes da peça que devem ser mostrados não estiverem 
alinhados, ou quando com um corte total não for possível mostrar todos 
os detalhes internos da peça, deve-se usar o tipo de corte em desvio. O 
corte em desvio é indicado por uma linha traço-ponto, sendo desviado a 
90° em direção ao objeto que se quer mostrar. Da mesma forma como 
no item anterior, a representação o corte deve ser feito em uma das 
vistas do desenho.
Figura 43 - Representação de Corte em Desvio
Você acabou de estudar o corte em desvio, sendo orientado quanto à sua 
utilização. Estudará agora o corte parcial na Seção 5.
SEÇÃO 5
Corte parcial
Você já tem conhecimento de corte total e corte em desvio e terá a partir 
de agora também conhecimento sobre corte parcial, assunto desta seção.
O corte parcial deve mostrar um pequeno detalhe interno da peça, sem 
a necessidade de linhas de centro para representação do corte. O mode-
lo do corte é representado como uma mordida na peça, ou seja, linhas 
sinuosas hachuradas onde ser quer a representação do corte.
Figura 44 - Corte Parcial de uma Peça
Figura 45 - Corte Parcial de uma Mon-
tagem
Nesta seção você estudou o corte 
parcial, que mostra um pequeno 
detalhe interno da peça, sem a ne-
cessidade de linhas de centro para 
representação do corte.
36 CURSOS TÉCNICOS SENAI
SEÇÃO 6
Meio-corte
Nesta seção o seu estudo estará concentrado no tema meio-corte, que 
geralmente é utilizado para peças simétricas. Por meio das figuras você 
poderá entender melhor o assunto.
Geralmente utilizado para peças simétricas, o meio-corte mostra a re-
presentação interna da metade da peça, sendo a outra metade com os 
contornos visíveis, sem linhas tracejadas.
Figura 46 - Meio-corte
Você acabou de estudar o meio-corte. Agora já tem conhecimento sobre 
corte total, corte em desvio, corte parcial e meio-corte. Dando continui-
dade aos seus estudos, você verá na próxima seção a omissão de corte.
SEÇÃO 7
Omissão de corte
Esta seção traz um estudo da 
omissão de corte usado para dar 
um melhor entendimento à peça 
e aos seus detalhes.
Para dar um melhor entendimento 
à peça e aos seus detalhes, alguns 
objetos são omitidos em um cor-
te, como elementos de máquinas 
(parafusos, porcas, arruelas, eixos, 
pinos, rebites, chavetas, volantes, 
manípulos) e alguns detalhes da 
peça (nervuras, braço de um vo-
lante, dentes de engrenagem).
No desenho abaixoa represen-
tação de corte A-A está colocada 
INCORRETAMENTE, pois na 
vista lateral em corte dá a impres-
são que a peça é maciça, confor-
me a vista isométrica.
Figura 47 - Representação de Corte em 
Nervura (Incorreto)
37DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
Agora, no desenho abaixo, o corte está representado de forma CORRE-
TA, omitindo o corte na região da nervura e hachurando somente uma 
parte da peça. 
Figura 48 - Representação de Corte em Nervura (Correto)
Você estudou nesta seção a omissão de corte. Continue estudando esta 
unidade, que traz, a seguir, um estudo sobre seções.
SEÇÃO 8
Seções
Agora você estudará sobre seções, que devem ser representadas confor-
me o perfil da peça. Aproveite todo conteúdo!
A seção de corte deve ser representada conforme o perfil da peça: di-
retamente na peça, nos casos de nervuras ou outros perfis semelhantes; 
entre a peça, sendo representada por uma ruptura na peça, e o perfil da 
peça entre a ruptura; ou representada numa vista abaixo da peça. 
Conforme o perfil da peça, este deve ter uma linha específica de ruptura.
Figura 49 - Vista de Seção do Eixo
38 CURSOS TÉCNICOS SENAI
Figura 50 - Seção da Peça em “L” 
Figura 51 - Seção da Peça em “U”
O corte é representado pelos seguintes itens:
 ▪ hachura (diferente para cada tipo de material);
 ▪ indicação do corte (plano de corte);
 ▪ representação do corte;
 ▪ nome do corte (A-A, B-B);
 ▪ sentido do corte (representado por setas).
No corte parcial, não há plano de corte e sentido do corte.
Você acabou de estudar sobre seções, a seguir 9 iniciará o estudo sobre 
rupturas.
39DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
SEÇÃO 9
Rupturas 
Você sabe o que são rupturas? Esse é o assunto da Seção 9.
É um processo utilizado para reproduzir peças longas, fazendo uma re-
presentação de rompimento e mantendo o dimensionamento real. 
Firgua 51 - Recomendação de Rupturas
Fonte: Strauhs (2007, p. 83).
Você foi apresentado a um estudo das rupturas, encerrando assim a Uni-
dade 3. Nesta unidade você estudou cortes, seções e rupturas.
Revise os tópicos importantes antes de avançar para a próxima unidade, 
que fará um estudo do desenho de conjunto.
Unidade de 
estudo 4
Seções de estudo 
Seção 1 – Explosão da montagem
Seção 2 – Detalhamento de montagem e 
representação de elementos de máquina
41DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
Desenho de Conjunto
SEÇÃO 1
Explosão da montagem
Nesta seção você estudará o de-
senho de conjunto, entendendo 
como deve ser a montagem de 
equipamento, como a numeração 
será indicada, entre outras infor-
mações importantes sobre o as-
sunto.
A montagem de qualquer equipa-
mento deve ser feita respeitando 
exatamente o posicionamento de 
cada peça. É importante, ainda, 
desenhar os elementos de máqui-
nas ou representá-los. Para me-
lhor verificação da montagem e 
do posicionamento de cada peça, 
faz-se necessária a explosão da 
montagem, ou seja, uma repre-
sentação do equipamento, com as 
peças separadas, porém alinhadas 
de forma que dê um nítido posi-
cionamento das mesmas.
Em alguns casos, é interessante 
mostrar a sequência de montagem 
de um equipamento, e para isso é 
utilizada a explosão de peças, ou 
seja, uma sequência das peças em 
vista isométrica. 
Figura 52 - Morsa de Mesa: Desenho em Perspectiva Isométrica Montado
A explosão da montagem em vista isométrica deve ser realizada obede-
cendo a uma linha de trajetória imaginária como referência de alinha-
mento das peças (linha traço-ponto). A numeração de cada peça é inte-
ressante para identificar rapidamente peças duvidosas ou semelhantes. A 
NBR 13273: referência a itens (1999) esclarece melhor a forma de como 
referenciar os itens de uma montagem.
Usualmente, a numeração é indicada do seguinte modo:
 ▪ pela ordem de montagem;
 ▪ pela importância das peças;
 ▪ pela disposição no desenho no sentido horário.
42 CURSOS TÉCNICOS SENAI
Figura 53 - Morsa de Mesa: Vista Explodida da Montagem
Você acabou de fazer um estudo do desenho de conjunto. Na seção 2 
você estudará o detalhamento de montagem e representação de elemen-
tos de máquina.
SEÇÃO 2
Detalhamento de montagem e representação de 
elementos de máquina
Agora você estudará o detalhamento de montagem e representação de 
elementos de máquina. Estude com disciplina esse tema, pois cada ele-
mento possui uma particularidade em sua representação. As normas da 
ABNT sobre desenhos técnicos serão importantes aliadas nesta seção.
No detalhamento de um conjunto, deve-se colocar as peças na posi-
ção montada e detalhar itens importantes como os elementos de má-
quinas. Para isso, são utilizadas vistas de seção, ampliação de detalhes, 
cortes parciais. Alguns elementos, ao invés de serem representados por 
seu desenho, são representados por um símbolo. Cada elemento pos-
sui uma particularidade em sua representação. Verificar as normas da 
ABNT NBR 11145:1990, NBR 11534:1991, NBR 13104:1994, NBR 
12288:1992 para maiores esclarecimentos.
43DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
Figura 54 - Morsa de Mesa: Detalhamento em Vistas Ortográficas
Figura 55 - Representação de Mola – Sequência, Respectivamente: Mola Normal/
Mola em Corte/Mola Simplificada
Fonte: ABNT (1990, p. 2).
Nesta seção você estudou o detalhamento de montagem e a representa-
ção de elementos de máquina, encerrando assim a Unidade 4.
Na unidade sobre desenho de conjunto, dividida em duas seções, abor-
daremos o tema proposto de forma clara e objetiva. Reflita!
Unidade de 
estudo 5
Seções de estudo 
Seção 1 – Tolerância geométrica de forma, 
orientação, posição e batimento 
Seção 2 – Rugosidade: indicação de estado 
de superfície em desenhos técnicos 
Seção 3 – Desenho técnico arquitetônico
Seção 4 – Escalas
45DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
Tolerância Geométrica 
e Dimensional
SEÇÃO 1
Tolerância geométrica 
de forma, orientação, 
posição e batimento 
Nesta seção você estudará sobre 
tolerância geométrica de forma, 
orientação, posição e batimento, 
aprendendo quando as tolerâncias 
devem ser indicadas, os elementos 
de referência e muitas outras in-
formações relevantes ao estudo 
do tema.
As tolerâncias geométricas devem 
ser indicadas no desenho sempre 
que necessário, para assegurar que 
a peça será fabricada de forma 
funcional, sem interferências por 
motivos de não indicação da to-
lerância.
O elemento de referência para in-
dicação da tolerância pode ser um 
ponto, uma linha ou uma super-
fície.
Tabela 4 - Valores de Frequência e Tempo
Características toleradas Símbolo
Forma
Retitude
Planeza
Circularidade
Cilindricidade
Perfil de linha qualquer
Perfil de superfície qualquer
Orientação
Paralelismo
Perpendicularismo
Inclinação
Posição
Posição
Concentricidade
Coaxialidade
Simetria
Batimento
Circular
Total
Fonte: ABNT (1997). 
46 CURSOS TÉCNICOS SENAI
As tolerâncias geométricas podem ser representadas e indicadas direta 
ou indiretamente no desenho da peça.
A forma de representação das tolerâncias geométricas deve ser realizada 
num retângulo, no qual devem ser colocados, respectivamente:
 ▪ o símbolo da tolerância geométrica;
 ▪ o valor dimensional da grandeza tolerada;
 ▪ a letra de referência.
ou
Figura 56 - Indicação de Tolerância para Elementos Isolados
Fonte: ABNT (1997, p. 3).
Figura 57 - Indicação de Tolerância 
para Elementos Associados
Fonte: ABNT (1997, p. 3).
Figura 58 - Indicação de Elemento 
Tolerado, Contorno, Linha de Chamada 
ou Linha de Simetria
Fonte: ABNT (1997, p. 4).
Simbologia para carac-
terísticas toleradas
Figura 59 - Tolerância de Planicidade e 
Retilineidade de 0,01
47DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
Figura 60 - Tolerância de Circularidade de 0,01 em Relação a “A” e Tolerância 
de Perpendicularidade de 0,01 em Relação “A”
Figura 61 - Tolerância de Paralelismo 
de 0,2 em Relação à Seta de Indicação 
na Superfície “A” e Superfície “B”
Figura 62 - Tolerância de Paralelismo 
de 0,2 em Relação a “A” e em Relação 
a “B”
Figura 63 - Tolerância de Inclinação emRelação a “A-B”
Figura 64 - Tolerância de Posição em Relação a “B” e “C”
48 CURSOS TÉCNICOS SENAI
Figura 65 - Tolerância de Retilineidade 
de 0,1
Figura 66 - Tolerância de Planeza de 
0,05
Figura 67 - Tolerância de Circularidade 
de 0,02
Figura 68 - Tolerância de Circularidade de 0,1
Figura 69 - Tolerância de Perpendicularidade de 0,1 em Relação a “A”
Figura 70 - Tolerância de Perpendicularidade de 0,1 em Relação a “A”
Figura 71 - Tolerância de Batimento e Batimento Total de 0,1 em Relação a “A-B”
49DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
Nesta seção você estudou tolerância geométrica de forma, orientação, 
posição e batimento. Avançando nos estudos você irá para a Seção 2 e 
estudará rugosidade.
SEÇÃO 2
Rugosidade: indicação de estado de superfície em 
desenhos técnicos 
Um estudo sobre rugosidade será realizado agora, na Seção 2.
O símbolo básico para indicação da superfície do desenho é constituído 
por duas linhas inclinadas a 60°. Abaixo, na tabela, estão as figuras repre-
sentativas e suas aplicações:
Tabela 5 - Símbolos de Rugosidade
Fonte: Adaptado de ABNT (1984).
O símbolo deve ser indicado uma 
vez para cada superfície, porém 
quando as indicações requeridas 
forem as mesmas, a indicação 
deve constar junto à vista da peça. 
Quando o mesmo estado de su-
perfície é exigido pela maioria das 
superfícies de uma peça, as outras 
indicações devem estar entre pa-
rênteses. 
Tabela 6 - Características da Rugosidade
Classe de 
rugosidade
(Ra) Desvio 
médio em 
mícrons
N12 50
N11 25
N10 12,5
N9 6,3
N8 3,2
N7 1,6
N6 0,8
N5 0,4
N4 0,2
N3 0,1
N2 0,05
N1 0,025
Fonte: ABNT (1984, p. 2).
Você acabou de estudar nesta se-
ção a rugosidade. Estudará agora, 
na Seção 3, o desenho técnico ar-
quitetônico.
a. Símbolo básico constituído 
por duas linhas em 60° de di-
ferentes tamanhos.
b. Exigência de remoção de ma-
terial.
c. Não é permitida a remoção de 
material.
d. Indicação de característica es-
pecial do estado de superfície, 
se necessário.
e. Valor principal da rugosidade 
obtido por qualquer processo 
de fabricação.
f. Valor principal da rugosidade, 
deve ser obtido por remoção 
de material.
g. Quando necessário, estabelecer 
um valor mínimo e máximo da 
rugosidade principal.
h. Quando um processo especí-
fico de fabricação é exigido, 
deve ser indicado no traço ho-
rizontal sem abreviatura.
i. Comprimento da amostra.
j. Para indicar o sentido da estria 
da rugosidade.
k. Indicação de sobremetal para 
usinagem.
50 CURSOS TÉCNICOS SENAI
SEÇÃO 3
Desenho técnico 
arquitetônico
Nesta seção você estudará o de-
senho técnico arquitetônico. Será 
abordado o desenvolvimento de 
projetos de instalações elétricas, 
planta baixa, visualizando um 
exemplo desse tipo de planta, 
dentre outros conteúdos impor-
tantes.
Para desenvolver projetos de ins-
talações elétricas o projetista deve 
ter em mãos o projeto arquitetô-
nico com a finalidade de obter 
as dimensões reais e desenhar a 
planta baixa. Com isso, o proje-
tista poderá realizar os cálculos 
de luminotécnica, cabeamento, 
entre outros. Com a necessidade 
de transmitir e arquivar todo esse 
conjunto de informações para o 
cliente ou executor da instalação 
elétrica, é preciso que se faça o de-
senho técnico da instalação.
Para que o projetista possa reali-
zar o desenho técnico elétrico, é 
necessário ainda conhecer alguns 
critérios estudados pelos arquite-
tos. São eles: saber o que é uma 
planta baixa, saber utilizar as esca-
las, conhecer as vistas e os cortes 
utilizados em arquitetura.
Planta baixa
Imagine o desenho de uma cons-
trução, como por exemplo, de 
uma casa. Nesse desenho, tem-
se uma vista superior a mais ou 
menos 1,5 m de altura, há ainda 
portas, janelas e outros detalhes 
da construção pertinentes ao pro-
jeto elétrico. Por meio dessa vista, 
o projetista é capaz de mensurar 
cabos, tomadas, interruptores, 
lâmpadas, etc.
Figura 72 - Exemplo de Planta Baixa
6800
53
00
O projetista elétrico será capaz de desenhar janelas, portas, escadas e 
detalhes que terão influência no projeto elétrico tendo como base o pro-
jeto arquitetônico da construção. O formato do papel para realização do 
desenho deverá ser o formato da série A, sendo o formato A0 o maior 
e o formato A4 o menor.
Você acabou de fazer um estudo sobre desenho técnico arquitetônico, 
nesta seção. Agora estudará as escalas, na Seção 2.
51DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
SEÇÃO 4
Escalas
A escala representa a proporção entre as dimensões do desenho e as 
dimensões reais. Conforme a NBR 6492, dentre as escalas mais usu-
ais destacam-se as seguintes: 1/2; 1/5; 1/10; 1/20; 1/25; 1/50; 1/75; 
1/100; 1/200; 1/250 e 1/500. Essas escalas são escalas de redução, sen-
do que reduzem o tamanho ou a dimensão de uma construção. Como 
exemplo, a escala de 1/50 significa que a cada 1 mm no desenho equivale 
a 50 mm na dimensão real. E a cada 1 cm no desenho equivale a 50 cm 
na dimensão real.
A vista é disposta a mostrar com o máximo de clareza os detalhes perti-
nentes ao projeto, pode ser: frontal, lateral esquerda, lateral direita, pos-
terior ou superior.
Figura 73 - Vistas em Desenho Técnico Arquitetônico
Você fechou esta unidade estudando as escalas. Elas representam a pro-
porção entre as dimensões do desenho e as dimensões reais.
Nesta unidade você estudou o detalhamento de montagem e represen-
tação de elementos de máquina. O conteúdo foi apresentado em tópicos 
para facilitar o aprendizado. Assuntos como tolerância geométrica de 
forma, escalas, orientação, posição e batimento, sistemas de tolerância e 
ajustes dimensionais, e rugosidade deram embasamento ao tema.
53DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
Finalizando
O conteúdo deste material contribui significativamente para o seu aperfeiçoamento profissional 
como técnico em eletromecânica, tanto desenhista quanto projetista. Além deste conteúdo, para 
trabalhar com desenho técnico é preciso estar sempre atualizado com as normas técnicas.
Para aqueles que não estão diretamente ligados ao projeto, mas praticam alguma atividade relacio-
nada à eletromecânica, é primordial o conhecimento de desenho técnico, pois em todas as áreas 
da eletromecânica ele é utilizado, desde a fabricação de uma peça ou na produção de componen-
tes até na montagem, assistência técnica e vendas.
Com o avanço da tecnologia, a maioria das empresas aplica softwares específicos para desenho e 
projetos, porém de nada adianta o melhor software, se você não entender os conceitos de de-
senho técnico para interpretá-los, compreendê-los e aplicá-los.
Referências
55DESENHO TÉCNICO APLICADO À ELETROMECÂNICA
 ▪ ______. Coletânea de normas de desenho técnico. São Paulo: SENAI, 1990. 86 p. (Pro-
grama de Publicações Técnicas e Didáticas, Série Organização e Administração, 1).
 ▪ ______. NBR 10068: folha de desenho: leiaute e dimensões. Rio de Janeiro: ABNT, 1987. 4 p.
 ▪ ______. NBR 10582: apresentação da folha para desenho técnico. Rio de Janeiro: ABNT, 
1988. 4 p.
 ▪ ______. NBR 8402: execução de caracter para escrita em desenho técnico. Rio de Janeiro: 
ABNT, 1994. 4 p.
 ▪ ______. NBR 13142: desenho técnico dobramento de cópia. Rio de Janeiro: ABNT, 1999. 3 p.
 ▪ ______. NBR 8196: desenho técnico: emprego de escalas. Rio de Janeiro: ABNT, 1999. 2 p.
 ▪ ______. NBR 12298: representação de área de corte por meio de hachuras em desenho téc-
nico. Rio de Janeiro: ABNT, 1995. 3 p. 
 ▪ ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10126: cotagem em de-
senho técnico. Rio de Janeiro: ABNT, 1987. 13 p.
 ▪ CASILLAS, A. L. Máquinas: formulário técnico. 3. ed. São Paulo: Mestre Jou, 1981. 634 p.
 ▪ DEL MONACO, G.; RE, V. Desenho eletrotécnico e eletromecânico: para técnicos, en-
genheiros, estudantes de engenharia e tecnologia superior e para todos os interessados no 
ramo. São Paulo: Hemus, 1975. 511 p. 
 ▪ FRANCESCO, P. Prontuário de projetistas de máquinas. 4. ed. São Paulo: Escola PRO-
TEC, 1978.
 ▪ MICELI, M. T.; FERREIRA, P. Desenho técnico básico. 2. ed. Rio deJaneiro: Ao Livro 
Técnico, c2003. 143 p. 
 ▪ PROVENZA, F. Desenhista de máquinas. São Paulo: F. Provenza, 1976. 
 ▪ ______. Projetista de máquinas. São Paulo: Escola Pro-Tec, c1960. 
 ▪ PUGLIESI, M.; TRINDADE, D. F. Desenho mecânico e de máquinas. [S.l.]: Ediouro, [19-
-]. 242 p.
 ▪ STRAUHS, F. do R. Curso técnico em eletrotécnica: desenho técnico: módulo 1, livro 2. 
Curitiba: Base Didáticos, 2007. 112 p.
	10_DesTecApliElemec

Continue navegando