Prévia do material em texto
MÉTODOS ESPECTROANALÍTICOS PhD Priscila Ferreira Classificação dos métodos analíticos CLÁSSICOS E INSTRUMENTAIS Baseados em propriedades físicas (químicas em alguns casos ) Chamados de métodos de via úmida Gravimetria Volumetria Espectrométrico Eletroanalítico Propriedades elétricas Propriedades ópticas Cromatográfico Propriedades mistas Natureza ondulatória da Radiação Eletromagnética Radiação eletromagnética, ou luz, é uma forma de energia cujo comportamento é descrito por propriedades tanto de onda quando de partícula. A natureza exata da radiação eletromagnética somente foi esclarecida após o desenvolvimento da mecânica quântica por volta do início do século XX. Propriedades ópticas, como a difração, são melhores explicadas quando a luz é tratada como onda. Muitas interações entre a radiação eletromagnética e a matéria, como absorção e emissão, entretanto, são melhores descritas tratando a luz como partícula ou fóton. c hhE == E = energia h = constante de Planck (6,626 . 10-34 J s) = frequência c = velocidade da luz (2,998 . 108 m s-1) = comprimento de onda Baixa energia Alta energia Comprimento de onda e Energia Frequência (m) Energia Nome Uso 1020 a 1021 10-12 Nuclear Raios-g Medicina 1017 a 1019 10-10 Eletrônica Raios-X Diagnóstico por imagens 1015 a 1016 10-7 Eletrônica Ultra-Violeta Higienização 1013 a 1014 10-6 Eletrônica Visível Iluminação 1012 a 1013 10-4 Vibracional Infravermelho Aquecimento 109 a 1011 10-2 Rotacional Microondas Cozimento 105 a 108 102 Rádio Frequência Comunicação Usos da radiação eletromagnética Uso em Química: Métodos Espectrométricos, Espectrofotométricos, Espectroquímicos ou Espectroanalíticos?!? Tutti quanti Métodos Espectrométricos Os métodos espectrométricos abrangem um grupo de métodos analíticos baseados na espectroscopia atômica e molecular. Espectroscopia é um termo geral para a ciência que estuda a interação dos diferentes tipos de radiação com a matéria. A espectrometria e os métodos espectrométricos se referem às medidas das intensidades da radiação usando transdutores fotoelétricos ou outros dispositivos eletrônicos. • Os comprimentos de onda da radiação eletromagnética se estendem dos raios-gama até as ondas de rádio, com aplicações diferenciadas. • Os métodos espectrométricos se baseiam em propriedades ópticas (mesmo que a radiação não seja percebida pelo olho humano), quer sejam de emissão ou absorção de radiação eletromagnética de determinados . • Como as interações da radiação com a matéria podem ocorrer tanto em nível atômico como em nível molecular, os métodos instrumentais espectrométricos se dividem em 4 classes: • Emissão (emissão atômica) • Luminescência (fluorescência atômica e molecular, fosforescência) • Espalhamento (Raman, turbidimetria e nefelometria) • Absorção (absorção atômica e molecular) Métodos Espectrométricos Tipo de espectroscopia Faixa de comprimento de onda usual Faixa de número de onda usual, cm-1 Tipo de transição quântica Emissão de raios gama 0,005 – 1,4 Å – Nuclear Absorção, emissão, fluorescência e difração de raios-x 0,1 – 100 Å – Elétrons internos Absorção de ultravioleta de vácuo 10 – 180 nm 1x106 a 5x104 Elétrons ligados Absorção, emissão e fluorescência no UV/Visível 180 – 780 nm 5x104 a 1,3x104 Elétrons ligados Absorção no IV e espalhamento Raman 0,78 – 300 mm 1,3x104 a 33 Rotação/vibração de moléculas Absorção de microondas 0,75 – 375 mm 13 a 0,03 Rotação de moléculas Ressonância de spin eletrônico 3 cm 0,33 Spin de elétrons em um campo magnético Ressonância Magnética Nuclear 0,6 – 10 m 1,7x10-2 a 1x10-3 Spin de núcleos em um campo magnético Métodos Espectrométricos Métodos Espectrométricos 250 300 350 400 450 500 550 0,0 0,5 1,0 1,5 2,0 A b so rb ân ci a (nm) 2 7 5 ,3 3 4 1 ,8 3 9 6 ,1 4 7 4 ,9 5 ABSORÇÃO ATÔMICA: O espectro é em forma de linhas finas devido aos níveis atômicos sem subníveis energéticos. Métodos Espectrométricos Métodos Espectrométricos 350 400 450 500 550 600 650 700 750 0,0 0,5 1,0 1,5 2,0 A b s o rv â n c ia (nm) max ABSORÇÃO MOLECULAR: O espectro de absorção é caracterizado por bandas largas devido aos vários níveis e subníveis energéticos dos orbitais moleculares. E0 E1 E2 Eletrônica ~ 100 kJ mol-1 UV-Vis Vibracional ~ 1 kJ mol-1 IV Rotacional ~ 0,01 kJ mol-1 RMN Métodos Espectrométricos ✓ Quando as energias envolvidas são altas, por exemplo emissões de Raios-X, as transições eletrônicas acontecem com os elétrons dos orbitais mais internos e, nestes casos, serão independentes das ligações que os átomos estejam fazendo. ✓ Quando um elétron é excitado a um nível vibracional mais alto de um estado eletrônico, a relaxação para um nível vibracional mais baixo desse estado ocorre antes que a transição eletrônica ao estado fundamental possa ocorrer. A razão disso é explicada em termos da transferência do excesso de energia para outros átomos através de uma série de colisões. Métodos Espectrométricos COMPONENTES BÁSICOS DOS EQUIPAMENTOS ✓ Fonte de radiação:* • Lâmpadas de xenônio, deutério, tungstênio, lasers, etc ✓ Seletor de comprimento de onda: • Filtros e monocromadores. ✓ Transdutores: • Tubos fotomultiplicadores, fotodiodos, CCD, fotocélulas, etc. * Para algumas técnicas de emissão, serão necessários mais alguns componentes. Métodos Espectrométricos Fonte Seletor de comprimento de onda Fotômetro de feixe único para medidas de absorção na região visível Métodos Espectrométricos Transdutor Fonte Seletor de comprimento de onda Transdutor Espectrofotômetro manual de feixe duplo para medidas de absorção na região UV/Visível Métodos Espectrométricos • Espectrometria de Absorção Molecular na região do ultravioleta/visível. • Espectrometria de Luminescência Molecular. • Espectrometria de Absorção Atômica. • Espectrometria de Emissão Atômica. Métodos Espectrométricos abordados nesta disciplina Absorção molecular no UV/Vis Mais fácil que botânica.... Absorção Molecular no UV/Vis Espectro de emissão da radiação solar Região IV médio 25 a 2,5mm Absorção Molecular no UV/Vis Energia crescente ➔ Sensibilidade do olho humano Comprimento de onda Visão diurna (Fotópica) Visão noturna (Escotópica) Absorção Molecular no UV/Vis L U Z V I S Í V E L Absorção Molecular no UV/Vis Absorção Molecular no UV/Vis Cores primárias Cores secundárias COLORIMETRIA: Um objeto tem a cor correspondente aos comprimentos de onda que ele reflete. Quando falta uma das cores primárias, obtém-se uma cor secundária. As 3 cores secundárias misturadas dão origem ao preto As 3 luzes (cores) primárias quando misturadas dão origem à luz branca. Absorção Molecular no UV/Vis COLORIMETRIA: Um objeto tem a cor correspondente aos comprimentos de onda que ele reflete. R G B Síntese aditiva: emissão. Síntese subtrativa: As cores se dão pela “subtração da luz”. Absorção Molecular no UV/Vis COLORIMETRIA: Um objeto tem a cor correspondente aos comprimentos de onda que ele reflete. Se um objeto é da cor ciano, é porque absorve o vermelho e reflete o azul e o verde. Cor observada Cor absorvida Absorção Molecular no UV/Vis COLORIMETRIA: Um objeto tem a cor correspondente aos comprimentos de onda que ele reflete. Disco de Newton A rotação proporciona a mistura das cores, de modo que enxergamos todos os comprimentos de onda de uma única vez, gerando a luz branca. Cor Observada (nm) Cor Complementar Ultravioleta < 380 - - - Violeta 380 – 420 Amarelo Violeta – azul 420 – 440 Amarelo – laranja Azul 440 – 470 Laranja Azul – verde 470 – 500 Laranja – vermelho Verde 500 – 520 Vermelho Verde – amarelo 520 – 550 Púrpura Amarelo 550 – 580 Violeta Amarelo – laranja 580 – 600 Violeta – azul Laranja 600 – 620 Azul Laranja – vermelho 620 – 640 Azul – verde Vermelho 640 – 680 Verde Púrpura 680– 780 Amarelo - verde COLORIMETRIA: Um objeto tem a cor correspondente aos comprimentos de onda que ele reflete. Absorção Molecular no UV/Vis COLORIMETRIA Um objeto tem a cor correspondente aos comprimentos de onda que ele reflete, mas... Absorção Molecular no UV/Vis A colorimetria é uma ciência não exata, pois além de problemas relacionados com a acuidade visual de cada um, ela depende do sexo de quem vê!!! ... Brincadeirinha.... • Porque as nuvens são brancas? • Espalha todos os igualmente. • Porque durante o dia o céu é azul e porque ao entardecer ou amanhecer ele é alaranjado? • Espalhamento Rayleigh: menores se espalham com maior facilidade. Absorção Molecular no UV/Vis • Medidas de absorção da radiação eletromagnética na região do UV/Visível encontram vasta aplicação para identificação e determinação de milhares de espécies inorgânicas e orgânicas. • Os métodos de absorção molecular talvez sejam os mais amplamente usados dentre todas as técnicas de análise quantitativa em laboratórios químicos e clínicos em todo mundo. Absorção Molecular no UV/Vis • Absorção da radiação eletromagnética de comprimentos de onda na faixa de 160 a 780 nm. • Comprimentos de onda inferiores a 150 nm são altamente energéticos que levam à ruptura de ligações químicas. • Acima de 780 nm atinge-se o IV próximo, onde a energia, já relativamente baixa, começa apenas a promover a vibração molecular e não mais transições eletrônicas. • Devido ao grande número de estados vibracionais e rotacionais, um espectro de absorção no UV/Vis apresenta um formato alargado (banda). Absorção Molecular no UV/Vis Instrumentação: • 1) Fonte de radiação: lâmpadas de deutério (UV) e tungstênio (vis) ou de arco de xenônio para toda a faixa de comprimentos de onda UV/Vis. • 2) Parte óptica: Instrumentos de feixe simples e duplo. • A diferença consiste basicamente em ter a possibilidade de descontar a perda de potência do feixe que passa pelo solvente (branco) simultaneamente à medida da amostra. • 3) Compartimento para amostra (cubeta): • Deve ter paredes perfeitamente normais (90º) à direção do feixe. • Quartzo (transparente em toda a faixa UV/Vis) • Vidro (somente visível, absorve muito a radiação UV). • Muito frequentemente utilizam-se tubos cilíndricos por questões de economia, mas deve-se ter o cuidado de repetir a posição do tubo em relação ao feixe. • 4) Detectores➔ Transdutores • Dispositivos capazes de converter luz para o domínio elétrico: LDR, fotodiodos, fotocélulas, tubos fotomultiplicadores, CCD, etc. Absorção Molecular no UV/Vis • Fonte de luz • Região UV: 160 a 380 nm • Lâmpada de deutério, xenônio ou vapor de mercúrio Absorção Molecular no UV/Vis Lâmpada de Vapor de Hg Lâmpada de arco de Xenônio Lâmpada de D2 • Fonte de luz • Região Visível: 380 a 780 nm • Lâmpada de filamento de tungstênio • LED coloridos • Lâmpada de xenônio (UV/Vis) Absorção Molecular no UV/Vis • Fonte de luz • Luz “negra” Absorção Molecular no UV/Vis • Como selecionar o comprimento de onda desejado? • Filtros ópticos: • Filtros de absorção • Simplesmente absorve alguns comprimentos de onda. • Filtros de interferência • Usando de reflexões e interferências destrutivas e construtivas, seleciona o comprimento de onda desejado. Absorção Molecular no UV/Vis Absorção Molecular no UV/Vis Filtros Ópticos de Absorção Absorção Molecular no UV/Vis A visualização desta imagem através de filtros ópticos exemplifica bem o funcionamento dos filtros em barrar determinados comprimentos de onda. Absorção Molecular no UV/Vis Filtros Ópticos de Interferência Filtro de interferência Filtro de absorção Absorção Molecular no UV/Vis • Como selecionar o comprimento de onda desejado? • Monocromadores: • Fenda de entrada • Lente colimadora ou espelho • Prisma ou rede de difração ou holográfica • Elemento de focalização • Fenda de saída Absorção Molecular no UV/Vis Detector Cubeta Fenda Lentes Lentes Fenda Rede de difração Fonte luminosa Absorção Molecular no UV/Vis Absorção Molecular no UV/Vis Absorção Molecular no UV/Vis Cubetas Absorção Molecular no UV/Vis Absorção Molecular no UV/Vis O vidro absorve fortemente os comprimentos de onda da região do UV. Abaixo de 300 nm toda a radiação é absorvida. O quartzo começa absorver fortemente somente abaixo de 200 nm. • Como fazer a leitura do absorção de luz? • Transdutores de radiação: • Fotônicos monocanais • Células fotovoltáicas • Fototubos • Fotomultiplicadores • Fotodiodos • Fotônicos multicanais • Arranjo de fotodiodos (PDA) • Dispositivos de transferência de cargas • CID e CCD (bidimensionais) Absorção Molecular no UV/Vis Arranjo linear de fotodiodos (pda - photodiode array) Permite detectar simultaneamente vários comprimentos de onda. Tubo fotomultlicador Muito sensível. Consegue detectar níveis muito baixos de luminosidade. Absorção Molecular no UV/Vis Como ocorre a absorção da luz? • A absorção de radiação UV ou visível por uma espécie atômica ou molecular pode ser considerada como um processo que ocorre em duas etapas: • M + h→M* excitação • M* →M + calor (desprezível) relaxação • São três tipos de transições eletrônicas: • 1) elétrons p, s e n (moléculas e íons inorgânicos) • 2) elétrons d e f (íons de metais de transição) • 3) transferência de carga (complexos metal-ligante) Obs.: Se M* sofrer decomposição ou formar novas espécies, o processo é chamado de reação fotoquímica e, neste caso, não será possível fazer a quantificação de M. Absorção Molecular no UV/Vis Níveis de energia eletrônica molecular. Absorção Molecular no UV/Vis Absorção Molecular no UV/Vis Comprimentos de onda de absorção característicos das transições eletrônicas. Transição Faixa de comprimentos de onda (nm) Exemplos s → s* < 200 C–C, C–H n → s* 160 – 260 H2O, CH3OH, CH3Cl p → p* 200 – 500 C=C, C=O, C=N, C≡C n → p* 250 – 600 C=O, C=N, N=N, N=O Absorção Molecular no UV/Vis Cromóforo Auxocromos Espectro UV típico Os máximos de absorção devem-se à presença de cromóforos na molécula. (Temos duas absorções em 190 e 270 nm no espectro da acetona e uma em 510 nm no espectro do complexo [Fe(fen)3] 2+). •Átomo ou grupo de átomos que absorve radiação. •Átomo que não absorve radiação. •Modifica alguma característica da absorção do cromóforo. Espectro Vis típico [Fe(fen)3] 2+ Como melhorar a absorção da luz? • Se o analito M não for uma espécie absorvente ou que tenha uma baixa absorção, deve-se buscar reagentes reajam seletiva e quantitativamente com M formando produtos que absorvam no UV ou no visível. • Uma série de agentes complexantes são usados para determinação de espécies inorgânicas. • Exemplos: SCN- para Fe3+; I- para Bi3+. • Natureza do solvente, pH, temperatura, concentração de eletrólitos e presença de substâncias interferentes são as variáveis comuns que influenciam o espectro de absorção e, evidentemente, seus efeitos precisam ser conhecidos. Absorção Molecular no UV/Vis Qual a relação entre a absorção e a concentração? Métodos Espectrométricos Potência do feixe incidente Potência do feixe transmitido Caminho óptico Perdas por reflexão e espalhamento com uma solução contida em uma célula (cubeta) de vidro típica. Absorção Molecular no UV/Vis As reflexões ocorrem em qualquer interface que separa os materiais. Como não há como evitar estas reflexões e espalhamentos, torna-se necessário usar a mesma cubeta (ou uma idêntica) nas medidas das várias soluções dos padrões e da solução amostra do analito. Absorção Molecular no UV/Vis Para compensar os efeitos da perda de potência do feixe luminoso ao atravessar o solvente, a potência do feixe transmitido pela solução do analito deve ser comparada com a potência do feixe transmitido em uma cubeta idêntica contendo apenas o solvente. solução solvente solvente solução P P TA P P P P T loglog 0 =−== Se o materialde fabricação da cubeta provocar uma diminuição na potência do feixe luminoso, essa diminuição também será compensada. • A lei de Beer-Lambert, também conhecida como lei de Beer-Lambert-Bouguer ou simplesmente como lei de Beer é uma relação empírica que relaciona a absorção de luz com as propriedades do material atravessado por esta. • A lei de Beer foi descoberta independentemente (e de diferentes maneiras) por Pierre Bouguer em 1729, Johann Heinrich Lambert em 1760 e August Beer em 1852. Absorção Molecular no UV/Vis Absorção Molecular no UV/Vis 1 0 0 1 0 loglog I I TA I I P P P P T solvente solução =−=== • A expressão final da lei de Beer é A = ebc, a qual pode ser obtida pela integração de: onde S é a área da seção atravessada pela luz e Px é a potencia ao longo do caminho óptico. S dS P dP x x =− 0 2 4 6 8 10 0,0 0,2 0,4 0,6 0,8 1,0 T ra n s m it â n c ia Concentração 0,0 2,5 5,0 7,5 10,0 0,0 0,5 1,0 1,5 2,0 A b s o rb â n c ia Concentração abcA = (g/L) bcA e= (mol/L) LEI DE LAMBERT-BEER Absorção Molecular no UV/Vis Onde A é a absorbância, a é a absortividade e c é a concentração em g/L Onde A é a absorbância, e é a absortividade molar e c é a concentração em mol/L. kk 0,0 2,5 5,0 7,5 10,0 0,0 0,5 1,0 1,5 2,0 A b s o rb â n c ia Concentração bcA e= LEI DE LAMBERT-BEER Absorção Molecular no UV/Vis eb é a inclinação de A x C e, portanto, responsável pela sensibilidade analítica. A absorbância aumenta conforme aumenta qualquer um dos três: e b ou c Absorção Molecular no UV/Vis Aumento do caminho óptico Absorção Molecular no UV/Vis Aumento da concentração Absorção Molecular no UV/Vis 350 400 450 500 550 600 650 700 750 0,0 0,5 1,0 1,5 2,0 2,5 3,0 5 ppm 4 ppm 3 ppm 2 ppm 1 ppm 0,5 ppm 0,1 ppm A b so rb â n ci a (nm) 0,0 2,5 5,0 7,5 10,0 0,0 0,5 1,0 1,5 2,0 Fe(SCN) 6 3- A 460 nm C Fe (mg/L) Absorção Molecular no UV/Vis Espectros de absorção do complexo [Fe(SCN)6] 3- para várias concentrações. Com os valores de absorbância no comprimento de onda de máxima absorção (max) constrói-se a curva analítica. • Aplicação da lei de Beer para misturas • A absorbância é uma propriedade aditiva. Assim, a presença de várias espécies absorventes na solução para o mesmo comprimento de onda resultará em uma absorbância maior que para soluções individuais. Contudo não poderá haver interação entre as várias espécies. • AT = A1 + A2 + ... + An = e1bc1 + e2bc2 + ... + enbcn • Limitações da lei Beer • Poucas exceções são encontradas para a generalização de que a absorbância está relacionada linearmente com o caminho óptico. Por outro lado, são encontrados desvios de proporcionalidade com a concentração quando b é constante. Absorção Molecular no UV/Vis • Limitações reais (fundamentais) da Lei de Beer: • Para soluções com concentrações maiores que 0,01 mol/L, mesmo não sendo da espécie absorvedora, a distância média entre as espécies diminui a ponto de alterar a capacidade das espécies em absorver a radiação, ou seja, diminui o valor de e. • O índice de refração do meio também causam desvios. Assim, se as variações de concentração causam alterações significativas no índice de refração da solução, os desvios da lei de Beer são observados. Quando esse fator é preponderante, uma correção pode ser aplicada, acrescentando à expressão da lei de Beer o termo n/(n+2)2, onde n é o índice de refração. Absorção Molecular no UV/Vis 22 )(n εbcn A + = • Desvios Químicos Aparentes (limitações químicas) • Desvios aparentes da lei de Beer surgem quando um analito se dissocia, se associa ou reage com um solvente para dar um produto que tenha um espectro de absorção diferente do analito. Um exemplo disto é a mudança de cor de indicadores ácido- base de acordo com o equilíbrio em função do pH. • HIn ⇌ H+ + In- cor 1 cor 2 • ⇩ pH →⇧ [HIn] e vice-versa ➔ ⇧ A ou ⇩ A. • Além disso, se ambas as espécies absorverem no mesmo comprimento de onda, poderá haver um desvio positivo ou negativo em função dos valores de eHIn e eIn. Absorção Molecular no UV/Vis • Desvios Instrumentais com Radiação Policromática • A obediência estrita à lei de Beer é observada com radiação verdadeiramente monocromática. Na prática os monocromadores produzem uma banda mais ou menos simétrica de comprimentos de onda em torno daquele desejado. O resultado é um desvio negativo. Absorção Molecular no UV/Vis • Desvios Instrumentais com Radiação Policromática • A dedução deste desvio é dado a seguir: • Em cada , tem-se um e. A´= log (Po´/ P´) = e´bc e A” = log (Po”/ P”) = e”bc Po = Po´ + Po” e P = P´ + P” ATotal = log[ (Po´+ Po”) / (P´+ P” )] < (A´+ A”) = log[(Po´xPo”)/(P´xP”)] Se e´= e”, ATotal = A´ + A” e a lei de Beer é obedecida. Absorção Molecular no UV/Vis • Um efeito similar ao da radiação policromática é observado com radiações espúrias. • Estas radiações aparecem em pequenas quantidades no processo de monocromatização por efeitos de espalhamento em várias superfícies internas. • Essas radiações diferem grandemente em comprimentos de onda da radiação principal. • Assim, a presença de radiações espúrias confere igualmente um desvio negativo à lei de Beer. Absorção Molecular no UV/Vis • Desvios Instrumentais com Radiação Espúria • Ruídos Instrumentais Um estudo teórico e experimental descreveu várias fontes de incerteza instrumentais, classificando-as em 3 categorias: • Caso I: espectrofotômetros de baixo custo equipados com medidores digitais com resolução limitada. A precisão independe de T, sT = k1 • Caso II: espectrofotômetros de alta qualidade com detector de fótons. O ruído associado a este tipo de detector (shot) surge da transferência de carga através de uma junção, como o movimento de elétrons do cátodo ao ânodo em uma célula fotomultiplicadora. sT = k2(T2 + T)1/2 • Caso III: espectrofotômetros baratos, com ruído da fonte (flicker), ou espectrofotômetros de alta qualidade onde o posicionamento da cubeta gera uma incerteza, já que as cubetas possuem algumas imperfeições que resultam em espalhamentos e reflexões diferenciados a cada medida. sT = k3T Absorção Molecular no UV/Vis Absorção Molecular no UV/Vis 1 1 log 434,0 2 += TT k c s c T k c s c log 434,0 3−= TT s c s Tc log 434,0 = Observa-se que o erro nas medições pode ser minimizado efetuando-se leituras de absorbância dentro de certas faixas de valores para cada tipo de equipamento. 0,25 0,75 Aplicações: • Como já mencionado, são três tipos de transições eletrônicas, de acordo com a espécie absorvente: • 1) elétrons p, s e n (moléculas orgânicas) • 2) elétrons d e f (íons de metais de transição) • 3) transferência de carga (complexos) Absorção Molecular no UV/Vis E ne rg ia s p n p* s* E ne rg ia dxy, dxz, dyz dz2 , dx2-y2 dx2-y2 dxy dz2 dxz, dyz Absorção Molecular no UV/Vis Moléculas Íons Complexos Os métodos espectrofotométricos apresentam características importantes: • 1) Ampla aplicação para sistemas orgânicos e inorgânicos; • 2) Limites de detecção típicos de 10-4 a 10-5 mol/L (podem ser melhorados para 10-6 a 10-7 mol/L); • 3) Seletividade de moderada a alta; • 4) Boa exatidão (tipicamente as incertezas são da ordem de 1 a 3%, podendo ser melhoradas a décimos percentuais com alguns cuidados especiais); • 5) Facilidade e conveniência na aquisição de dados. Absorção Molecular no UV/Vis Análise quantitativa: A primeira etapa da análise envolve o estabelecimento das condições de trabalho. • Determinação do(s) máximo(s) de absorção • No máximo de absorção, além da máxima sensibilidade por unidade de concentração, os efeitos de desvios da lei de Beer são menores. Adicionalmente, o ajuste do comprimento de onda é mais reprodutível, não implicando em variações significativas de e e, por consequência, da absorbância.Não é seguro pressupor uma concordância com a lei de Beer e usar apenas um padrão para determinar a absortividade molar. Assim é recomendável a construção das curvas: • Curva analítica, em casos mais simples ou • Adição de padrão, quando a matriz interfere. Absorção Molecular no UV/Vis Titulação fotométrica Igualmente aos demais tipos de titulação, o objetivo é detectar o PE com a maior exatidão possível. Deve-se considerar quanto cada um, titulante, titulado e produto de reação, contribui com a absorbância no comprimento de onda selecionado. ➢ 1) Titulado e produto não absorvem, mas o titulante sim; ➢ 2) Titulado e titulante não absorvem, mas produto sim; ➢ 3) Titulado absorve, mas titulante e produto não; ➢ 4) Titulado e titulante absorvem, mas produto não; ➢ 5) Titulado não absorve, mas titulante e produto sim, sendo a absortividade do titulante maior; ➢ 6) Titulado não absorve, mas titulante e produto sim, sendo a absortividade do produto maior; Alternativamente um indicador absorvente pode provocar a variação da absorbância necessária para a localização do PE. Absorção Molecular no UV/Vis Slide 1: MÉTODOS ESPECTROANALÍTICOS Slide 2 Slide 3 Slide 4 Slide 5 Slide 6 Slide 7 Slide 8 Slide 9 Slide 10 Slide 11 Slide 12 Slide 13 Slide 14 Slide 15 Slide 16 Slide 17 Slide 18 Slide 19 Slide 20 Slide 21 Slide 22 Slide 23 Slide 24 Slide 25 Slide 26 Slide 27 Slide 28 Slide 29 Slide 30 Slide 31 Slide 32 Slide 33 Slide 34 Slide 35 Slide 36 Slide 37 Slide 38 Slide 39 Slide 40 Slide 41 Slide 42 Slide 43 Slide 44 Slide 45 Slide 46 Slide 47 Slide 48 Slide 49 Slide 50 Slide 51 Slide 52 Slide 53 Slide 54 Slide 55 Slide 56 Slide 57 Slide 58 Slide 59 Slide 60 Slide 61 Slide 62 Slide 63 Slide 64 Slide 65 Slide 66 Slide 67 Slide 68 Slide 69 Slide 70 Slide 71 Slide 72 Slide 73 Slide 74 Slide 75 Slide 76 Slide 77 Slide 78