Logo Passei Direto
Buscar

RESISTÊNCIA DOS MATERIAIS E ELEMENTOS DE MÁQUINAS

Ferramentas de estudo

Questões resolvidas

Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Questões resolvidas

Prévia do material em texto

<p>Por conta dos carregamentos aplicados, as vigas desenvolvem uma força de cisalhamento</p><p>interna e momento fletor que, em geral, variam de ponto para ponto ao longo do eixo. Para</p><p>projetar uma viga corretamente, primeiro é necessário determinar a força de cisalhamento e o</p><p>momento máximos que nela agem”.</p><p>HIBBELER, R. C. Resistência dos materiais. 10. ed. São Paulo: Pearson, 2018, p. 228.</p><p>Com base no trecho apresentado, analise as asserções a seguir e a relação proposta entre</p><p>elas.</p><p>I. Para determinar os valores das forças normais, os esforços cortantes e os momentos no</p><p>Diagrama de Esforço Interno Solicitantes, deve-se aplicar as equações de equilíbrio.</p><p>PORQUE</p><p>II. As equações de equilíbrio são a soma das forças atuantes de cada eixo com resultado igual</p><p>a zero; e a soma dos momentos atuantes igual a zero, já que a estrutura deve ficar estática.</p><p>A respeito dessas asserções, assinale a opção correta.</p><p>As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I.</p><p>O centro de gravidade, centro de massa e o centroide de uma peça são parâmetros</p><p>importantes nos projetos de elementos de máquinas, e, em alguns casos, podem ser</p><p>considerados o mesmo ponto no elemento.</p><p>Com base no apontado, assinale a alternativa que apresenta a descrição correta para quando</p><p>podemos considerar esses 3 centros como o mesmo ponto.</p><p>Resposta correta</p><p>Se o material for uniforme e homogêneo, podemos considerar que o centro de gravidade, o centro de</p><p>massa e o centroide estão no mesmo ponto desse elemento.</p><p>Para determinar as tensões resultantes em um material submetido à uma flexão composta</p><p>resultante de uma força normal de tração e momento gerando flexão, pode-se utilizar a</p><p>seguinte fórmula:</p><p>Considerando a equação apresentada, avalie as afirmações a seguir:</p><p>I. A fórmula é válida para esforços acima do limite de escoamento.</p><p>II. O resultado da tensão pode admitir o quadro de somente tração.</p><p>III. O ponto da linha neutra será modificado ou pode não mais existir.</p><p>IV. A designação Mx é o momento fletor em relação ao eixo y.</p><p>É correto o que se afirma em:</p><p>II e III, apenas.</p><p>Um engenheiro, responsável pelo projeto de um elemento estrutural ou mecânico, deve</p><p>restringir a tensão atuante no material a um nível seguro. Portanto, vale repetir, é necessário</p><p>fazer os cálculos usando-se uma tensão segura ou admissível.</p><p>HIBBELER, R. C. Resistência dos materiais. 10. ed. São Paulo: Pearson, 2018. E-book.</p><p>Com base no trecho apresentado, analise as asserções a seguir e a relação proposta entre</p><p>elas.</p><p>I. Um método, para especificação da carga admissível para o projeto ou a análise de um</p><p>elemento, é o uso de um número denominado fator de segurança.</p><p>PORQUE</p><p>II. O fator de segurança é a razão entre a carga de ruptura e a carga admissível, e, portanto, a</p><p>carga admissível é sempre maior que a carga de ruptura.</p><p>A respeito dessas asserções, assinale a opção correta.</p><p>carga admissível deve ser menor que a carga de ruptura.</p><p>Resposta correta</p><p>A asserção I é uma proposição verdadeira, e a II é uma proposição falsa.</p><p>Observe a imagem a seguir, que representa um diagrama de esforço cortante.</p><p>Diagrama de esforço cortante.</p><p>#PraCegoVer: A imagem representa o diagrama de esforço cortante com uma barra. O eixo y representa o valor do esforço</p><p>cortante, e o eixo x representa o comprimento da barra. O valor do esforço cortante atinge seu valor máximo no ponto do eixo x</p><p>igual a zero; e apresenta o mesmo valor porém negativo na extremidade máximo do comprimento da barra. O centro da barra tem</p><p>valor igual a zero.</p><p>Considerando a imagem, analise as afirmativas a seguir.</p><p>I. O diagrama fornece informações sobre a deformação da viga e tensões que são</p><p>experimentadas.</p><p>II. O diagrama é incapaz de determinar a carga máxima que essa viga pode suportar.</p><p>III. O diagrama é um gráfico que representa as forças de corte no elemento estrutural em</p><p>relação ao material.</p><p>IV. O diagrama indica que a estrutura tem apoio em ambos os lados e sofre um esforço</p><p>distribuído ao longo da estrutura.</p><p>É correto o que se afirma em:</p><p>Resposta correta</p><p>IV, apenas.</p><p>“Muitas estruturas em engenharia são projetadas para sofrer deformações relativamente</p><p>pequenas, que envolvem somente a parte reta do correspondente diagrama</p><p>tensão-deformação. Para essa parte inicial do diagrama a tensão σ é diretamente proporcional</p><p>à deformação específica ϵ”.</p><p>BEER, F. P. Mecânica dos Materiais, 8° edição. Porto Alegre: Grupo A, 2021. E-book. ISBN 9786558040095. Disponível em:</p><p>https://integrada.minhabiblioteca.com.br/#/books/9786558040095/. Acesso em: 04 jan. 2023.</p><p>Com base no trecho apresentado, analise as asserções a seguir e a relação proposta entre</p><p>elas.</p><p>I. O coeficiente E, chamado de módulo de elasticidade ou módulo de Young, é determinado</p><p>pelo valor de tensão dividido pela deformação equivalente, na região onde tensão σ é</p><p>diretamente proporcional à deformação específica ϵ.</p><p>PORQUE</p><p>II. Dentro da região onde tensão σ é diretamente proporcional à deformação específica ϵ,</p><p>pode-se escrever a relação 𝜎 = E x ε.</p><p>A respeito dessas asserções, assinale a alternativa correta.</p><p>Resposta correta</p><p>As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I.</p><p>A determinação dos valores máximos absolutos da força cortante e do momento fletor em uma</p><p>viga se torna muito mais fácil se os valores de V e de M forem construídos, graficamente, em</p><p>função da distância medida a partir de uma extremidade da viga. Essa construção gráfica</p><p>recebe o nome de Diagrama de Corpo Livre.</p><p>Considerando o que está apontado acima, qual é a descrição correta da forma de representar</p><p>as cargas distribuídas no Diagrama de Corpo Livre?</p><p>Resposta correta</p><p>As cargas distribuídas devem ser substituídas por uma carga concentrada equivalente no centro de</p><p>gravidade da parte que recebe essa carga.</p><p>Muitos elementos estruturais são compostos pelas junções de chapas, por meio de rebites que</p><p>transmitem forças de união entre as partes. Um dos principais esforços aos quais os rebites</p><p>estão submetidos é o cisalhamento.</p><p>https://integrada.minhabiblioteca.com.br/#/books/9786558040095/.</p><p>Considerando o que está apontado acima, assinale a alternativa que apresenta a descrição</p><p>correta sobre a tensão de cisalhamento à qual o material do rebite está submetido.</p><p>Resposta correta</p><p>A tensão de cisalhamento do rebite deve ser maior ou igual à carga aplicada dividida pela multiplicação</p><p>do número de seções resistentes vezes o número de rebites e vezes a área.</p><p>Uma barra prismática com 4 metros de comprimento foi submetida a uma carga de tração no</p><p>valor de 28.000 N. A barra possui diâmetro de 4,5 cm e sofreu um alongamento de 0,42 mm.</p><p>De acordo com os dados apresentados, analise as alternativas a seguir.</p><p>I. O material da barra deve ter uma tensão elástica maior que 18 MPa.</p><p>II. O alongamento é superior a 1% do comprimento da barra.</p><p>III. A deformação específica longitudinal é superior a 0,0001.</p><p>IV. A extensão do alongamento independe do material constitutivo da barra.</p><p>Está correto o que se afirma em:</p><p>Resposta correta</p><p>I e III, apenas.</p><p>As equações de transformação para estado plano de tensões podem ser representadas, na</p><p>forma gráfica, por um diagrama conhecido como círculo de Mohr. Essa representação gráfica é</p><p>extremamente útil, por possibilitar visualizar as relações entre as tensões normais e de</p><p>cisalhamento agindo em vários planos inclinados em um ponto de um corpo tensionado.</p><p>Círculo de Mohr para estado plano de tensões</p><p>#PraCegoVer: a imagem apresenta um círculo de Mohr, com pontos específicos e suas tensões</p><p>equivalentes. O eixo x representa a tensão normal, e o y, a tensão de cisalhamento. No gráfico, o círculo</p><p>de Mohr está todo do lado positivo do eixo x. O ponto C, que é o centro do círculo, é o valor da tensão</p><p>normal média; a tensão normal 1 representa o ponto P1, que é a extremidade direita do círculo; o ponto</p><p>P2 representa a tensão normal 2 e é a extremidade esquerda do círculo. O ponto S2 está na superfície</p><p>do círculo e representa a tensão de cisalhamento máxima negativa, e o ponto S1 representa a tensão de</p><p>cisalhamento máxima positiva e está na parte inferior do círculo. No eixo y, que é a tensão de</p><p>cisalhamento, os sinais são invertidos, ou seja, positivo para baixo e negativo para cima.</p><p>Considerando a imagem, analise as afirmativas a seguir:</p><p>I. As tensões principais são localizadas no perímetro do círculo.</p><p>II. As tensões de cisalhamento anulam as tensões normais.</p><p>III. Um ponto no interior do círculo representa combinações intermediárias de tensões.</p><p>IV. O círculo de Mohr admite um único ponto de tensão média.</p><p>É correto o que se afirma em:</p><p>Resposta correta</p><p>I, III e IV, apenas.</p><p>Observe, na figura a seguir, as tensões geradas quando o material foi submetido a um esforço</p><p>de tração.</p><p>Distribuição de tensões em uma barra submetida a um esforço de torção.</p><p>#PraCegoVer: a imagem apresenta um círculo com um eixo horizontal saindo do centro, nomeado como</p><p>rô, e um eixo vertical saindo do centro, nomeado como tal, que representa a tensão de cisalhamento. O</p><p>gráfico possui, também, uma linha inclinada em, aproximadamente, 60 graus saindo do centro, com valor</p><p>igual a zero e com valor crescente de forma linear, até chegar ao valor máximo na extremidade da peça,</p><p>dessa forma é formado um triângulo do centro para a direita do círculo, com altura máxima no raio do</p><p>círculo.</p><p>Considerando a figura apresentada, analise as afirmativas a seguir.</p><p>I. A imagem mostra que a menor tensão de cisalhamento será no raio zero.</p><p>II. A imagem mostra que a maior tensão de cisalhamento será no maior raio da peça.</p><p>III. A imagem mostra que a tensão cresce juntamente com o raio.</p><p>IV. A imagem mostra que a tensão é máxima no centro.</p><p>Está correto o que se afirma em:</p><p>Resposta correta</p><p>I, II e III, apenas.</p><p>“Um exemplo de flexão pura é dado pela barra de levantamento de pesos típica quando o atleta</p><p>a segura acima da cabeça. Os pesos e as reações podem ser substituídos por dois momentos</p><p>fletores iguais e opostos, mostrando que a parte central da barra está em flexão pura”.</p><p>BEER, F. P. et al. Estática e mecânica dos materiais. Porto Alegre: Grupo A, 2013. p. 104.</p><p>Com base no trecho apresentado, analise as asserções a seguir e a relação proposta entre</p><p>elas.</p><p>I. Duas vigas de mesma área de seção transversal, com formatos retangulares diversos, podem</p><p>ter diferentes capacidades de resistência à flexão.</p><p>PORQUE</p><p>II. A viga com maior altura terá maior resistência à flexão que uma viga de mesma área com</p><p>menor altura.</p><p>A respeito dessas asserções, assinale a alternativa correta.</p><p>Resposta correta</p><p>As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I.</p><p>Leia o trecho a seguir:</p><p>“Suponha que tenhamos de projetar uma coluna AB, de comprimento L, para suportar uma</p><p>dada força P de compressão. A coluna será articulada em ambas as extremidades, e</p><p>consideramos que P é uma força axial centrada. Se a área da seção transversal A da coluna é</p><p>selecionada de maneira que o valor σ = P/A da tensão, em uma seção transversal, seja menor</p><p>do que a tensão admissível σadm para o material usado, e se a deformação δ = PL/AE estiver</p><p>dentro das especificações dadas, podemos concluir que a coluna foi projetada corretamente.</p><p>No entanto, pode ocorrer que, à medida que o carregamento é aplicado, a coluna se flambe.</p><p>Em vez de permanecer reta, ela subitamente se curva de maneira acentuada.”</p><p>BEER, F. P. Mecânica dos Materiais. Porto Alegre: Grupo A, 2021, página 669. E-book. ISBN</p><p>9786558040095. Disponível em: Minha Biblioteca. Acesso em: 10 jan. 2023.</p><p>Com base no excerto apresentado, avalie as afirmações a seguir.</p><p>I. A carga crítica é diretamente proporcional ao comprimento da coluna.</p><p>II. A capacidade da coluna aumenta com a elevação do momento de inércia.</p><p>III. A carga crítica depende fundamentalmente do momento de inércia.</p><p>IV. A coluna sofrerá flambagem em torno do eixo de maior momento de inércia.</p><p>É correto o que se afirma em:</p><p>Resposta correta</p><p>II e III, apenas.</p><p>É possível determinar a tensão sofrida por um material de acordo com a fórmula σ=força/área.</p><p>Suponha que um material A resista a uma tensão de 220 MPa sem se deformar de forma</p><p>permanente, e o material B resista a uma tensão de 210 MPa.</p><p>Considerando que uma carga de tração de 200 kN seja aplicada a ambos os materiais acima</p><p>citados, analise as afirmativas a seguir.</p><p>I. O material B pode ser produzido com uma área menor que o material A.</p><p>II. Tal valor de carga é adequado tanto para o material A quanto para o B.</p><p>III. O diâmetro do material B pode ser menor que o diâmetro do material A.</p><p>IV. O material A suportaria maior carga, sendo os dois do mesmo diâmetro.</p><p>Está correto o que se afirma em:</p><p>Resposta correta</p><p>II e IV, apenas.</p><p>“Um tipo de tensão é obtido quando forças transversais são aplicadas a uma barra. Ao</p><p>passarmos um corte na seção transversal entre os pontos de aplicação das duas forças,</p><p>concluímos que devem existir forças internas no plano da seção. Essas forças internas</p><p>elementares são chamadas de forças de cisalhamento, e a intensidade de sua resultante é a</p><p>força cortante na seção”.</p><p>BEER, F. P. et al. Estática e Mecânica dos Materiais. Porto Alegre: AMGH, 2013. p. 323. Disponível em: Minha Biblioteca. Acesso</p><p>em: 04 jan. 2023.</p><p>Com base no apresentado, analise as asserções a seguir e a relação proposta entre elas.</p><p>I. As tensões de cisalhamentos são encontradas com facilidade em rebites ou pinos que</p><p>realizam a união de chapas ou elementos estruturais diversos.</p><p>PORQUE</p><p>II. As uniões de chapas e elementos estruturais sobrepostos normalmente submetem os rebites</p><p>e pinos a um esforço axial constante, tendendo, assim, esse elemento falhar por cisalhamento.</p><p>A respeito dessas asserções, assinale a opção correta:</p><p>Resposta correta</p><p>A asserção I é uma proposição verdadeira, e a II é uma proposição falsa.</p>

Mais conteúdos dessa disciplina