Prévia do material em texto
Produtos notáveis a) (3 + x)2 = ( R: 9 + 6x +x2) b) (x + 5)2 = ( R: x2 + 10x + 25) c) ( x + y)2 = ( R: x2 + 2xy +y2) d) (x + 2)2 = ( R: x2 + 4x + 4) e) ( 3x + 2)2 = ( R: 9x2 + 12x +4) f) (2x + 1)2 = (R: 4x2 + 4x + 1) g) ( 5+ 3x)2 = (R: 25 + 30x + 9x2) h) (2x + y)2 = (R: 4x2 + 4xy + y2) i) (r + 4s)2 = (R: r2 + 8rs + 16s2) j) ( 10x + y)2 = (R: 100x2 + 20xy + y2) l) (3y + 3x)2 = (R: 9y2 + 18xy + 9x2) m) (-5 + n)2 = (R: 25 -10n + n2) n) (-3x + 5)2 = (R: 9x2 - 30x + 25) o) (a + ab)2 = (R: a2 + 2a2b + a2b2) p) (2x + xy)2 = (R: 4x2 + 4x2y + x2y2) q) (a2 + 1)2 = (R: (a2)2 + 2a2 + 1) r) (y3 + 3)2 = [R: (y3)2 + 6y3 + 9] s) (a2 + b2)2 = [R: (a2)2 + 2a2b2 + (b2)2] t) ( x + 2y3)2 = [R: x2 + 4xy3 + 4(y3)2] u) ( x + 1⁄2)2 = (R: x2 +x + 1/4) v) ( 2x + 1⁄2)2 = (R: 4x2 + 2x + 1/4) x) ( x/2 +y/2)2 = [R: x2/4 + 2xy/4 + y2/4] 2) Calcule: a) ( 5 – x)2 = (R: 25 – 10x + x2) b) (y – 3)2 = (R: y2 - 6y + 9) c) (x – y)2 = (R: x2 - 2xy + y2) d) ( x – 7)2 = (R: x2 - 14x + 49) e) (2x – 5) 2 = (R: 4x2 - 20 x + 25) f) (6y – 4)2 = (R: 36y2 - 48y + 16) g) (3x – 2y)2 = (R: 9x2 - 12xy + 4y2) h) (2x – b)2 = (R: 4x2 - 4xb + b2) i) (5x2 - 1)2 = [R: 25(x2)2 - 10x2 + 1) j) (-3x – 5)2 = 3) Calcule o produto da soma pela diferença de dois termos: a) (x + y) . ( x - y) = (R : x2 - y2) b) (y – 7 ) . (y + 7) = ( R : x2 - 49) c) (x + 3) . (x – 3) = ( R: x2 - 9) d) (2x + 5 ) . (2x – 5) = ( R: 4x2 - 25) e) (3x – 2 ) . ( 3x + 2) = ( R: 9x2 - 4 ) f) (5x + 4 ) . (5x – 4) = ( R: 25x2 - 16) g) (3x + y ) (3x – y) = (R: 9x2 - y2 ) h) ( 1 – 5x) . (1 + 5x) = ( R: 1 - 25x2 ) i) (2x + 3y) . (2x – 3y) = ( R: 4x2 - 9y2 ) j) (7 – 6x) . ( 7 + 6x) = (R: 49 - 36x2) exercícios : Efetue: 1. (a – b)3 = 1. (x – 4)3 = 1. (2a – y)3 = ) Utilizando as regras dos produtos notáveis, calcule: a) (x + 3)2 1. (a + b)2 1. (5y – 1)2 1. (x2– 6)2 1. (2x + 7)2 1. (9x + 1) . (9x – 1) 1. (a2 – xy)2 k) (x3y – xy3)2 1. (3y – 5)2 1. (2x2 + 3xy)2 1. (10x2 – ab)2 1. (2a3 + 3a)2 1. (ab + a2) . (ab – a2) image4.png image5.jpg image6.jpg image1.png image2.jpg image3.jpg