Prévia do material em texto
docProps/app.xml Normal_Wordconv.dotm 0 0 false false false false Doxillion © NCH Software docProps/core.xml 1 word/document.xml ESTATÍSTICA APLICADA AO DATA SCIENCE Atividade 4 1- Leia o excerto a seguir: “Normalização: É comum normalizar (padronizar) variáveis contínuas através da subtração da média e divisão pelo desvio-padrão, ou então as variáveis com grande escala dominarão o processo de agrupamento (veja Padronização (Normalização, Escores Z), no Capítulo 6).” BRUCE, Peter; BRUCE, Andrew. Estatística prática para cientistas de dados: 50 conceitos iniciais. Rio de Janeiro: Alta Books, 2019, p. 265. A partir do apresentado, analise as asserções a seguir e a relação proposta entre elas. I. Sabemos que, na estatística ou na ciência dos dados, é comum normalizar (padronizar) variáveis quantitativas, ou variáveis contínuas, antes da realização de uma análise de agrupamento. Pois II. No conjunto de dados observados (a amostra de dados), podem existir variáveis que estão em uma escala muito maior que as outras, e a medida de distância entre observações dessas variáveis dominarão o resultado da análise de agrupamento, na formação dos grupos de observações similares entre si. (X) As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I. Resposta correta. A alternativa está correta. Na estatística ou na ciência dos dados, é comum normalizar (padronizar) variáveis quantitativas, ou variáveis contínuas, antes da realização de uma análise de agrupamento, pois no conjunto de dados observados podem existir variáveis que estão em uma escala muito maior que as outras, e a medida de distância entre observações dessas variáveis dominarão o resultado final da análise de agrupamento se a padronização não for feita antes . 2- Leia o excerto a seguir sobre as ideias-chave para agrupamento hierárquico: “Começa com todos os registros. Progressivamente, os grupos são unidos aos grupos próximos até que todos os registros pertençam a um único grupo. O histórico de aglomeração é retido e plotado, e o usuário pode visualizar o número e a estrutura dos grupos em diferentes estágios. As distâncias intergrupos são calculadas de jeitos diferentes, todas baseadas no conjunto de distância inter-registros.” BRUCE, Peter; BRUCE, Andrew. Estatística prática para cientistas de dados: 50 conceitos iniciais. Rio de Janeiro: Alta Books, 2019, p. 278. A partir do apresentado, analise as asserções a seguir e a relação proposta entre elas. I. No agrupamento hierárquico, o usuário deve obrigatoriamente especificar o número de grupos que deseja ver o algoritmo formar. Pois II. O algoritmo começa com grupos formados por registros individuais e, progressivamente, os grupos são unidos aos grupos mais próximos, até que todos os registros pertençam a um único grupo. (X) A asserção I é uma proposição falsa, e a II é uma proposição verdadeira. Resposta correta. A alternativa está correta, pois no agrupamento hierárquico, diferentemente do que se requer para o agrupamento por k-médias, o usuário não especifica o número de grupos que o algoritmo deve formar. Em estágios progressivos, se parte de tantos grupos quanto o número de registros (observações) do conjunto de dados, formam-se sequencialmente vários agrupamentos, por fusão entre grupos maissimilares entre si, até se formar um único grupo, ao final, com todos os registro do conjunto de dados analisado. Ao usuário cabe examinar essa estrutura, e decidir queagrupamentos fazem mais sentido para a sua análise. 3- Quando os dados se referem a múltiplas variáveis quantitativas, é possível exibir múltiplos gráficos de dispersão entre pares dessas variáveis, duas a duas. No software estatístico R, isto pode ser feito com a função gráfica pairs(). Adiante apresentamos um output típico da função pairs() quando aplicada a quatro variáveis quantitativas de um determinado conjunto de dados. Figura 4: Múltiplos gráficos de dispersão entre as variáveis de USArrest Fonte: Elaborada pelo autor. A respeito deste output típico da função gráfica pairs() do software estatístico R, para a exibição de múltiplos gráficos de dispersão entre variáveis quantitativas, analise as afirmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s). I. ( ) O gráfico de y = Murder versus x = Assault mostra uma tendência de aumento de Murder para um aumento de Assault. II. ( ) O gráfico de y = Murder versus x = UrbanPop mostra uma grande dispersão dos pontos sem uma tendência clara de subida ou descida. III. ( ) O gráfico de y = Murder versus x = Rape mostra uma tendência de aumento de Murder para um aumento de Assault, porém com uma dispersão dos pontos um pouco maior que para o caso de y = Murder versus x = Assault. IV. ( ) Como são quatro variáveis quantitativas (Murder, Assault, UrbanPop e Rape), então ao total são 12 gráficos de dispersão, de cada uma delas contra as outras três. (X) V, V, V, V. Resposta correta. A sequência está correta. O gráfico de y = Murder versus x = Assault de fato mostra uma tendência de aumento de Murder para um aumento de Assault, assim como gráfico de y = Murder versus x = UrbanPop mostra uma grande dispersão dos pontos sem uma tendência clara de subida ou descida. O gráfico de y = Murder versus x = Rape mostra uma tendência de aumento de Murder para um aumento de Assault, porém com uma dispersão dos pontos um pouco maior que para o caso de y = Murder versus x = Assault e, como são quatro variáveis quantitativas, então ao total são 12 gráficos de dispersão, de cada uma delas contra as outras três. 4- Na estatística ou, genericamente, na análise de dados, muito frequentemente analisamos dados ditos retangulares ou estruturados, onde as variáveis - quantitativas ou qualitativas - são dispostas nas colunas e as observações na linhas de uma tabela. Em algumas situações é vantajoso se fazer a padronização das variáveis quantitativas. Assinale a alternativa correta relativamente ao assunto de padronização de variáveis quantitativas na estatística: (X) Na padronização, se subtrai de cada variável sua média, e depois se divide o resultado pelo seu desvio padrão. Resposta correta. A alternativa está correta. Na estatística, assim como nas suas ciências correlatas, como a ciência dos dados e a mineração de dados, a padronização de uma variável quantitativa é feita subtraindo-se dessa variável a sua média e depois dividindo-se o resultado pelo seu desvio padrão. 5- Em uma análise de agrupamento examinamos os dados observados (as linhas da tabela com os dados) e procuramos identificar, através de algum critério de similaridade, aquelas que estão mais próximas entre si, e formamos grupos com essas observações similares. Quando são apenas 2 variáveis e poucas observações (tamanho da amostra pequeno), por exemplo 10, podemos tentar fazer o agrupamento visualmente. Analise a figura adiante e assinale a alternativa que indica a menor quantidade de grupos que você naturalmente formaria para este caso: Figura - Massa corporal (kg) versus comprimento (m) dos animais Fonte: Elaborada pelo autor (X) Dois grupos, um com 6 indivíduos e outro com 4 indivíduos. Resposta correta. A alternativa está correta. A questão solicita a alternativa com o menor número de grupos que você naturalmente formaria. Há três alternativas com dois grupos, porém aquela que parece ser a mais natural é a que agrupa 6 indivíduos do lado esquerdo do gráfico e 4 indivíduos do lado direito, pois as outras alternativas com dois grupos não são tão naturais quanto essa opção. 6- O texto em referência apresenta como exemplo de agrupamento uma companhia de vendas onlineque deseja agrupar seus clientes com base em suas características comuns (renda, idade, número de filhos, estado civil, grau de educação, etc.). Com o resultado do agrupamento, eles definirão campanhas de marketing e de divulgação específicas para cada um dos diferentes grupos que vierem a ser definidos. DUHAM, Margareth H. Data mining: introductory and advanced topics. Upper Saddle River, NJ: Pearson Education, 2003, p.125. A respeito das fontes que originaram os contos de fadas, analise as afirmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s). I. ( ) Algoritmos de agrupamento só conseguem lidar com variáveis quantitativas. Sendo assim, parte das variáveis disponíveis para esse caso são irrelevantes. II. ( ) Algoritmos de agrupamento são especializados no tratamento de conjuntos de dados exclusivamente qualitativos. III. ( ) Algoritmos de agrupamento podem ter as suas soluções verificadas por um supervisor e, dessa forma, saberemos se o resultado é bom ou ruim. IV. ( ) Seres humanos não possuem habilidade natural para agrupar e depois classificar, já que isso só pode ser realizado por meio de algoritmos. (X) F, F, F, F Resposta correta. A sequência está correta. Há algoritmos de agrupamento que lidam variáveis quantitativas, ou qualitativas, ou mistas. Portanto, as asserções I e II são falsas. Algoritmos de agrupamento não podem ter as suas soluções verificadas por um supervisor, pois fazem parte dos métodos de aprendizagem não supervisionada. E seres humanos possuem habilidade natural para agrupar e depois classificar. Portanto, as asserções III e IV também são falsas. 7- O texto em referência fornece os seguintes exemplos de agrupamento: análise de perfil de usuários e perfil de itens para sistemas de recomendação; análise de padrões de comportamento de multidões; identificação de grupos de risco para empresas seguradoras; análise de emoções em redes sociais; reconhecimento de padrões em imagens de satélites ou imagens médicas; análise de padrões em cliques em páginas da internet, etc. SILVA, L. A. da; PERES, S. M.; BOSCARIOLI, C. Introdução à mineração de dados: com aplicações em R. Rio de Janeiro: Elsevier, 2016, p.146. A respeito dos campos de aplicação da análise de agrupamento, analise as afirmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s). I. ( ) A análise de emoções por meio de agrupamento pode servir ao propósito de averiguar o índice de aceitação de um candidato a um cargo eletivo público por região. II. ( ) O reconhecimento de padrões em imagens de satélites pode servir ao propósito de averiguar regiões com processos acelerados de desertificação. III. ( ) A identificação de grupos de risco para empresas seguradoras pode servir ao propósito de precificação correta do valor do seguro para cada grupo de risco. IV. ( ) A análise de padrões em cliques em páginas da internet pode servir ao propósito de identificar a procura de páginas da web por cada bairro de um município. (X) V, V, V, V. Resposta correta. A sequência está correta. Todos exemplos citados são propósitos válidos para a realização da análise de agrupamento. Como explicado no texto em referência, a quantidade de domínios de aplicação da análise de agrupamento é muito vasta. 8- O texto em referência explica que o processo de descoberta com a mineração de dados possui tanto um sentido romântico (um processo emocionante e prazeroso), quanto técnico (um estudo criterioso sobre dados). Também defende a ideia que é preciso conhecer o ambiente em que os dados são produzidos e que tipo de conhecimento esse ambiente necessita e espera receber.. Ou seja, o que as pessoas necessitam e esperam receber.Lei SILVA, L. A. da; PERES, S. M.; BOSCARIOLI, C. Introdução à mineração de dados: com aplicações em R. Rio de Janeiro: Elsevier, 2016, p.3. Considerando as ideias apresentadas acima e o que sabemos sobre ciência dos dados, mineração de dados e machine learning, analise as afirmativas a seguir: I. Machine learning são algoritmos desenvolvidos, principalmente, pela ciência da computação. São usados na estatística, na ciência de dados e na mineração de dados. II. O processo de descoberta de padrões e geração de conhecimento por meio de dados tem um sentido romântico, por ser emocionante e prazeroso, e um sentido técnico, pois demanda estudos técnicos criteriosos. III. A estatística, a ciência da computação e a ciência de dados são áreas relacionadas, mas a mineração de dados e ciência de dados são áreas independentes, sem nenhuma relação. IV. Não é importante conhecer o ambiente em que os dados são produzidos e que tipo de conhecimento esse ambiente necessita e espera receber. Assinale a alternativa que apresenta a(s) afirmativa(s) correta(s): (X) I e II apenas; Resposta correta. A alternativa está correta, pois machine learning são algoritmos desenvolvidos, principalmente, pela ciência da computação, e são usados na estatística, na ciência de dados e na mineração de dados, e o processo de descoberta de padrões e geração de conhecimento por meio de dados tem um sentido romântico, por ser emocionante e prazeroso, e um sentido técnico, pois demanda estudos técnicos criteriosos. Também sabemos que a mineração de dados e ciência de dados são áreas relacionadas, e que é importante conhecer o ambiente em que os dados são produzidos e que tipo de conhecimento esse ambiente necessita e espera receber. 9- Discutimos o que são aprendizagem supervisionada e não supervisionada. Vimos que é na forma como tratamos as variáveis estudadas que se dá a diferença entre esses dois tipos de aprendizagens, supervisionada e não supervisionada. Esses dois tipos são os mais importantes dentre os diversos tipos de aprendizagem. Relativamente a esse assunto, analise as afirmativas a seguir: I. Na aprendizagem supervisionada, definimos uma das variáveis estudadas como sendo a variável resposta, a qual responde em função dos valores assumidos pelas outras variáveis, as quais são chamadas de variáveis de entrada. II. Especificamente na aprendizagem supervisionada, também denominamos uma variável resposta de variável de saída ou variável dependente. III. Especificamente na aprendizagem supervisionada, também denominamos uma variável de entrada de variável regressora, variável preditora, variável explanatória ou variável independente. IV. Na aprendizagem não supervisionada, tratamos todas as variáveis estudadas da mesma forma, sem procurar explicar o comportamento de uma delas em função dos valores assumidos pelas outras. (X) I, II, III e IV. Resposta correta. Na aprendizagem supervisionada, definimos uma das variáveis estudadas como sendo a variável resposta, a qual responde em função dos valores assumidos pelas outras variáveis, as quais são chamadas de variáveis de entrada; na aprendizagem supervisionada, também chamamos a variável resposta de variável de saída ou variável dependente e as variáveis de entrada, de variáveis regressoras, preditoras ou independentes. Na aprendizagem não supervisionada, tratamos todas as variáveis estudadas da mesma forma, sem procurar explicar o comportamento de uma delas em função dos valores assumidos pelas outras. 10- Leia o excerto a seguir: “A ciência dos dados é uma fusão de múltiplas disciplinas, incluindo estatística, ciência da computação, tecnologia da informação e campos de domínios específicos. Consequentemente, podem-se utilizar de muitos termos diferentes para se referir a um dado conceito.” BRUCE, Peter; BRUCE, Andrew. Estatística prática para cientistas de dados: 50 conceitos iniciais. Rio de Janeiro: Alta Books, 2019, p. xv. A partir do apresentado, analise as asserções a seguir e a relação proposta entre elas. I. Sabemos que, na ciênciados dados, podem-se utilizar de muitos termos diferentes para se referir a um dado conceito. Pois II. A estatística usa, de forma profunda, a matemática como pilar do seu desenvolvimento. É considerada a ciência mais sutil, e a mais ampla, quanto o assunto são dados. É usada por todas áreas científicas. (X) As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa da I. Resposta correta. A alternativa está correta, pois mesmo que algoritmos de agrupamento sejam parte dos métodos da aprendizagem não supervisionada, e não serem modelos preditivos, como afirmado na asserção II, depois que formamos e nomeamos os grupos (classificamos os grupos), podemos usar essas classes como variáveis respostas e, a partir desse ponto, executar tarefas preditivas com algoritmos de classificação. Ou seja, a asserção I é falsa. word/fontTable.xml word/media/image1 word/media/image2 word/numbering.xml word/settings.xml word/styles.xml word/theme/theme1.xml word/webSettings.xml word/_rels/document.xml.rels [Content_Types].xml _rels/.rels