Prévia do material em texto
UNIVERSIDADE FEDERAL DE SERGIPE PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA DOUTORADO EM CIÊNCIAS DA SAÚDE CARLA RAQUEL PEREIRA OLIVEIRA ADIPOCINAS, EXCREÇÃO URINÁRIA DE ALBUMINA, SENSIBILIDADE INSULÍNICA E FUNÇÃO DA CÉLULA BETA NA DEFICIÊNCIA ISOLADA DO HORMÔNIO DE CRESCIMENTO Aracaju 2010 CARLA RAQUEL PEREIRA OLIVEIRA ADIPOCINAS, EXCREÇÃO URINÁRIA DE ALBUMINA, SENSIBILIDADE INSULÍNICA E FUNÇÃO DA CÉLULA BETA NA DEFICIÊNCIA ISOLADA DO HORMÔNIO DE CRESCIMENTO Tese de doutorado apresentada ao Núcleo de Pós Graduação em Medicina da Universidade Federal de Sergipe, para obtenção do grau de Doutor em Ciências da Saúde Orientador : Prof. Dr. José Augusto Soares Barreto-Filho Aracaju 2010 Ficha Catalográfica elaborada pela Biblioteca da Saúde/UFS O48a Oliveira, Carla Raquel Pereira Adipocinas, excreção urinária de albumina, sensibilidade insulínica e função da célula beta na deficiência isolada do hormônio de crescimento / Carla Raquel Pereira Oliveira-- Aracaju, 2010. 137 f. Tese (Doutorado em Ciências da Saúde) – Universidade Federal de Sergipe, Pró-Reitoria de Pós-Graduação e Pesquisa, Núcleo de Pós-Graduação e Pesquisa em Medicina. Orientador: Prof. Dr. José Augusto Soares Barreto-Filho 1. Adipocinas 2. Albumina – Excreção urinária 3. Sensibilidade insulínica 4. Hormônio de crescimento – Deficiência 5. Endocrinologia I. Título CDU 616.43 Davi e Sofia, Meus amores, Minha alegria, Minha vida Por vocês tudo, Sem vocês nada... A Deus, São Judas Tadeus e Santa Terezinha, pelos vários milagres e pela proteção especial em todos os momentos. Ao meu esposo Alexander, meu maior amigo e companheiro há 14 anos, que apesar de nem sempre entender os motivos que me impulsionam fazer tantas coisas ao mesmo tempo, está sempre me apoiando e me ajudando. Ao meu pai, excelência de pai e professor, meu maior mestre e co-autor não só deste, mas de todos os meus projetos pessoais e profissionais. A minha mãe, meu pilar de sustentação, mãe e avó sem limites, o seu apoio foi fundamental para a conclusão desta tese. Aos meus avós (Luiz, Maria Hermínia, Mário, in memorian e Edna), exemplos de força, superação, otimismo e capacidade de vencer, mantendo sempre amor, carinho e atenção ao lidar com o próximo. Continuarei a me espelhar em vocês. Aos meus irmãos, André e Mário, companheiros de vida, estamos juntos em todos os momentos importantes. Aos meus primos, tios, sobrinhos, cunhados e sogra. Vocês são a minha família; minha torcida, minha alegria e meu suporte. Agradecimento especial às tias Rossana, Eugênia e Anita e aos meus padrinhos Luiz e Fátima. Ao meu orientador, Dr. José Augusto Soares Barreto Filho, mestre e parceiro, me orientou com amizade, carinho e atenção, sempre me entusiasmando, impulsionando para frente e torcendo por mim. Aos professores Dr. Ricardo Queiroz Gurgel, Dr. Márcio Roberto Santos, Dra Karla Freire Rezende, Dra Joselina Maria Meneses Oliveira, Dr. Heno Ferreira Lopes pelas disposição em corrigir e me auxiliar na construção desta tese. Em especial ao Dr. Ayrton Custódio Moreira, professor que cresci admirando. A todo o grupo de pesquisadores de Itabaianinha, e especialmente aqueles que participaram da realização deste trabalho, as bioquímicas Rossana, Ivina, Rachel e Suilly, os acadêmicos Rafael, Vanessa, Natália, Taísa e Isabel, a dentista Isabela, aos colegas Viviane, Menilson e Elenilde e a secretária Ivanilde. Aos amigos que me ajudaram indiretamente, mas também de forma muito importante, permitindo que eu tivesse tempo para terminar esta tese, Grasielle, Keyla, Shirley, Wesley, Karla Freire, Paula Regina, Isabela, Paulo Marcelo, Mônica, Lena e Dora. Em especial a Flávia Costa, cuja ajuda foi fundamental a conclusão desta tese. Aos anões de Itabaianinha, gigantes na contribuição à ciência, sujeitos desta história. Amigos e parceiros, a vocês o meu sincero agradecimento pela participação e carinho. À Didi, agora um anjo de Deus, meu agradecimento especial. RESUMO Oliveira, CRP. Adipocinas, excreção urinária de albumina, sensibilidade insulínica e função de célula beta na deficiência isolada do hormônio de crescimento. Tese de Doutorado em Ciências da Saúde. Núcleo de Pós-Graduação em Medicina, UFS, Aracaju, Sergipe, 2010. O objetivo deste trabalho foi aprofundar a avaliação da dissociação entre a presença de marcadores de risco cardiovascular (CV) e a ausência de doença CV (DCV) na deficiência isolada do GH (DIGH) por mutação no gene do receptor do hormônio liberador do GH. Foi realizado um protocolo com duas etapas. No primeiro experimento, foram avaliados os níveis séricos de adiponectina e leptina e a excreção urinária de albumina (EUA) em 20 indivíduos com DIGH (7 M/ 13 F; 50,8 ± 14,6 anos) e 22 controles (C) (8 M/ 14 F; 49,9 ± 11.5 anos). Os indivíduos com DIGH em comparação a C apresentaram adiponectina mais elevada (p= 0,041) sem alteração nos níveis de leptina e EUA. No segundo experimento, foi realizado teste de tolerância à glicose oral de glicose (1,75 g/kg no DIGH e 75 g no C) com dosagens de glicose e insulina nos tempos 0, 30, 60, 90, 120 e 180 minutos em 24 indivíduos DIGH (12 M/ 12 F; 39,25 ± 11,73 anos) e 25 C (14 M/ 11 F; 39,96 ± 12,49 anos). A sensibilidade à insulina (SI) foi avaliada pelo HOMAir, onde menores valores, indicam maior SI; e pelos QUICKI, OGIS 2 e OGIS 3, onde maiores valores, indicam maior SI. A função da célula beta foi avaliada pelo HOMA-beta, índice insulinogênico e área sobre a curva da razão insulina/ glicose (ASC I/G). ANOVA indicou que a resposta glicêmica (p< 0,0001) foi maior e a insulinêmica apresentou uma tendência de redução (p= 0,08) no grupo DIGH. O número de pacientes com intolerância à glicose foi maior (p= 0,001) no grupo DIGH. HOMAir foi mais baixo (p= 0,031), e QUICK e OGIS 2 apresentaram uma tendência de elevação (p= 0,066 e p= 0,09, respectivamente) no grupo DIGH, enquanto o OGIS 3 foi semelhante nos dois grupos. DIGH apresentou HOMA-beta (p= 0,015), índice insulinogênico (p< 0,0001) e ASC I/G (p= 0,02) menores. O perfil de adipocinas caracterizado por adiponectina elevada e leptina normal, associado à SI normal pode retardar DCV e disfunção endotelial (EUA normal). SI normal e menor função da célula beta caracterizam este modelo de DIGH. Palavras Chave: Adipocinas; excreção urinária de albumina; sensibilidade insulínica; deficiência de GH ABSTRACT Oliveira, CRP. Adipokines, urinary albumin excretion, insulin sensitivity and beta cell function in isolated growth hormone deficiency. Teses (Doctorate of Sciences of Health). Núcleo de pós graduação em Medicina, UFS, Aracaju, Sergipe, Brazil, 2010. The aim of this study was to assess the dissociation between the presence of cardiovascular risk factors, and the lack of premature atherosclerosis and left venticular hipertrophy (LVH) in isolated GH deficiency (IGHD) due to a mutation in the GH releasing hormone receptor gene. A two step protocol was performed. In the first experiment, serum adiponectin and leptin, and urinary albumin excretion (UAE) were studied in 20 IGHD individuals (7 M/ 13 F; 50,8 ± 14,6 years) and 22 control subjects (C) (8 M/ 14 F; 49,9 ± 11.5 years). IGHD subjects in comparison to C presents high adiponectin levels (p= 0,041) whereas leptin and UAE were similar. In the second experiment, oral glucose tolerance test (1,75 g/Kg in IGHD and 75 g in C) with glucose and insulin mesuarements at 0, 30, 60, 90, 120 e 180 minutes was performed in 24 IGHD subjects (12 M/ 12 F; 39,25 ± 11,73 years) and25 C subjects (14 M/ 11 F; 39,96 ± 12,49 years). Insulin sensitivity (IS) was assessed by HOMAir, lower values, higher IS; QUICKI, OGIS 2 and OGIS, higher values, higher IS (for the three parameters). Beta cell function was assayed by HOMA-beta, insulinogenic index and area under the curve of the relation between insulin and glucose (AUC I/G). ANOVA indicated glucose response was higher (p<0,0001) and insulin response presented a trend of reduction (p=0,08) in the IGHD gruop. The number of pacients with glucose intolerance was higher (p= 0,001) in the IGHD group. HOMAir was lower (p= 0,041), QUICKI and OGIS 2 showed a trend of elevation (p= 0,066 and p= 0,09, respectively) in the IGHD subjects, whereas OGIS 3 showed no difference between both groups. IGDH presented reduction in HOMA-beta (p= 0,015), insulinogenic index (p<0,0001) and AUC I/G (p=0,02). These different adipokine profile with high adiponectin and normal leptin levels, linked to normal insulin sentitivity may delay vascular damage, LVH and lesions of the renal endothelium (normal UAE). Normal IS and reduced beta cell function featured this IGDH model. Key Words: Adipokines; insulin sensitivity; urinary albumin excretion; GH deficiency LISTA DE ABREVIATURAS ASC G: Área sob a curva da glicose ASC I: Área sob a curva da insulina ASC I/G: Área sob a curva da relação insulina/ glicose CV: Cardiovascular C/Q: Cintura/ quadril DCV: Doença Cardiovascular DGH: Deficiência do hormônio do crescimento DIGH: Deficiência isolada do hormônio do crescimento DM2: Diabetes mellitus tipo 2 DP: Desvio Padrão EMIC: Espessura médio intimal das carótidas GH: Hormônio do crescimento GHR: Receptor do GH GHRH: Hormônio liberador do GH GHRHR : Receptor do GHRH HAS: Hipertensão arterial sistêmica HDL-C: lipoproteína de alta densidade HOMA-beta: Homeostasis model assessment –índice de função de célula beta HOMA ir : Homeostasis model assessment- índice de resistência à insulina HVE : Hipertrofia ventricular esquerda IGF-I: Fator de crescimento semelhante à insulina tipo I IGF-II: Fator de crescimento semelhante à insulina tipo II IGF-IR: Receptor do IGF-I IMC: Índice de massa corpórea QUICKI: quantitative insulin sensitivity check index LDL-C : lipoproteína de baixa densidade MG: Massa Gorda % MG : Percentual de massa gorda MM: Massa magra OGIS 2: Insulino sensibilidade à glicose oral, calculado através do TTGO (ver abaixo) com 2 horas de duração OGIS 3: Insulino sensibilidade à glicose oral, calculado através do TTGO (ver abaixo) com 3 horas de duração PAS: Pressão Arterial Sistólica PAD: Pressão Arterial Diastólica PCRas: Proteína C reativa de alta sensibilidade RCV: Risco cardiovascular RI: Resistência à insulina SC: Superfície corpórea SI: Sensibilidade à Insulina TSH: Hormônio estimulador da tireóide TTGO: Teste de tolerância oral a glicose TTGO 3h: TTGO com 3 horas de duração LISTA DE FIGURAS Figura 1: Indivíduos com DIGH de Itabaianinha e o professor Manuel Hermínio ....20 Figura 2: Níveis de adiponectina em portadores de DGH e controles .......................51 Figura 3: Resposta glicêmica a 75 gramas de glicose oral nos grupos DIGH e controles. O p acima reflete o efeito de grupo. Este gráfico também foi utilizado como representação gráfica das áreas sobre as curvas de glicose (ASC G) nos grupos DIGH e Controle. A ASC G foi menor no grupo DIGH (p=0,003) .......................................67 Figura 4: Resposta insulinêmica (logaritmo de insulina) à 75 gramas de glicose oral nos grupos DIGH e controles. O p acima reflete o efeito do grupo .............................69 Figura 5: Representação gráfica das áreas sobre as curvas de insulina (ASC I) nos grupos DIGH e Controle. As ASC I foram similares nos dois grupos (p= 0,47) ........69 Figura 6: HOMA- beta nos grupos DIGH e Controle ................................................70 Figura 7: Índice insulinogênico nos grupos DIGH e Controle ...................................71 Figura 8: Representação gráfica das áreas sobre as curvas da relação insulina / glicose (ASC I/G) nos grupos DIGH e Controle. A ASC I/G do grupo DIGH foi menor (p= 0,02) ...........................................................................................................71 LISTA DE TABELAS Tabela 1: Ações metabólicas do GH e do IGF-I .........................................................23 Tabela 2: Antropometria, pressão arterial e composição corporal em pacientes portadores de DIGH e controles ..................................................................................49 Tabela 3: Níveis séricos de IGF-I, PCRas, lípides, glicemia, insulina, HOMAir, adiponectina, leptina e EUA de indivíduos DGH e controles .....................................50 Tabela 4: Dados antropométricos e pressão arterial do grupo DIGH e Controle .......66 Tabela 5: Comportamento da glicemia durante o TTGO 3H. Glicemia 0 é a glicemia de jejum. Glicemia 30 min é a glicemia 30 minutos após a ingestão oral de 75 gramas de glicose, o mesmo para as glicemias 60, 90, 120 e 180 min ....................................67 Tabela 6: Número de pacientes com diagnóstico de pré- diabetes e diabetes nos grupos DIGH e controles .............................................................................................68 Tabela 7: Comportamento da insulina durante o TTGO 3H. Insulina 0 é a insulina de jejum. Insulina 30 min é a insulina 30 minutos após a ingestão oral de 75 gramas de glicose, o mesmo para as insulinas 60, 90, 120 e 180 min ..........................................68 Tabela 8: Resultados do HOMAir, QUICKI, OGIS 2, OGIS 3 em pacientes portadores de DIGH e controles ..................................................................................70 Tabela A1: Características basais do grupo DIGH- Experimento 1 .........................124 Tabela A2: Características basais do grupo Controle- Experimento 1 .....................125 Tabela A3: Pressão Arterial, Composição Corporal e Lípides no grupo DIGH- Experimento 1 ............................................................................................................126 Tabela A4: Pressão Arterial, Composição Corporal e Lípides no grupo Controle - Experimento 1 ............................................................................................................127 Tabela A5: Dados laboratoriais do grupo DIGH- Experimento 1 ............................128 Tabela A6: Dados laboratoriais do grupo Controle- Experimento 1 ........................129 Tabela A7: Características basais do grupo DIGH- Experimento 2 .........................130 Tabela A8: Características basais do grupo Controle - Experimento 2 ....................131 Tabela A9: Glicemia nos 6 tempos do TTGO e ASC Glicose no grupo DIGH - Experimento 2 ............................................................................................................132 Tabela A10: Glicemia nos 6 tempos do TTGO e ASC Glicose no grupo Controle - Experimento 2 ............................................................................................................133 Tabela A11: Insulina nos 6 tempos do TTGO e ASC Insulina no grupo DIGH - Experimento 2 ............................................................................................................134 Tabela A12: Insulina nos 6 tempos do TTGO e ASC Insulina no grupo Controle – Experimento 2 ............................................................................................................135 Tabela A13: HOMAir, OGIS 2, OGIS 3, HOMA- beta, índice insulinogênico e ASC I/G grupo DIGH - Experimento 2 ..............................................................................136Tabela A14: HOMAir, QUICKI, OGIS 2, OGIS 3, HOMA- beta, índice insulinogênico e ASC I/G grupo Controle - Experimento 2 ......................................137 SUMÁRIO 1. INTRODUÇÃO ......................................................................................................14 2. REVISÃO DA LITERATURA .............................................................................17 2.1 DIGH de Itabaianinha ........................................................................................... 19 2.2 Eixo GH/ IGF-I, Metabolismo e Sistema Cardiovascular .................................... 23 2.3 Metabolismo e Sistema Cardiovascular na DGH ................................................. 24 2.4 Adipocinas, Sistema Cardiovascular e DGH ........................................................ 27 2.5 Excreção Urinária de Albumina (EUA), Sistema Cardiovascular e DGH ............ 30 2.6 Sensibilidade Insulínica (SI) ................................................................................. 31 2.7 Função de célula beta ............................................................................................ 34 2.8 Eixo GH/ IGF-I e a sensibilidade insulínica ......................................................... 35 2.9 Sensibilidade insulínica na DGH .......................................................................... 37 2.10 Justificativa ......................................................................................................... 37 3. OBJETIVOS ...........................................................................................................39 4. CASUÍSTICA E MÉTODOS ................................................................................41 4.1 Tipo de estudo ....................................................................................................... 42 4.2 Critérios de exclusão ............................................................................................. 42 4.3 População .............................................................................................................. 42 4.3.1. Experimento 1 : Avaliação da adiponectina, leptina e excreção urinária de albumina ................................................................................ 43 4.3.2. Experimento 2 : Avaliação da Sensibilidade à insulina................................... 43 4.4 Antropometria ....................................................................................................... 44 5. EXPERIMENTO 1: Avaliação da adiponectina, leptina e excreção urinária de albumina ........................................................................................ 45 5.1 Casuística e Métodos ............................................................................................ 46 5.1.1 Composição Corpórea ...................................................................................... 46 5.1.2 Pressão Arterial ................................................................................................ 46 5.1.3 Avaliação laboratorial ...................................................................................... 46 5.1.3.1 Bioquímica ................................................................................................... 47 5.1.3.2 Dosagens Hormonais ................................................................................... 47 5.1.3.3 Excreção Urinária de Albumina (EUA) ....................................................... 48 5.1.4 Análise Estatística ............................................................................................ 48 5.2 Resultados ............................................................................................................. 49 5.2.1 Dados antropométricos, pressão arterial e composição corporal ...................... 49 5.2.2 Dados laboratoriais ........................................................................................... 50 5.3 Discussão .............................................................................................................. 52 5.4 Artigo publicado no Journal of Clinical Endocrinology and Metabolism ............ 55 6. EXPERIMENTO 2: Avaliação da sensibilidade à insulina e função da célula beta...... 62 6.1 Casuística e Métodos ............................................................................................ 63 6.1.1 Teste de tolerância à Glicose Oral com 3 horas de duração (TTGO3H) .......... 63 6.1.2 Resposta glicêmica ........................................................................................... 63 6.1.2.1 Diagnóstico de pré diabetes ou diabetes ...................................................... 64 6.1.3 Resposta Insulinêmica ...................................................................................... 64 6.1.4 Sensibilidade à insulina .................................................................................... 64 6.1.5 Função da célula beta ....................................................................................... 65 6.1.6 Análise Estatística ............................................................................................ 65 6.2 Resultados ............................................................................................................. 66 6.2.1 Dados antropométricos ..................................................................................... 66 6.2.2 Resposta Glicêmica no TTGO 3h .................................................................... 66 6.2.2.1 Diagnóstico de pré diabetes ou diabetes ...................................................... 67 6.2.3 Resposta Insulinênica no TTGO 3h ................................................................. 68 6.2.4 Sensibilidade à Insulina .................................................................................... 70 6.2.5 Função de célula beta ....................................................................................... 70 6.3 Discussão .............................................................................................................. 72 7. CONCLUSÕES ......................................................................................................76 8. REFERÊNCIAS .....................................................................................................78 9. ANEXOS .................................................................................................................90 ANEXO 1: Equação de Mari et al, 2001 para o cálculo do OGIS 3........................... 91 10. APÊNDICES ........................................................................................................92 APÊNDICE 1: Artigo Conseqüências em Longo Prazo da Deficiência do Hormônio de Crescimento ................................................................................. 93 APÊNDICE 2: Artigo Papel Emergente do Eixo GH/IGF-1 no Controle Cardiometabólico ............................................................................. 99 APÊNDICE 3: Termo de Consentimento ................................................................. 116 APÊNDICE 4: Tabelas do experimento 1, avaliação da adiponectina, leptina e microalbuminúria ........................................................................... 124 APÊNDICE 5: Tabelas experimento 2, avaliação da sensibilidade à insulina ......... 130 _____________________________________________1. INTRODUÇÃO 15 A deficiência de GH em adultos foi associada a um aumento na mortalidade cardiovascular (ROSEN & BENGTSSON, 1990), devido a alterações ateroscleróticas (MARKUSSIS et al., 1992), adiposidade abdominal, dislipidemia (altos índices de colesterol total e LDL-C e baixos índices de HDL-C) e elevação da proteína C reativa de alta sensibilidade (PCRas) (GOLA et al., 2005).Essa associação, entretanto, é baseada em estudos obtidos em grupos heterogêneos de pacientes com deficiência adquirida do hormônio de crescimento de diferentes etiologias e gravidades, geralmente submetidos à cirurgia ou irradiação hipofisária e associada à deficiência de outros hormônios hipofisários, fatores estes que podem afetar a mortalidade cardiovascular. De fato, dados recentes mostram longevidade normal em indivíduos com grave e genética deficiência isolada do GH (DIGH) residentes em Itabaianinha, nordeste do Brasil (AGUIAR- OLIVEIRA et al., 2010), suscitando um aparente paradoxo. Conforme assinalado, em Itabaianinha foi identificada uma extensa família (aproximadamente 100 indivíduos) com DIGH, devido a uma mutação no início do intron 1 (IVS1+1G→A) do gene do receptor do hormônio liberador do hormônio de crescimento (GHRH) (SALVATORI et al., 1999). Os pacientes com DIGH têm o GH e o fator de crescimento semelhante à insulina tipo 1 (IGF-I) extremamente reduzidos e apresentam desde a infância um perfil cardiovascular adverso que inclui obesidade central, menor massa magra, aumento do percentual de gordura, aumento da pressão arterial sistólica e níveis elevados da PCRas, colesterol total e LDL (BARRETO- FILHO et al., 2002; OLIVEIRA et al., 2006). Por outro lado, a insulina de jejum é mais baixa e eles parecem apresentar uma maior sensibilidade à insulina (SI), quando avaliada por um método que utiliza apenas a glicemia e insulina de jejum (HOMAir); a espessura média intimal das carótidas (EMIC) não demonstrou nenhuma evidência de aterosclerose prematura e a ecocardiografia não demonstrou hipertrofia ventricular esquerda (HVE) (BARRETO-FILHO et al., 2002; OLIVEIRA et al., 2006). Até o momento, esta dissociação entre presença de fatores de risco e ausência de doença não está completamente entendida. Para tanto resolvemos estudar os níveis séricos da adiponectina e leptina, adipocinas associadas ao risco cardiovascular (RCV) e a SI; 16 um marcador de disfunção endotelial, a excreção urinária de albumina (EUA); além de aprofundar o estudo da SI por teste dinâmico e avaliar a função da célula beta. A adiponectina, a mais abundante proteína produzida pelo tecido adiposo, está reduzida na obesidade e se correlaciona positivamente com a SI (CHOI et al., 2004; SVENSSON et al., 2005) e inversamente com o risco para diabetes mellitus tipo 2 (DM2) (LI et al., 2009). A leptina, outra proteína específica do tecido adiposo, está elevada na obesidade e tem um papel aterogênico, protrombótico e angiogênico por estimular a inflamação vascular, o estresse oxidativo e a hipertrofia de células musculares lisas contribuindo para o desenvolvimento de hipertensão arterial sistêmica (HAS), aterosclerose e outras doenças cardiovasculares (BELTOWSKI, 2006; BELTOWSKI, 2006; CORREIA & HAYNES, 2004; SEUFERT, 2004). A excreção urinária de albumina (EUA), mesmo abaixo dos níveis para o diagnóstico de microalbuminúria, é considerada um fator de RCV independente; um preditor de doença renal e cardiovascular, e ainda um marcador subclínico de disfunção endotelial, uma condição implicada na gênese da aterosclerose (GERSTEIN et al., 2001). A redução da SI faz parte da fisiopatologia de diversas doenças como obesidade, dislipidemia, hipertensão arterial, DM2, eventos cardiovasculares e etc (RASHID et al., 2003; DUVNJAK, & DUVNJAK, 2009). Dados sobre esses quatro parâmetros são controversos na DGH: a adiponectina tem sido descrita como baixa (SVENSSON et al., 2005; LANES et al., 2006) ou normal (JOAQUIN et al., 2008; FUKUDA et al., 2004); a leptina como elevada (STEVENSON et al., 2009; JOAQUIN et al., 2008) ou normal (JUNG et al., 2006; GILL et al., 1999); a EUA tem sido descrita como normal (HOOGENBERG et al., 1993; HANNON et al., 2007) e a SI como reduzida (HEW et al., 1996; GOLA et al., 2005). Nós estudamos a hipótese de um conjunto favorável destes parâmetros na DIGH congênita e vitalícia. ____________________________2. REVISÃO DA LITERATURA 18 A revisão da literatura foi subdividida da seguinte forma: 2.1 DIGH de Itabaianinha 2.2 Eixo GH/ IGF-I, Metabolismo e Sistema Cardiovascular 2.3 Metabolismo e Sistema Cardiovascular na DGH 2.4 Adipocinas, Sistema Cardiovascular e DGH 2.5 Excreção Urinária de Albumina (EUA), Sistema Cardiovascular e DGH 2.6 Sensibilidade Insulínica (SI) 2.7 Função de célula beta 2.8 Eixo GH/ IGF-I e a sensibilidade insulínica 2.9 Sensibilidade insulínica na DGH 2.10 Justificativa Os apêndices 1 (Artigo: Conseqüências em Longo Prazo da Deficiência do Hormônio de Crescimento) e 2 (Artigo: Papel Emergente do Eixo GH/IGF-1 no Controle Cardiometabólico) complementam este tópico. 19 2.1 DIGH de Itabaianinha No município de Itabaianinha (população de aproximadamente 32000 indivíduos), no centro- oeste do Estado de Sergipe, nordeste do Brasil, identificamos uma extensa família com aproximadamente 105 indivíduos (em mais de 8 gerações) com acentuada baixa grave devido a deficiência isolada do GH (DIGH), os “anões de Itabaianinha” (SOUZA et al., 1997). O nanismo de Itabaianinha foi caracterizado como um fenômeno de natureza genético-ambiental, devido à introdução de um gene mutado em uma comunidade isolada e com alta taxa de uniões consangüíneas (SOUZA et al., 1997). Esses indivíduos possuem um modelo de deficiência isolada do hormônio do crescimento (DIGH), tipo 1B, autossômica recessiva com GH extremamente reduzido, devido a uma mutação homozigótica no início do intron 1 (IVS1+1, G→A) no gene do receptor do hormônio liberador do GH (GHRHR), que abole completamente a expressão desse receptor (SALVATORI et al., 1999). Este receptor se localiza na superfície das células somatotróficas hipofisárias e a sua ligação ao GHRH estimula a produção e liberação do GH pela hipófise. O GH age nos tecidos alvos, direta ou indiretamente, através da produção (85% no fígado) do fator de crescimento semelhante à insulina tipo 1 (IGF-I). Desta forma, os “anões de Itabaianinha” vivem com atividade muito baixa do eixo GH/ IGF-I (deficiência de GH/ IGF-I) em conseqüência de resistência ao GHRH. As mutações no GHRHR constituem as causas mais freqüentes de DIGH genéticas tipo 1B (MARTARI & SALVATORI, 2009), sendo a coorte de Itabaianinha a maior já descrita. O segundo maior grupo, com uma outra mutação neste mesmo gene, foi descrito no subcontinente indiano com 18 indivíduos, e são conhecidos como os “anões do Sindh” (MAHESHWARI et al., 1998). A maioria dos indivíduos com DIGH de Itabaianinha não foi tratada com GH durante a infância, o que permite o entendimento das conseqüências em longo prazo da deficiência isolada e vitalícia do hormônio de crescimento. 20 Estudos se sucederam nessa população com DIGH descrevendo seu fenótipo clínico e laboratorial (Figura 1). Figura 1: Indivíduos com DIGH de Itabaianinha e o professor Manuel Hermínio. Os pacientes adultos possuem acentuada baixa estatura (com –9,6 a –5,2 desvios padrões abaixo da média para a altura), com redução proporcional das dimensões ósseas (SOUZA, 1997; SOUZA et al., 2004). Os outros hormônios produzidos pela hipófise encontram-se normais (AGUIAR-OLIVEIRA et al., 1999). A redução do perímetro cefálico é menos acentuada do que a redução na altura anterior da face, resultando em fácies de “boneca” ou fácies de “anjo querubim”, sendo o comprimento da maxila a dimensão facial com maior redução, de mesma intensidade que a redução estatural (OLIVEIRA- NETO et al., 2009). O menor desenvolvimento da porção inferior da laringe causa uma voz de timbre agudo e forte (BARRETO et al., 2009). Mesmo quando corrigidos pela superfície corpórea, os indivíduos adultos afetados apresentam tamanho reduzido da hipófise(OLIVEIRA et 21 al., 2003), tireóide (ALCÂNTARA et al., 2006), coração (BARRETO-FILHO et al., 2002, OLIVEIRA et al., 2006), útero (MENEZES et al., 2008; OLIVEIRA et al., 2008) e baço (OLIVEIRA et al., 2008) e tamanho aumentado de pâncreas, rins e fígado (OLIVEIRA et al., 2008). As alterações características da composição corporal incluem redução acentuada da quantidade de massa magra em quilos (kg) e aumento do percentual (%) de gordura com depósito predominante no abdome, caracterizando um modelo de obesidade central (BARRETO-FILHO et al., 2002). Nos aspectos metabólicos são encontrados aumento de colesterol total e LDL-C, redução de insulina e do homeostasis model assessment (HOMA ir - índice de resistência à insulina), acompanhados de aumento da PCRas e da elevação da pressão arterial sistólica nos adultos, embora sem evidências de HVE pela ecocardiografia e aterosclerose prematura pela espessura da íntima média das carótidas (BARRETO- FILHO et al., 2002, OLIVEIRA et al., 2006). Alguns achados, como níveis elevados de colesterol total e LDL-C, redução na massa magra e um aumento no percentual da massa gorda, são evidenciados desde a infância (de A BARRETTO et al., 1999; GLEESON et al., 2002). Outras características desta população são menor resistência óssea, embora acima do limiar de fraturas (de PAULA et al., 2008), puberdade atrasada, fertilidade normal, paridade diminuída, climatério antecipado (MENEZES et al., 2008) e qualidade de vida normal (BARBOSA et al., 2009). O tratamento com GH subcutâneo diário em crianças, além de provocar o ganho estatural, melhora o perfil lipídico e a composição corporal (GLEESON et al., 2007). Resultados semelhantes sobre o perfil lipídico e a composição corporal foram obtidos em adultos, sem repercussões sobre a glicemia ou a hemoglobina glicada, com a administração do GH de depósito subcutâneo a cada 15 dias por 6 meses (OLIVEIRA et al., 2007), acrescido de melhora da remodelação óssea, de padrão anabólico, com conseqüente aumento da resistência óssea (de PAULA et al., 2008). Um possível efeito adverso deste tratamento foi a eventual aceleração da aterosclerose (OLIVEIRA et al, 2007). Dados não publicados de acompanhamento 5 anos após a suspensão do tratamento em adultos demonstram que a aterosclerose retornou ao ritmo lento de evolução, característico desta população. Foi realizado um estudo de coorte retrospectivo em 2 grupos. Primeiramente comparamos o risco de mortalidade de 65 indivíduos com DIGH e 128 irmãos não 22 afetados em 34 famílias. Subseqüentemente comparamos a idade de morte dos indivíduos com DIGH e a população geral de Itabaianinha. O risco de morte dos indivíduos com DIGH foi similar aos seus irmãos. A duração da vida dos indivíduos com DIGH foi menor que a da população geral, devido a um alta freqüência de mortes nas mulheres com DIGH entre 4 e 20 anos. Entretanto, quando analisamos apenas os indivíduos que alcançaram a idade de 20 anos, não encontramos diferença significativa na duração de vida entre pacientes com DIGH e seus irmãos, nem DIGH e a população geral; sugerindo que a DIGH não é fator de risco para mortalidade geral ou cardiovascular em indivíduos com idades média ou avançada (AGUIAR- OLIVEIRA et al., 2010). Pelo descrito acima, ressaltamos que os pacientes adultos homozigóticos afetados apresentam um conjunto de fatores de risco cardiovasculares (RCV) caracterizado por obesidade central, menor massa magra, aumento do percentual de gordura, aumento da pressão arterial sistólica e níveis elevados da PCRas, colesterol total e LDL-C (BARRETO-FILHO et al., 2002; OLIVEIRA et al., 2006). Por outro lado, a insulina de jejum é mais baixa e eles parecem apresentar uma maior sensibilidade à insulina, quando avaliada por um método que utiliza apenas a glicemia e insulina de jejum (HOMAir); o que seria benéfico, já que a hiperinsulinemia comumente associada à resistência insulínica está relacionada à maior RCV. Mesmo diante deste espectro de fatores de risco e proteção, a espessura média intimal das carótidas (EMIC) destes indivíduos não demonstrou nenhuma evidência de aterosclerose prematura (OLIVEIRA et al., 2006) e a ecocardiografia não demonstrou HVE (BARRETO-FILHO et al., 2002; OLIVEIRA et al., 2006) e pelo estudo de longevidade, não foi evidenciado um aumento da mortalidade cardiovascular (OLIVEIRA et al., 2010). Os indivíduos de Itabaianinha apresentam vários fatores de RCV, sem aumento de insulina e sem lesão de órgãos alvo (HVE) e aterosclerose. Até o momento essa dissociação entre presença de fatores de risco e ausência de doença não está completamente entendida. 23 2.2 Eixo GH/ IGF-I, Metabolismo e Sistema Cardiovascular Recentemente, tem-se consolidado o conceito que muito do potencial do GH em promover o crescimento é secundário ao seu impacto metabólico (MOLLER et al., 2003). Enquanto as ações sobre o crescimento são tempo limitado, as ações metabólicas e cardiovasculares do eixo GH/ IGF-I perduram durante toda a vida. O GH liga-se ao seu receptor (GHR) e, via ativação do sistema JAK–STAT (HERRINGTON & CAETER-SU, 2001), estimula principalmente no fígado a produção de IGF-I. O IGF-I liga-se ao seu receptor (IGF-IR), que por sua vez apresenta considerável homologia com o receptor de insulina, ambos receptores acoplados à tirosina-cinase. O GH tem importantes ações metabólicas em diferentes tecidos, sinérgicas ou até antagônicas às do IGF-I. Em humanos, o GH promove aumento da lipólise e da oxidação lipídica, enquanto o IGF-I desencadeia o aumento da oxidação lipídica apenas cronicamente. A tabela 1 sumariza os principais efeitos metabólicos do GH e IGF-I. Tabela 1: Ações metabólicas do GH e do IGF-I Órgão GH IGF-I Tecido Adiposo Aumenta lipólise Induz diferenciação de pré-adipócitos Reduz captação de glicose Reduz lipogênese Reduz re-esterificação de AGL Músculo Esquelético Estimula síntese de proteínas Estimula síntese de proteínas Reduz captação de glicose Estimula captação de glicose (GLUT-4) Aumenta atividade da LPL Fígado Aumenta secreção de VLDL Diminui produção hepática de glicose Aumenta atividade de HL Reduz expressão de P-PARα Global Aumenta síntese de proteínas Aumenta síntese de proteínas Aumenta MM e reduz MG % Aumenta MM e reduz MG % Reduz sensibilidade insulínica Aumenta sensibilidade insulínica Aumenta a produção e captação de lipoproteínas Agudamente reduz e cronicamente aumenta a oxidação lipídica Aumenta lipólise Aumenta oxidação lipídica AGL - ácidos graxos livres; HL- lipase hepática; P-PARα - receptor ativado do proliferador do peroxisomo tipo α; LPL - lipase lipoprotéica; VLDL - lipoproteína de muito baixa densidade; MM - massa magra; MM% - percentual de massa gorda 24 O GH e o IGF-I participam da regulação fisiológica de vários mecanismos implicados direta ou indiretamente no risco cardiovascular tais como controle da pressão arterial, reatividade vascular, modulação da expressão da massa ventricular, distribuição da massa gorda/ massa magra, sensibilidade à insulina, perfil lipídico, expressão de receptores de LDL no fígado e lipólise dentre outros (SALVATORI, 2004; GOLA et al., 2005). A diminuição de IGF-I parece estar associada à disfunção endotelial, já que o IGF-I aumenta a produção de óxido nítrico, melhora a sensibilidade á insulina, promove a ativação dos canais de potássio dependentes de ATP, previne a dislipidemia pós prandial e ainda têm ações antiinflamatórias e antiapoptóticas (PFEITER et al., 1999). O IGF-I e a insulina são potentes fatores tróficos, independentes da pressão arterial, na determinação da massa ventricular esquerda e da geometria cardíaca (VERDECCHIA et al., 1999). 2.3 Metabolismo e Sistema Cardiovascular na DGH A DGH cursa com alterações metabólicas há muito conhecidas. Quando estadeficiência ocorre na infância, há predisposição a estados hipoglicêmicos persistentes e profundos, pois o GH exerce papel fundamental para a homeostase glicêmica neste período. Esta importância decresce em períodos posteriores contribuindo para que a deficiência de GH no adulto curse com resistência à insulina e hiperglicemia, pois na fase adulta o IGF-I passaria a ter participação mais intensa nos mecanismos homeostáticos dos carboidratos (MAURAS et al., 2005). Outro fator para esta resistência à insulina seria a alteração na composição corporal. É descrito que a DGH está associada à diminuição da massa magra e aumento do percentual de gordura, em especial da gordura visceral, provavelmente decorrente da ausência das ações lipolíticas e inibitórias do armazenamento lipídico do GH, além de suas ações referentes ao anabolismo protéico. Este dado é corroborado por estudos que 25 demonstram reversão destes parâmetros após reposição com GH (YUEN & DUNGER, 2006; BRUMER, 1998). Na DGH encontramos prejuízo na vasodilatação dependente de endotélio, aumento da agregação plaquetária, aumento da PCRas, elevação do PAI-1, elevação do fibrinogênio, aumento da EMIC e maior prevalência de placas ateroscleróticas, que podem ser revertidas com o tratamento com GH (CAPALDO et al., 1997; PFEITER et al., 1999). Tem sido descrito que portadores de DGH apresentam aumento da morbimortalidade cardiovascular (CV) e cerebrovascular (BENGTSSON, 1998; BULOW et al, 2000). Entretanto, como a DIGH é doença rara, estes estudos foram realizados em populações nas quais a DGH deve- se a várias etiologias e diferentes graus de gravidade, além de geralmente estar associada a múltiplas deficiências hipotálamo - hipofisárias (hipopituitarismo), a terapia de reposição com múltiplos hormônios (glucocorticóides, L-tiroxina e esteróides sexuais) e ao fato de que grande parte desses pacientes foram submetidos à cirurgia hipofisária ou hipotalâmica e/ ou radioterapia dessas regiões; fatores de confusão na interpretação desses dados. É possível que os efeitos na mortalidade CV e cerebrovascular sejam, em parte, devidos à combinação de várias deficiências hipofisárias, à complicação de terapias prévias ou à dosagem imprecisa das terapias substitutivas. De fato, em pacientes com hipopituitarismo, não existe um mecanismo preciso para titular a terapia com glicocorticóides, além de não se poder utilizar a dosagem de TSH para ajustar a dose de tiroxina, como no hipotireoidismo primário. Em adição, tem sido proposto que a mortalidade CV em pacientes com tumores hipofisários possa ser associada à radioterapia, que pode causar lesão vascular direta (BRADA et al., 2002). Em um estudo no Reino Unido com 1014 indivíduos com panhipopituitarismo, o aumento da mortalidade CV e respiratória não se correlacionou positivamente com DGH e sim com deficiência gonadotrófica (TOMLINSOM et al., 2001). Ou seja, permanece incerto se o aumento da morbimortalidade CV associada ao hipopituitarismo tratado resulta de DGH não tratada ou desses fatores de confusão adicionais. 26 Portanto, o real papel da DGH na expressão fenotípica do risco cardiovascular ainda merece ser investigado em populações com deficiência isolada do GH (DIGH) decorrentes de doenças homogêneas (p.ex: defeito monogênico) e não associadas a outras hipofunções hormonais. O fato da DIGH ser rara, de que a maioria dos pacientes com DIGH é tratada com GH pelo menos durante a infância e de que uma grande porcentagem de crianças com DIGH idiopática, quando avaliadas na idade adulta, não mantém a deficiência de GH (JUUL et al., 1997), torna difícil estudar pacientes com DIGH congênita, vitalícia, não tratados durante a infância. Os “anões de Itabaianinha” consistem, então, na população ideal para definir o impacto da grave DIGH na fisiopatologia cardiovascular. Este modelo humano de DIGH apresenta redução de massa magra refletindo a carência do efeito sinérgico do GH e do IGF-I sobre o anabolismo protéico e exagero do percentual de gordura com predomínio truncal, decorrente da menor lipólise neste sitio. O tratamento com GH nestes indivíduos, sobretudo na fase de transição para a idade adulta, é crítico para o estabelecimento de uma composição corporal adequada (GLEESON et al., 2007). Os níveis séricos de colesterol total e de LDL-C são elevados, em comparação com os controles da mesma região (BARRETO-FILHO et al., 2002; GLEESON et al., 2002), efeito eventualmente associado a uma redução da expressão dos receptores hepáticos para o LDL-C (RABEN & HOLLENBERG, 1959). Os níveis séricos de insulina e HOMA ir são menores que nos controles (BARRETO-FILHO et al., 2002; OLIVEIRA et al., 2006). Estes indivíduos não apresentam aterosclerose prematura, HVE nem maior mortalidade CV (BARRETO-FILHO et al., 2002; OLIVEIRA et al., 2006; AGUIAR-OLIVEIRA et al., 2010). Além deste fenótipo metabólico e cardiovascular, é importante relatar que, como o nível de IGF-I desses indivíduos é mais reduzido que aqueles comumente associados ao aumento do RCV (AGUIAR-OLIVEIRA et al., 1999), a deficiência absoluta e vitalícia do GH parece ser menos deletéria ao sistema cardiovascular que a deficiência adquirida ou moderada. Isso pode ocorrer possivelmente pela menor 27 proliferação das células musculares lisas, etapa primordial para o crescimento de placa aterosclerótica, quando o eixo GH/ IGF-I é vitalício e gravemente deprimido (DELAFONTAINE et al., 2004; OLIVEIRA et al., 2006). Por outro lado, a redução menos grave do IGF-I e com início na idade adulta pode levar à apoptose daquelas células, provocando a ruptura de placas ateroscleróticas pré-existentes e os eventos cardiovasculares na DIGH adquirida ou moderada (DELAFONTAINE et al., 2004). 2.4 Adipocinas, Sistema Cardiovascular e DGH A obesidade faz parte da fisiopatologia de diversas doenças como dislipidemia, DM2, doenças cardiovasculares, HAS, apnéia do sono, etc (RASHID et al., 2003; DUVNJAK, & DUVNJAK, 2009). O tecido gorduroso é considerado um órgão endócrino, pois secreta várias substâncias, denominadas adipocinas. Várias adipocinas foram descritas, dentre elas a adiponectina (ação anti-inflamatória, sensibilizadora de insulina e antidislipidêmica) e leptina (ação aterogênica, protrombótica, angiogênica e de resistência à insulina) (KARBOWSKA & KOCHAN, 2006). A adiponectina é uma proteína com 244 aminoácidos que, apesar de ser derivada exclusivamente do tecido adiposo, está reduzida na obesidade (STEFAN & STUMVOLL, 2002). Estudos epidemiológicos prospectivos têm sugerido que elevadas concentrações da adiponectina estão associadas com aumentada sensibilidade à insulina e reduzido risco para DM2, aparentemente independente da obesidade e outros potenciais confundidores (CHOI et al., 2004; LINDSAY et al., 2005; SPRANGER et al., 2003). O desenvolvimento de intervenções terapêuticas que elevem a adiponectina tem sido proposto com o objetivo de melhorar a sensibilidade à insulina e tolerância à glicose e possivelmente prevenir doença cardiovascular (BODARY & EITZMAN, 2006). Adicionalmente, a adiponectina tem sido proposta como protetora contra DCV por outros mecanismos. Ela tem ações antiinflamatórias agindo através do fator nuclear kappa beta (OUCHI et al., 2000), regulando negativamente a expressão de moléculas de adesão em células endoteliais (OUCHI et al., 1999), e aumentando o clearance de lipídeos em numerosos modelos animais 28 (STEFAN & STUMVOLL, 2002; WANG et al., 2002). De acordo com essas observações, a administração exógena de adiponectina protege contra o desenvolvimento de aterosclerose em ratos deficientes da apolipoproteina E (YAMAUCHI et al., 2003). Quanto à associação com RCV em humanos, os estudos clínicos são controversos. A adiponectina é descrita como fator protetor independente para RCV e DM2 (PISCHONet al., 2004; LAWLOR et al., 2005; COSTACOU et al., 2005; ZOCCALI et al., 2002; LINDSAY et al., 2005; NAVEED SATTAR et al., 2006). O padrão de expressão da adiponectina em diferentes tecidos gordurosos pode influenciar o padrão de concentração da adiponectina sérica e risco de doença subsequente, com expressão preferencial da adiponectina na gordura subcutânea (FISHER et al., 2002). Adiponectina aumenta a sensibilidade à insulina e oxidação de ácidos graxos em ambos fígado e tecido muscular esquelético, reduzindo o conteúdo de triglicerídeos nestes tecidos. Além disso, estimula a captação de glicose através de músculo esquelético e cardíaco, e inibe a produção de glicose pelo fígado; por conseguinte aumentando a sensibilidade à insulina e diminuindo a glicemia (HUERTA, 2006). Existem poucas descrições dos níveis séricos da adiponectina na DGH. Em modelos animais a adiponectina foi reduzida na DGH (SVENSSON et al., 2005) ou elevada na resistência ao GH (NILSSON et al., 2005). Em humanos com DGH, foi descrita adiponectina normal (FUKUDA et al., 2004; JOAQUIN et al., 2008) ou reduzida (LANES et al., 2006). Já a leptina é um hormônio com 16 kDa, sintetizado e secretado especificamente pelo tecido adiposo branco (ZHANG et al., 1994). A leptina diminui apetite, aumenta gasto energético e pode ter efeitos diminuindo a resistência insulínica (SIVITZ et al., 1997; de COURTEN et al., 1997; BERTI et al., 1997) ou aumentando-a (COHEN et al., 1996; HENNIGE et al., 2006; MUOIO et al., 1997; LIU Y-L et al., 1997). A deficiência deste hormônio nos ratos OB/OB causa desequilíbrio no balanço energético e obesidade grave (ZHANG et al., 1994). Em humanos, raríssimos casos de obesidade grave são associados à deficiência de leptina (MONTAGUE et al., 1997; STROBEL et al., 1988; OZATA et al., 1999). Em ambas as situações, a reposição de leptina corrige a obesidade (PELLEYMOUNTER et al., 29 1995; FAROOQI et al., 1999). Contudo, a maioria da causas de obesidade em humanos apresentam níveis elevados de leptina, caracterizando um fenômeno de resistência à leptina (GELONEZE et al., 2001), o que acarreta pouca ou nenhuma resposta terapêutica com a administração de leptina (CLEMENT et al., 1998). A leptina tem ações na fertilidade e no metabolismo ósseo (MARGETIC et al., 2002), além de ações relacionadas ao sistema cardiovascular, sendo potencialmente aterogênica, trombótica e angiogênica (SEUFERT, 2004; BELTOWSKI, 2006; CORREIA & HAYNES, 2004; WERNER & NICKENIG, 2004). A leptina ao estimular a resistência à insulina, a inflamação vascular, o estresse oxidativo e a hipertrofia da musculatura vascular lisa, pode contribuir para a patogênese do DM2, HAS, aterosclerose e doença CV (SEUFERT, 2004; BELTOWSKI, 2006; STEFAN & STUMVOLL, 2002). Há controvérsias sobre os níveis de leptina em indivíduos com DGH. A maioria das descrições refere elevação da leptina plasmática (STEVENSON et al., 2009; JOAQUIN et al., 2008). Em algumas descrições, a leptina é normal (JUNG et al., 2006; GILL et al., 1999), porém a retirada do tratamento com GH em indivíduos com DGH aumenta a leptina (GILL et al., 1999). Na criança há relatos de aumento da leptina na DGH de causas heterogêneas (CIRESI et al., 2007) e na DIGH por mutação no gene do GHRHR em Itabaianinha (de A BARRETTO et al., 1999). A relação leptina e DGH é complexa devido às diferenças marcantes na composição corporal, sobretudo na massa magra e na adiposidade, embora foi demonstrada na DGH de Itabaianinha, uma secreção maior de leptina por massa gorda nas crianças e adolescentes (de A BARRETTO et al., 1999). É possível que neste grupo etário a leptina participe do processo de indução puberal em indivíduos de acentuado baixo peso corporal total. Uma possível explicação para a dissociação entre a presença de fatores de risco e ausência de doença na população com DIGH de Itabaianinha seria a presença de um perfil de adipocinas diferente do observado nas formas mais comuns de obesidade humana. 30 2.5 Excreção Urinária de Albumina (EUA), Sistema Cardiovascular e DGH A EUA pode ser estimada em urina de 24 horas, em quantidade de urina obtida dentro de um determinado período de tempo (por exemplo: 12 horas noturnas ou diurnas) ou ainda em amostra isolada de urina, através da relação entre as dosagens de albumina e creatinina (KEANE & EKNOYAN, 1999; ZANELLA 2006). A denominação microalbuminúria se refere a um aumento na EUA, entre 20 e 200 µg/min ou 30 a 300 mg /24 horas. Acima desses valores consideramos macroalbuminúria. O aumento da EUA, mesmo abaixo do valor para microalbuminúria é um indicador de lesão de órgãos alvo, dano glomerular (GIUSTINA et al., 1993; GIUSTINA et al., 1998) e dano vascular generalizado (DECKERT et al., 1989). Ou seja, é considerado um marcador de disfunção endotelial, como o fator de Von Willebrand, trombomodulina e o fator VII ativado (PEDRINELLI et al., 1994). Em animais, aumento do transporte transvascular de albumina está ligado a aumento do transporte de lipoproteínas para a parede arterial (BIANCHI et al., 1999). Ainda nesse contexto, a EUA se relaciona com a espessura da camada íntima da artéria carótida comum, uma medida quantitativa da aterosclerose sistêmica (PEDRINELLI, 1997). Além disso, a EUA pode ser considerada um marcador de inflamação em processos como sepse, trauma, pancreatite aguda e síndrome da angústia respiratória do adulto (GOSLING, 1998). Em estudos recentes, níveis de PCRas e fibrinogênio mostraram-se mais altos em portadores de DM2 com microalbuminúria do que naqueles com EUA normal (SCHALKWIJK et al., 1999). Em um sentido mais geral e amplo a EUA já reflete o início da doença vascular arterial. Uma amostra única de urina apresentando EUA elevada pode predizer complicações renais e cardiovasculares (NELSON et al., 1991). Tem sido demonstrada uma correlação positiva e praticamente linear entre a EUA e a ocorrência de infarto do miocárdio ou de acidentes vasculares cerebrais, em pacientes 31 portadores ou não de DM2 (HOCKENSMITH et al., 2004; SCHMITZ & VAETH, 1988; TUTTLE et al., 1999; BORCH-JOHNSEN et al., 1999; CORRÊA et al., 2006). Evidências epidemiológicas indicam que a presença de microalbuminúria prediz maior morbidade e mortalidade CV independente de outros fatores de risco (KEANE & EKNOYAN, 1999), podendo ser denominada como um fator bem definido de RCV (ADLER et al., 2003; MOGENSEN, 1984). São raras as descrições da associação entre EUA e DGH. O GH parece estimular a função renal tanto diretamente quanto através do IGF-I, que também altera a hemodinâmica renal (GULER et al., 1989). A administração de GH a indivíduos saudáveis aumenta a taxa de filtração glomerular e fluxo plasmático renal (CORVILAIN & ABRAMOW, 1962; CHRISTIANSEN et al., 1981). Na DGH, a EUA é descrita como no limite inferior da normalidade ou baixa (HOOGENBERG et al., 1993; JORGENSEN et al., 1989). A excreção urinária de albumina, marcador precoce de disfunção endotelial, comumente associada a HAS, à inflamação e à dislipidemia, presentes nos indivíduos com DIGH de Itabaianinha, reforçará ou não o dado de ausência de doença. 2.6 Sensibilidade Insulínica (SI) Tem sido exaustivamente demonstrado que reduzida SI é um fator importante no desenvolvimento de anormalidades lipídicas, acúmulo de gordura visceral e aterosclerose em indivíduos com obesidade, HAS e DM2 (RASHID et al., 2003; DUVNJAK, & DUVNJAK, 2009). A associação entre obesidade, resistência insulínica (RI) e hiperinsulinemia é complexa. Estudo com 1308 indivíduos sem diabetes e com vários fatores de RCV avaliando a freqüência de obesidade pelo IMC ou circunferência abdominal, de RI pelo clamp euglicêmico hiperinsulinêmico e de hiperinsulinemia pelo estímulo com o teste de tolerância à glicose oral (TTGO) revelou que cada um destes fatores32 isoladamente associa-se ao RCV. Contudo, apenas 8% dos pacientes que se encontravam nos quartis mais elevados para obesidade, RI e hiperinsulinemia apresentavam simultaneamente os 3 fatores, exemplificando a dificuldade de se avaliar a RI e/ou SI mesmo pelos métodos mais sofisticados ou adequados (FERRANNINI et al., 2007). Esquematicamente os métodos para avaliar SI envolvem a homeoestase insulino glicose através de técnicas basais (sem estímulo) e técnicas dinâmicas (submetidas a diferentes estímulos). Entre as técnicas basais estão a insulinemia de jejum (medida absoluta dos níveis séricos de insulina em jejum), o HOMAir (índice de insulino resistência, ou seja valores mais baixos indicam uma maior SI) (MATHEWES et al., 1985)e o QUICKI (Quantitative insulin sensitivity check index, índice de insulino sensibilidade, onde seja valores mais altos indicam uma maior SI) (KATZ et al., 2000). Os dois últimos são calculados através dos níveis séricos de glicemia e insulina em jejum pelas fórmulas abaixo: - HOMAir: Glicemia em mg/dl x 0,05551 x insulina em µU/ml / 22,5 - QUICKI: 1/ (log insulina µU/ml + log glicemia mg/dl) Exemplificam as técnicas dinâmicas o índice de Matsuda e DeFronzo (MATSUDA & DEFRONZO, 1999); os OGIS 2 e OGIS 3 (MARI et al., 2001); a técnica do modelo mínimo (frequent sample IV glucose tolerance test) (BERGMAN, 2005); o teste de supressão de insulina (GREENFIELD et al., 1981); o clamp hiperglicêmico (DeFronzo et al., 1979) e o clamp euglicêmico hiperinsulinêmico (BLOOMGARDEN, 2006). A citar: - Índice de Matsuda e DeFronzo utiliza a glicose oral como estímulo e é calculado através da fórmula: 10000 / √(Glicose tempo 0 x Insulina no tempo 0) x (Glicose média x Insulina média) - OGIS 2 e OGIS 3 são índices de SI à glicose oral (OGIS) derivado de um modelo matemático utilizando o TTGO com 2 e 3 horas (OGIS 2 e OGIS 3, respectivamente) que predizem o clearance de glicose no clamp euglicêmico hiperinsulinêmico. Além de simples e seguros, eles assumem a existência de uma 33 relação linear entre concentrações de glicose e insulina, descrevendo a cinética de glicose durante o TTGO como um modelo de único compartimento. O método requer a dose oral de glicose administrada, e as concentrações de glicose e insulina nos tempos 0, 90 e 120 para o cálculo do OGIS 2 e 0, 120 e 180 para o cálculo do OGIS 3 (fórmulas disponíveis no Anexo 1). - Técnica do modelo mínimo consiste de análises mínimas das curvas da glicemia e insulina plasmáticas em reposta a infusão de glicose endovenosa, que propicia picos elevados de glicemia e desencadeia a hiperinsulinemia que vai conduzir ao posterior clearance da glicose. Este clearance da glicose é o reflexo da sensibilidade à insulina. Este método, contudo, requer um número elevado de dosagens sanguíneas (-15’, -10’, -5, -1’, 2’, 3’, 4’, 5’, 6’, 8’, 10’, 14’, 19’, 22’, 25’, 30’, 40’, 50’, 70’, 100’, 140’ e 180’) - Teste de supressão de insulina requer a administração quádrupla de insulina, glicose, adrenalina e propanolol. Este teste apresenta uma boa correlação com o clamp euglicêmico hiperinsulinêmico e mais recentemente a infusão de adrenalina vêm sendo substituídas pela de somatostatina. - Clamp hiperglicêmico é um método que permite examinar a resposta secretória da insulina/ glicose e quantificar o consumo do organismo como um todo sob condições constantes de hiperglicemia. -Clamp euglicêmico hiperinsulinêmico é considerado o padrão ouro na avaliação da sensibilidade insulínica. Consiste em medir a captação total de glicose pelo organismo submetido a uma hiperinsulinemia fixa. Requer, portanto, a administração simultânea de insulina e glicose durante 4 horas com o objetivo de manter a glicemia em uma faixa normal e constante. Indivíduos mais resistentes à insulina receberão menores quantidades de glicose, que indivíduos normais. O clearance de glicose (Clclamp) é calculado pela taxa de infusão de glicose nos 20, 40 ou 60 minutos finais do clamp. Cada um estes procedimentos apresenta vantagens e desvantagens. Sendo os métodos que usam medidas em jejum de execução simples e, portanto de fácil utilização na clínica. No entanto, os métodos que avaliam insulina no estado pós absortivo fornecem uma boa avaliação da sensibilidade hepática à insulina e não refletem a ação da insulina nos tecidos insulino dependentes, como músculo e tecido 34 adiposo, haja vista que a maior parte de consumo de glicose nestas condições ocorre pelo cérebro, células sanguíneas e tecidos insulino independentes. Dos métodos dinâmicos o padrão ouro é o clamp euglicêmico hiperinsulinêmico, embora possa ser criticável por não refletir condições do dia a dia dos indivíduos estudados incluindo o período pós alimentar. Desta forma métodos que utilizem a administração oral de glicose, apesar de não absolutamente fisiológicos correlacionam-se melhor com a secreção de insulina pós alimentar, o que pode conferir vantagens fisiopatológicas (FERRANNINI et al., 2007). O clamp euglicêmico hiperinsulinêmico exige uma equipe experiente e aparelhagens específicas não disponíveis na maior parte dos laboratórios e que torna seu uso impróprio para protocolos em larga escala. O teste de tolerância à glicose endovenosa com amostras freqüentes ou modelo mínimo (BERGMAN, 2005), requer um número elevado de dosagens sanguíneas, que o torna também impróprio para estudos de campo. OGIS 2 e OGIS 3 (MARI et al., 2001), dos métodos que utilizam a glicose oral como estímulo foi o que melhor se correlacionou ao padrão ouro, o clamp euglicêmico hiperinsulinêmico. Eles são de simples execução e refletem o estado pós alimentar, sendo os testes dinâmicos escolhidos para a avaliação da sensibilidade à insulina dos indivíduos com DIGH de Itabaianinha. 2.7 Função de célula beta A célula beta pancreática é possivelmente a mais complexa das células endócrinas. Seu principal produto, a insulina, deve ser ministrado aos tecidos corpóreos em uma dinâmica específica de quantidade e tempo para manter a glicose dentro de uma concentração muito estreita. De fato o débito de insulina deve ser compatível com a composição e ritmo de fornecimento das refeições por um lado e com a sensibilidade insulínica no outro lado. A função da célula beta, isto é, a secreção de insulina pode se adaptar a estímulos minuto a minuto pela ação das catecolaminas, após uma refeição mista pela ação das incretinas e a médio e longo prazo pela ação de hormônios tireoideanos, GH, aumento de peso corpóreo e envelhecimento (FERRANINI & MARI, 2004). De fato, a SI flutua de 30 a 80% 35 durante as 24 horas do dia, enquanto a secreção de insulina pode variar várias vezes em uma questão de minutos. Uma consequência da fisiologia diferente da secreção de insulina (função da célula beta) versus SI é que a metodologia para estudos in vivo para a última é muito mais avançada que para a primeira. A relação entre sensibilidade insulínica e função de célula beta é melhor descrita por uma hipérbole, isto é uma função não linear na qual a liberação de insulina altera-se muito pouco em uma grande variação da SI e posteriormente aumenta drasticamente com conseqüente diminuição da SI. A tolerância à glicose é preservada na medida em que a função de célula compensa a diminuída SI pelo aumento apropriado da secreção de insulina. Semelhante a SI, a função da célula beta pode ser avaliada por métodos basais e dinâmicos. O HOMA beta (MATHEWES et al., 1985) é um método basal de avaliação da função da célula beta calculado através da fórmula: (20 x Insulina de jejum µU/ml) / (Glicemia de jejum mg/dl x 0,05551) – 3,5 Os métodos dinâmicos refletem a capacidade secretória da célula beta frente a elevação da glicemia. Temos o índice insulinogênico (SELTZER et al., 1967), que reflete a fase rápida de secreção de insulina,ou seja, utiliza para seu cálculo os valores de glicemia e insulina dos tempos 0 e 30 minutos: (Insulina no tempo 30- Insulina no tempo 0)/ (Glicemia no tempo 30 – Glicemia no tempo 0) e o cálculo da área sobre a curva da relação insulina por glicose (ASC I/G) (SELTZER et al., 1967) em todo o período avaliado no TTGO. 2.8 Eixo GH/ IGF-I e a sensibilidade insulínica Existe uma relação complexa entre os níveis de GH/ IGF-I e a sensibilidade à insulina. Enquanto o GH contrabalança o efeito da insulina, ou seja, é hiperglicemiante; o IGF-I, produzido sobretudo pela ação do GH no seu receptor hepático, tem uma ação semelhante à insulina (1/12 da ação desta) provavelmente 36 pela ligação ao receptor do IGF-I no músculo. A ação hiperglicemiante do GH dá-se basicamente no fígado enquanto a ação hipoglicemiante do IGF-I dá-se basicamente no músculo (CLEMMONS, 2004). Ademais, a exposição ao GH tem um efeito de redução da gordura visceral, o que pode promover um aumento na sensibilidade à insulina. Desta forma, é difícil prever como as mudanças com a exposição ao GH exógeno ou endógeno podem afetar a ação da insulina (HANNON et al., 2007). Camundongos com deleção do gene do GHR são hipersensíveis à insulina devido ao aumento do número de IRs no fígado, porém com uma tolerância diminuída à glicose devido a um menor número de células β pancreáticas e uma reduzida secreção de insulina, consequentes à redução do estímulo do GH, via IGF-I na massa de células β pancreáticas (LIU et al., 2004). Expressão gênica de IGF-I nas ilhotas pancreáticas destes animais restaura a massa de células beta, normalizando a produção de insulina e a tolerância à glicose (GUO et al., 2005). Outro modelo estudado é o do camundongo com deficiência hepática de IGF-I (DHIGF-I) (YAKAR et al., 1999). Neste modelo há uma redução em 75% do IGF-I circulante, com aumento do GH e da insulina, em cerca de 4 vezes, com glicemias normais, o que sugere insulino-resistência, com tolerância à glicose aparentemente normal. Com a técnica do clamp euglicêmico-hiperinsulinêmico, foi verificado que esta insulino- resistência ocorre basicamente no músculo e somente tardiamente no fígado e tecido adiposo. Para distinguir se a insulino-resistência seria decorrente da baixa concentração de IGF-I ou dos elevados níveis de GH foram realizados estudos em animais transgênicos oriundos do cruzamento dos animais com DHIGF-I com outros que expressam um antagonista do GH (YAKAR et al., 2004). Na progenia obtida destes animais, a sensibilidade à insulina foi restaurada em concordância com estudos em humanos em que o uso do antagonista do GH na acromegalia também melhorou a insulino-sensibilidade. Os experimentos em modelos animais indicam um papel importante do GH na resistência à insulina, enquanto o papel do IGF-I nesta condição ainda não está 37 completamente elucidado. Por outro lado, para o desenvolvimento de uma massa normal de células beta e produção de insulina, o IGF-I parece ser o principal fator. 2.9 Sensibilidade insulínica na DGH A DGH, de origem adquirida, é freqüentemente associada à insulino resistência; mas a maioria dos estudos são de pacientes com panhipopituitarismo e que fazem reposição de um ou mais dos hormônios (HEW et al., 1996). Outros déficits hormonais e a terapia hormonal combinada podem contribuir para a resistência à insulina encontrada nesses pacientes. Os pacientes homozigotos (BARRETO-FILHO et al., 2002) e heterozigotos (PEREIRA et al., 2007) de Itabaianinha apresentaram maior sensibilidade à insulina quando avaliados pelo HOMAir. No entanto, para melhor caracterizar a SI destes pacientes, necessitamos de avaliação por método dinâmico, o que nos permitirá confirmar essa sugestão de maior SI, ajudando a compor uma base fisiopatológica plausível para entendermos a ausência de doença na presença de fatores de risco. 2.10 Justificativa Os indivíduos com DIGH de Itabaianinha apresentam vários fatores de RCV sem apresentar maior morbimortalidade cardiovascular. Os dados na literatura da existência de elevada morbimortalidade cardiovascular na DGH são provenientes de estudos de pacientes portadores de DGH adquirida e comumente associada a hipopituitarismo e vários fatores confundidores, como etiologia, idade de início da deficiência, gravidade, cirurgia e radioterapia hipofisárias e terapia substitutiva com hormônios tireoideanos, gonadais e adrenais. 38 A existência de um modelo humano com DIGH congênita, com grande número de acometidos, não tratados com GH durante a infância, permite-nos estudar as inter relações fisiopatológicas entre a DIGH e o fenótipo cardiovascular, incluindo o perfil de adipocinas, a excreção urinária de albumina, a sensibilidade insulínica e a função da célula beta. _____________________________________________3. OBJETIVOS 40 Objetivo Geral: Avaliar fatores potenciais que expliquem a dissociação entre a presença de marcadores de risco cardiovascular e a ausência de lesão de órgão alvo e morte cardiovascular na DIGH de Itabaianinha. Objetivos Específicos: 1. Estudar os níveis séricos de adiponectina e leptina em indivíduos homozigóticos afetados para a mutação no gene do receptor do GHRH 2. Estudar a excreção urinária de albumina em indivíduos homozigóticos afetados para a mutação no gene do receptor do GHRH. 3. Estudar a sensibilidade à insulina em indivíduos homozigóticos afetados para a mutação no gene do receptor do GHRH. 4. Estudar a função da célula beta em indivíduos homozigóticos afetados para a mutação no gene do receptor do GHRH. ______________________________4. CASUÍSTICA E MÉTODOS 42 4.1 Tipo de estudo Estudo transversal, analítico, com grupo controle realizado no município de Itabaianinha, Centro-Sul do Estado de Sergipe. Este estudo foi submetido ao comitê de ética em pesquisa e os participantes assinaram o termo de consentimento livre e esclarecido (Anexo 2). 4.2 Critérios de exclusão Aplicamos questionário inicial visando afastar doenças, conhecer hábitos de vida (etilismo ou tabagismo), assim como identificar medicamentos que pudessem interferir nos resultados laboratoriais. Foram excluídos indivíduos com: • Idade inferior a 25 anos; • Uso de estatinas, terapia de reposição hormonal com esteróides sexuais, anti- psicóticos e anti- convulsivantes; • Ingestão de bebida alcoólica nas últimas 12 horas; • Tabagismo; • Portadores de doenças crônicas ou graves. • Diagnóstico de Diabetes Mellitus ou na realização do protocolo de sensibilidade à insulina o achado de glicemia de jejum maior ou igual a 126 mg/dl. 4.3 População Indivíduos com DIGH e controles foram convidados a participar do presente trabalho, através de cartazes colocados na associação e convites por ocasião das reuniões realizadas na Associação do Hormônio de Crescimento Físico e Humano de Itabaianinha (ASCRIN). 43 O presente trabalho foi subdividido em dois experimentos, realizados com intervalo de aproximadamente 2 anos, de forma que os grupos DIGH e controle não são idênticos. Contudo, 13 pacientes portadores de DIGH e 3 controles participaram dos dois experimentos. 4.3.1. Experimento 1 : Avaliação da adiponectina, leptina e excreção urinária de albumina No grupo DGH compareceram 22 indivíduos portadores da mutação IVS 1+1 G→A no receptor do GHRH a e no grupo Controle 24 indivíduos sem a referida mutação pareados por idade e sexo. Foram excluídos do primeiro, um paciente por tabagismo e um paciente que usava drogas anti-convulsivantes; e do segundo um indivíduo tabagista que usava drogasanti- convulsivantes e um indivíduo com anemia acentuada e IGF-I extremamente baixo, caracterizando doença crônica. Os grupos ficaram assim constituídos: a) Grupo DGH, 20 indivíduos (51 ± 15 anos, 7 M/ 13 F) b) Grupo Controle, 22 indivíduos (50 ± 11 anos, 8 M/ 14 F) 4.3.2 Experimento 2 : Avaliação da Sensibilidade à insulina No grupo DGH compareceram 27 indivíduos portadores da mutação IVS 1+1 G→A no receptor do GHRH a e no grupo Controle 27 indivíduos sem a referida mutação pareados por idade e sexo, destes foram excluídos do grupo DGH: dois pacientes com diagnóstico prévio de diabetes e um paciente que apresentou glicemia de jejum maior que 126; e do grupo controle um indivíduo tabagista que apresentou glicemia de jejum maior que 126 e outro que ingeriu duas soluções de glicose oral com 75 gramas (dobro da dose). 44 Os grupos ficaram assim constituídos: a) Grupo DGH, 24 indivíduos (39 ± 12 anos, 12 M, 12 F) b) Grupo Controle, 25 indivíduos (40 ± 12 anos, 14 M/ 11 F). 4.4 Antropometria A altura foi aferida através de estadiômetro vertical. O peso foi avaliado em balança digital. O índice de massa corpórea (IMC) foi calculado pela fórmula: peso (Kg)/ altura (m)2 . A circunferência abdominal em centímetros foi medida com fita métrica na metade da distância entre a face inferior da última costela e a porção superior da crista ilíaca. O quadril foi medido na altura dos trocânteres femurais. A relação cintura/ quadril (C/Q) foi calculada (WHO, 1988). ________________________________________5. EXPERIMENTO 1: Avaliação da adiponectina, leptina e excreção urinária de albumina 46 5.1 Casuística e Métodos 5.1.1 Composição Corpórea A composição corpórea foi medida em antebraço por infravermelho, utilizando um aparelho portátil, denominado Fultrex (BRODIE & ESTON, 1992). O procedimento consiste em posicionar uma sonda de fibra óptica tangenciada sobre o músculo biciptal na metade da face anterior do antebraço e medir a energia refletida pelo feixe infravermelho em duas diferentes freqüências. Uma equação de regressão múltipla é utilizada para associar os dados da reflexão do feixe infravermelho com outros dados antropométricos (idade, sexo, peso, altura e estrutura óssea) para predizer a composição corporal (BRODIE & ESTON, 1992). 5.1.2 Pressão Arterial A pressão arterial foi medida em esfigmomanômetro de mercúrio, após 10 minutos de repouso na posição sentada, por um mesmo examinador. Para os indivíduos com DGH foi utilizado manguito adaptado à circunferência e ao comprimento dos antebraços desses indivíduos. 5.1.3 Avaliação laboratorial: Foi coletado 20 ml de sangue da veia braquial, após 12 horas de jejum. As dosagens laboratoriais foram realizadas no laboratório Fleury, São Paulo, SP. O soro para a dosagem da adiponectina ficou congelado a -70 até a dosagem. 47 5.1.3.1 Bioquímica: O colesterol total, triglicérides e glicemia foram medidas pela técnica colorimétrica enzimática de Trinder (TRINDER, 1969). O HDL foi separado utilizando o método de cloreto de magnésio/ ácido fosfotungístico e a concentração de LDL foi calculada indiretamente através da fórmula de Frieldwald (BETTERIDGE & MORREL, 1998): LDL colesterol= colesterol total – (HDL colesterol + Triglicérides /5) A PCRas foi medida por imuno- nefelometria (Dade Behring Marburg GmbH, Marburg, Germany) e a sensibilidade do método é de 0,175 mg/L e os erros intra e inter ensaios foram de 3,5 e 3,4%, respectivamente. 5.1.3.2 Dosagens Hormonais: A adiponectina foi medida pelo método enzimaimunoensaio, Elisa (Linco Research, MO, USA), com sensibilidade de 0,78 ng/mL e erros intra e inter ensaio de 7,4 e 8,4%, respectivamente . A leptina foi medida pelo método imunoradiométrico (Laboratório Fleury, São Paulo, SP, BR) com sensibilidade de 0,5 ng/mL e erros intra e inter ensaio, ambos de 10%. O IGF-I foi medido pelo ensaio imunoradiométrico, com dupla extração, um método de sensibilidade de 0,8 ng/mL (Diagnostic Systems Laboratories, Inc., Webster, TX). Os erros intra e inter ensaios de 2,25 e 2,6%, respectivamente. A insulina foi dosada por ensaio imunofluorimétrico com sensibilidade de 0,5 µU/mL (PerkinElmer Life and Analytical Sciences, Turku, Finland), cujos erros intra e inter ensaios de 2,5 % e 3%, respectivamente 48 O HOMAIR foi calculado mediante a fórmula: (glicemia em mg/dl x 0,05551 x insulina em µU/mL) / 22,5. 5.1.3.3 Excreção Urinária de Albumina (EUA): Para a dosagem da EUA, os pacientes foram orientados a colher urina noturna das 20:00 horas do dia anterior até as 08:00 horas do dia da avaliação em recipiente apropriado. O volume foi anotado e aliquotada amostra, que foi dosada por imulo- nefelometria (Immage, Beckman Coulter, USA), com sensibilidade de 0,2 mg/dL e erros intra e inter ensaio, ambos de 4%. 5.1.4 Análise Estatística Foram utilizados o teste T com amostras independentes para comparar as variáveis de distribuição normal e o teste de Mann Whitney para as variáveis de distribuição assimétrica. Os dados foram expressos em média ± desvio padrão ou mediana ± distância interquartílica, quando apropriado. A análise estatística foi realizada no programa SPSS versão 15.0 (Statistical Packet for Social Science, Inc., Chicago, IL). Foram considerados significantes os resultados quando p≤0,05. 49 5.2 Resultados 5.2.1 Dados antropométricos, pressão arterial e composição corporal Os dados antropométricos e de pressão arterial estão expressos na tabela 1. Como esperado, altura, peso, cintura e quadril foram bastante reduzidos no grupo DGH em relação ao Controle. Não houve diferença no IMC dos dois grupos. A relação cintura/ quadril apresentou uma tendência de elevação no grupo DGH. Houve acentuada redução da massa magra (MM) no grupo DGH em relação ao Controle, sem diferença na massa gorda (MG) em Kg, porém com aumento do percentual de gordura. A pressão arterial sistólica e diastólica foram mais elevadas no grupo DGH quando comparado ao Controle. Tabela 2: Antropometria, pressão arterial e composição corporal em pacientes portadores de DIGH e controles. DIGH (20 indivíduos) Controle (22 indivíduos) p Idade (anos) 50,80± 14,58 49,95±11,48 0,835 Sexo (M/F) 7/13 8/14 0,526 Altura (m) 1,22±0,07 1,6±0,09 <0,0001 Peso (Kg) 37,10±6,2 63,59±10,49 <0,0001 IMC (Kg/m2) 25,12±4,64 24,74±2,85 0,752 Cintura (cm) 81,03±10,81 89,2±8,7 0,01 Quadril (cm) 85,31±8,48 98,18±8,99 <0,0001 Relação C/Q 0,95±0,08 0,91±0,05 0,085 Massa Magra (Kg) 23,22±4,42 47,76±11,08 <0,0001 Massa Gorda (Kg) 14,02±3,32 16,15±7,01 0,212 % Gordura 37,71±6,73 25,39±10,19 <0,0001 PAS (mmHg) 134,05±28,49 116,23±17,05 0,021 PAD (mmHg) 82,95±14,3 74,05±11,45 0,031 Valores expressos em média ± desvio padrão. Onde, M/F: masculino/ feminino, IMC: índice de massa corpórea, relação C/Q: relação cintura quadril, PAS: pressão arterial sistólica e PAD: pressão arterial diastólica. 50 5.2.2 Dados laboratoriais Os dados laboratoriais estão expressos na Tabela 2. Também como esperado, o IGF-I foi marcadamente mais baixo no grupo DGH quando comparado aos controles. Os indivíduos com DGH apresentaram PCRas e LDL-C mais elevados, insulina e HOMAir mais baixos, sem alteração no HDL-C, triglicérides e glicemia em relação ao grupo controle. O colesterol total apresentou uma tendência de elevação (p= 0,069) no grupo DGH. A adiponectina foi mais elevada no grupo DGH em relação ao Controle (Figura 2) e não encontramos alteração nos níveis de leptina. O mesmo dado é encontrado quando corrigimos as duas variáveis pela massa gorda em Kg (Adiponectina/ MGKg e Leptina/ MGKg).A microalbuminúria foi igual nos dois grupos. Tabela 3: Níveis séricos de IGF-I, PCRas, lípides, glicemia, insulina, HOMAir, adiponectina, leptina e EUA de indivíduos DGH e controles. DIGH Controles p IGF-I (ng/ml) 11,9±15,72 161,97±63,36 <0,0001 PCRas(mg/dL) 0,84±0,6 0,31±0,27 <0,0001 Colesterol Total (mg/dL) 221,35±49,69 193,45±46,98 0,069 LDL (mg/dL) 140,1±44,04 114,32±38,87 0,05 HDL (mg/dL) 44,65±9,98 47,82±11,38 0,345 TG (mg/dL) 140,5±189,25 112,5±107,5 0,571 Glicemia (mg/dL) 102±25 101,5±9,75 0,801 Insulina (mU/L) 3,5±2,75 6,5±5,25 0,004 HOMAir 0,88±0,96 1,74±1,52 0,008 Adiponectina (ng/ml) 12,83±7,15 9,73±5 0,041 Adiponectina/ MG Kg 0,85±0,44 0,6±0,44 0,027 Leptina (ng/mL) 7,35±6,3 9,3±18,68 0,904 Leptina/ MG Kg 0,63±0,44 0,7±0,62 0,703 EUA (µg/min) 8,62±13,78 8,52±11,07 0,236 Valores estão expressos em média ± desvio padrão para PCRas, colesterol total, LDL, HDL e leptina/ MG e como mediana ± distância interquartílica nos demais. 51 Figura 2: Níveis de adiponectina em portadores de DGH e controles A di po ne ct in a (n g/ m l) DIGH Controle 52 5.3 Discussão Encontramos níveis séricos elevados de adiponectina e normais de leptina e de excreção urinária de albumina em indivíduos portadores de DIGH de Itabaianinha. Esses resultados delineiam um perfil de adipocinas que é diferente do usualmente encontrado na maioria das causas de obesidade em humanos (leptina elevada e adiponectina baixa). Em concordância com nossos achados foi recentemente demonstrado que ratos com abolição do receptor do GH (resistência ao GH) tem níveis elevados de adiponectina (NILSSON et al., 2005) e que pacientes com acromegalia tem adiponectina mais baixa (SUCUNZA et al., 2009). Simultaneamente a publicação desta parte do estudo, também foi descrito que na síndrome de Laron (resistência ao GH em humanos) a adiponectina é também mais elevada que controles (KANETY et al., 2009). A adiponectina e a leptina são importantes na homeostase glicêmica. A administração de adiponectina reverte a resistência à insulina associada à lipodistrofia e à obesidade (YAMAUCHI et al., 2001), e a administração de leptina em pacientes com grave deficiência de leptina e lipodistrofia melhora a sensibilidade à insulina (ORAL et al., 2002). A resistência a leptina é associada com resistência a insulina e DM2 (CORREIA & HAYNES, 2004). Podemos sugerir, então, que tanto os níveis séricos de adiponectina mais elevados como os níveis séricos normais de leptina podem melhorar a sensibilidade à insulina e atrasar a progressão para aterosclerose em pacientes com DIGH. Uma maior sensibilidade à insulina é uma característica que tem sido fortemente associada a longevidade (como se observa ao se estudar indivíduos com mais de 100 anos) (PAOLISSO et al., 1997) e essa é uma das possíveis explicações para a ausência de mortalidade cardiovascular prematura em indivíduos com DIGH de Itabaianinha (AGUIAR- OLIVEIRA et al., 2010). O aumento na adiponectina pode ser associado à sensibilidade à insulina normal, um fenômeno que diferencia nossos pacientes com DIGH congênita e vitalícia de adultos com DGH adquirida, que são usualmente insulino resistentes (GOLA et al., 2005; HEW et al., 1996). 53 Em um trabalho recente, DGH relativa, elevação de cortisol urinário e baixa adiponectinemia contribuem significativamente para a elevação dos marcadores de RCV em adolescentes obesas (RUSSELL et al., 2009). Tem sido exaustivamente demonstrado que a resistência à insulina é um fator importante no desenvolvimento de anormalidades lipídicas, acúmulo de gordura visceral e aterosclerose em indivíduos com obesidade, hipertensão arterial e diabetes (RASHID et al., 2003; DUVNJAK, & DUVNJAK, 2009). Adultos com hipopituitarismo apresentam obesidade abdominal, resistência à insulina, dislipidemia, aumento da PCR e aterosclerose (ROSEN & BENGTSSON, 1990). A força dessa associação com a DGH é incerta, devido ao fato de que raríssimos pacientes com hipopituitarismo apresentarem DIGH verdadeira e não tratada, sendo a maioria deficiente de outros importantes hormônios hipofisários e utiliza terapia substitutiva com hormônios tireoideanos, gonadais e adrenais. A adiponectina regula diretamente a secreção de GH pelas células somatotróficas in vitro pela ligação a receptores de adiponectina e, de forma semelhante ao GHRH, a adiponectina estimula a secreção de GH dependente principalmente do influxo de cálcio através de canais voltagem dependentes. O tratamento com adiponectina aumenta a expressão do receptor de GHRH em cultura de células da hipófise anterior, que sugere um possível papel da adiponectina na regulação indireta da secreção do GH (STEYN et al., 2009). Os altos níveis de adiponectina neste modelo de resistência ao GHRH podem ser um mecanismo compensatório à ausência de ação do GHRH. Independentemente do mecanismo que cause a elevação da adiponectina, este fenômeno se associa ao achado de sensibilidade insulínica normal e pode contribuir para atrasar o aparecimento da aterosclerose nos indivíduos com DIGH que apresentam níveis muito baixos de GH e IGF-I por toda a vida, diferente da maioria dos modelos com DGH adquirida com uma redução menos acentuada dos níveis de IGF-I. Contudo, outros mecanismos como níveis baixos de moléculas de adesão e fatores derivados de plaquetas, entre outros não estudados neste trabalho, podem estar contribuindo para retardar o aparecimento da aterosclerose nesta população com DIGH. 54 Crianças e adolescentes com DIGH de Itabaianinha apresentam altos níveis de leptina (de BARRETO et al., 1999). As razões para o declínio da leptina para níveis normais nos adultos com DIGH, apesar do aumento persistente no percentual de MG, colesterol total e LDL, ainda são incertas, mas podem conferir alguma proteção contra inflamação vascular (KOH, PARK & QUON, 2008; STEFAN. & STUMVOLL, 2002), contrabalançando os altos níveis de PCR encontrada nestes indivíduos. Em adição ao perfil favorável de adipocinas, os indivíduos com DIGH apresentam excreção urinária de albumina (EUA) e taxa de microalbuminúria semelhante à de controles, apesar de apresentarem pressão arterial sistólica e diastólica mais elevadas. A interação entre o eixo GH/ IGF-I e a função renal não está bem definida. O GH pode influenciar a função renal tanto diretamente ou via IGF-I, que tem mostrado reduzir a resistência vascular renal em roedores (HIRSCHBERG & KOPPLE et al., 1989) e humanos (GULLER et al., 1989). A EUA é considerada um marcador subclínico de disfunção endotelial, precedendo o diagnóstico de aterosclerose (GERSTEIN et al., 2001). Como o GH aumenta a expressão de óxido nítrico sintase induzida em células mesângiais de ratos (DOI et al., 2000), é possível que níveis muito baixos de GH e IGF-I podem reduzir o óxido nítrico sintase induzida nestas células, retardando o acúmulo progressivo da matriz extracelular que leva ao aumento da EUA (BREMER et al., 1997; FURUSU et al., 1998). 55 5.4 Artigo publicado no Journal of Clinical Endocrinology and Metabolism Adipokine Profile and Urinary Albumin Excretion in Isolated Growth Hormone Deficiency Carla R. P. Oliveira1, Roberto Salvatori2, Rafael A. Meneguz-Moreno1, Manuel H. Aguiar-Oliveira1, Rossana M. C. Pereira1, Eugênia H. A. Valença1, Vanessa P. Araujo1, Natália T. Farias1, Débora C. R. Silveira1, Jose G. H. Vieira3, and Jose A. S. Barreto-Filho1 1Universidade Federal de Sergipe, Departamento de Medicina, Aracaju, Sergipe 2The Johns Hopkins University School of Medicine Division of Endocrinology, Baltimore, Maryland, USA 3Escola Paulista de Medicina, Divisão de Endocrinologia, São Paulo, São Paulo Título Abreviado: Adipokines and Albuminuria in IGHD Palavras-chave: Adipocinas,excreção urinária de albumina, deficiência de GH Key words: Adipokines, urinary albumin excretion, GH deficiency Adipokine Profile and Urinary Albumin Excretion in Isolated Growth Hormone Deficiency Carla R. P. Oliveira, Roberto Salvatori, Rafael A. Meneguz-Moreno, Manuel H. Aguiar-Oliveira, Rossana M. C. Pereira, Eugênia H. A. Valença, Vanessa P. Araujo, Natália T. Farias, Débora C. R. Silveira, Jose G. H. Vieira, and Jose A. S. Barreto-Filho Federal University of Sergipe (C.R.P.O., R.A.M.-M., M.H.A.-O., R.M.C.P., E.H.A.V., V.P.A., N.T.F., D.C.R.S., J.A.S.B.-F.), Division of Endocrinology, Aracaju, SE, Brazil 49060-100; The Johns Hopkins University School of Medicine (R.S.), Division of Endocrinology, Baltimore, Maryland 21287; and Escola Paulista de Medicina (J.G.H.V.), Division of Endocrinology, São Paulo, SP, Brazil 04034970 Background: GH deficiency (GHD) is often associated with cardiovascular risk factors, including abdominal fat accumulation, hypercholesterolemia, and increased C-reactive protein. Despite the presence of these risk factors, adults with congenital lifetime isolated GHD (IGHD) due to an inactivating mutation in the GHRH receptor gene do not have premature atherosclerosis. Objective: The aim was to study the serum levels of adiponectin and leptin (antiatherogenic and atherogenic adipokine, respectively), and the urinary albumin excretion (UAE) in these IGHD individuals. Design and Patients: We conducted a cross-sectional study of 20 IGHD individuals (seven males; age, 50.8 � 14.6 yr) and 22 control subjects (eight males; age, 49.9 � 11.5 yr). Main Outcome Measures: Anthropometric factors, body composition, blood pressure, serum adi- ponectin, leptin, and UAE were measured. Results: Adiponectin was higher [12.8 (7.1) vs. 9.7 (5) ng/ml; P � 0.041] in IGHD subjects, whereas no difference was observed in leptin [7.3 (6.3) vs. 9.3 (18.7 ng/ml] and UAE [8.6 (13.8) vs. 8.5 (11.1) �g/min]. Conclusions: Subjects with lifetime untreated IGHD have an adipokine profile with high adi- ponectin and normal leptin levels that may delay vascular damage and lesions of the renal endothelium. (J Clin Endocrinol Metab 95: 693– 698, 2010) GH deficiency (GHD) in adults has been associatedwith an increase in cardiovascular mortality (1), thought to be due to atherosclerotic changes (2) linked to abdominal adiposity, dyslipidemia [high levels of total and low-density lipoprotein (LDL) cholesterol, and low levels of high-density lipoprotein (HDL)] and C-reactive protein (CRP) (3). However, this association is based on studies obtained in heterogeneous cohorts of patients with acquired GHD of different etiologies and severities, who have often undergone pituitary surgery or radiation, and with multiple associated pituitary deficits, all factors that may affect vascular mortality. In Itabaianinha County, in northeastern Brazil, we have identified a large kindred with approximately 100 affected individuals, with isolated GHD (IGHD), due to a homozy- gous null mutation in the splice donor site of intron 1 (IVS1 � 1G3A) of the GHRH receptor gene (GHRH-R) (4). These IGHD individuals have very low serum GH and IGF-I and present throughout life an adverse cardiovas- cular risk profile, including a reduction in fat-free mass ISSN Print 0021-972X ISSN Online 1945-7197 Printed in U.S.A. Copyright © 2010 by The Endocrine Society doi: 10.1210/jc.2009-1919 Received September 10, 2009. Accepted November 20, 2009. First Published Online December 16, 2009 Abbreviations: BMI, Body mass index; BSA, body surface area; CRP, C-reactive protein; FFM, fat-free mass; FM, fat mass; GHD, GH deficiency, or GH-deficient; HDL, high-density lipoprotein; HOMAIR, homeostasis model assessment of insulin resistance; IGHD, isolated GHD; LDL, low-density lipoprotein; SDS, SD score; UAE, urinary albumin excretion. O R I G I N A L A R T I C L E E n d o c r i n e C a r e J Clin Endocrinol Metab, February 2010, 95(2):693–698 jcem.endojournals.org 693 by Manuel Aguiar-Oliveira on February 5, 2010 jcem.endojournals.orgDownloaded from http://jcem.endojournals.org (FFM) and an increase in percentage fat mass (%FM) and waist-hip ratio, total and LDL cholesterol, CRP, and sys- tolic blood pressure. Conversely, they have no insulin re- sistance and no evidence of premature atherosclerosis, as shown by normal carotid intima-media thickness and stress echocardiogram (5–8). To understand the mechanism of the lack of premature atherosclerosis despite such risk factors, we have studied other factors linked to vascular damage and atheroscle- rosis, such as leptin, adiponectin, and a marker of endo- thelial disease, urinary albumin excretion (UAE). Adi- ponectin, the most abundant protein of adipose origin, decreases with obesity and is positively associated with whole-body insulin sensitivity (9, 10) and inversely asso- ciated with the risk of type 2 diabetes (11). Leptin, another specific adipose protein, usually elevated in obesity, plays an atherogenic, prothrombotic, and angiogenic role by stimulating vascular inflammation, oxidative stress, and smooth muscle hypertrophy contributing to hyper- tension, atherosclerosis, and other cardiovascular dis- eases (12–15). UAE, even when below the threshold diagnostic of microalbuminuria, is considered an inde- pendent risk factor and predictor of both renal and car- diovascular disease and a subclinical marker of endo- thelial cell dysfunction, a condition that is believed to promote atherogenesis (16). Data on these three parameters are controversial in GHD: leptin has been reported to be elevated (17, 18) or normal (19, 20), and adiponectin low (10, 21) or normal (18, 22), whereas UAE has been reported to be normal (23, 24). We tested the hypothesis of a favorable pattern of these three parameters in congenital, lifetime IGHD. Subjects and Methods Subjects In a cross-sectional study, IGHD and control subjects were recruited by advertising placed in the local Dwarfs Association building and by word of mouth among the inhabitants of Itaba- ianinha. Exclusion criteria were: age less than 25 yr; use of st- atins, tobacco, estrogens, antipsychotics, anticonvulsants, anal- gesics, or antiinflammatories; use of GH in childhood or during the last 3 yr; viral syndrome during the last 30 d; coronary in- sufficiency; Chagas disease, and other chronic or systemic dis- eases. Twenty-two IGHD subjects and 24 controls volunteered. Two IGHD individuals were excluded, one due to the use of tobacco, and another due to the use of anticonvulsant. In the control group, two individuals were excluded, one due to the use of tobacco and anticonvulsant, and another due to chronic ane- mia. A total of 20 IGHD individuals (seven males; age, 50.8 � 14.6 yr) and 22 control subjects (eight males; age, 49.9 � 11.5 yr) were enrolled. Six individuals of the IGHD group were GH naive, and 14 had been treated with a long-acting GH for 6 months (as adults) and had stopped this treatment for more than 3 yr before this protocol. Because we found no difference in the studied variables between the GH naive and those individuals who had received GH for this short period of time, all of them were included in the IGHD group. Study protocol Anthropometric, body composition, and blood pres- sure measurements Height, body weight, waist and hip circumferences were mea- sured. Body mass index (BMI) was calculated using the formula: weight (kilograms)/height (meters)2. Body surface area (BSA) (in square meters) was calculated using the formula: w0.425 � h0.725 � 71.84 � 10�4, where w is the weight in kilograms, and h is the height in centimeters. SD scores (SDS) for height (SDS/h), weight (data not shown), and BMI (SDS/BMI) were calculated by using the SDS Individual Calculator for British 1990 Growth Reference Data (http://www.phsim.man.ac.uk/SDSCalculator/SDSCalculator. aspx). Fat mass (FM) (kilograms), %FM, FFM (kg), and %FFM were measured using near-infrared interactance, as previously reported (7). Blood pressurewas registered as the mean value of three measurements after 10 min in a seated position. Laboratory assessment Total cholesterol, triglycerides, and glucose were measured by the enzymatic Trinder colorimetric test. HDL cholesterol was separated using the phosphotungstic acid/magnesium chloride method, and the LDL cholesterol concentration was calculated indirectly (Friedewald formula). IGF-I was measured by an im- munoradiometric assay, with double extraction and an assay sensitivity of 0.8 ng/ml (5600; Diagnostic Systems Laboratories, Inc., Webster, TX). The intraassay and interassay variabilities were 2.25 and 2.6%, respectively. Insulin resistance was esti- mated using the homeostasis model assessment of insulin resis- tance (HOMAIR) with the formula: fasting serum insulin (mi- crounits per milliliter) � fasting plasma glucose (millimoles per liter)/22.5. Adiponectin was measured by ELISA (Linco Research, St. Charles, MO) with sensitivity of 0.78 ng/ml and intra- and in- terassay variation of 7.4 and 8.4%. Leptin was measured by IRMA assay (Laboratory Fleury, São Paulo, Brazil) with sensi- tivity of 0.5 ng/ml, and both intra- and interassay variation of 10%. Adiponectin, leptin, and insulin were expressed in absolute and corrected values for BSA (adiponectin/BSA, leptin/BSA, and insulin/BSA), and unit of FM in kilograms (adiponectin/FM kg, leptin/FM kg, and insulin/FM kg). UAE (micrograms per minute) was measured in timed overnight collections by immunoneph- elometry (Immage; Beckman Coulter, Fullerton, CA) with an intra- and interassay coefficient of variability of 4% (sensitivity limit of the assay, 0.02 mg/liter). Microalbuminuria was defined with a UAE between 20 and 200 �g/min. The Federal University of Sergipe Institutional Review Board approved these studies, and all subjects gave written informed consent. Statistics Variableswithnormal andnotnormaldistributionwere com- pared in the two groups by t test and Mann-Whitney test, re- spectively. Data are reported as mean (SD) and median (inter- quartile range) when appropriate. We used a stepwise multiple regression model to determine independent predictors of both 694 Oliveira et al. Adipokines and Albuminuria in IGHD J Clin Endocrinol Metab, February 2010, 95(2):693–698 by Manuel Aguiar-Oliveira on February 5, 2010 jcem.endojournals.orgDownloaded from http://jcem.endojournals.org log of leptin and log of adiponectin. We have shown that in children, FM, GHD status, and sex explained 73% of the vari- ability of leptin (25). In this paper, we used age, sex, GHD (GHD � 1, control � 2), FM, %FM, FFM, and log of IGF-I as independent variables. A P value of 0.10 was used to enter and leave the model. Colinearity was ruled out within covariates in the model, and all the assumptions of this model were checked. Statistical analysis was performed by the software SPSS/PC 15.0 (SPSS Inc., Chicago II). Probability values less than or equal to 0.05 were considered statistically significant. Results Anthropometric, body composition, and blood pressure data are shown in Table 1. As expected, height, weight, BSA, and FFM (kilograms) were reduced without differ- ence in BMI (both in absolute values and SDS/BMI) and FM, whereas %FM was increased in IGHD subjects. Both SBP and DBP were higher in the IGHD group. Laboratory data are shown in Table 2. IGF-I levels were extremely low in IGHD individuals, who had higher CRP and LDL cholesterol and lower insulin and HOMAIR, as we had previously reported (7, 8). Adiponectin, in abso- lute and corrected values for BSA and unity of FM (kilo- grams), was higher in the IGHD group (Fig. 1). There were no differences in leptin (in absolute or corrected values) and UAE. Only two individuals had microalbuminuria in each group. Stepwise multiple regression identified FM and GHD as responsible for 50.6% of the variability of log leptin and FFM, and age for 30.6% of the variability of log adiponec- tin (Table 3). Because high adiponectin levels may be the cause or the consequence of increased insulin sensitiv- ity, we extended the stepwise multiple regression anal- ysis to include HOMAIR as another independent vari- able and log adiponectin as a dependent variable. In this model, 45.5% of variability of log of adiponectin was explained by age (� standardized coefficient � 0.456; t � 3.868; P � 0.0004), %FM (� standardized coeffi- cient � 0.384; t � 3.311; P � 0.002), and HOMAIR (� standardized coefficient � �0.419; t � �3.569; P � 0.0001, R2 adjusted � 0.455). FIG. 1. Serum adiponectin levels (nanograms per milliliter) in GHD and control groups. TABLE 1. Anthropometric, body composition, and blood pressure data in IGHD and control groups IGHD Control P Height (m) 1.2 (0.1) 1.6 (0.1) �0.0001 SDS height �7.0 (1.2) �1.23 (0.98) �0.0001 Weight (kg) 37.1 (6.2) 63.6 (10.5) �0.0001 BSA (m2) 1.11 (0.1) 1.63 (0.29) �0.0001 BMI (kg/m2) 25.1 (4.6) 24.7 (2.8) 0.752 SDS BMI 1.24 (1.37) 1.18 (0.76) 0.88 W/H 0.95 (0.1) 0.91 (0. 1) 0.085 FFM (kg) 23.2 (4.4) 47.8 (11. 8) �0.0001 FM (kg) 14.0 (3.3) 16.2 (7.0) 0.212 %FM 37.7 (6.7) 25.4 (10.2) �0.0001 SBP (mm Hg) 134.0 (28.5) 116.2 (17.0) 0.021 DBP (mm Hg) 83.0 (14.3) 74.0 (11.4) 0.031 Values are expressed as mean (SD) for all variables, except for body surface which is expressed as median (interquartile range). SBP, Systolic blood pressure; DBP, diastolic blood pressure; W/H, waist/hip ratio. TABLE 2. Levels of adiponectin, leptin, lipids, glucose, insulin, HOMAIR, CRP, and UAE in IGHD and control groups IGHD Control P IGF-I (ng/ml) 11.9 (15.7) 161.9 (63.4) �0.0001 CRP (mg/dl) 0.84 (0.6) 0.31 (0.27) �0.0001 Cholesterol (mg/dl) 221.3 (49.7) 193.45 (47.0) 0.069 LDL (mg/dl) 140.1 (44.0) 114.32 (38.9) 0.05 HDL (mg/dl) 44.7 (9.98) 47.8 (11.4) 0.345 Triglycerides (mg/dl) 140.5 (189.25) 112.5 (107.5) 0.571 Glucose (mg/dl) 102 (25) 101.5 (9.75) 0.801 Insulin (mU/liter) 3.5 (2.75) 6.5 (5.25) 0.004 Insulin/BSA 3.13 (2.37) 3.99 (3.63) 0.237 Insulin/FM kg 0.24 (0.24) 0.45 (0.3) 0.001 HOMAIR 0.88 (0.96) 1.74 (1.52) 0.008 Leptin (ng/ml) 7.35 (6.3) 9.3 (18.68) 0.93 Leptin/BSA 6.97 (6.67) 6.37 (11.14) 0.279 Leptin/FM kg 0.63 (0.44) 0.7 (0.6) 0.703 Adiponectin (ng/ml) 12.83 (7.15) 9.73 (5) 0.041 Adiponectin/BSA 12.37 (2.37) 5.86 (3.64) �0.0001 Adiponectin/FM kg 0.85 (0.44) 0.6 (0.44) 0.027 UAE (�g/min) 8.6 (13.8) 8.5 (11.1) 0.236 Values are expressed as median (interquartile range) for all variables except for CRP, cholesterol, LDL, HDL, and leptin/FM kg, which are expressed as mean (SD). J Clin Endocrinol Metab, February 2010, 95(2):693–698 jcem.endojournals.org 695 by Manuel Aguiar-Oliveira on February 5, 2010 jcem.endojournals.orgDownloaded from http://jcem.endojournals.org Discussion We have found high serum adiponectin and normal leptin levels, associated with normal UAE, in adult IGHD indi- viduals. These results delineate an adipokine profile that differs from what is found in most forms of obesity (high leptin and low adiponectin levels). Interestingly, our find- ings are in agreement with recent data showing that GH receptor-deficient mice had elevated adiponectin levels (25), and that acromegalic patients have low serum adi- ponectin (26). Adiponectin and leptin are important in glucose homeostasis. Adiponectin reverses insulin resis- tance associated with both lipoatrophy and obesity (27), and the administration of leptin in patients with severe leptin deficiency and lipodystrophy improves insulin sen- sitivity (28). Leptin resistance is associated with insulin resistance and type II diabetes (13). Therefore, both high adiponectin and normal leptin can improve insulin sensi- tivity, thereby delaying the progression of atherosclerosis in IGHD individuals. Increased insulin sensitivity is a hall- mark feature of longevity (as shown in centenarians) (29), and it is one of the possible explanations of the lack of premature cardiovascular mortality in IGHD subjects from Itabaianinha. Accordingly, the increase in adiponec- tin could be linked to the increased insulinsensitivity, a feature that differentiates our congenital IGHD subjects from adults with acquired GHD, who are often insulin resistant (3, 30). In a recent study, relative rather than absolute GHD, together with the excess of urinary cortisol and low adi- ponectinemia, were significant contributors to increased levels of markers of cardiovascular risk in obese adoles- cent girls (31). It has been exhaustively shown that insulin resistance is a key factor for the establishment of lipid abnormalities, visceral fat accumulation, and atheroscle- rosis observed in obese, hypertensive, and diabetic indi- viduals (7). Adults with hypopituitarism have abdominal obesity, insulin resistance, dyslipidemia, increase in CRP, and atherosclerosis (1–3). The strength of this association with GHD is not certain, due to the fact that only very few of the hypopituitary patients have true and naive IGHD, and most lack other important pituitary hormones whose replacement may be suboptimal. In contrast, the lower fasting insulin level and HOMAIR in our IGHD group indicates increased insulin sensitivity compared with the control group. We now show that FM and GHD are the principal predictors of leptin, and that FFM (negatively) and age are the most important predictors of adiponectin levels. Our IGHD individuals do not have increased absolute FM, but they do have increased %FM, and this is mirrored by re- duced FFM, which may explain the fact that FFM is a negative predictor of serum leptin. Furthermore, we show that HOMAIR, age, and %FM explain a large part of the variability of adiponectin. Although a causal relationship cannot be proven from multiple regression analyses, it is important to underline that aging and increase of %FM usually tend to reduce insulin sensitivity and decrease adi- ponectin levels. This strongly suggests a favorable influ- ence of GHD on adiponectin, which may counteract the deleterious effects of increased %FM and aging. Adiponectin directly regulates GH secretion from so- matotrophs in vitro by binding to adiponectin receptors, and, similar to GHRH, adiponectin induces GH secretion, depending mainly on Ca2� influx via voltage-gated chan- nels. Adiponectin treatment increases GHRH receptor ex- pression in anterior pituitary cell cultures, which suggests a potential indirect regulatory role of adiponectin on GH secretion (32). Therefore, the high adiponectin levels in our model of GHRH resistance could be a compensatory mechanism to the lack of GHRH action. Independently from the mechanism by which adiponectin is increased, we speculate that this phenomenon contributes to delaying the appearance of atherosclerosis in IGHD individuals that present very low GH and IGF-I levels throughout life, differently from most models of acquired GHD with less severe IGF-I reduction. Alternatively, atherosclerosis could be delayed due to other mechanisms, such as low levels of adhesion molecules and platelet-derived factors, not studied in this paper. We have previously reported high levels of leptin in children and adolescents with IGHD (5). The reasons for the decline of leptin to normal values in adult IGHD in- dividuals, despite the persistent increase in %FM and total and LDL cholesterol, are still unknown. The normal leptin TABLE 3. Stepwise multiple linear regression analyses to assess the determinants of log of leptin and adiponectin concentrations Dependent variable Variables in equation Unstandardized coefficient R2 adjusted P Log leptin FM 0.072 0.467 �0.0001 GHD 0.248 0.506 0.048 Log adiponectin FFM �0.006 0.191 0.002 Age 0.006 0.306 0.009 The values of R2 adjusted (in bold) corresponds to the R2 adjusted when both variables had been entered. 696 Oliveira et al. Adipokines and Albuminuria in IGHD J Clin Endocrinol Metab, February 2010, 95(2):693–698 by Manuel Aguiar-Oliveira on February 5, 2010 jcem.endojournals.orgDownloaded from http://jcem.endojournals.org values in adults can also confer some protection against vascular inflammation (33, 34), counteracting the high CRP levels found in these individuals. In addition to the favorable adipokine profile, IGHD individuals have similar UAE and rate of microalbumin- uria as control subjects, despite having increased systolic and diastolic blood pressure. The interaction between the GH-IGF-I axis and renal function is not well defined. GH may influence renal function either directly or via IGF-I, which has been shown to reduce renal vascular resistance both in rodents (35) and in humans (36). UAE is consid- ered a subclinical marker of endothelial cell dysfunction, preceding atherosclerosis (16). Because GH increases in- ducible nitric oxide synthase expression in mesangial cells of mice (37), it is possible that the very low GH and IGF-I levels may reduce inducible nitric oxide synthase in such cells, thereby slowing the progressive extracellular matrix accumulation that leads to the increase of UAE (38, 39). It has to be noted that some of the IGHD individuals had beentreatedwitha long-actingGHpreparationfor6months as part of a clinical research protocol (40) completed more than3yrbefore thisevaluation.Roemmleretal. (41)recently showed a reduction in leptin levels by GH replacement, com- paring a GH-treated group with a group that had stopped GH replacement 2 yr before. We are therefore confident that the effects of GH on the parameters we have studied would have disappeared after a 3-yr period. In conclusion, the findings of high adiponectin, normal leptin and UAE, despite unfavorable body composition and increased blood pressure, together with very low se- rum IGF-I levels and high insulin sensitivity, are likely protecting factors that counteract the cluster of adverse cardiovascular risk factors found in the IGHD individuals from Itabaianinha, avoiding the premature appearance of atherosclerosis. Acknowledgments We thank Dr. Enaldo V. Melo for statistical assistance, Mrs. Ivanilde Santana de Sousa for secretarial assistance, and Fapese (“Fundação de Apoio a Pesquisa e Extensão de Sergipe”) for administrative assistance. Address all correspondence and requests for reprints to: Roberto Salvatori, M.D., Division of Endocrinology, The Johns Hopkins University School of Medicine, 1830 East Monument Street, Suite 333, Baltimore, Maryland 21287. E-mail: salvator@ jhmi.edu. This work was supported in part by National Institutes of Health Grant 1R01 DK065718 (to R.S.). M.H.A.-O. was sup- ported by Grant BEX 4309/08-1 from Capes (“Coordenação de Aperfeiçoamento de Pessoal de Nível Superior”), from the Brazilian Government. Disclosure Summary: The authors have nothing to disclose. References 1. Rosén T, Bengtsson BA 1990 Premature mortality due to cardio- vascular disease in hypopituitarism. Lancet 336:285–288 2. Markussis V, Beshyah SA, Fisher C, Sharp P, Nicolaides AN, Johnston DG 1992 Detection of premature atherosclerosis by high- resolution ultrasonography in symptom-free hypopituitary adults. Lancet 340:1188–1192 3. Gola M, Bonadonna S, Doga M, Giustina A 2005 Clinical review: growth hormone and cardiovascular risk factors. J Clin Endocrinol Metab 90:1864–1870 4. Salvatori R, Hayashida CY, Aguiar-Oliveira MH, Phillips 3rd JA, Souza AH, Gondo RG, Toledo SP, Conceicão MM, Prince M, Maheshwari HG, Baumann G, Levine MA 1999 Familial dwarfism due to a novel mutation of the growth hormone-releasing hormone receptor gene. J Clin Endocrinol Metab 84:917–923 5. de A Barretto ES, Gill MS, De Freitas ME, Magalhães MM, Souza AH, Aguiar-Oliveira MH, Clayton PE 1999 Serum leptin and body composition in children with familial GH deficiency (GHD) due to a mutation in the growth hormone-releasing hormone (GHRH) re- ceptor. Clin Endocrinol (Oxf) 51:559–564 6. Gleeson HK, Souza AH, Gill MS, Wieringa GE, Barretto ES, Barretto-Filho JA, Shalet SM, Aguiar-Oliveira MH, Clayton PE 2002 Lipid profiles in untreated severe congenital isolated growth hormone deficiency through the lifespan. Clin Endocrinol (Oxf) 57: 89–95 7. Barreto-FilhoJA, Alcântara MR, Salvatori R, Barreto MA, Sousa AC, Bastos V, Souza AH, Pereira RM, Clayton PE, Gill MS, Aguiar- Oliveira MH 2002 Familial isolated growth hormone deficiency is associated with increased systolic blood pressure, central obesity, and dyslipidemia. J Clin Endocrinol Metab 87:2018–2023 8. Menezes Oliveira JL, Marques-Santos C, Barreto-Filho JA, Ximenes Filho R, de Oliveira Britto AV, Oliveira Souza AH, Prado CM, Pereira Oliveira CR, Pereira RM, Ribeiro Vicente Tde A, Farias CT, Aguiar-Oliveira MH, Salvatori R 2006 Lack of evidence of prema- ture atherosclerosis in untreated severe isolated growth hormone (GH) deficiency due to a GH releasing hormone receptor mutation. J Clin Endocrinol Metab 91:2093–2099 9. Choi KM, Lee J, Lee KW, Seo JA, Oh JH, Kim SG, Kim NH, Choi DS, Baik SH 2004 Serum adiponectin concentrations predict the developments of type 2 diabetes and the metabolic syndrome in elderly Koreans. Clin Endocrinol (Oxf) 61:75–80 10. Svensson J, Herlitz H, Lundberg PA, Johannsson G 2005 Adiponec- tin, leptin and erythrocyte sodium/lithium countertransport activ- ity, but not resistin, are related to glucose metabolism in growth hormone- deficient adults. J Clin Endocrinol Metab 90:2290–2296 11. Li S, Shin HJ, Ding EL, van Dam RM 2009 Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 302:179–188 12. Beltowski J 2006 Leptin and atherosclerosis. Atherosclerosis 189: 47–60 13. Correia ML, Haynes WG 2004 Obesity-related hypertension: is there a role for selective leptin resistance? Curr Hypertens Rep 6:230–235 14. Bełtowski J 2006 Role of leptin in blood pressure regulation and arterial hypertension. J Hypertens 24:789–801 15. Seufert J 2004 Leptin effects on pancreatic �-cell gene expression and function. Diabetes 53:S152–S158 16. Gerstein HC, Mann JF, Yi Q, Zinman B, Dinneen SF, Hoogwerf B, Hallé JP, Young J, Rashkow A, Joyce C, Nawaz S, Yusuf S 2001 Albuminuria and risk of cardiovascular events, death and heart fail- ure in diabetic and nondiabetic individuals. JAMA 286:421–426 17. Stevenson AE, Evans BA, Gevers EF, Elford C, McLeod RW, Perry MJ, El-Kasti MM, Coschigano KT, Kopchick JJ, Evans SL, Wells T 2009 Does adiposity status influence femoral cortical strength in rodent models of growth hormone deficiency? Am J Physiol Endo- crinol Metab 296:E147–E156 18. Joaquin C, Aguilera E, Granada ML, Pastor MC, Salinas I, Alonso N, J Clin Endocrinol Metab, February 2010, 95(2):693–698 jcem.endojournals.org 697 by Manuel Aguiar-Oliveira on February 5, 2010 jcem.endojournals.orgDownloaded from http://jcem.endojournals.org Sanmartí A 2008 Effects of GH treatment in GH deficiency adults on adiponectin, leptin and pregnancy-associated plasma protein-A. Eur J Endocrinol 158:483–490 19. Jung CH, Lee WY, Rhee EJ, Kim SY, Oh KW, Yun EJ, Kim SW 2006 Serum ghrelin and leptin levels in adult growth hormone deficiency syndrome. Arch Med Res 37:612–618 20. Gill MS, Toogood AA, Jones J, Clayton PE, Shalet SM 1999 Serum leptin response to the acute and chronic administration of growth hormone (GH) to elderly subjects with GH deficiency. J Clin En- docrinol Metab 84:1288–1295 21. Lanes R, Soros A, Gunczler P, Paoli M, Carrillo E, Villaroel O, Palacios A 2006 Growth hormone deficiency, low levels of adi- ponectin and unfavorable plasma lipid and lipoproteins. J Pediatr 149:324–329 22. Fukuda I, Hizuka N, Ishikawa Y, Itoh E, Yasumoto K, Murakami Y, Sata A, Tsukada J, Kurimoto M, Okubo Y, Takano K 2004 Serum adiponectin levels in adult growth hormone deficiency and acromegaly. Growth Horm IGF Res 14:449–454 23. Hoogenberg K, Sluiter WJ, Dullaart RP 1993 Effect of growth hor- mone and insulin-like growth factor I on urinary albumin excretion: studies in acromegaly and growth hormone deficiency. Acta Endo- crinol 129:151–157 24. Jørgensen JO, Pedersen SA, Thuesen L, Jørgensen J, Ingemann-Hansen T, Skakkebaek NE, Christiansen JS 1989 Beneficial effects of growth hormone treatment in GH-deficient adults. Lancet 1:1221–1225 25. Nilsson L, Binart N, Bohlooly-Y M, Bramnert M, Egecioglu E, Kindblom J, Kelly PA, Kopchick JJ, Ormandy CJ, Ling C, Billig H 2005 Prolactin and growth hormone regulate adiponectin secretion and receptor expression in adipose tissue. Biochem Biophys Res Commun 331:1120–1126 26. Sucunza N, Barahona MJ, Resmini E, Fernández-Real JM, Ricart W, Farrerons J, Rodríguez Espinosa J, Marin AM, Puig T, Webb SM 2009 A link between bone mineral density and adiponectin and visfatin levels in acromegaly. J Clin Endocrinol Metab 94:3889– 3896 27. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T 2001 The fat-derived hormone adiponec- tin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946 28. Oral EA, Simha V, Ruiz E, Andewelt A, Premkumar A, Snell P, Wagner AJ, DePaoli AM, Reitman ML, Taylor SI, Gorden P, Garg A 2002 Leptin-replacement therapy for lipodystrophy. N Engl J Med 346:570–578 29. Paolisso G, Ammendola S, Del Buono A, Gambardella A, Riondino M, Tagliamonte MR, Rizzo MR, Carella C, Varricchio M 1997 Levels of insulin-like growth factor-I (IGF-I) and IGF-binding pro- tein-3 in healthy centenarians: relationship with plasma leptin and lipid concentrations, insulin action, and cognitive function. J Clin Endocrinol Metab 82:2204–2209 30. Hew FL, Koschmann M, Christopher M, Rantzau C, Vaag A, Ward G, Beck-Nielsen H, Alford F 1996 Insulin resistance in growth hor- mone-deficient adults: defects in glucose utilization and glycogen synthase activity. J Clin Endocrinol Metab 81:555–564 31. Russell M, Bredella M, Tsai P, Mendes N, Miller KK, Klibanski A, Misra M 2009 Relative growth hormone deficiency and cortisol excess are associated with increased cardiovascular risk markers in obese adolescent girls. J Clin Endocrinol Metab 94:2864–2871 32. Steyn FJ, Boehme F, Vargas E, Wang K, Parkington HC, Rao JR, Chen C 2009 Adiponectin regulates growth hormone secretion via adiponectin receptor mediated Ca2� signaling in rat somatotrophs in vitro. J Neuroendocrinol 21:698–704 33. Stefan N, Stumvoll M 2002. Adiponectin—its role in metabolism and beyond. Horm Metab Res 34:469–474 34. Koh KK, Park SM, Quon MJ 2008 Leptin and cardiovascular dis- ease. Circulation 117:3238–3249 35. Hirschberg R, Kopple JD 1989 Evidence that insulin-like growth factor I increases renal plasma flow and glomerular filtration rate in fasted rats. J Clin Invest 83:326–330 36. Guler HP, Schmid C, Zapf J, Froesch ER 1989 Effects of recombi- nant insulin-like growth factor I on insulin secretion and renal func- tion in normal human subjects. Proc Natl Acad Sci USA 86:2868– 2872 37. Doi SQ, Jacot TA, Sellitti DF, Hirszel P, Hirata MH, Striker GE, Striker LJ 2000 Growth hormone increases inducible nitric oxide synthase expression in mesangial cells. J Am Soc Nephrol 11:1419– 1425 38. Bremer V, Tojo A, Kimura K, Hirata Y, Goto A, Nagamatsu T, Suzuki Y, Omata M 1997 Role of nitric oxide in rat nephrotoxic nephritis: comparison between inducible and constitutive nitric ox- ide synthase. J Am Soc Nephrol 8:1712–1721 39. Furusu A, Miyazaki M, Abe K, Tsukasaki S, Shioshita K, Sasaki O, Miyazaki K, Ozono Y, Koji T, Harada T, Sakai H, Kohno S 1998 Expression of endothelial and inducible nitric oxide synthase in hu- man glomerulonephritis. Kidney Int 53:1760–1768 40. Oliveira JL, Aguiar-Oliveira MH, D’Oliveira Jr A, Pereira RM, Oliveira CR, Farias CT, Barreto-Filho JA, Anjos-Andrade FD, Marques-Santos C, Nascimento-Junior AC, Alves EO, Oliveira FT, Campos VC, Ximenes R, Blackford A, Parmigiani G, Salvatori R 2007 Congenital growth hormone (GH) deficiency and atheroscle- rosis: effects of GH replacement in GH-naive adults. J Clin Endo- crinol Metab 92:4664–4670 41. Roemmler J, Kuenkler M, Otto B, Arafat AM, BidlingmaierM, Schopohl J 2009 Influence of long-term growth hormone replace- ment on leptin and ghrelin in GH deficiency before and after glucose load. Regul Pept 158:40–46 698 Oliveira et al. Adipokines and Albuminuria in IGHD J Clin Endocrinol Metab, February 2010, 95(2):693–698 by Manuel Aguiar-Oliveira on February 5, 2010 jcem.endojournals.orgDownloaded from http://jcem.endojournals.org ________________________________________6. EXPERIMENTO 2: Avaliação da sensibilidade à insulina e função de célula beta 63 6.1 Casuística e Métodos 6.1.1 Teste de tolerância à glicose oral com 3 horas de duração (TTGO3H) Após 12 horas de jejum, coletamos 8 ml de sangue de veia periférica para as dosagens basais de glicemia e insulina. Administramos a glicose oral (Gluc Up, fracos com 75g/300 ml) na seguinte proporção: • Grupo DGH: 1,75 gramas de glicose por quilo para aqueles com menos de 42,9 kg 75 gramas para aqueles com mais de 42,9 kg • Grupo Controle: 75 gramas. Nos tempos 30’, 60’, 90’, 120’ e 180’ coletamos mais 8 ml de sangue para dosagens de glicemia e insulina. A glicemia foi dosada por um teste clorimétrico enzimático. A insulina foi dosada por ensaio imunofluorimétrico com sensibilidade de 0,5 µU/mL (PerkinElmer Life and Analytical Sciences, Turku, Finland), cujos erros intra e inter ensaios de 2,5 % e 3%, respectivamente. O soro para a dosagem da insulina foi congelado a -40 ºC e dosado conjuntamente dos 49 sujeitos da pesquisa. Os exames foram realizados no laboratório do Hospital Universitário, Universidade Federal de Sergipe. 6.1.2 Resposta glicêmica: Com as médias dos valores de glicemia em cada tempo traçamos curvas de resposta glicêmica para cada grupo. 64 6.1.2.1 Diagnóstico de pré diabetes ou diabetes O diagnóstico de pré diabetes foi dado quando a glicemia de jejum foi maior ou igual a 100 e menor 126 mg/dl ou quando a glicemia 2 horas após a ingestão de 75 gramas de glicose oral foi maior ou igual a 140 e menor que 200 mg/dl. O diagnóstico de diabetes realizado quando a glicemia 2 horas após a ingestão oral de 75 gramas de glicose foi maior ou igual a 200 mg/dl. Não utilizamos a glicemia de jejum para diagnóstico de diabetes, pois este foi critério de exclusão neste trabalho. 6.1.3 Resposta Insulinêmica Com as médias dos valores de glicemia em cada tempo traçamos curvas de resposta insulinêmica para cada grupo. 6.1.4 Sensibilidade à insulina A SI a insulina foi avaliada pelo HOMAir (índice de resistência à insulina) e pelos QUICK, OGIS 2 e OGIS 3 (índices de SI). HOMAir e QUICK utilizam apenas glicemia e insulina de jejum em suas fórmulas, descritas abaixo: • HOMAir: glicemia em mmol x insulina em µU/ml / 22,5 Menores valores indicam maior SI. • QUICKI: 1/ (log insulina µU/ml + log glicemia mg/dl) Maiores valores indicam maior SI. OGIS 2 foi calculado com os valores de glicemia e insulina tempos do TTGO de 2 horas (0, 30, 60, 90 e 120 min). OGIS 3 foi calculado com os valores de glicemia e insulina tempos do TTGO de 3 horas (0, 30, 60, 90, 120 e 180 min). Maiores valores de OGIS indicam uma maior SI (MARI et al, 2001). 65 6.1.5 Função da célula beta: A função da célula beta, ou seja, a capacidade de produzir insulina frente a um estímulo hiperglicêmico foi avaliada pelo HOMA- beta, índice insulinogênico e a área sobre a curva da relação insulina/ glicose (ASC I/G). O primeiro utiliza valores basais de insulina e glicose, refletindo a secreção de insulina de jejum; o segundo utiliza valores de insulina e glicose nos tempos 0 e 30 min, refletindo a fase rápida de secreção de insulina; e o terceiro utiliza as médias de insulina e glicose dos 180 minutos, refletindo a secreção de insulina por glicose em todo o período. As fórmulas dos dois primeiros estão descritas abaixo: HOMA- beta: (20 x Insulina jejum) / [(Glicemia x 0,05551) – 3,5] Índice insulinogênico: (Insulina no tempo 30- Insulina no tempo 0)/ (Glicemia no tempo 30 – Glicemia no tempo 0) Em todos os três parâmetros acima, menores valores indicam menor função de célula beta. 6.1.6 Análise Estatística Utilizamos o teste T com amostras independentes para comparar as variáveis de distribuição normal e o teste de Mann Whitney para as variáveis de distribuição assimétrica. Os dados foram expressos em média ± desvio padrão. ANOVA de medições mista foi utilizada para avaliar efeito do tempo e do grupo sobre as medidas repetidas de glicose e insulina. Os dados foram expressos em média e erro padrão da média Teste binominal foi utilizado para comparar a frequência de diagnóstico de pré-diabetes e diabetes nos dois grupos. A análise estatística foi realizada no programa SPSS 18.0 (Statistical Packet for Social Science, Inc., Chicago, IL) e considerado significativo p≤0,05. 66 6.2 Resultados 6.2.1 Dados antropométricos Os dados antropométricos estão expressos na tabela 4. Altura, peso, cintura e quadril foram bastante reduzidos no grupo DGH enquanto a relação cintura/ quadril foi mais elevada no grupo DGH, ambos em comparação aos controles. Houve uma tendência de diminuição do IMC do grupo DIGH em relação ao controle (p= 0,054). Tabela 4: Dados antropométricos dos grupos DIGH e Controle DIGH (24 indivíduos) Controles (25 indivíduos) p Idade (anos) 39,25±11,73 39,96±12,49 0,934 Sexo (M/F) 12/12 14/11 0,69 Altura (m) 128,21 ±9,42 165,57± 9,46 <0,0001 Peso (Kg) 37,2 ± 5,95 69,66 ± 13,06 <0,0001 IMC (Kg/m2) 22,9 ± 4,68 25,31 ± 3,86 0,054 Cintura (cm) 76,5± 9,99 86,5 ± 10,3 0,001 Quadril (cm) 81,94 ± 8,01 98,06 ± 9,27 <0,0001 Rel. C/Q 0,93 ± 0,09 0,88 ± 0,08 0,046 6.2.2 Resposta Glicêmica no TTGO 3h Semelhante a estudos anteriores, neste experimento não foi encontrado diferença na glicemia de jejum de indivíduos com DGH e controles (p= 0,979). Como esperado, houve uma elevação da glicemia ao longo do tempo após a glicose oral nos dois grupos estudados (p< 0,0001). A elevação da glicemia foi maior no grupo DIGH (p< 0,0001) (Tabela 5 e Figura 3). A área sobre a curva de glicemia (ASC G) no grupo DIGH (139,8 ± 32) foi significantemente maior que a do grupo controle (117,3 ± 23,5), p= 0,003 (Figura 3). 67 Tabela 5: Comportamento da glicemia durante o TTGO 3H. Glicemia 0 é a glicemia de jejum. Glicemia 30 min é a glicemia 30 minutos após a ingestão oral de 75 gramas de glicose, o mesmo para as glicemias 60, 90, 120 e 180 min. Glicemia 0 Glicemia 30 Glicemia 60 Glicemia 90 Glicemia 120 Glicemia 180 Efeito do grupo DIGH 94,2 ± 1,9§ 163,5 ± 6,1* 163,4 ± 9,4* 148,8 ± 9,0* 136,8 ± 7,2* 111 ± 5,4* <0,0001 Controle 94,3 ± 1,9 140,3 ± 6,0* 131,2 ± 9,2* 127,2 ± 8,8* 116,6 ± 7,1* 83,1 ± 5,3* § p=0, 0,979 em relação ao Controle * p<0,0001 em relação ao basal para os grupos DIGH e Controle, efeito do tempo. Figura 3: Resposta glicêmica a 75 gramas de glicose oral nos grupos DIGH e controles. O p acima reflete o efeito de grupo. Este gráfico também foi utilizado como representação gráfica das áreas sobre as curvas de glicose (ASC G) nos grupos DIGH e Controle. A ASC G foi maior no grupo DIGH (p= 0,003). 6.2.2.1 Diagnóstico de pré diabetes ou diabetes O número de pacientes com diagnóstico de pré- diabetes pela glicemia de jejum foi igual nos dois grupos, contudo com o TTGO diagnosticamos este número foi maior no grupo DIGH (9 pacientes) que no controle (3 pacientes), p= 0,001. Não houve diferença no diagnóstico de diabetes nos dois grupos (Tabela 6). 60 80 100 120 140 160 180 Glicemia Basal G30 G60 G90 G120 G180 Grupo DIGH Grupo CO M éd ia s da g lic em ia ( m g/ dl ) p< 0,0001 68Tabela 6: Número de pacientes com diagnóstico de pré- diabetes e diabetes nos grupos DIGH e controles DIGH Controles p Pré diabetes Glicemia de jejum alterada (≥ 100 e < 126 ng/dl) 6 (25%) 7 (28%) 0,47 Glicemia 2 horas após glicose (≥ 140 e < 200 ng/dl) 9 (37,5%) 3 (12%) 0,001 Diabetes Glicemia de jejum elevada * (≥ 126 ng/dl) ------ ------ ------ Glicemia 2 horas após glicose (≥ 200 ng/dl) 1 (4,2%) 1 (4%) 0,63 * Não tivemos pacientes neste critério, pois ele foi considerado de exclusão para a participação nesta parte do projeto. 6.2.3 Resposta Insulinênica no TTGO 3h Reforçando dados anteriores, indivíduos com DGH apresentaram menor insulina de jejum (p= 0,021) quando comparados com controles. Conforme esperado, houve uma elevação da insulina ao longo do tempo após a glicose oral nos dois grupos estudados (p<0,0001). O comportamento de elevação da insulina foi semelhante nos dois grupos, havendo uma tendência de redução no grupo DIGH (p=0,08) quando utilizamos o logaritmo da insulina (Tabela 7 e Figura 4). As áreas sobre a curva de insulina (ASC I) foram similares nos grupo DIGH (31,3 ± 14,9) e controle (39,9 ± 6,5), p= 0,47. Para o cálculo da ASC I foram utilizados os valores absolutos da insulina (Figura 5). Tabela 7: Comportamento da insulina durante o TTGO 3H. Insulina 0 é a insulina de jejum. Insulina 30 min é a insulina 30 minutos após a ingestão oral de 75 gramas de glicose, o mesmo para as insulinas 60, 90, 120 e 180 min. Insulina 0 Insulina 30 Insulina 60 Insulina 90 Insulina 120 Insulina 180 Efeito do grupo DIGH 2,72 ± 0,3§ 34,04 ± 3* 42,09 ± 6,4* 37,71 ± 4,7* 36,41 ± 4,5* 18,27 ± 2,8* 0,08 Controle 4,23 ± 0,5 58,76 ± 9,1* 57,05 ± 11,8* 48,73 ± 7,6* 40,54 ± 8,1* 13,56 ± 2,4* § p=0,021 em relação ao Controle * p<0,0001 em relação ao basal para os grupos DIGH e Controle, efeito do tempo. 69 Figura 4: Resposta insulinêmica (logaritmo de insulina) à 75 gramas de glicose oral nos grupos DIGH e controles. O p acima reflete o efeito do grupo. Figura 5: Representação gráfica das áreas sobre as curvas de insulina (ASC I) nos grupos DIGH e Controle. As ASC I foram similares nos dois grupos (p= 0,47). 0 10 20 30 40 50 60 70 80 Insulina Basal Ins 30 Ins 60 Ins 90 Ins 120 Ins 180 Grupo DIGH Grupo CO M éd ia s de In su lin a (µ U / m l) 0 0,4 0,8 1,2 1,6 2 Log Insulina Basal Log Ins 30 Log Ins 60 Log Ins 90 Log Ins 120 Log Ins 180 Grupo DIGH Grupo CO M éd ia s do L og In su lin a (µ U / m l) p= 0,08 70 6.2.4 Sensibilidade à Insulina Semelhante a estudos prévios, indivíduos com DIGH apresentaram menor HOMA ir (p= 0,031) quando comparados com controles. Houve uma tendência de elevação do QUICKI e OGIS 2 no grupo DIGH, contudo sem alteração no OGIS 3 entre os dois grupos analisados (Tabela 8). Tabela 8: Resultados do HOMAir, QUICKI, OGIS 2, OGIS 3 em pacientes portadores de DIGH e controles. DIGH Controles p HOMA ir 0,65 ± 0,4 0,99 ± 0,64 0,031 QUICKI 0,43 ± 0,04 0,40 ± 0,05 0,066 OGIS 2 horas 444,3 ± 49,6 418,5 ± 54,1 0,09 OGIS 3 horas 453,6 ± 62,14 451,3 ± 63,1 0,9 6.2.5 Função de célula beta Todos os três índices utilizados para a avaliação da função de célula beta foram menores no grupo DIGH em relação aos controles, HOMA- beta (31,9 ± 16 x 52 ± 35,6; p= 0,015) (Figura 6); índice insulinogênico (0,26 ± 1,0 x 1,27 ± 1,0; p< 0,0001) (Figura 7) e ASC I/G (0,22 ± 0,08 x 0,34 ± 0,24; p= 0,02) (Figura 8). Figura 6: HOMA- beta nos grupos DIGH e Controle p= 0,015 71 Figura 7: Índice insulinogênico nos grupos DIGH e Controle Figura 8 : Representação gráfica das áreas sobre as curvas da relação insulina / glicose (ASC I/G) nos grupos DIGH e Controle. A ASC I/G do grupo DIGH foi menor (p= 0,02). 0 0,1 0,2 0,3 0,4 0,5 Relação I/G basal I/G 30 I/G 60 I/G 90 I/G 120 I/G 180 Grupo DIGH Grupo CO M éd ia s da r el aç ão in su lin a (µ U /m l)/ g lic os e (m g/ dl ) 72 6.3 Discussão Esse é o primeiro trabalho com avaliação da sensibilidade à insulina e função de célula beta utilizando teste dinâmico em modelo humano de DIGH genética e grave. Nossos dados mostram um aumento da resposta glicêmica e da frequência de intolerância a glicose, com sensibilidade insulínica normal (HOMAir, QUICKI, OGIS 2 e OGIS 3) e menor função de célula beta (HOMA- beta, índice insulinogênico e ASC I/G) nos portadores de DIGH. Semelhante às nossas descrições anteriores (BARRETO-FILHO et al., 2002; OLIVEIRA et al., 2006; OLIVEIRA et al., 2010) insulina de jejum e HOMAir foram mais baixos nestes pacientes. Os indivíduos com DIGH do nosso grupo exibem sensibilidade à insulina normal e função da célula beta reduzida. Esta é a primeira descrição de SI normal em um modelo humano de DIGH, desta forma discutiremos os modelos humano (Síndrome de Laron) e animal de resistência ao GH, e os modelos animais de deficiência hepática de IGFI e de mutação no gene do GHRH. Indivíduos com resistência ao GH (síndrome de Laron), com GH elevado e IGF-I muito baixo, exibem obesidade abdominal acentuada já presente na infância. Concomitantemente com o aumento da gordura subcutânea e visceral a maioria dos pacientes com síndrome de Laron desenvolve sinais de síndrome metabólica como dislipidemia, resistência insulínica e esteato hepatite não alcoólica. Por outro lado, pacientes com resistência ao GHRH (“anões de Itabaianinha”) com GH e IGF-I muito baixos, apresentam obesidade abdominal, hipercolesterolemia, sensibilidade à insulina normal e não apresentam sinais de esteato hepatite não alcoólica (OLIVEIRA et al., 2008). Apesar de um fenótipo clínico semelhante, estes modelos divergem quanto ao fenótipo cardiovascular. Sendo a hipersecreção do GH uma característica da síndrome de Laron, supõe-se que ela seja a responsável pela resistência insulínica e síndrome metabólica neste modelo. Indivíduos com síndrome de Laron apresentam obesidade truncal, insulino resistência pelo HOMAir e hiperinsulinemia (KANETY et al., 2009). Camundongos 73 com deleção do gene do GHR são hipersensíveis à insulina, porém com tolerância diminuída à glicose devido a um menor número de células β pancreáticas e uma reduzida secreção de insulina, provavelmente consequentes à redução do estímulo do GH ou IGF-I na massa de células β pancreáticas (LIU et al., 2004). Hiperexpressão gênica de IGF-I nas ilhotas pancreáticas destes animais restaura a massa de células beta, normalizando a produção de insulina e a tolerância à glicose, sugerindo ser o IGF-I extremamente reduzido a explicação para estes achados (GUO et al., 2005). A razão da discrepância na SI entre o modelo humano e o animal de resistência ao GH não é clara, mas pode se dever a diferenças entre espécies, gravidade diferente de mutações parcialmente inativadoras do GHR no modelo humano versus completa inativação do gene no modelo animal e a secreção de IGF-II, que persiste durante toda a vida no humano e virtualmente desaparece nos roedores após o nascimento (LIU et al., 2004). Outro modelo estudado é o do camundongo com deficiência hepática de IGF-I (DHIGF-I) (YU et al., 2003). Neste modelo há uma redução em 75% do IGF-I circulante, com aumento do GH e da insulina, em cerca de 4 vezes, com glicemias normais, o que sugere insulino-resistência, com tolerância à glicose aparentemente normal. Em animais transgênicos oriundos do cruzamento dos animais com DHIGF-I com outros que expressam um antagonista do GH (YAKAR et al., 2004), a sensibilidade à insulina foi restaurada, sugerindo papel crítico do GH na insulino resistência. Dados ainda não publicados, fornecidos pelo Dr. Roberto Salvatori, mostram que camundongosidosos com mutação no gene do GHRH apresentam resposta glicêmica maior de que animais controles e com sensibilidade a insulina normal, achados semelhantes aos encontrados nos portadores de DIGH por mutação no gene do receptor do GHRH. Indivíduos com DIGH de Itabaianinha apresentam volume pancreático maior que controles quando corrigidos para a superfície corpórea (OLIVEIRA et al., 2008). Camundongos com deleção no GHR, apesar de apresentarem reduzida massa de células beta, apresentam volume do pâncreas igual ao de controles (LIU et al, 2004). 74 Como a maior parte da massa pancreática representa o pâncreas exócrino, parece que o desenvolvimento desta porção do órgão não exige um eixo GH/ IGF-I intacto. Contudo, o achado de prejuízo da função da célula beta em um modelo humano de DIGH, soma- se aos dados dos camundongos com deleção no GHR, reforçando o papel do GH/ IGF-I para o desenvolvimento e função da porção endócrina do pâncreas. Nossos dados, em conjunto com os acima apresentados, indicam que o IGF-I parece ser o responsável pelo desenvolvimento de uma massa normal de células beta necessária a uma adequada produção de insulina e capaz de prevenir a tolerância diminuída a glicose, achados presentes quando há deficiência grave de IGF-I (camundongos com mutação no receptor do GH). Níveis menos reduzidos de IGF-I (camundongos com deficiência hepática de IGF-I) parecem garantir um desenvolvimento normal do pâncreas e insulinogênese, e sua associação com a hipersecreção de GH conduz a insulino resistência. Os índices de OGIS dos nossos pacientes se assemelham aos de indivíduos magros saudáveis (MARI et al., 2001). O achado de sensibilidade insulínica normal, por todos os parâmetros avaliados, distingue esses pacientes com DIGH genética e vitalícia daqueles com DGH moderada ou adquirida, usualmente associada à resistência insulínica e maior morbidade CV (GOLA et al., 2005; ROSEN & BENGTSSON, 1990; BENGTSSON, 1998; BULOW et al., 2000). SI normal pode ser uma explicação fisiopatológica para a menor expressão fenotípica da aterosclerose nesses indivíduos com DIGH e vários fatores de RCV. Estes dados sugerem um papel deletério do GH sobre a SI e benéfico do IGFI no desenvolvimento e função das células beta. Nossos pacientes com DIGH apresentam GH extremamente reduzido desde a infância o que pode justificar o achado de sensibilidade insulínica normal. Por outro lado, os baixos níveis de IGF-I podem comprometer a função ou a massa das células beta. Aspecto curioso do aumento da resposta glicêmica e da freqüência de intolerância à glicose nos indivíduos com DIGH, foi o similar diagnóstico de diabetes 75 nos grupos DIGH e Controle. O fato de o número de pré diabetes ser maior no DIGH e o número de diabetes não ser, pode sugerir uma evolução mais lenta de pré diabetes para diabetes, por razões ainda não esclarecidas. Em indivíduos com eixo GH/ IGF-I normal e RI, a evolução para diabetes depende fundamentalmente da deterioração das células beta. Indivíduos com DIGH de Itabaianinha com prejuízo da função das células beta, a evolução para o diabetes parece ser protraída pela ausência de RI, provavelmente pela deficiência crônica do GH. A elevação da adiponectina descrita previamente neste modelo (OLIVEIRA et al., 2010) pode contribuir para esta normal sensibilidade insulínica. Alternativamente esta elevação pode refletir uma menor ação inibitória do GH sobre a secreção de adiponectina pelos adipócitos. Na maior parte dos modelos de obesidade humana, onde há excesso de gordura visceral, a adiponectina é baixa. Por outro lado, estudos com ressonância magnética de indivíduos com síndrome de Prader Willi, que têm diminuída secreção de GH e obesidade importante apresentam redução relativa na adiposidade visceral associada a níveis elevados de adiponectina (KENNEDY et al., 2006). Não é ainda claro o padrão da adiposidade abdominal dos indivíduos com DIGH de Itabaianinha, se predomínio visceral ou subcutâneo. Futuros estudos do nosso grupo avaliarão este padrão de adiposidade. A adiponectina elevada com SI normal além de diminuir o RCV pode ter efeitos positivos em termos de longevidade (OLIVEIRA et al, 2010). _____________________________________________7. CONCLUSÕES 77 Os pacientes com DIGH apresentaram: 1. Adiponectina foi mais elevada e a leptina normal 2. Excreção urinária de albumina normal 3. Sensibilidade à insulina normal 4. Função de célula beta reduzida O perfil de adipocinas, caracterizado por adiponectina elevada e leptina normal, é diferente do usualmente encontrado na obesidade. Esta é a primeira descrição de sensibilidade à insulina normal em um modelo humano de DIGH. A associação entre este perfil de adipocinas e sensibilidade à insulina normal pode retardar a morbimortalidade cardiovascular nestes indivíduos, confirmada neste trabalho pela EUA normal (ausência de disfunção endotelial), mesmo na presença de fatores de risco cardiovasculares. O prejuízo na função da célula beta sugere a importância do eixo GH/ IGF-I no desenvolvimento do pâncreas endócrino e insulinogênese. ____________________________________________8. REFERÊNCIAS 79 ADLER, A.I. et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int , v.63, p.225-232, 2003. AGUIAR-OLIVEIRA, M.H. et al. Effect of severe growth hormone (GH) deficiency due to a mutation in the GH-releasing hormone receptor on insulin-like growth factors (IGFs), IGF- binding proteins, and ternary complex formation throughout life. J Clin Endocrinol Metab, v.84, p.4118-4126, 1999. AGUIAR-OLIVEIRA, M.H. et al. Longevity in Untreated Congenital Growth Hormone Deficiency Due to a Homozygous Mutation in the GHRH Receptor Gene. J Clin Endocrinol Metab, v.95, n.2, p.714-721, 2010. ALBA, M. et al. Once-daily administration of CJC-1295, a long-acting growth hormone- releasing hormone (GHRH) analog, normalizes growth in the GHRH knockout mouse. Am J Physiol Endocrinol Metab, v.291, p. 1290-1294, 2006. ALBA, M.; SALVATORI, R. A mouse with targeted ablation of the growth hormone- releasing hormone gene: a new model of isolated growth hormone deficiency. Endocrinology, v.145, p.4134-4143, 2004. ALCÂNTARA, M.R.S. et al. Thyroid Morfology and Function in Adults with Untreated Isolated Growth Hormone Deficiency. J Clin Endocrinol Metab, v.91, p.860-864, 2006. ANGELIN, B.; RUDLING, M. Growth hormone and hepatic lipoprotein metabolism. Curr Opin Lipidol ., v.5, p.160-165, 1994. BARBOSA, J.A. et al. Quality of life in congenital, untreated, lifetime isolated hormone deficiency. Psychoneuroendocrinology, v.34, p.894-900, 2009. BARRETO, V.M. et al. Laryngeal and vocal evaluation in untreated growth hormone deficient adults. Otolaryngol Head Neck Surg. v.140, p.37-42, 2009. BARRETO-FILHO, J.A.S. et al. Familial Isolated Growth Hormone Deficiency is associated with increased systolic blood pressure, central obesity, and dyslipidemia. J Clin Endocrinol Metab, v.87, p.2018-23, 2002. BELTOWSKI, J. Leptin and atherosclerosis. Atherosclerosis, v.189, p.47–60, 2006. BELTOWSKI, J. Role of leptin in blood pressure regulation and arterial hypertension. J Hypertens, v.24, p.789–801, 2006. BENGTSSON, B.A. Untreated growth hormone deficiency explains premature mortality in patients with hypopituitarism. Growth Horm IGF Res, v.8, p.77–80, 1998. BERGMAN, R.N. Minimal model: perspective from 2005. Horm Res, v.64, p.8-15, 2005. BERTI, L. et al. Leptin stimulates glucose transport and glycogen synthesis in C2C12 myotubes; evidence for a PI3-kinase mediated effect. Diabetologia,v.40, p.606–609, 1997. 80 BIANCHI, S.; BIGAZZI, R.; CAMPESE, V.M. Microalbuminuria in essential hypertension: significance, pathophysiology, and therapeutic implications. Am J Kidney Dis, v. 34, p. 973– 995, 1999. BLOOMGARDEN, Z.T. Measures of insulin sensitivity. Clin Lab Med , v. 26, p.611-33, 2006. BODARY, P.F. & EITZMAN, D.T. Adiponectin: vascular protection from the fat? Arterioscler Thromb Vasc Biol, v.26, p.235–236, 2006. BORCH-JOHNSEN, K. et al. Urinary albumin excretion. An independent predictor of ischemic heart disease. Arterioscler Thromb Vasc Biol, v. 19, p. 1992-1997, 1999. BRADA, M. et al. Cerebrovascular mortality in patients with pituitary adenoma. Clin Endocrinol, v.57, p.713–717, 2002. BREMER, V. et al. Role of nitric oxide in rat nephrotoxic nephritis: Comparison between inducible and constitutive nitric oxide synthase. J Am Soc Nephrol, v.8, p.1712-1721, 1997. BETTERIDGE, D.J.; MORREL, J.M. Clinicianl’s guide to lipids and coronary heart disease. 1. ed. London: Chapman and Hall Medical, 1998. BRODIE, D.A.; ESTON, R.G. Body Fat Estimations by Eletrical Impedance and Infra-Red Interactance. Int J Sports Med, v.13, p.5319-5325, 1992. BRUMMER, R.J. Effects of growth hormone treatment on visceral adipose tissue. Growth Horm IGF Res, v.8, p.19-23, 1998. BULOW, B. et al. Hypopituitary females have a high incidence of cardiovascular morbidity and an increased prevalence of cardiovascular risk factors. J Clin Endocrinol Metab, v.85, p.574–584, 2000. CAPALDO, B. et al. Increased arterial intima-media thickness in childhood-onset growth hormone deficiency. J clin Endocrinol Metabolism, v.82, p.1378-81, 1997. CHOI, K.M. et al. Serum adiponectin concentrations predict the developments of type 2 diabetes and the metabolic syndrome in elderly Koreans. Clin Endocrinol , v.61, p.75– 80, 2004. CHRISTIANSEN, J.S. et al. Kidney function and size in normal subjects before and during growth hormone administration for one week. Eur J Clin Invest , v.11, p.487-490, 1981. CIRESI, A. et al. Metabolic parameters and adipokine profile during GH replacement therapy in children with GH deficiecy. Eur J Endocrinol , v.156, p.353-60, 2007. CLEMENT, K. et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature, v.392, p.398-401, 1998. CLEMMONS, D.R. The relative roles of growth hormone and IGF-I in controlling insulin sensitivity. J Clin Invest, v.113, p.25-27, 2004. COHEN, B.; NOVICK, D.; RUBINSTEIN, M. Modulation of insulin activities by leptin. Science, v.274, p.1185–1188, 1996. 81 CORRÊA, F.H.S. et al. Avaliação da microalbuminúria em indivíduos não diabético. Arq Bras Endocrinol Metab, v.50, p.472-480, 2006. CORREIA, M.L.; HAYNES, W.G. Obesity-related hypertension: is there a role for selective leptin resistance? Cur Hypertens Rep, v.6, p.230-235, 2004. CORREIA, M.L.; HAYNES, W.G. Leptin, obesity and cardiovascular disease. Curr Opin Nephrol Hypertens, v.13, p.215–223, 2004. CORVILAIN, J.; ABRAMOW, M. Some effects ofhuman growth hormone on renal hemodynamics and on tubular phosphate transport in man. J Clin Invest, v.41, p.1230-1235, 1962. COSTACOU, T. et al. The prospective association between adiponectin and coronary artery disease among individuals with type 1 diabetes: the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia, v.48, p.41– 48, 2005. de A. BARRETO, E.S. et al. Serum leptin and body composition in children with familial GH deficiency (GHD) due to a mutation in the growth hormone-releasing hormone (GHRH) receptor. Clin Endocrinol , v.51, p.559-64, 1999. de COURTEN, M. et al. Hyperleptinaemia: the missing link in the metabolic syndrome? Diabet Med, v.14, p.200–208, 1997. de PAULA, F.J. et al. Consequences of lifetime isolated growth hormone (GH) deficiency and effects of short-term GH treatment on bone in adults with a mutation in the GHRH- receptor gene. Clin. Endocrinol, v.70, p.35-40, 2008. DECKERT, T. et al. Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia, v.32, p.219-26, 1989. DEFRONZO, R.; TOBIN, J.; ANDRES, R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol, v. 237, p. 214-213, 1979. DELAFONTAINE, P.; SONG, Y.H.; LI, Y. Expression, regulation, and function of IGF-I, IGF-IR, and IGF-I binding proteins in blood vessels. Arterioscler Thromb Vasc Biol, v.24: p.435-44, 2004. DOI, S.Q. et al. Growth Hormone Increases Inducible Nitric Oxide Synthase Expression in Mesangial Cells. J Am Soc Nephro, v.11, p.1419-1425, 2000. DUVNJAK, L.; DUVNJAK, M. The metabolic syndrome – an ongoing story. J Physiol Pharmacol, v. 60, p. 19-24, 2009. FALKHEDEN, T.; SJTGREN, B. Extracellular fluid volume and renal function in pituitary insufficiency and acromegaly. Acta Endocrinol, v.46, p.80-88, 1964. FAROOQI, I.S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med, v.341, p.879–884, 1999. FERRANNINI, E.; MARI, A. Beta cell function and its relation to insulin action in humans: a critical appraisal. Diabetologia, v.47, p.943-956, 2004. 82 FERRANNINI, E. et al. Insulin resistance , insulin response and obesity as indicators of metabolic risk. J Clin Endocrinol Metab, v.92, p.2885-92, 2007. FISHER, F.M. et al. Differences in adiponectin protein expression: effect of fat depots and type 2 diabetic status. Horm Metab Res, v. 34, p.650-654, 2002. FUKUDA, I. et al. Serun adiponectin levels in adult growth hormone deficiency and acromegaly. Growth Horm IGF Res, v.14, p.449-54, 2004. FURUSU, A. et al. Expression of endothelial and inducible nitric oxide synthase in human glomerulonephritis. Kidney Int , v.53, p.1760-1768, 1998. GELONEZE, B. et al. Serum leptin levels after bariatric surgery across a range of glucose tolerance from normal to diabetes. Obes Surg, v. 11, p.693-698, 2001. GERSTEIN, H.C. et al. Albuminuria and risk of cardiovascular events, death and heart failure in diabetic and nondiabetic individuals. JAMA , v.286, p.421-426, 2001. GILL, M.S. et al. Serum leptin response to the acute and chronic administration of growth hormone (GH) to elderly subjects with GH deficiency. J Clin Endocrinol Metab. v.84, p.1288-1295. 1999. GIUSTINA, A. et al. Picotamide, a dual TXB synthetase inhibitor and TXB receptor antagonist, reduces exerciseinduced albuminuria in microalbuminuric patients with NIDDM. Diabetes, v. 42, p.178-182, 1993. GIUSTINA, A. et al. Long-term treatment with the dual antithromboxane agent picotamide decreases microalbuminuria in normotensive type 2 diabetic patients. Diabetes, v. 47, p. 423- 430, 1998. GLEESON, H.K. et al. Lipid profiles in untreated severe congenital isolated growth hormone deficiency through the lifespan. Clin Endocrinol, v.57, p.89-95, 2002. GLEESON, H.K. et al. Metabolic effects of growth hormone (GH) replacement in children and adolescents with severe isolated GH deficiency due to a GHRH receptor mutation. Clin Endocrinol, v.66, p.466-474, 2007. GODFREY, P. et al. GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function. Nature Genet, v.4, p. 227−232, 1993. GOLA, M. et al. Clinical review. Growth hormone and cardiovascular risk factor. J Clin Endocrinol Metab, v.90, p.1864-1870. 2005. GOSLING P. Microalbuminuria and cardiovascular risk: a word of caution. J Hum Hypertens, v.12, p.211-213, 1998. GREENFIELD, M.S. et al. Assessment of insulin resistance with the insulin suppression test and the euglycemic clamp. Diabetes, v.30, p.387-392, 1981. GULER, H.P. et al. Effects of recombinant insulin-like growth factor I on insulin secretion and renal function in normal human subjects. Proc Natl Acad Sci, v.86, p. 2868-2872, 1989. 83 GUO, Y. et al. Pancreatic islet-specific expression of an insulin-likegrowth factor-I transgene compensates islet cell growth in growth hormone receptor gene deficient mice. Endocrinology, v.146, p.:2602-2609, 2005. HADJADJ, S. et al. SURGENE Study Group; DESIR Study Group. Increased plasma adiponectin concentrations are associated with microangiopathy in type 1 diabetic subjects. Diabetologia, v.48, p.1088-92, 2005. HANA, V. et al. The effects of GH replacement in adult GH - deficient patients: changes in body composition without concomitant changes in the adipokines and insulin resistence. Clin Endocrinol, v.60, p.442-50, 2004. HANNON, T.S. et al. Arslanian SA. Growth Hormone Treatment in Adolescent Males with Idiopathic Short Stature: Changes in Body Composition, Protein, Fat, and Glucose Metabolism. J Clin Endocrinol Metab, v.92, p.3333-9, 2007. HENNIGE, A.M. et al. Leptin downregulates insulin action through phosphorylation of serine-318 in insulin receptor substrate 1. FASEB J, v.20, p.1206 –1208, 2006. HERRINGTON J, CARTER-SU. Signaling pathways activated by the GH receptor. Trends Endocrinol Metab, v.12, p. 252-257, 2001. HEW, F.L. et al. Insulin resistance in growth hormone-deficient adults: defects in glucose utilization and glycogen synthase activity. J Clin Endocrinol Metab., v.81, p.555–564, 1996. HIRSCHBERG, R.; KOPPLE, J.D. Evidence that insulin-like growth factor I increases renal plasma flow and glomerular filtration rate in fasted rats. J Clin Invest, v.83, p.326-330, 1989. HOCKENSMITH, M.L. et al. Albuminuria as a predictor of heart failure hospitalizations in patients with type 2 diabetes. J Card Fail, v.10, p.126-131, 2004. HOOGENBERG, K. , SLUITER, W.I., DULLAART, R.P.F. Effect of growth hormone and insulin-like growth factor I on urinary albumin excretion: studies in acromegaly and growth hormone deficiency. Acta Endocrinol, v.129, p.151, 1993. HUERTA, M.G. Adiponectin and leptin: Potential tools in the differential diagnosis of pediatric diabetes? Rev Endocr Metab Disord, v.7, p.187-196, 2006. IKOS, D.; LJUNGGREN, H.; LUFT, R. Glomemlar filtration rate and renal plasma flow in acromegaly. Acta Endocrinol, v.21, p.226-236, 1956. JOAQUIN, C. et al. Effects of GH treatment in GH deficiency adults on adiponectin, leptin and pregnancy- associeted plasma protein-A. Eur J Endocrinol, v.158, p.483-490. 2008. JORGENSEN, J.O. et al. Beneficial effects of growth hormone treatment in GH-deficient adultos. Lancet, v. 1, p. 1221-1225, 1989. JUNG, C.H. et al. Serum ghrelin and leptin levels in adult growth hormone deficiency syndrome. Arch Med Res, v.37, p.612-618, 2006. 84 JUUL, A. et al. Growth hormone (GH) provocative retesting of 108 young adults with childhood-onset GH deficiency and the diagnostic value of insulin-like growth factor I (IGF- I) and IGF-binding protein-3. J Clin Endocrinol Metab, v.82, p.1195–1201, 1997. KANETY, H. et al. Total and high molecular weight adiponectin are elevated in patients with Laron syndrome despite marked obesity. Eur J Endocrinol , v.161, p. 837–844, 2009. KARBOWSKA, J.; KOCHAN, Z. Role of adiponectin in the regulation of carbohydrate and lipid metabolism. J Physiol Pharmacol, v.57, p.103-13, 2006. KATZ, A.; NAMBI, S.S.; MATHER, K. Quantitative Insulin Sensitivity Check Index (QUICKI): a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab, v.85, p.2402-2410, 2000. KEANE, W.F.; EKNOYAN, G. Proteinuria, albuminuria, risk, assessment, detection, elimination (PARADE): a position paper of the National Kidney Foundation. Am J Kidney Dis, v.33 , p.1004-1010, 1999. KENNEDY, L. et al. Circulatin adiponectin levels, body composition and obesity – related variables in Prader- Willi syndrome: comparison with obese subjects. Int J Obes, v.30, p.382-87, 2006. KOH, K.K.; PARK, S.M.; QUON, M.J. Leptin and cardiovascular disease. Circulation , v.117, p.3238-3249, 2008. KOJIMA, M. et al. Ghrelin is a growth- hormone- releasing acylated pepitide from stomach. Nature, v.402, p.656-60, 1999. KOMABA, H. et al. Increased serum high-molecular-weight complex of adiponectin in type 2 diabetic patients with impaired renal function. Am J Nephrol, v.26, p.476-82, 2006. LANES, R. et al. Growth hormone deficienct, low levels of adiponectin and unfavorable plasma lipid and lipoproteins. J Pediatr, v.149, p. 324-9, 2006. LARON, Z.; KLINGER, B. Laron syndrome: clinical features, molecular pathology and treatment. Horm Res, v.42, p.198–202, 1994. LAWLOR, D.A. et al. Plasma adiponectin levels are associated with insulin resistance, but do not predict future risk of coronary heart disease in women. J Clin Endocrinol Metab, v.90, p.5677–5683, 2005. LI, S. et al. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta- analasis. JAMA, v.302, p.179-188, 2009. LINDSAY, R.S. et al. Adiponectin and coronary heart disease: the Strong Heart Study. Arterioscler Thromb Vasc Biol, v.25, p.15–16, 2005. LIU, J.L. et al. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice. Am J Physiol Endocrinol Metab, v.287, p.405–413, 2004. LIU, Y.L.; EMILSSON, V.; CAWTHORNE, M.A. Leptin inhibits glycogen synthesis in the isolated soleus muscle of obese (ob_ob) mice. FEBS Lett, v.411, p.351–355, 1997. 85 MAHESHWARI, H.G. et al. Phenotype and genetic analysis of a syndrome caused by an inactivating mutation in the growth hormone-releasing hormone receptor: Dwarfism of Sindh. J Clin Endocrinol Metab, v.83, p.4065-4074, 1998. MARGETIC, S. et al. Leptin: a review of its peripheral actions and interactions. Int J Obes Relat Metab Disord, v.26, p.1407–1433, 2002. MARI, A. et al. Comparative evaluation of simple insulin sensitivity methods based on the oral glucose tolerance test. Diabetologia, v. 48, p.748-751, 2005. MARI, A. et al. A model-based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care, v. 24, p.539-548, 2001. MARKUSSIS, V. et al. Detection of premature atherosclerosis by high-resolution ultrasonography in symptom free hypopituitary adults. Lancet, v.340, p.1188-1192, 1992. MARTARI, M.; SALVATORI, R. Diseases associated with growth hormone-releasing hormone receptor (GHRH-R) mutations. Prog Mol Biol Transl Sci, v.88, p.57-84, 2009. MATSUDA, M.; DEFRONZO, R.A. Insulin sensitivity indices obtained from oral glucose tolerance testing. Diabetes Care, v.22, p.1462-1470, 1999. MATTHEWS, D. et al. Homeostasis model assessment: insulin resistance and beta cell function from fasting plasma glucose and insulin concentration in man. Diabetologia, v. 28, p. 412-419, 1985. MAURAS N, HAYMOND MW. Are the metabolic effects of GH and IGF-I separable? Growth Horm IGF Res, v.15, p.19-27, 2005. MENEZES, M. et al. Climateric in Untreated Isolated Growth Hormone Deficiency. Menopause, v.15, p.743-747, 2008. MOGENSEN, C.E. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med, v.310, p. 356-360, 1984. MOLLER, N. et al. Effects of growth hormone on lipid metabolism in humans. Growth Horm IGF Res, v.13, p.18-21, 2003. MONTAGUE, C.T. et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature, v.387, p.903–908. 1997. MUOIO, D.M. et al. Leptin directly alters lipid partitioning in skeletal muscle. Diabetes, v. 46, p. 1360–1363, 1997. SATTAR, N. et al. Adiponectin and Coronary Hearty Disease: A prospective Study and Meta- Analysis. Circulation , v.114, p.623-629, 2006. NELSON, R.G. et al. Assessment of risk of overt nephropathy in diabetic patients from albumin excretion in untimed urine specimens. Arch Intern Med ., v.151, p.1761-1765, 1991. 86 NILSSON, L. et al. Prolactin and growth hormone regulate adiponectin secretion and receptor expression in adipose tissue. Biochem Biophys Res Commun, v.331, p.1120-1126, 2005.OLIVEIRA, C.R.P. et al. Sizes of abdominal organs in adults with severe short stature due to severe, untreated, congenital GH deficiency caused by a homozygous mutation in the GHRH receptor gene. Clin Endocrinol , v.69, p.153-158, 2008. OLIVEIRA, C.R.P. et al. Adipokine Profile and Urinary Albumin Excretion in Isolated Growth Hormone Deficiency, J Clin Endocrinol Metab, v.95, p.693–698, 2010. OLIVEIRA, H.A. et al. Magnetic resonance imaging study of pituitary morphology in subjects homozygous and heterozygous for a null mutation of the GHRH receptor gene. Eur J Endocrinol, v. 148, p.427-32, 2003. OLIVEIRA, J.L.M. et al. Lack of Evidence of Premature Atherosclerosis in Untreated Severe Isolated Growth Hormone Deficiency Due to a GHRH Receptor Mutation. J Clin Endocrin Metab, v.91, p.2093-2099, 2006. OLIVEIRA, J.L.M. et al. Congenital Growth Hormone (GH) deficiency and Atherosclerosis: Effects of GH Replacement in GH-Naive Adults. J Clin Endocrin Metab, v.92, p.4664- 4670, 2007. OLIVEIRA-NETO, L.A. Achados cefalométricos em adultos com deficiência genética e Isolada do Hormônio de Crescimento. Dissertação (Mestrado em Ciências da Saúde), Núcleo de Pós-Graduação em Medicina, Universidade Federal de Sergipe, Aracaju, Sergipe, 2009. ORAL, E. et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med, v.346, p.570– 578, 2002. OSAFO, J. et al. Growth hormone during development. Rev Endocr Metab Disord, v.6, p.173-182, 2005. OUCHI, N. et al. Adiponectin, an adipocytederived plasma protein, inhibits endothelial NF- kappaB signaling through a cAMP-dependent pathway. Circulation , v.102, p.1296 –1301, 2000. OUCHI, N. et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation , v.100, p.2473–2476, 1999. OZATA, M.; OZDEMIR, I.C.; LICINIO, J. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J Clin Endocrinol Metab, v.84, p.3686–3695, 1999. PAOLISSO, G. et al. Levels of Insulin-Like Growth Factor-I (IGF-I) and IGF-Binding Protein-3 in healthy centenarians: relationship with plasma leptin and lipid concentrations, insulin action, and cognitive function. J Clin Endocrin Metab, v.82, p.2204-2209, 1997. PECZYŃSKA, J. et al. Evaluation of adiponectin level in children and adolescents with diabetes type 1. Pediatr Endocrinol Diabetes Metab, v.14, p.77-81, 2008. 87 PEDRINELLI, R. Microalbuminuria in essential hypertension. A marker of systemic vascular damage? Nephrol Dial Transplant, v.12, p. 379-381, 1997. PEDRINELLI, R. et al. Microalbuminuria and endothelial dysfunction in essential hypertension. Lancet, v.344, p.14-18, 1994. PELLEYMOUNTER, M.A. et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science, v.269, p.540–543, 1995. PISCHON, T. et al. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA , v.291, p.1730–1737, 2004. PFEITER, M.; VERHOVEC, R.; ZIZEK, B. Growth hormone (GH) treatement reverses early atherosclerotic changes in GH-deficient adults. J Clin Endocrinol Metabolism, v.84, p.453- 7, 1999. RABEN, M.S.; HOLLENBERG, C.H. Effect of growth hormone on plasma fatty acids. J. Clin. Invest, v.38, p.484-488, 1959. RASHID, M.N. et al. Wehner OS. Obesity and the risk for cardiovascular disease. Prev Cardiol , v.6, p.42-47, 2003. ROSEN, T.; BENGTSSON, B.A. Premature mortality due to cardiovascular disease in hypopituitarism. Lancet, v. 336, p.285-288, 1990. RUSSELL, M. et al. Relative growth hormone deficiency and cortisol excess are associated with increased cardiovascular risk markers in obese adolescent girls. J Clin Endocrin Metab, v.94, p.2864-2871, 2009. SALVATORI, R. et al. Familial dwarfism due to a novel mutation in the growth hormone- releasing hormone receptor gene. J Clin Endocrinol Metab, v.84, p.917-923, 1999. SALVATORI, R. et al. Three new mutations in the gene for the growth hormone (gh)- releasing hormone receptor in familial isolated gh deficiency type IB. J Clin Endocrinol Metab, v.86, p.273-279, 2001. SALVATORI, R. Growth hormone and IGF-1. Rev Endocr Metab Disord, v. 5, p.15-23, 2004. SARAHEIMO, M. et al. FinnDiane Study Group. Serum adiponectin and progression of diabetic nephropathy in patients with type 1 diabetes. Diabetes Care, v.31, p.1165-9, 2008. SATTAR, N. et al. Adiponectin and Coronary Hearty Disease: A prospective Study and Meta- Analysis. Circulation , v.114, p.623-629, 2006. SCHALKWIJK, C.G. et al. Plasma concentration of C-reactive protein is increased in type I diabetic patients without clinical macroangiopathy and correlates with markers of endothelial dysfunction: evidence for chronic inflammation. Diabetologia, v.42, p.351–357, 1999. SCHMITZ, A.; VAETH, M. Microalbuminuria: a major risk factor in non-insulin-dependent diabetes. A 10-year follow-up study of 503 patients. Diabet Med, v.5, p.126-134, 1988. 88 SELTZER, H.S. et al. Insulin secretion in response to glycemic stimulus: relation of dalayed initial release to carbohydrate intolerance in mild diabetes mellitus. J Clin Invest, v.46, p.323-335, 1967. SEUFERT, J. Leptin effects on pancreatic beta-cell gene expression and function. Diabetes, v.53, p.152–158, 2004. SIVITZ, W.I. et al. Effects of leptin on insulin sensitivity in normal rats. Endocrinology, v.138, p.3395–3401, 1997. SOUZA, A.H.O. Estudo Genético das Crianças de Carretéis – Deficiência Familial Isolada do Hormônio de Crescimento – Itabaianinha – Sergipe. Dissertação (Mestrado em Saúde da Criança), Núcleo de Pós-Graduação em Medicina, Universidade Federal de Sergipe, Aracaju, Sergipe, 1997. SOUZA, A.H.O. et al. Hormônio do Crescimento ou Somatotrófico: Novas perspectivas na Deficiência Isolada de GH a partir da descrição da mutação no gene do receptor do GHRH nos indivíduos da cidade de Itabaianinha, Brasil. Arq Bras Endocrinol Metab, v.48, p.406- 413, 2004. SPRANGER, J. et al. Adiponectin and protection against type 2 diabetes mellitus. Lancet, v.361, p.226 –228, 2003. STEFAN, N.; STUMVOLL, M. Adiponectin: its role in metabolism and beyond. Horm Metab Res, v.34, p.469–474, 2002. STEVENSON, A.E. et al. Does adiposity status influence femoral cortical strength in rodent models of growth hormone deficiency? Am J Physiol Endocrinol Metab, v.296, p.147-156, 2009. STEYN, F.J. et al. Adiponectin regulates growth hormone secretion via adiponectin receptor mediated Ca2+ signaling in rat somatotrophs in vitro. J Neuroendocrinol, v.21, p.698–704, 2009. STROBEL, A. et al. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat. Genet, v.18, p.213–215, 1998. SUCUNZA, N. et al. A link between bone mineral density and adiponectin and visfatin levels in acromegaly. J Clin Endocrin Metab, v.94, p.3889-3896, 2009. SVENSSON, J. et al. Adiponectin, leptin and erythrocyte sodiun/ litiun countertransport activity, but not resistin, are related to glucose metabolism in growth hormone- deficient adults. J Clin Endocrinol Metab, v. 90, p.2290-6, 2005. TOMLINSOM, J.W. et al. Association between premature mortality and hypopituitarism. Lancet, v. 357, p.425–431, 2001. TRINDER, P. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Path, v.22, p.158-161, 1969. TSIOUFIS, C. et al. Relation of microalbuminuria to adiponectin and augmented C-reactive protein levels in men with essential hypertension. Am J Cardiol , v. 96, p.946-51, 2005. 89 TUTTLE, K.R. et al. Urinary albumin and insulin as predictors of coronary artery disease: an angiographic study. Am J Kidney Dis, v.34, p. 918-925, 1999. VERDECCHIA, P. et al . Circulating insulinand insulin growth factor-1 are independent determinants of left ventricular mass and geometry in essencial hypertension. Circulation , v.100, p.1802-7, 1999. VERROTTI, A. et al. Serum leptin changes during weight loss in obese diabetic subjects with and without microalbuminuria. Diabetes Nutr Metab, v.14, p.283-7, 2001. WAJNRAJCH, M.P. et al. Nonsense Mutation in the Human Growth Hormone-Releasing Hormone Receptor causes Growth Failure Analogous to the Little (lit) Mouse. Nat Genet, v.12, p.88-90, 1996. WANG, Y. et al. Hydroxylation and glycosylation of the four conserved lysine residues in the collagenous domain of adiponectin: potential role in the modulation of its insulinsensitizing activity. J Biol Chem, v.277, p.19521–19529, 2002. WERNER, N.; NICKENIG, G. From fat fighter to risk factor: the zigzag trek of leptin. Arterioscler Thromb Vasc Biol, v.24, p.7–9, 2004. WHO. Measuring obesity – Classification, and description of antropometric data. Copenhagen: WHO, 1988. YAKAR, S. et al. Inhibition of growth hormone action improves insulin sensitivity in liver IGF-1–deficient mice. J Clin Invest, v. 113, p. 96- 105, 2004. YAMAUCHI, T. et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE- deficient mice from atherosclerosis. J Biol Chem, v.278, p.2461–2468, 2003. YAMAUCHI, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med, v.7, p.941–946, 2001. YU, R. et al. Liver-specific IGF-I gene deficient mice exhibit accelerated diabetes in response to streptozotocin, associated with early onset of insulin resistance. Mol Cell Endocrinol, v.204, p.31-42, 2003. YUEN, K.C.; DUNGER, D.B. Impact of treatment with recombinant human GH and IGF-I on visceral adipose tissue and glucose homeostasis in adults. Gr Horm IGF-I Res, v.16, p.55-61, 2006. ZANELLA, M.T. Microalbuminúria: fator de risco cardiovascular e renal subestimado na prática clínica. Arq Bras Endocrinol Metab, v. 50, p.313-321, 2006. ZHANG, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature, v.372, p.425– 432, 1994. ZOCCALI, C. et al. Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease. J Am Soc Nephrol, v.13, p.134–141, 2002. _____________________________________________9. ANEXOS 91 ANEXO 1 Equações de Mari et al, 2001 para o cálculo do OGIS 3 Elas derivam das equações abaixo: Equação 1: Equação 2: Equação 3: Equação 4: Equação 5: Equação 6: Equação 7: Para o cálculo do OGIS 2 os valores de 90 e 120 minutos substituem os de 120 e 180 minutos na fórmula acima. _____________________________________________10. APÊNDICES 93 APÊNDICE 1 Artigo publicado nos Arquivos Brasileiros de Endocrinologia e Metabologia Conseqüências em Longo Prazo da Deficiência do Hormônio de Crescimento Long Time Consequences of the Growth Hormone Deficiency Carla R. P. Oliveira1, Rossana M. C. Pereira1, José A. S. Barreto-Filho1, Manuel H. Aguiar-Oliveira1 1Universidade Federal de Sergipe, Departamento de Medicina, Aracaju, Sergipe Título Abreviado: Conseqüências da Deficiência de GH Palavras-chave: Deficiência de hormônio de crescimento; Hormônio do crescimento. Key words: Growth hormone deficiency; Growth hormone Arq Bras Endrocrinol Metab 2008;52/5 745 c o p yr ig h t© A BE & M t o d o s o s d ire ito s re se rv a d o s revisão Carla r. P. olivEira roSSana M. C. PErEira JoSé a. S. BarrEto-FilHo ManuEl H. aguiar-olivEira Serviço de Endocrinologia do Hospital Universitário da Universidade Federal de Sergipe, Aracaju, SE, Brasil. Recebido em 23/5/2008 Aceito em 30/5/2008 Conseqüências em Longo Prazo da Deficiência do Hormônio de Crescimento RESUMO este artigo descreve as conseqüências puras, em longo prazo, da deficiência isolada e vitalícia do hormônio de crescimento (gH) porque usa um modelo único de resistência ao hormônio liberador do gH (gHrH), em virtude da mutação homozigótica no gene do receptor do gHrH, em uma centena de indivíduos acometidos. elas incluem baixa estatura grave com estatura final entre –9,6 a –5,2 desvios-padrão abaixo da média, com redução proporcional das dimensões ósseas, redução do volume da adenohipófise corrigido para o volume craniano e da tireóide, do útero, do baço e da massa ventricular es- querda, todos corrigidos para a superfície corporal, em contraste com o ta- manho de pâncreas e fígado, maior que o de controles, quando igualmente corrigidos. As alterações características da composição corporal incluem redução acentuada da quantidade de massa magra (kg) e aumento do per- centual de gordura com depósito predominante no abdome. nos aspectos metabólicos são encontrados aumento de colesterol total e ldl, redução de insulina e do índice de resistência à insulina homeostasis model assessment, acompanhados de aumento da proteína c reativa de alta sensibilidade e da elevação da pressão arterial sistólica nos adultos, embora sem evidências de aterosclerose precoce. outros achados incluem resistência óssea menor, em- bora acima do limiar de fraturas, puberdade atrasada, fertilidade normal, paridade diminuída, climatério antecipado e qualidade de vida normal. (Arq Bras Endocrinol Metab 2008; 52/5:745-749) Descritores: deficiência de hormônio de crescimento; Hormônio do crescimento. ABSTRAcT Long Time Consequences of the Growth Hormone Deficiency. this article describes the long time consequences of the isolated and lifetime growth hormone (gH) deficiency using a single model of gH releasing hor- mone resistance (gHrH) due to a homozygous mutation in the gHrH recep- tor gene, in a hundred of subjects. these consequences include severe short stature with final height between –9.6 and –5.2 standard deviations below of the mean, with proportional reductions of the bone dimensions; reduction of the anterior pituitary corrected to cranial volume and the thyroid, the uter- us, the spleen and left ventricular mass volume, all corrected to body surface, in contrast of pancreas and liver size, bigger than in controls, when equally corrected. Body composition features included marked reduction in the amount of fat free mass (kg) and increase of fat mass percentage, with pre- dominant abdominal deposit. in the metabolic aspects, we find increase in the total cholesterol and ldl cholesterol; reduction of the insulin and the insulin resistance assessed by Homeostasis model assessment; increase of ultra sensitive c reactive protein and systolic body pressure in adults, although without evidences of premature atherosclerosis. other findings include smaller bone resistance, although above of the threshold of fractures, delayed puberty, normal fertility, small parity, anticipated climacteric and normal quality of life. (Arq Bras Endocrinol Metab 2008; 52/5:745-749) Keywords: growth hormone deficiency; growth hormone. 746 Arq Bras Endrocrinol Metab 2008;52/5 Conseqüências da Deficiência de GH Oliveira et al. c o p yr ig h t© A BE & M t o d o s o s d ire ito s re se rv a d o s iNTRODUÇÃO Evans e long, em 1921, (1) demonstraram a exis-tência do hormônio de crescimento (GH) e, duas décadas após, Li e Evans isolaram e sintetizaram o hor- mônio cristalino (2). O GH tem importantes funções no organismo, além do papel que lhe sugere o nome (3). Neste trabalho será analisado o papel do GH sobre o crescimento, a composição corporal, os metabolismos lipídico, glicídico e ósseo, o risco cardiovascular, a vida reprodutiva e a qualidade de vida. Para tanto, foi utili- zadocomo modelo um experimento da natureza, em que 105 indivíduos de uma mesma família apresentam deficiência genética isolada do GH de herança autossô- mica recessiva, com níveis extremamente baixos de GH (deficiência de GH tipo IB) (4), por causa da mutação homozigótica IVSI + 1 G → A no gene do receptor do hormônio liberador do GH (GHRH-R), descrita em Itabaianinha, Sergipe (5,6). Embora as conseqüências da deficiência do GH (DGH) possam diferir quando isolada ou associada a outros hormônios hipofisários, quando iniciada na infância ou na idade adulta, quando grave ou moderada, o modelo em questão é único para se estudar as conseqüências puras da deficiência isolada do GH (DIGH) vitalícia e não-tratada no organismo humano. Esta singularidade será apresentada no pre- sente trabalho, deixando para os leitores interessados as controvérsias sobre os outros modelos, diferentes do a seguir apresentado. cRESciMENTO SOMáTicO A DIGH de Itabaianinha provoca acentuada baixa es- tatura de início pós-natal com estatura final entre 107 e 136 cm ou –5,2 a –9,6 desvios-padrões abaixo da média estatural. Esta baixa estatura é proporcional, no que diz respeito aos seguimentos corporais, haja vista que o crescimento do tecido ósseo é o responsável pelo estabelecimento da altura final (7). Dessa forma, mãos, pés, membros, tórax e crânio são proporcional- mente reduzidos, embora os dentes sejam de dimen- sões normais. É importante ressaltar que as dimensões de algumas estruturas, como o volume da adenohipó- fise corrigido para o volume craniano (8), volume da tireóide (9) e massa ventricular esquerda corrigidos para a superfície corporal (10), são menores que nos controles normais. A hipoplasia da adenohipófise pro- vavelmente decorre da não-proliferação dos somato- trofos devidos à resistência ao GHRH, e é um aspecto muito importante embora não universal nas mutações que envolvam o receptor do GHRH (8,11-18). Já para o estabelecimento do volume da tireóide e da massa ventricular esquerda são críticos a atividade do GH e seu principal mediador, o fator de crescimento semelhante à insulina tipo I ou IGF-1. Este fenômeno de redução preferencial de alguns órgãos é visto na ultra-sonografia dos órgãos intra-abdominais, na qual útero e baço apresentam redução das dimensões corri- gidas para a superfície corporal; próstata e ovários são equivalentes aos controles normais; e rins, pâncreas e fígado são maiores quando corrigidos para a superfície corporal (19). cOMpOSiÇÃO cORpORAl Um aspecto fundamental neste modelo de DIGH gené- tica e grave é a alteração da composição corporal, com redução importante da massa magra desde a infância, com agravamento na puberdade (20,21) e estabelecen- do nos adultos (10,22) um padrão de quantidade de massa magra (kg) bastante reduzida com o percentual de gordura (%) aumentado, não a massa da gordura (kg). Outro dado importante é um predomínio da gordura abdominal observada em todas as faixas etárias. METABOliSMO lipíDicO As crianças e os adolescentes com DIGH de Itabaiani- nha apresentam níveis elevados de colesterol LDL e de colesterol total em comparação com os controles da mesma região (21,23), que continuam durante toda a vida (10,22), efeito eventualmente associado à redução da expressão dos receptores hepáticos para o colesterol LDL. Estudos em ratos e humanos mostra- ram efeito importante de GH no metabolismo hepáti- co do colesterol. A administração de GH estimula a expressão dos receptores hepáticos do colesterol LDL, aumentando o catabolismo de LDL-C pelo fígado (24). O aumento de colesterol plasmático com a idade (25) ou o hipotireoidismo é pelo menos parcialmente secundário à diminuição da atividade nos receptores do colesterol LDL induzida pela diminuição na secre- ção de GH (26). Não há redução nos níveis de coles- terol HDL, nem diferenças nos níveis de triglicérides entre os indivíduos com DIGH de Itabaianinha e os controles da mesma região. Arq Bras Endrocrinol Metab 2008;52/5 747 Conseqüências da Deficiência de GH Oliveira et al. c o p yr ig h t© A BE & M t o d o s o s d ire ito s re se rv a d o s METABOliSMO glicíDicO Embora a DIGH moderada de início na idade adulta seja associada à insulino-resistência (27,28), os indiví- duos com DIGH de Itabaianinha apresentam níveis in- sulínicos reduzidos e dos valores de índice de resistência à insulina homeostasis model assessment, HOMA-IR (gli- cemia (mMol) × insulina (uU/mL) ÷ 22,5) menores que dos controles da mesma região (10,22), até em idade avançada. Estudos de sensibilidade à insulina uti- lizando teste endovenoso de tolerância à glicose, com a aplicação da análise do modelo mínimo das variações das concentrações de glicose e de insulina após a admi- nistração da glicose (29), deverão ser realizados nestes indivíduos para melhor avaliar a secreção insulínica. METABOliSMO óSSEO A DGH, de maneira geral, está associada com menor densidade mineral óssea e eventual risco de fraturas (30,31). Os indivíduos com DIGH de Itabaianinha apresentam redução da resistência óssea, medida pela ultra-sonografia do calcâneo, embora acima do limiar de fraturas, correspondendo ao relato da baixa freqüên- cia de fraturas neles (32). RiScO cARDiOvAScUlAR Conforme assinalado, os indivíduos com esta forma de DIGH apresentam menor massa magra, maior percen- tual de gordura, distribuição central de gordura, au- mento do colesterol total e, na idade adulta, pressão arterial sistólica mais elevada, embora com índice de massa ventricular esquerda menor (10). Com tantos fa- tores de risco cardiovascular associados, seria esperado que estes indivíduos apresentassem aterosclerose pre- matura, o que não foi evidenciado seja pela ecocardio- grafia de estresse ou pela aferição da espessura médio-intimal da carótida, ainda que os níveis de pro- teína C reativa de alta sensibilidade, um marcador infla- matório de risco cardiovascular, sejam marcadamente elevados (22). Observou-se que a DIGH genética e grave é menos deletéria em termos de aterosclerose que a DIGH adquirida ou moderada, talvez pela dificulda- de de proliferação das células musculares lisas, etapa primordial para o crescimento de placa aterosclerótica, quando o eixo GH/IGF-1 é vitalício e gravemente de- primido. Por outro lado, a redução menos grave do IGF-1 e de início na idade adulta pode levar à apoptose daquelas células, provocando a rotura da placa e os eventos cardiovasculares na DIGH adquirida ou mode- rada (22,33,34). viDA REpRODUTivA Os indivíduos com DIGH de Itabaianinha apresentam a puberdade moderadamente atrasada (23) e o climaté- rio de início mais precoce (35), embora este seja essen- cialmente normal. Os indivíduos de ambos os sexos são férteis, embora a paridade das mulheres com DIGH seja menor que a das mulheres da região. Esta paridade pode se dever ao medo da cirurgia cesariana, pouco dis- ponível no passado ou à menor duração da vida repro- dutiva (35). QUAliDADE DE viDA (Qv) Embora numerosas citações refiram piora da QV em indivíduos com DGH, a maioria é em DIGH adquirida e de início na idade adulta (36,37). Novamente é pecu- liar que o índice total de QV avaliado pelo questionnai- re of life satisfaction (36), questionário específico e validado para a DIGH, foi igual ao dos controles da mesma região e superiores ao de todas as séries de DIGH, analisados na Europa e nos Estados Unidos (36). Dessa forma, a DIGH genética e grave em uma população do nordeste brasileiro em processo de urba- nização não parece comprometer a QV (38). cONSiDERAÇõES fiNAiS Nesse modelo de DIGH genético e grave há reper- cussões evidentes sobre o crescimento, a estatura final e os diversos órgãos. Alia-se a isso complexo conjunto de alterações metabólicas e de composição corporal com fatores adversos ou protetores para a saúde em geral e sem piora da QV. O tratamento com GH sub- cutâneo diário em crianças, além de provocar o ganho estatural, melhora o perfillipídico e a composição corporal (21,23). Resultados semelhantes sobre o perfil lipídico e a composição corporal foram obtidos em adultos, sem repercussões sobre a glicemia ou a hemoglobina glicada, com a administração do GH de depósito subcutâneo a cada 15 dias (34), acrescido de melhora da remodelação óssea, de padrão anabólico, com conseqüente aumento da resistência óssea (32). 748 Arq Bras Endrocrinol Metab 2008;52/5 Conseqüências da Deficiência de GH Oliveira et al. c o p yr ig h t© A BE & M t o d o s o s d ire ito s re se rv a d o s Um possível efeito adverso deste tratamento foi a eventual aceleração da aterosclerose (34), limitada pela suspensão do tratamento. Assim, a terapêutica em GH no adulto deve levar em conta o equilíbrio entre os fatores positivos e os fatores adversos. Em- bora a generalização destes achados para as formas de DIGH adquiridas e menos graves encontradas na clí- nica não deva ser assegurada, uma menção de cuidado deve ser assinalada por ocasião de usos não completa- mente estabelecidos do GH, especialmente em indiví- duos adultos. REfERêNciAS 1. evans HM, long JA. the effect of the anterior lobe administe- red intraperitoneal upon growth maturity an oestrus cycles of the rat. Anat rec. 1999;21:62-3. 2. li cH, evans HM. chemistry of anterior pituitary hormones. in: Pincus g, thieman Kv, editors. the hormones. new York: new York Academic Press; 1948. 3. souza AHo, salvatori r, Martinelli Jr ce, carvalho WMo, Me- nezes cA, Barretto esA, et al. Hormônio do crescimento ou somatotrófico: novas perspectivas na deficiência isolada de gH a partir da descrição da mutação no gene do receptor do gHrH nos indivíduos da cidade de itabaianinha, Brasil. Arq Bras endocrinol Metab. 2004;48:406-13. 4. nishi Y, Masuda H, nishimura s, Kihara M, suwa s, tachibana K, et al. isolated human growth hormone deficiency due to a hgH gene deletion with (tYPe iA) and without (the israeli- type) hgH antibody formation during hgH therapy. Yokoama – Japão. Acta endocrinology (copenh). 1990;122:267-71. 5. salvatori r, Hayashida cY, Aguiar-oliveira MH, Phillips iii JA, souza AHo, gondo rg, et al. Familial isolated growth hor- mone deficiency due to a novel mutation in the growth hor- mone releasing hormone receptor. J clin endocrinol Metab. 1999;84:917-23. 6. Aguiar-oliveira MH, gill Ms, Barretto esA, Alcântara Mrs, Miraki-Moud F, Menezes cA, et al. effect of growth hormone (gH) deficiency due to a mutation in the gH-releasing hor- mone receptor on insulin-like growth factors (igFs), igF-bind- ing proteins, and ternary complex formation throughout life. J clin endocrinol Metab. 1999;84:4118-26. 7. tanner JM. normal growth and techniques of growth assess- ment. clinics in endocrinology and Metabolism. 1986;15:411-51. 8. oliveira HA, salvatori r, Kraus, oliveira crP, silva Pcr, Aguiar- oliveira MH. Magnetic ressonance imaging study of pituitary morphology in subject6s homlozigous and heterozigous for a null mutation of the gHrH receptor gene. eur J endocrinol. 2003;148:427-32. 9. Alcântara Mrs, salvatori r, Alcântara Prs, nóbrega lMA, campos vs, oliveira eco, et al. thyroid morphology and function in adults with untreated isolated growth hormone de- ficiency. Journal of clinical endocrinology and Metabolism. 2006;91:860-4. 10. Barreto-Filho JAs, Alcântara Mrs, salvatori r, Barreto MA, sousa Acs, Bastos v, et al. Familial isolated growth hormone deficiency is associated with increased systolic blood pres- sure, central obesity and dyslipidemia. Journal of clinical en- docrinology and Metabolism 2002;87:2018-23. 11. netchine i, talon P, dastot F, vitaux F, goosens M, Amselem s. extensive phenotypic analysis of a family with growth hormo- ne (gH) deficiency caused by a mutation in the gH-releasing hormone receptor gene. Journal of clinical endocrinology and Metabolism. 1998;83:432-6. 12. salvatori r, Fan X, Phillips iii JA, espigares-Martin r, Martin de lara i, Freeman Kl, et al. three new mutations in the gene for the growth hormone (gH)-releasing hormone receptor in familial isolated gH deficiency type iB. Journal of clinical en- docrinology and Metabolism. 2001;86:273-9. 13. salvatori r, Fan X, Mullis Pe, Haile A, levine MA. decreased expression of the growth hormone-releasing hormone recep- tor gene due to a mutation in a Pit-1 binding site. Mol endocri- nol. 2002;16:450-8. 14. salvatori r, Aguiar-oliveira MH, Monte lBv, Hedges l, santos nl, Pereira rMc, et al. detection of a recurring mutation in the human growth hormone releasing hormone receptor gene. clin endocrinol (oxf). 2002;57:77-80. 15. salvatori r, Fan X, veldhuis J, couch r. serum gH response to pharmacological stimuli and physical exercise in two siblin- gs with two new inactivating mutations in the gH-releasing hormone receptor gene. eur J endocrinol. 2002;147:591-6. 16. carakushansky M, Whatmore AJ, clayton Pe, shalet sn, gle- eson HK, Price dA, et al. A new missense mutation in the gro- wth hormone-releasing hormone receptor gene in familial isolated gH deficiency. eur J endocrinol. 2003;148:25-30. 17. Murray rA, Maheshwari Hg, russel eJ, Baumann g. Pituitary hypoplasia in patients with a mutation in the growth hormo- nereleasing hormone receptor gene. AJnr Am J neuroradiol. 2000;21:685-9. 18. osorio Mg, Marui s, Jorge AA, latronico Ac, lo ls, leite cc, et al. Pituitary magnetic resonance imaging and function in patients with growth hormone deficiency with and without mutations in gHrH-r, gH-1, or ProP-1 genes. J clin endocri- nol Metabol. 2002;87:5076-84. 19. oliveira crP, salvatori r, nóbrega lMA, carvalho eoM, Me- nezes M, Farias ct, et al. sizes of abdominal organs in adults with severe short stature due to severe, untreated, congenital gH deficiency caused by a homozygous mutation in the gHrH receptor gene. clin endocrinol (oxf). 2007;22 nov[epub]. 20. Barretto esAB, gill Ms, Freitas Mes, Magalhães MMg, souza AHo, Aguiar-oliveira MH, et al. serum leptin and body com- position in children with familial gH deficiency (gHd) due to a mutation in the growth hormone-releasing hormone (gHrH) receptor. Blackwell science ltd. 1999;51(5):559-64. 21. gleeson HK, souza AHo, gill Ms, Wieringa ge, Barretto esA, Barretto-Filho JAs, et al. lipid profiles in untreated severe congenital isolated growth hormone deficiency through the lifespan. clin endocrinol (oxf). 2002;57:89-95. 22. oliveira Jl, Marques-santos c, Barreto-Filho JA, Filho rX, Britto Av, souza AH, et al. lack of evidence of premature ath- erosclerosis in untreated severe isolated growth hormone de- ficiency due to a gHrH receptor mutation. Journal of clinical endocrinology and Metabolism. 2006;91:2093-9. 23. gleeson HK, Barreto esA, salvatori r, costa l, oliveira crP, Pereira rMc, et al. Metabolic effects of growth hormone (gH) replacement in children and adolescents with severe isolated gH deficiency due to a gHrH receptor mutation. clin endo- crinol (oxf). 2007;66:466-74. 24. Angelin B, rudling M. growth hormone and hepatic lipopro- tein metabolism. curr opin lipidol. 1994;5:160-5. 25. Parini P, Angelin B, rudling M. cholesterol and lipoprotein metabolism in aging: reversal of hypercholesterolemia by Arq Bras Endrocrinol Metab 2008;52/5 749 Conseqüências da Deficiência de GH Oliveira et al. c o p yr ig h t© A BE & M t o d o s o s d ire ito s re se rv a d o s growth hormone treatment in old rats. Arterioscler thromb vasc Biol. 1999;19:832-9. 26. Hoogerbrugge n, Jansen H, staels B, Kloet lt, Birkenhager Jc. growth hormone normalizes low-density lipoprotein re- ceptor gene expression in hypothyroid rats. Metabolism. 1996;45:680-5. 27. Hew Fl, Koschmann M, christopher M, rantzau c, vaag A, Ward g, et al. insulin resistance in growth hormone-deficient adults: defects in glucose utilization and glycogen synthase activity. J clin endocrinol Metab. 1996;81:555-64. 28. gola M, Bonadonna s, doga M, guistina A. clinical review. growthhormone and cardiovascular risk factor. J clin endo- crinol Metab. 2005;90:1864-70. 29. Bergman rn. Minimal model: perspective from 2005. Horm res. 2005;64 suppl 3:8-15. 30. sneppen sP, Hoeck Hc, Kollerup g, sorensen oH, laurberg P, rasmussen uF. Bone mineral content and bone metabolism during physiological gH treatment in gH-deficient adults – an 18-month randomised, placebo-controlled, double blinded trial. eur J endocrinol. 2007;146:187-95. 31. snyder PJ, Biller BM, Zagar A, Jackson i, Arah BM, nippoldt tB, et al. effect of growth hormone replacement on BMd in adult-onset growth hormone deficiency. J Bone Miner res. 2007;22:762-70. 32. Paula FJA, góis-Júnior MB, Aguiar-oliveira MH, Pereira FA, oliveira crP, Pereira rMc, et al. effects of short-term treat- ment with depot gh on bone in adults with isolated gh defi- ciency due to a mutation in the gHrH-receptor gene. clin endocrinol (oxf). [in press]. 33. delafontaine P, song YH, li Y. expression, regulation, and function of igF-i, igF-ir, and igF-i binding proteins in blood vessels. Arterioscler thromb vasc Biol. 2004;24:435-44. 34. oliveira JlM, Aguiar-oliveira MH, d’oliveira Jr. A, Pereira rMc, oliveira crP, Farias ct, et al. congenital growth hormo- ne (gH) deficiency and atherosclerosis: effects of gH replace- ment in gH-naive adults. the Journal of clinical endocrinology & Metabolism. 2007;92(12):4464-670. 35. Menezes M, salvatori r, oliveira crP, Pereira rMc, souza AHo, nobrega lMA, et al. climacteric in untreated isolated growth hormone deficiency. Menopause. 2007. [epub]. 36. Blum WF, shavrikova eP, edwards dJ, rosilio M, Hartman Ml, Marin F, et al. decreased quality of life in adult patients with growth hormone deficiency compared with general popula- tions using the new, validated, self-weighted questionnaire, questions on life satisfaction hipopituitarism module. J clin endocrinol Metab. 2003;88:4158-67. 37. carroll Pv, christ er, Bengtsson BA, et al. growth hormone de- ficiency in adulthood and the effects of growth hormone repla- cement: a review. J clin endocrinol Metab. 1998;83:382-95. 38. Barbosa JAr. qualidade de vida na deficiência isolada e gené- tica do hormônio de crescimento (gH). efeitos da terapia de reposição com o gH. dissertação. sergipe: universidade Fe- deral de sergipe, 2007. Endereço para correspondência: Manuel H. Aguiar-Oliveira Departamento de Medicina, Universidade Federal de Sergipe Rua Cláudio Batista, s/n 49060-100 Aracaju, SE E-mail: herminio@infonet.com.br 99 APÊNDICE 2 Artigo submetido aos Arquivos Brasileiros de Cardiologia Papel Emergente do Eixo GH/IGF-1 no Controle Cardiometabólico Emerging Role of GH/IGF-1 on Cardiometabolic Control Carla R.P. Oliveira1, Rafael A. Meneguz-Moreno1, Manuel H. Aguiar-Oliveira1, José A. S. Barreto-Filho1 1Universidade Federal de Sergipe, Departamento de Medicina, Aracaju, Sergipe Título Abreviado: GH e metabolismo Palavras-chave: GH, lipólise, anabolismo, resistência á insulina Key words: GH, lypolisis, anabolism, insulin resistance 100 RESUMO O hormônio de crescimento (GH), principal regulador do crescimento pós- natal, tem importantes ações metabólicas em diferentes tecidos, sinérgicas ou até antagônicas às do fator de crescimento semelhante à insulina tipo I (IGF-I), produzido sobretudo no fígado após ligação do GH ao seu receptor. Experimentos em modelos animais indicam um papel importante do GH na resistência à insulina, enquanto o papel do IGF-I nesta condição ainda não está completamente elucidado. Em humanos, o GH promove aumento da lipólise e da oxidação lipídica, enquanto o IGF- I desencadeia o aumento da oxidação lipídica apenas cronicamente. Enquanto as ações sobre o crescimento são tempo limitado, as ações metabólicas e cardiovasculares do eixo GH/IGF-I perduram durante toda a vida. Os potenciais efeitos anabólicos do GH têm sido utilizados em condições crônicas e hipercatabólicas, embora as investigações sobre os desfechos clínicos ainda sejam escassas. Neste artigo, pretendemos revisar as ações metabólicas do GH oriundas de modelos animais, os estudos em humanos normais e indivíduos com deficiência de GH, diabetes mellitus tipo 1, síndrome metabólica, estados hipercatabólicos e a relação do eixo GH/IGF-1 com as adipocinas, disfunção endotelial e hipertrofia ventricular esquerda. 101 ABSTRACT Growth hormone (GH), main responsible for pos-natal growth, has important metabolic actions on different tissues, similar or opposite to insulin like growth factor I (IGF-I), mainly produced by the liver after the binding of GH to its receptor. Experiments with animal models indicate an important role of GH on insulin- resistance despite of the IGF-I role is not yet completely established. On humans, GH promotes an increase on lypolisis and lipid oxidation, while IGF-I leads to an increase on lipid oxidation only in a chronic way. While growth actions are time-limited, metabolic and cardiovascular actions of the GH/IGF-I axis are throughout the life. GH anabolic effects have been used on chronic and hypercatabolic conditions. On this paper we intend to review GH metabolic actions experienced by animal models, studies with normal humans and GH deficient, diabetic type 1 and metabolic syndrome individuals, hypercatabolic states and the relationship between GH and adipokines, endothelial disfunction and left ventricular hypertrophy. 102 INTRODUÇÃO O hormônio de crescimento (GH) é o principal regulador do crescimento pós- natal, e tem importantes ações metabólicas. O GH liga-se ao seu receptor (GHR) e, via ativação do sistema JAK–STAT 1, estimula principalmente no fígado a produção do fator de crescimento semelhante à insulina tipo I (IGF-I), que se liga a uma das seis proteínas transportadoras (IGFBPs1-6), especialmente a IGFBP3 e a subunidade ácido-labil (ASL), formando o complexo ternário, que funciona como um reservatório circulante do IGF-I, impedindo o seu rápido clearance. O IGF-I liga-se ao seu receptor (IGF-IR), que por sua vez apresenta considerável homologia com o receptor de insulina (IR), ambos receptores acoplados à tirosina-cinase. O IGF-IR liga-se com grande afinidade ao IGF-I e menor à insulina. O reverso ocorre com o IR. Enquanto o IGF-I age basicamente sobre o crescimento, desenvolvimento e diferenciação celular, a insulina é primariamente envolvida na homeostase metabólica. Porém, é possível efeito cruzado entre um ligante e o receptor do outro. As maiores diferenças funcionais entre IGF-I e insulina são causadas por dois fatores. Primeiro, apesar de ambos receptores serem expressos virtualmente em todos os tecidos, há uma expressão diferencial destes receptores. Enquanto o IR é altamente expresso no músculo, fígado e tecido adiposo branco em adultos, o IGF-IR é minimamente detectado nestes dois últimos sítios. A expressão de IGF-IR é, contudo, comparável à do IR no músculo esquelético. Segundo, a diversidade nos domínios intracelulares dos receptores nos diferentes tecidos leva a diferentes ações biológicas. Os efeitos do GH sobre os adipócitos podem ser mediados via receptor β3- adrenérgico ao passo que no músculo esquelético e fígado os efeitos são mediados via GHR e ativação do sistema JAK–STAT. Nestes tecidos a sinalização do GH interage com aquela da insulina 2. O GH antagoniza as ações da insulina no metabolismo dos carboidratos tanto direta, através dos mecanismos de bloqueio da sinalização celular, quanto indiretamente, pelo estímulo à lipólise e produção de ácidos graxos livres (AGL) nos adipócitos. No fígado, o IGF-I suprime a produção hepática de glicose via receptor de insulina (IR), haja vista a escassa expressão hepática do IGF-IR. O IGF-I estimula a diferenciação dos pré-adipócitos mediante atuação sobre o IGF-IR, amplamente expresso nestas células, enquanto que, nos adipócitosmaduros as ações 103 do IGF-I são provavelmente mediadas pelo IR, abundantemente expresso nestas células. No músculo, o IGF-I tem efeitos diretos na captação de glicose 3. Neste artigo, serão abordados sinteticamente as ações metabólicas do GH oriundas de modelos animais, os estudos em humanos normais e em indivíduos com deficiência de GH, diabetes mellitus tipo 1, síndrome metabólica e estados hipercatabólicos. AÇÕES METABÓLICAS DO GH EM MODELOS ANIMAIS Camundongos com deleção do gene do GHR são hipersensíveis à insulina devido ao aumento do número de IRs no fígado, porém com uma tolerância diminuída à glicose devido a um menor número de células β pancreáticas e uma reduzida secreção de insulina, consequentes à redução do estímulo do GH, via IGF-I na massa de células β pancreáticas 4. Expressão gênica de IGF-I nas ilhotas pancreáticas destes animais restaura a massa de células beta, normalizando a produção de insulina e a tolerância à glicose 5. Outro modelo estudado é o do camundongo com deficiência hepática de IGF-I (DHIGF-I) 6. Neste modelo há uma redução em 75% do IGF-I circulante, com aumento do GH e da insulina, em cerca de 4 vezes, com glicemias normais, o que sugere insulino-resistência, com tolerância à glicose aparentemente normal. Com a técnica do clamp euglicêmico- hiperinsulinêmico, foi verificado que esta insulino-resistência ocorre basicamente no músculo e somente tardiamente no fígado e tecido adiposo. Para distinguir se a insulino-resistência seria decorrente da baixa concentração de IGF-I ou dos elevados níveis de GH foram realizados estudos em animais transgênicos oriundos do cruzamento dos animais com DHIGF-I com outros que expressam um antagonista do GH 7. Na progenia obtida destes animais, a sensibilidade à insulina foi restaurada em concordância com estudos em humanos em que o uso do antagonista do GH na acromegalia também melhorou a insulino- sensibilidade. Quando cruzados camundongos com DHIGF-I com outros com deleção gene da ALS (nocaute da ALS) obtiveram-se animais com IGF-I ainda mais baixos e níveis ainda maiores de GH, cerca de 10 vezes em relação aos camundongos normais 8. Os animais DHIGF-I/ nocaute da ALS mostraram melhora da captação da glicose no músculo e no tecido adiposo, mas nenhuma melhora da supressão da produção 104 hepática de glicose durante o clamp euglicêmico-hiperinsulinêmico. Desde que o músculo também expressa o IGF-IR, não é possível excluir a participação deste receptor na melhor captação periférica de glicose. Já a ausência do efeito no fígado pode ser causada pela ausência de IGF-IR neste órgão. Em resumo, GH parece ter um efeito crítico na insulino resistência, com o IGF-I desempenhando uma possível função modulatória. Por outro lado, para o desenvolvimento de uma massa normal de células beta e produção de insulina, o IGF-I parece ser o principal fator. AÇÕES METABÓLICAS DO GH EM HUMANOS O papel do hormônio de crescimento (GH) na regulação metabólica tem sido por meio século minimizado pela notória habilidade do GH em promover o crescimento. Recentemente, tem-se consolidado o conceito que muito do potencial do GH em promover o crescimento é secundário ao seu impacto metabólico 9. Este efeito metabólico é conhecido desde os primeiros trabalhos com a administração de GH hipofisário em altas doses que demonstraram acentuada lipólise, resistência à insulina e hiperglicemia 10. A exposição ao GH leva ao aumento dos níveis circulantes de ácidos graxos livres (AGL), corpos cetônicos, IGF-I, insulina e glicose, todos anabólicos 11, 12. O jejum e o estresse amplificam a secreção do GH; enquanto a alimentação em geral a inibe 13,14, sugerindo um papel predominante do GH nos estados pós-absortivos ou de jejum, condições nas quais as concentrações de IGF-I e insulina são baixas e as de AGL elevadas. Isto pode significar que o crescimento GH mediado e a retenção de nitrogênio são criticamente dependentes da mobilização lipídica. Em um organismo homeotérmico com escassa estocagem de carboidratos e sem acesso imediato à comida, a oxidação lipídica dependente de GH é um dos mecanismos de obtenção de energia para poupar proteína. Estudos com supressão seletiva da secreção de GH em humanos, com alimentação normal e dois dias de jejum, sugerem que o GH endógeno não tem uma ação relevante na regulação metabólica em curto prazo, como no período pos absortivo (jejum noturno), mas assume um papel fundamental como um estimulador da lipólise durante jejum prolongado 15, o que pode ter representado vantagem evolutiva em períodos de escassez alimentar. 105 O pico noturno de GH precede o pico dos AGL e dos corpos cetônicos por aproximadamente 2 horas, mesmo tempo de latência necessário para elevação dos AGL após infusão de GH em humanos no estado pós-absortivo 16. Em um modelo de hipersecreção de GH, como no diabetes mellitus tipo 1 com controle glicêmico precário, ocorre um estado de excessiva lipólise e cetogênese, devido à incapacidade de secreção compensatória de insulina pelas células β do Pâncreas 17. A lipólise exagerada decorrente de GH ocorre principalmente no tronco 13, envolve a estimulação da expressão gênica após ligação do receptor do GH com a JAK2 e subseqüente ativação da adenil-ciclase e estimulação da produção do AMP cíclico, ativando a lípase hormônio sensível 18. Desta forma pode-se dizer que o principal efeito do GH “per se” é a estimulação da lipólise e oxidação lipídica, além da inibição da lipase lipoprotéica (LPL) no tecido adiposo, enzima fundamental à hidrólise dos triglicérides para que os AGL possam ser armazenados, e da estimulação desta enzima em nível muscular, que permite uma maior utilização de AGL pelo músculo esquelético 3. Isto poupa os estoques de proteínas e de carboidratos de imediatos requerimentos oxidativos garantindo a adequada conservação de proteínas. A administração de GH em doses elevadas a voluntários normais provoca aumento da síntese protéica e diminuição de excreção de uréia 19, mas leva a prejuízo da sensibilidade insulínica no fígado e periferia, sobretudo no músculo esquelético 20, evidenciando sua ação antagonista à insulina. Estudos demonstram que a co- administração de derivados do ácido nicotínico que bloqueiam a lipólise reduz drasticamente as ações do GH sobre a sensibilidade insulínica e síntese protéica 21. Em suma, o efeito poupador de carboidrato e proteína obtido com GH parece depender em grande parte da estimulação da lipólise, aumentando as concentrações de ácidos graxos livres e corpos cetônicos na circulação. Tendo sua secreção estimulada pelo GH, o IGF-I também apresenta ações metabólicas. Os receptores do IGF-I estão presentes principalmente em tecido muscular esquelético, cuja estimulação aumenta a captação de glicose, através da ativação dos transportadores de glicose tipo 4 (GLUT4) 22 e provoca também diminuição da gliconeogênese e glicogenólise hepática, melhorando sensibilidade à insulina e a homeostase glicêmica, ações insulino-símile, que originaram seu nome. No metabolismo lipídico, o IGF-I parece ter pouca influência, pois os receptores de 106 IGF-I são escassos nos adipócitos, no entanto, nos pré-adipócitos esses receptores são abundantes e o IGF-I estimula a diferenciação dessas células 23. Quanto ao metabolismo protéico, o IGF-I tem ações sinérgicas ao GH e de fato, as ações anabólicas do GH imprescindíveis para o crescimento, mas atuantes durante toda a vida, são mediadas pelo IGF-I 24. Conforme salientadas acima, doses suprafisiológicas do GH são antagônicas aos efeitos de insulina, ao passo que o IGF-I potencializa ações insulino-símile. Pacientes acromegálicos são predispostos à intolerância a glicose e resistência à insulina. Como vimos, a lipólise GH dependente parece ser o determinante principal das ações anti insulina do GH. Por outro lado,o IGF-I aumenta a sensibilidade à insulina parecendo não exercer efeitos diretos na lipólise ou lipogênese. Em contraste com as doses suprafisiológicas de GH, a administração de doses baixas de GH em adultos com deficiência do GH, com tolerância diminuída à glicose e com síndrome metabólica, é capaz de aumentar o IGF-I circulante, a sensibilidade à insulina e a captação periférica de glicose, sem induzir a lipólise. Estes dados sugerem a possibilidade que um esquema com GH em doses baixas propicie a manutenção da função das células β pancreáticas e possivelmente retardar a progressão para intolerância à glicose nestes indivíduos 25, como será detalhado a seguir. Apesar de papéis discordantes na homeostase glicídica, ambos GH e IGF-I têm nítidos efeitos anabólicos, na deficiência de IGF-I, GH-dependente, e na deficiência de IGF-I por resistência ao GH, aumentando a massa magra e reduzindo a massa gorda, principalmente a adiposidade visceral. Tendo em vista seu efeito sensibilizador de insulina, o IGF-I parece ser um agente anabólico preferível quando há prejuízo estabelecido ou possível ao metabolismo dos carboidratos. Diferente do GH, que promove aumento da lipólise e da oxidação lipídica, o IGF-I leva ao aumento da oxidação lipídica apenas quando ministrado cronicamente. Tal diferença poderia ser explicada pela insulinopenia crônica promovida pelo IGF-I. A tabela 1 sumariza os principais efeitos metabólicos do GH e IGF-I in vivo. 107 Tabela 1: Ações metabólicas do GH e do IGF-I Órgão GH IGF-I Tecido Adiposo Aumenta lipólise Induz diferenciação de pré-adipócitos Reduz captação de glicose Reduz lipogênese Reduz re-esterificação de AGL Músculo Esquelético Estimula síntese de proteínas Estimula síntese de proteínas Reduz captação de glicose Estimula captação de glicose (GLUT- 4) Aumenta atividade da LPL Fígado Aumenta secreção de VLDL Diminui produção hepática de glicose Aumenta atividade de HL Reduz expressão de P-PARα Global Aumenta síntese de proteínas Aumenta síntese de proteínas Aumenta MM e reduz MG % Aumenta MM e reduz MG % Reduz sensibilidade insulínica Aumenta sensibilidade insulínica Aumenta a produção e captação de lipoproteínas Agudamente reduz e cronicamente aumenta a oxidação lipídica Aumenta lipólise Aumenta oxidação lipídica AGL - ácidos graxos livres; HL- lipase hepática; P-PARα - receptor ativado do proliferador do peroxisomo tipo α; LPL - lipase lipoprotéica; VLDL - lipoproteína de muito baixa densidade; MM - massa magra; MM% - percentual de massa gorda ALTERAÇÕES METABÓLICAS DECORRENTES DE DEFEITOS DE SECRECÃO E AÇÃO DO GH A deficiência de GH (DGH) cursa com alterações metabólicas há muito conhecidas. Quando esta deficiência ocorre na infância, há predisposição a estados hipoglicêmicos persistentes e profundos, pois o GH exerce papel fundamental para a homeostase glicêmica neste período. Esta importância decresce em períodos posteriores contribuindo para que a deficiência de GH no adulto curse com resistência à insulina e hiperglicemia, pois na fase adulta o IGF-I passaria a ter participação mais intensa nos mecanismos homeostáticos dos carboidratos 24. Outro fator para esta resistência à insulina seria a alteração na composição corporal. É descrito que a DGH está associada à diminuição da massa magra e aumento do percentual de gordura, em especial da gordura visceral, provavelmente decorrente da ausência das ações lipolíticas e inibitórias do armazenamento lipídico do GH, além de suas ações 108 referentes ao anabolismo protéico. Este dado é corroborado por estudos que demonstram reversão destes parâmetros após reposição com GH 25, 26. Estudos realizados com portadores de deficiência isolada e vitalícia do hormônio de crescimento (DIGH), devido a uma mutação homozigótica no gene do receptor do hormônio liberador do GH (GHRHR) em Itabaianinha, no Nordeste do Brasil, demonstraram, da infância à velhice 27, 28, redução de massa magra refletindo a carência do efeito sinérgico do GH e do IGF-I sobre o anabolismo protéico e exagero do percentual de gordura com predomínio truncal, decorrente da menor lipólise neste sitio. O tratamento com GH nestes indivíduos, sobretudo na fase de transição para a idade adulta, é crítico para o estabelecimento de uma composição corporal adequada 29. Em indivíduos com baixa estatura idiopática e resposta exacerbada do GH aos testes farmacológicos, o índice de massa corpórea foi menor no subgrupo com possível resistência parcial ao IGF-I em relação aos subgrupos com possível resistência ao GH e secreção normal do GH, nos quais um efeito metabólico direto do GH é possível. Pode-se especular uma menor massa de adipócitos no subgrupo com possível resistência parcial ao IGF-I, conseqüente a uma menor diferenciação dos pré- adipocitos, onde os receptores para IGF-I são abundantes 23. Esses dados enfatizam os efeitos do eixo GH/IGF-I sobre a composição corporal em outros modelos que não a deficiência clássica do hormônio de crescimento 30. Em concordância com estudos que demonstraram associação da deficiência do GH com dislipidemia, na DIGH de Itabaianinha ocorrem níveis séricos elevados de colesterol LDL e de colesterol total, em comparação com os controles da mesma região 28, 31, 32, efeito eventualmente associado a uma redução da expressão dos receptores hepáticos para o colesterol LDL 33. Embora a DGH de início na idade adulta seja associada à resistência à insulina 34, 35, os indivíduos com DIGH de Itabaianinha apresentam níveis insulínicos reduzidos e os valores de índice de resistência à insulina são menores do que aqueles dos controles 28, 32. Indivíduos heterozigóticos para essa mutação, apesar de não terem redução estatural e dos níveis de IGF-I, apresentam redução do peso corpóreo, da massa magra, da insulina em jejum e do índice de resistência à insulina (homeostasis model assessment), sugerindo um efeito direto da menor secreção de GH não dependente de IGF-I nos heterozigotos sobre a composição corporal 36. 109 SÍNDROME METABÓLICA, ESTADOS HIPERCATABÓLICOS E O EIXO GH-IGF-I DGH de início na idade adulta e a síndrome metabólica compartilham muitas semelhanças, adiposidade visceral, resistência à insulina, hipertrigliceridemia, hipertensão arterial e redução dos níveis séricos de HDL A adiposidade central e a resistência à insulina são aspectos fundamentais dessas duas síndromes e aumentam o risco de evolução para diabetes mellitus tipo 2 37, 38. Portadores de síndrome metabólica também possuem níveis séricos de GH reduzidos, provavelmente devido aos níveis cronicamente elevados de ácidos graxos livres e aos altos níveis de insulina observados na obesidade 39. Este dado levou a estudos que avaliassem o potencial do tratamento com GH em indivíduos portadores de síndrome metabólica. Os primeiros estudos utilizaram doses altas de GH (5-10 µg/kg/dia) e observaram redução da massa gorda, mas sem melhora na resistência à insulina, provavelmente decorrente da intensa lipólise promovida por este hormônio, contrabalanceando os efeitos positivos do IGF-I 40, 41. Com isso, ensaios clínicos estão em andamento utilizando-se de doses menores (1-2 µg/kg/dia) e objetivando unir o menor efeito lipolítico possível do GH à melhora da resistência à insulina promovida pelo IGF-I 25. Devido aos efeitos anabólicos do GH, foi postulado que sua utilização em situações hipercatabólicas poderia ser benéfica. Estudos realizados em pacientes portadores de AIDS, grandes queimados e naqueles submetidos a cirurgias de grande porte evidenciaram melhora do balanço nitrogenado após terapia com GH 42,43. Um estudo randomizado, controlado por placebo, realizado com pacientes em um centro de terapia intensiva (CTI) demonstrou que os pacientes que receberam altas doses de GH apresentaram maior mortalidade que aqueles quereceberam placebo 44. No entanto, o uso de GH tem se mostrado seguro em condições crônicas, como fibrose cística, insuficiência renal crônica, AIDS 44, 45, 46, o que leva a necessidade de mais ensaios clínicos para avaliação de sua verdadeira eficácia. 110 ADIPOCINAS E O EIXO GH-IGF-I Está consolidado o conceito do tecido adiposo como um órgão endócrino e não com um reservatório inerte de calorias através do estoque de gorduras. Dentro das inúmeras proteínas secretadas pelo tecido adiposo, as adipocinas, vamos nos ater a duas, a adiponectina e a leptina e a relação de ambas com o GH. Adiponectina é a mais abundante proteína originada do tecido adiposo, diminui com a obesidade e associa-se positivamente com a sensibilidade a insulina e inversamente com o risco de Diabetes tipo 2 47. Leptina, outra proteína específica do tecido adiposo, comumente elevada na obesidade, tem um papel aterogênico, pro-trombótico e angiogênico, estimulando a inflamação vascular, o estresse oxidativo e a hipertrofia das células musculares lisas, contribuindo para hipertensão, aterosclerose e outras doenças cardiovasculares 48, 49. Dados sobre estas duas adipocinas são controversos na DGH: Leptina tem sido descrita como elevada 50, 51 ou normal 52, 53, e adiponectina como baixa 54 ou normal 55. Nós descrevemos o primeiro relato de concentrações elevadas de adiponectina, associada a concentrações normais de leptina sérica, nos indivíduos com DIGH de Itabaininha 56 caracterizando um perfil de adipocinas distinto do comumente associado com obesidade (leptina elevada e baixa adiponectina). Interessante, nossos achados estão em concordância com dados recentes que mostram em modelos animais 57 e humanos 58 com resistência ao GH a adiponectina é mais elevada. Este perfil de adipocinas, junto com os níveis muito baixos de IGF-I e sensibilidade normal à insulina, provavelmente protege estes indivíduos com DIGH genética contra o aparecimento precoce da aterosclerose, apesar da composição corporal adversa, do aumento da pressão arterial e da presença de outros fatores de risco cardiovascular. DISFUNÇÃO ENDOTELIAL, HIPERTROFIA VENTRICULAR E O EIXO GH-IGF-I A disfunção endotelial (DE) é entendida como o processo fisiopatológico inicial da aterogênese. A diminuição de IGF-I parece estar associada à DE, já que o 111 IGF-I aumenta a produção de óxido nítrico, melhora a sensibilidade á insulina, promove a ativação dos canais de potássio dependentes de ATP, previne a dislipidemia pós prandial e ainda têm ações antiinflamatórias e antiapoptóticas. Na DGH encontramos prejuízo na vasodilatação dependente de endotélio, aumento da agregação plaquetária, aumento da PCRas, elevação do PAI-1, elevação do fibrinogênio, aumento da espessura da íntima média e maior prevalência de placas ateroscleróticas, que podem ser revertidas com o tratamento com GH 59, 60. O IGF-I e a insulina são potentes fatores tróficos, independentes da pressão arterial, na determinação da massa ventricular esquerda e da geometria cardíaca 61. Conforme apresentado acima, os indivíduos com DIGH de Itabaianinha apresentam fatores de risco cardiovascular: obesidade central, redução da massa magra, aumento do percentual de gordura, da pressão arterial e da PCRas; e como fatores de proteção, diminuição da insulina basal e do HOMAir e adiponectina mais elevada com leptina normal. O balanço deste conjunto de fatores conduz aos achados normais de espessura médio intimal das carótidas e excreção urinária de albumina (marcadores precoces de DE e aterosclerose), e da ausência de hipertrofia ventricular esquerda (marcador de lesão de órgão alvo) 28, 32, 56. Provavelmente esta maior insulino sensibilidade e os níveis muito baixos de GH e IGF-I durante toda a vida impeçam o aparecimento precoce da aterosclerose e da HVE neste grupo com DIGH congênita, talvez pela menor proliferação das células musculares lisas, etapa primordial para o crescimento de placa aterosclerótica. Por outro lado, a redução menos grave do IGF-1 e com início na idade adulta pode levar à apoptose daquelas células, provocando a ruptura de placas ateroscleróticas pré- existentes e os eventos cardiovasculares na DIGH adquirida ou moderada 32, 62, 63. CONSIDERAÇÕES FINAIS A capacidade do eixo GH/IGF-I em promover o crescimento decorre de uma complexa interação de ações metabólicas desempenhadas pelo GH e pelo IGF-I. As ações do GH e IGF-I são sinérgicas sobre o anabolismo protéico e a composição corporal com incremento da massa magra e redução do percentual de gordura, e são 112 antagônicas sobre a sensibilidade insulínica, reduzida pelo GH e aumentada pelo IGF- I, e sobre a lipólise, aumentada pelo GH e reduzida pelo IGF-I. O GH aumenta a oxidação lipídica e o efeito do IGF-I é tempo dependente, agudamente diminuindo-a e cronicamente aumentando-a, via supressão insulínica. Enquanto a ação sobre o crescimento encerra-se com o estabelecimento da estatura final, as ações metabólicas e cardiovasculares perduram durante toda a vida, com implicações no processo de envelhecimento fisiológico e em várias situações clínicas como a DGH, diabetes mellitus, síndrome metabólica e estados hipercatabólicos. A terapia com GH melhora os aspectos metabólicos e a composição corporal na DGH de inicio na infância e na idade adulta e possivelmente nas condições citadas. Estudos adicionais são necessários para definir doses e segurança nestas outras indicações. Enquanto os estudos de desfechos clínicos não sejam amplamente disponíveis, uma menção de cautela deve ser lembrada para que os desejados efeitos lipolíticos e anabólicos da terapia com o GH sejam aplicados na prática clínica. REFERÊNCIAS 1- Herrington J, Carter-Su. Signaling pathways activated by the GH receptor. Trends Endocrinol Metab 2001;12:252-257. 2- Dupont J, LeRoith D. Insulin and insulin-like growth factor I receptors: similarities and differences in signal transduction. Horm Res 2001;55(2):S22-S26. 3- LeRoith D, Yakar S. Mechanisms of disease: metabolic effects of growth hormone and insulin-like growth factor 1. Nat Clin Prac End Met 2007;3:302-310. 4- Liu J, Coschigano KT, Robertson K, Lipsett M, Guo Y, Kopchick JJ, et al. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice. Am J Physiol Endocrinol Metab 2004;287:E405-E413. 5- Guo Y, Lu Y, Houle D, Robertson K, Tang Z, Kopchick JJ, et al. Pancreatic islet- specific expression of an insulin-like growth factor-I transgene compensates islet cell growth in growth hormone receptor gene deficient mice. Endocrinology 2005;146:2602-2609. 6- Yakar S, Liu J, Stannard B, Butler A, Accili D, Sauer B, et al. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci USA 1999;96:7324-7329. 7- Yakar S, Setser J, Zhao H, Stannard B, Haluzik M, Glatt V, et al. Inhibition of growth hormone action improves insulin sensitivity in liver IGF-I- deficient mice. J Clin Invest 2004;113:96-105. 8- Haluzik M, Yakar S, Gavrilova O, Setser J, Boisclair Y, LeRoith D. Insulin resistance in the liverspecific IGF-I gene-deleted mouse is abrogated by deletion of the acid-labile subunit of the IGF-binding protein-3 complex: relative roles of growth hormone and IGF-I in insulin resistance. Diabetes 2003;52:2483-2489. 9- Møller N, Gjedsted J, Gormsen L, Fuglsang J, Djurhuus C. Effects of growth hormone on lipid metabolism in humans. Growth Horm IGF Res. 2003;13(A):18-21. 10- Beck JC, McGarry EE, Dyrenfurth I, Venning EH. Metabolic effects of human and monkey growth hormone in man. Science 1957;125:884-885. 113 11- Davidson MB. Effect of growth hormone on carbohydrate and lipid metabolism. Endocr Rev 1987;8:115-131. 12- Møller N. The role of growth hormone in the regulation of human fuel metabolism. In: FlyvbjergA, Ørskov H, Alberti KGMM, editors. Growth hormone and Insulin-like growth factors in human and experimental diabetes. Chichester: John Wiley & Sons 1993, 224-332. 13- Ho KY, Veldhuis JD, Jonson ML, FurianettoR, Evans WS, Alberti KGMM, et al. Fasting enhances growth hormone secretion and amplifies the complex rhythms of growth hormone secretion in man. J Clin Invest 1988;81:968-975. 14- Hohnston DG, Davis RR, Prescott RW. Regulation of growth hormone secretion in man: a review. J R Soc Med 1985;78:319-327. 15- Sakharova AA, Horowitz JF, Surya S, Goldenberg N, Harber MP, Symons K, et al. Role of Growth Hormone in Regulating Lipolysis, Proteolysis, and Hepatic Glucose Production during Fasting. J Clin Endocrinol Metab 2008:93(7): 2755-2759. 16- Edge JA, Pal BR, Harris DA, Matthews DR, Phillips PE, Dunger DB. Evidence for a role for insulin and growth hormone in overnight regulation of 3-hidroxybutyrate in normal and diabetic adolescent. Diabetes Care 1993;16:1011-1018. 17- Hansen AP, Johansen K. Diurnal patterns of blood glucose, serum free fatty acids, insulin, glucagon and growth hormone in normals and juvenile diabetics. Diabetologia 1970;6:2703-2708. 18- Argetsinger LS, Campbell GS, Yang X, Witthuhn BA, Silvennoinen O, Ihle JN, et al. Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell 1993;74:237-244. 19- Fryburg DA, Louard RJ, Gerow KE, Gelfand RA, Barrett EJ. Growth hormone stimulates skeletal muscle protein synthesis and antagonizes insulin’s antiproteolytic action in humans. Diabetes 1992;41:424-429. 20- Bratusch-Marrain PR, Smith D, DeFronzo RA. The effect of growth hormone on glucose metabolism and insulin secretion in man. J Clin Endocrinol Metab 1982;55:973-982. 21- Nielsen S, Møller N, Christiansen JS, Jørgensen JO. Pharmacological antilipolysis restores insulin sensitivity during growth hormone exposure. Diabetes 2001;50:2301-2308. 22- Di Cola G, Cool MH, and Accili D et al. Hypoglycemic effect of insulin-like growth factor-1 in mice lacking insulin receptors. J Clin Invest 1997;99:2538-2544. 23- Scavo LM, Karas M, Murray M, Leroith D. Insulin-like growth factor-I stimulates both cell growth and lipogenesis during differentiation of human mesenchymal stem cells into adipocytes. J Clin Endocrinol Metab 2004;89:3543-3553. 24- Mauras N, Haymond MW. Are the metabolic effects of GH and IGF-I separable? Growth Horm IGF Res 2005;15:19-27. 25- Yuen KC, Dunger DB. Impact of treatment with recombinant human GH and IGF-I on visceral adipose tissue and glucose homeostasis in adults. Gr Horm IGF-I Res 2006;16:S55- 61. 26- Brummer RJ. Effects of growth hormone treatment on visceral adipose tissue. Growth Horm IGF Res 1998;8:19-23. 27- Barretto ESAB, Gill MS, Freitas MES, Magalhães MMG, Souza AHO, Aguiar-Oliveira MH, et al. Serum leptin and body composition in children with familial GH deficiency (GHD) due to a mutation in the growth hormone-releasing hormone (GHRH) receptor. Clinical Endocrinology 1999;51(5):559-64. 28- Barreto-Filho JAS, Alcântara MRS, Salvatori R, Sousa ACS, Souza AH, Aguiar- Oliveira MH, et al. Familial isolated growth hormone deficiency is associated with increased systolic blood pressure, central obesity and dyslipidemia. J Clin Endocrinol Metab 2002;87:2018-2023. 29- Gleeson HK, Barreto ESA, Salvatori R, Oliveira CRP, Pereira RMC, Aguiar-Oliveira MH, et al. Metabolic effects of growth hormone (GH) replacement in children and 114 adolescents with severe isolated GH deficiency due to a GHRH receptor mutation. Clinical Endocrinology 2007;66:466-474. 30- Milani, SLS. Caracterização clínica e laboratorial de crianças e adolescentes com insensibilidade parcial ao hormônio de crescimento ou ao IGF-I. Tese de doutoramento. Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, 2009. 31- Gleeson HK, Gill MS, Wieringa GE, Barretto ESA, Barretto-Filho JAS, Aguiar- Oliveira MH, et al. Lipid profiles in untreated severe congenital isolated growth hormone deficiency through the lifespan. Clinical Endocrinology 2002;57:89-95. 32- Oliveira JL, Marques-Santos C, Barreto-Filho JA, Pereira RM, Aguiar-Oliveira MH, Salvatori R, et al. Lack of evidence of premature atherosclerosis in untreated severe isolated growth hormone deficiency due to a GHRH receptor mutation. J Clin Endocrinol Metab 2006;91:2093-2099. 33- Raben MS, Hollenberg CH. Effect of growth hormone on plasma fatty acids. J. Clin. Invest 1959;38:484-488. 34- Hew FL, Koschmann M, Christopher M, Rantzau C, Vaag A, Ward G, et al. Insulin resistance in growth hormone-deficient adults: defects in glucose utilization and glycogen synthase activity. J Clin Endocrinol Metab 1996;81:555-564. 35- Gola M, Bonadonna S, Doga M, Guistina A. Clinical Review: Growth Hormone and Cardiovascular Risk Factor. J Clin Endocrinol Metab 2005;90:1864-1870. 36- Pereira RM, Aguiar-Oliveira MH, Oliveira JL, Marques-Santos C, Barreto-Filho JAS, Salvatori R, et al. Heterozygosity for a mutation in the growth hormone-releasing hormone receptor gene does not influence adult stature, but affects body composition. J Clin Endocrinol Metab 2007;92:2353-57. 37- Bengtsson BA. The consequences of growth hormone deficiency in adults. Acta Endocrinol (Copenh) 1993;128(Suppl. 2):2-5. 38- Johansson JO, Fowelin J, Landin K, Lager I, Bengtsson BA. Growth hormone-deficient adults are insulin-resistant. Metabolism 1995;44:1126-1129. 39- Veldhuis JD, Iranmanesh A, Ho KK, Waters MJ, Johnson ML, Lizarralde G. Dual defects in pulsatile growth hormone secretion and clearance subserve the hyposomatotropism of obesity in man. J Clin Endocrinol Metab 1991;72:51-59. 40- Albert SG, Mooradian AD. Low-dose recombinant human growth hormone as adjuvant therapy to lifestyle modifications in the management of obesity. J Clin Endocrinol Metab 2004;89:695-701. 41- Franco C, Brandberg J, Lonn L, Andersson B, Bengtsson BA, Johannsson G. Growth hormone treatment reduces abdominal visceral fat in postmenopausal women with abdominal obesity: a 12-month placebo-controlled trial. J Clin Endocrinol Metab 2005;90:1466-1474. 42- Wilmore DW. The use of growth hormone in severely ill patients, Adv Surg 1999;33:261-274. 43- Mulligan K, Tai VW, Schambelan M. Use of growth hormone and other anabolic agents in AIDS wasting, J. Parenter Enteral Nutr 1999;23:S202-S209. 44- Takala J, Ruokonen E, Webster NR, Nielsen MS, Zandstra DF, Vundelinckx G, et al. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med 1999;341:785-792. 45- Haffner D, Schaefer F, Nissel R, Wuhl E, Tonshoff B, Mehls O. Effect of growth hormone treatment on the adult height of children with chronic renal failure. German Study Group for Growth Hormone Treatment in Chronic Renal Failure. N Engl J Med 2000;343:923-930. 46- Hardin DS, Ellis KJ, Dyson M, Rice J, McConnell R, Seilheimer DK. Growth hormone improves clinical status in prepubertal children with cystic fibrosis: results of a randomized controlled trial. J Pediatr 2001;139(5):636-642. 47- Li S, Shin HJ, Ding E, van Dan RM. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analasis. JAMA 2009;302:179-188. 115 48- Beltowski J. Leptin and atherosclerosis. Atherosclerosis 2006;189:47-60. 49- Seufert J. Leptin effects on pancreatic beta-cell gene expression and function. Diabetes 2004;53:S152-S158. 50- Stevenson AE, Evans BAJ, Gevers EF, Elford C, McLeod RWJ, Perry MJ, et al. Does adiposity status influence femoral cortical strength in rodent models of growth hormone deficiency? Am J Physiol Endocrinol Metab 2009;296:E147-E156. 51- Joaquin C, Aguilera E, Granada ML, Pastor MC, Salinas I, Alonso N, et al. Effects of GH treatment in GH deficiency adults on adiponectin, leptin and pregnancy- associeted plasma protein-A. Eur J Endocrinol 2008;158:483-490. 52- Jung CH, Lee WY, Rhee EJ, Kim SY, Oh KW, Yun EJ, et al. Serum ghrelin and leptin levels in adult growthhormone deficiency syndrome. Arch Med Res 2006;37: 612-618. 53- Gill MS, Toogood AA, Jones J, Clayton PE, Shalet SM. Serum leptin response to the acute and chronic administration of growth hormone (GH) to elderly subjects with GH deficiency. J Clin Endocrinol Metab 1999;84:1288-129. 54- Lanes R, Soros A, Gunczler P, Paoli M, Carrillo E, Villaroel O, et al. Growth hormone deficiency, low levels of adiponectin and unfavorable plasma lipid and lipoproteins. J Pediatr 2006;149:324-329. 55- Fukuda I, Hizuka N, Ishikawa Y, Itoh E, Yasumoto K, Murakami Y, et al. Serum adiponectin levels in adult growth hormone deficiency and acromegaly. Growth Horm IGF Res 2004;14:449-454. 56- Oliveira CRP, Salvatori R, Meneguz-Moreno RA, Aguiar-Oliveira MH, Pereira RMC. Valença EHA Adipokine profile and urinary albumin excretion in solated GH deficiency. J Clin Endocrinol Metab. 2010 Feb;95(2):693-8. 57- Nilsson L, Binart N, Bohlooly-y M, Bramnert M, Egecioglu E, Kindblom J, et al. Prolactin and growth hormone regulate adiponectin secretion and receptor expression in adipose tissue. Biochem Biophys Res Commun 2005;331:1120-1126. 58- Kanety H, Hemi R, Ginsberg S, ParienteC, Yissachar E, Barhod E et al. Total and high molecular weight adiponectin are elevated in patients with Laron syndrome despite marked obesity. European Journal of Endocrinology 2009;161:837–44. 59- Capaldo B, Patti L, Oliviero U, Longobardi S, Pardo F, Vitale F et al. Increased arterial intima-media thickness in childhood-onset growth hormone deficiency. J clin Endocrinol Metabolism 1997; 82: 1378-81. 60- Pfeiter M, Verhovec R, Zizek B. Growth hormone (GH) treatement reverses early atherosclerotic changes in GH-deficient adults. J Clin Endocrinol Metabolism 1999; 84: 453- 7. 61- Verdecchia P, Reboldi G, Schillaci G, Borgioni C, Ciucci A, Telera MP et al . Circulating insulin and insulin growth factor-1 are independent determinants of left ventricular mass and geometry in essencial hypertension. Circulation 1999; 100:1802-7. 62- Delafontaine P, Song YH, Li Y. Expression, regulation, and function of IGF-I, IGF-IR, and IGF-I binding proteins in blood vessels 2004. Arterioscler Thromb Vasc Biol;.24 : 435- 44. 63- Oliveira, JLM, Aguiar-Oliveira MH, D’Oliveira Jr A, Pereira RMC, Oliveira CRP, Farias CT et al. Congenital Growth Hormone (GH) deficiency and Atherosclerosis: Effects of GH Replacement in GH-Naive Adults 2007. J Clin Endocrinol Metabolism; 92(12):4664-70. 116 APÊNDICE 3 Termo de Consentimento O termo de consentimento utilizado está impresso na íntegra nas folhas seguintes. Approved June 9, 2009 Date: June 9, 2009 Principal Investigator: Roberto Salvatori Application No.: NA_00018533 - 1 - Local da pesquisa: Universidade Federal de Sergipe, Bairro Sanatório, S/N Aracaju, SE/ Brasil-49.060-100 Identificação do Paciente TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO Título de projeto: Conseqüências de deficiência de hormônio de crescimento isolada vitalícia parte II (Termo de Consentimento dos Anões) Número da Aplicação: NA_00018533 Patrocinador: Instituto Nacional de Saúde dos Estados Unidos da América Investigador principal: Roberto Salvatori, MD. 1. O que você deve saber sobre este estudo: • Estão lhe pedindo que participe de um projeto de pesquisa. • Este termo de consentimento explica o projeto de pesquisa e sua participação no projeto. • Por favor, leia cuidadosamente e leve o tempo que você achar necessário. • Por favor, faça perguntas qualquer hora a por qualquer coisa que você não entenda. • Você é um voluntário. Se você participar do estudo, você pode mudar de idéia depois. Você pode desistir a qualquer momento. Não haverá nenhuma penalidade ou perda de benefícios se você decidir deixar o estudo. • Durante o estudo, nós lhe diremos qualquer informação nova que viermos a aprender e que poderia alterar seu desejo de continuar no estudo. • Durante este estudo, você não terá acesso a certas informações médicas e resultados de teste coletados para propósitos de estudo. Se uma emergência acontecer enquanto você estiver no estudo, as informações médicas precisas ou necessárias para seu tratamento serão disponíveis para seu médico. Quando o estudo for completado, todas as informações em seu registro médico estarão disponíveis para você. Approved June 9, 2009 Date: June 9, 2009 Principal Investigator: Roberto Salvatori Application No.: NA_00018533 - 2 - 2. Por que esta pesquisa está sendo realizada? . Esta pesquisa está sendo feita para determinar as conseqüências que a falta de hormônio de crescimento por muitos anos pode causar além da baixa estatura ( nanismo). Além disso, nós desejamos descobrir se as pessoas com deficiência do hormônio de crescimento vivem tanto quanto as pessoas com níveis normais do hormônio de crescimento. Também queremos estudar se as pessoas de estatura normal, que portam o gene que causa baixa estatura em Itabaianinha têm alterações no corpo delas, comparados com pessoas que não portam este gene. Pessoas com baixa estatura devido à deficiência de hormônio de crescimento, seus parentes de estatura normal, e as pessoas normais que residem em Itabaianinha e municípios vizinhos podem se unir a este estudo. Estima-se que um total de cerca de 930 pessoas entrará no estudo. 3. O que acontecerá se você participar deste estudo? Se você concordar em participar deste estudo, nós lhe pediremos que faça uma ou mais das seguintes coisas abaixo: Responder algumas questões sobre sua saúde e se você é parente de anão. Você será medido e será pesado, e se for selecionado para a pesquisa, nós coletaremos algumas células dentro de sua boca esfregando um cotonete de algodão suavemente na sua bochecha por aproximadamente 30 segundos. Isto nos permitirá obter seu DNA (material genético) para determinar se você pode transmitir a sua descendência, o gene alterado que causa a baixa estatura nos anões de Itabaianinha. • Baseado no resultado do teste genético nós podemos lhe pedir que leve adiante uma segunda fase do estudo. Nós lhe pediremos que seja examinado em Itabaianinha ou na Universidade Federal de Sergipe em Aracaju. Nós organizaremos um transporte de carro à noite antes do exame ou mesmo no dia para participantes serem deslocados para Aracaju, e transporte de retorno ao término de teste. Se você passar a noite, você ficará sem nenhum custo no Hospital Universitário da Universidade Federal de Sergipe. Nós lhe pediremos que faça os testes indicados: • Medir sua pressão sanguínea, estatura, dobras da pele • Colher seis colheres de chá de sangue • Se você for uma mulher capaz de engravidar ,nós lhe perguntaremos se você poderá estar grávida. Se você responder que sim ,será pedido para você colher uma amostra de sua urina, onde realizaremos um teste para saber se você está grávida • Realize um teste de Tolerância a glicose para medir o aumento no sangue do nível de um hormônio chamado insulina, depois que nós injetarmos açúcar em sua veia. De manhã cedo, você será transportado para o Hospital Universitário em Aracaju. Você será solicitado para não comer nada antes da meia-noite, até o fim do teste. Serão puncionadas duas veias e colocados dois escalpes onde serão colocadas duas agulhas em seus antebraços. A Approved June 9, 2009 Date: June 9, 2009 Principal Investigator: Roberto Salvatori Application No.: NA_00018533 - 3 - metade de colher de chá de sangue será tirada novamente através do escalpe nos tempos 15, 10 e 1 minuto antes da administração do açúcar, e 5, 10, 15, 30, 45, 60, 90, 120 e 180 minutos depois da administração do açúcar. O total de sangue puncionado não será mais que 2 colheres de sopa. O único efeito negativo que a água e açúcar podem causar é um aumento ou diminuiçãodos níveis de açúcar no sangue. • Uma parte de seu sangue será armazenada para possível repetição das provas ou estudos futuros. • Você só receberá os resultados do estudo se nós descobrirmos qualquer problema médico que pode precisar de tratamento. • Quanto tempo você estará no estudo? Você estará neste estudo por um tempo máximo de 24 horas. 4. Quais os riscos ou desconfortos do estudo? • A coleta do material bucal, o exame médico, medida das dobras da pele, pressão sanguínea e a ultra-sonografia não levam a nenhum risco. • Risco do teste genético: Você poderá ficar preocupado se souber que é um portador e que pode transmitir o gene da baixa estatura para seu filho. • A coleta de sangue, só leva ao risco de um pequeno sangramento, mancha e infecção, mas este procedimento será realizado por pessoal treinado, com material estéril para minimizar riscos. • Se você realizar o teste de tolerância de glicose, há um risco pequeno que o açúcar em seu sangue possa ficar muito baixo. Se isto acontecer, você pode notar que as batidas do seu coração se tornarão mais rápida, você poderá começar a suar muito e ter problemas para manter a concentração. Se isto acontecer, você deverá nos informar imediatamente, e nós administraremos açúcar (Glicose) em sua veia, e o teste será parado, voltando tudo ao normal. • Você pode se sentir cansado ou entediado enquanto nós estivermos lhe fazendo perguntas ou você estiver completando questionários. Você não tem que responder qualquer pergunta você não queira responder. • Pode haver efeitos colaterais e desconfortos que ainda não são conhecidos. 5. Há riscos relacionados à gravidez? No dia inicial do estudo, nós lhe perguntaremos da possibilidade de você estar grávida. Se você responder sim, nós faremos um teste de gravidez em sua urina. Se o resultado der negativo você pode continuar no estudo. Caso fique grávida antes do estudo ser completado você deve informar ao médico responsável pelo estudo. Se você estiver grávida, nós não a incluiremos no estudo, porque a gravidez pode alterar muito dos parâmetros naturalmente que nós estamos estudando. Porém, esta pesquisa pode lesar um embrião ou feto de modo que nós não sabemos atualmente. 6. Há benefícios de estar no estudo? Não há nenhum benefício direto a você de estar neste estudo. Approved June 9, 2009 Date: June 9, 2009 Principal Investigator: Roberto Salvatori Application No.: NA_00018533 - 4 - 7. Quais as opções se você não quiser fazer parte neste estudo? Você é livre para decidir se você quer participar deste estudo. Em nenhum momento será negado cuidado médico futuro a você porque se recusou a entrar neste estudo. Você não tem que participar deste estudo. Se você não participar, seu atendimento na Universidade Federal de Sergipe não será afetado. 8. Você teria alguma despesa para participar deste estudo? Não. 9. Você será pago para participar deste estudo? Você não será pago para participar deste estudo. Se lhe pedirem para ir à Aracaju, serão providenciados transporte e alimentação gratuitamente. Você poderá receber diária pelo dia de trabalho perdido. 10. Você pode deixar o estudo mais cedo? • Você pode concordar estar no estudo agora e depois mudar de idéia. • Se você desejar parar, por favor, nos fale imediatamente. • Você deixando o estudo mais cedo não terá seu tratamento médico interrompido. • Se você deixar o estudo mais cedo, o Johns Hopkins pode usar ou distribuir a informação sobre sua saúde que já tem mesmo que você não dê seguimento ao estudo. 11. O que nos levaria a retirá-lo mais cedo do estudo? Você pode ser levado para sair do estudo se: • Ficar no estudo for prejudicial a sua saúde. • Você precisa de tratamento não permitido no estudo. • Você não seguir as instruções. • Você ficar grávida. • O estudo for cancelado. • Pode haver outras razões que nós não sabemos neste momento para retirá- lo deste estudo. 12. Como sua privacidade será protegida? Algumas informações de sua saúde coletadas neste estudo serão enviadas para os Estados Unidos. Approved June 9, 2009 Date: June 9, 2009 Principal Investigator: Roberto Salvatori Application No.: NA_00018533 - 5 - Há uma lei nos Estados Unidos que protegem esta informação. A lei diz que informações médicas sobre você só podem ser usadas seguindo regras rígidas. Estamos lhe pedindo que nos deixe usar e distribuir detalhes sobre sua saúde como permitido por esta lei norte americana. Você não tem que concordar em permitir que façamos isto. Se você não estiver de acordo, você não entrará neste estudo. Se você concordar em nos deixar usar e distribuir informação sobre sua saúde você poderá mudar de idéia a qualquer momento. Caso você mude de idéia, por favor, nos fale e nos dê documento por escrito dizendo que mudou de idéia quanto a participar do estudo. Desta data em diante nós não coletaremos mais novas informações sobre sua saúde. Seu cancelamento não afetará as informações já coletadas anteriormente neste estudo. 13. O estudo exigirá que outros provedores de assistência médica compartilhem de suas informações de saúde com os pesquisadores deste estudo? Como parte deste estudo, os pesquisadores podem pedir para ver seus registros médicos de outros provedores de assistência médica. Nós pediremos para que este outro provedor de assistência médica nos forneça qualquer informação sobre seu estado de saúde e cuidados médicos. 14. Que custos de tratamento serão pagos se você ficar doente neste estudo? O governo federal e Johns Hopkins não têm programas para pagar se você for lesado ou tenha outras reações ruins por estar no estudo. Porém, os cuidados médicos na Universidade Federal de Sergipe estarão abertos a você como é a todas as pessoas doentes,que dela precisarem. - Se você tem plano médico de saúde: Serão faturados para o seu plano os custos para qualquer tratamento ou cuidado hospitalar que você receba como o resultado de um dano relacionado ao estudo. Qualquer valor que não for coberto pelo seu plano de saúde será faturado em seu nome. - Se você não tem plano médico de saúde: Será faturado em seu nome qualquer custo para qualquer tratamento ou cuidado hospitalar que você receba como o resultado de um dano relacionado ao estudo. 15. Que outras coisas você deveria saber sobre este estudo de pesquisa? A) O que é o Comitê de Ética e Pesquisa (CEP) e como o protege? O CEP do Johns Hopkins Medicine e da Universidade Federal de Sergipe são compostos de: • Médicos • Enfermeiras • Eticistas Approved June 9, 2009 Date: June 9, 2009 Principal Investigator: Roberto Salvatori Application No.: NA_00018533 - 6 - • Não cientistas • E pessoas da comunidade local. O CEP revisa estudos de pesquisa em seres humanos. Protege os direitos e bem- estar das pessoas que participam nesses estudos. Você pode contatar o CEP se você tiver perguntas sobre seus direitos como participante ou se você pensa que você não foi tratado devidamente. O número do telefone do CEP da Universidade Federal de Sergipe é (079) 2105-1805, falar com Maria do Carmo Queiroz Gouveia. Você também pode ligar para este número para retirar outras dúvidas sobre a pesquisa. B. O que você faz se tiver perguntas sobre o estudo? Ligue para o investigador, Dr. Manuel H. Aguiar-Oliveira no número 079 - 3227- 3026. Se você não puder localizar o investigador principal pode falar com outra pessoa, ligue para o Comitê de Ética em Pesquisa no Hospital Universitário da Universidade Federal de Sergipe pelo telefone (79) 2105-1805. C. O que deveria fazer você se você se sentir doente como resultado de estar neste estudo? Ligue para Dr. Manuel H. Aguiar-Oliveira, pelo telefone (079) 3227-3026 oupelo celular (79) 8803-9726, se você tiver um problema médico urgente relacionado à sua participação neste estudo. Ligue para o investigador local, Dr. Dr. Manuel Aguiar-Oliveira, ou telefone para (079) 3227-3026 ou o celular (79) 8826.6335 se você pensa que você está doente por causa deste estudo. O tratamento médico na Universidade Federal de Sergipe está aberto a você como a qualquer pessoa doente. D. O que acontece a Dados, Tecidos, Amostras de Sangue que são coletados no estudo? A Universidade Johns Hopkins e a Universidade Federal de Sergipe são dedicadas à descoberta das causas e curas das doenças. As informações, tecidos, amostras de sangue coletadas de seu corpo durante este estudo são importantes para o mesmo e para pesquisas futuras. Approved June 9, 2009 Date: June 9, 2009 Principal Investigator: Roberto Salvatori Application No.: NA_00018533 - 7 - 16. O que significa sua assinatura neste termo de consentimento? Sua assinatura neste termo significa que: • Você entende a informação contida neste termo de consentimento • Você aceita as condições deste termo de consentimento • Você concorda em participar do estudo • Você não desistirá de nenhum direito legal por assinar este termo de consentimento. NÓS LHE DAREMOS UMA CÓPIA DESTE TERMO DE CONSENTIMENTO ASSINADA E DATADA. PARA ADULTOS CAPAZES DE DAR CONSENTIMENTO: _______________________________________________________________ Assinatura do Participante Data ASSINATURA(S): _______________________________________________________________ Assinatura de Pessoa que Obtém o Termo de Consentimento Data (Investigador pó pessoas designada pelo CEP) Assinatura de Testemunha dos procedimentos para Consentimento Data NOTA: UMA CÓPIA DO TERMO DE CONSENTIMENTO ASSINADA DEVE SER MANTIDA PELO INVESTIGADOR PRINCIPAL, UMA CÓPIA DEVE SER DADA AO PACIENTE E SE APROPRIADO, UMA CÓPIA DO TERMO DE CONSENTIMENTO PODE SER COLOCADA NO PRONTUÁRIO MÉDICO DO PARTICIPANTE. PARA USO DE ESCRITÓRIO SÓ: ESTUDO APROVADO PARA MATRÍCULA DE: ( x ) Só Adultos ( ) Adultos e Crianças ( ) Só Crianças 124 APÊNDICE 4 Tabelas do experimento 1: avaliação da adiponectina, leptina e microalbuminúria Tabela A1: Características basais do grupo DIGH- Experimento 1 Número Paciente Nome Sexo Idade Altura Peso IMC Cintura Quadril C/Q IGF-I 3 JFD F 70 1,15 36,3 27,45 80 91 0,88 0,80 5 BNC F 68 1,17 42,6 31,12 101,5 105 0,97 0,80 6 JNC F 55 1,08 20,2 17,32 57,5 66 0,87 0,80 7 JNC M 64 1,20 39,8 27,64 88 82 1,07 0,80 14 MJM F 58 1,20 39,9 27,71 81 80 1,01 0,80 15 MJN F 51 1,25 37,6 24,06 84 88 0,95 17,99 17 MNN F 40 1,25 34,9 22,52 79 90 0,88 11,06 20 MHCN F 50 1,22 41,1 27,61 88,5 96,5 0,92 0,80 21 JDF M 71 1,26 36,7 23,12 86,5 85 1,02 0,80 23 VMF M 58 1,24 39,4 25,83 89 81 1,10 0,80 24 JBJS M 33 1,39 34,0 17,60 68,5 77 0,89 0,83 27 JFJ F 53 1,13 37,8 29,60 90,5 89,5 1,01 2,73 30 MLN F 43 1,24 34,2 22,24 75,5 86,5 0,87 0,80 31 AME F 76 1,15 43,3 32,74 87 85 1,02 0,80 33 NJS M 48 1,28 45,4 27,93 80,6 81,7 0,99 3,89 35 MFSN F 30 1,22 32,1 21,74 67,5 85 0,79 24,88 38 JS F 41 1,22 48,6 32,55 96 98 0,98 19,23 39 CTJ M 27 1,36 35,8 19,36 76 81 0,94 11,50 41 ELFL F 30 1,20 29,3 20,35 64 80 0,80 15,70 47 JDCS M 50 1,18 33,1 23,97 80 78 1,03 0,80 Média 7M/13F 50,80 1,22 37,1 25,12 81,03 85,31 0,95 11,9 Desvio Padrão 14,58 0,07 6,2 4,64 10,81 8,48 0,08 15,72 125 Tabela A2: Características basais do grupo Controle- Experimento 1 Número Paciente Nome Sexo Idade Altura Peso IMC Cintur a Quadri l C/Q IGF-I 1 MHAO M 53 1,74 84,5 27,91 101 108 0,94 209,08 2 SJSN M 43 1,68 67,8 24,02 85 96 0,89 241,65 4 JMJF M 29 1,79 79,4 24,78 93,5 100,5 0,93 130,85 9 ONC M 67 1,53 44,5 19,01 70 74 0,95 77,12 10 MLCS F 65 1,46 59,7 28,01 95,5 95 1,01 64,92 11 CCA F 30 1,59 64,8 25,63 81 100 0,81 334,93 12 RMCP F 50 1,57 54,8 22,23 81 93 0,87 95,03 19 JSC F 30 1,63 59,4 22,49 84 96,5 0,87 214,57 22 RMJ F 60 1,51 56,0 24,72 91 96 0,95 121,80 25 JOS F 47 1,54 54,1 22,81 84 94 0,89 199,59 26 FJ F 61 1,54 63,6 26,82 98 100 0,98 152,08 28 JFB M 50 1,59 53,8 21,42 79 85 0,93 137,08 29 JJ M 46 1,73 69,5 23,22 92 96 0,96 191,20 32 RMJS F 42 1,62 74,5 28,39 97 104,5 0,93 175,16 34 RFS F 71 1,54 59,2 25,12 94 99,5 0,94 138,81 37 MJS F 46 1,53 64,4 27,51 89,5 104 0,86 125,34 42 SLV M 49 1,66 67,0 24,31 85 96 0,89 177,69 43 EHOV F 41 1,60 80,0 31,25 106,5 118,5 0,90 124,89 44 MS F 52 1,49 46,0 20,72 80,5 89 0,90 142,08 45 LHAO M 57 1,67 73,0 26,18 101 102,5 0,99 100,36 50 MFLO F 55 1,65 65,0 23,88 86,5 110,5 0,78 254,09 51 BSJ F 55 1,56 58,0 23,83 87,5 101,5 0,86 155,10 Média 8/14 49,95 1,6 63,59 24,74 89,2 91,18 0,91 161,97 Desvio Padrão 11,48 0,09 10,49 2,85 8,7 8,99 0,05 63,36 126 Tabela A3: Pressão Arterial, Composição Corporal e Lípides no grupo DIGH- Experimento 1 Número Paciente PAS PAD MM MG % MG CT LDL HDL TG 3 157 80 21,10 15,20 41,85 268 165 41 309 5 180 100 24,90 17,70 41,55 306 178 50 392 6 100 70 14,70 8,30 36,00 207 152 39 81 7 180 110 27,65 12,15 30,55 199 66 23 670 14 160 107 21,85 18,05 45,20 251 175 56 98 15 155 98 24,80 12,80 34,05 322 245 57 101 17 113 82 21,15 13,75 39,45 184 121 51 59 20 132 78 25,70 15,40 37,45 170 102 46 110 21 160 80 24,33 12,37 33,70 163 81 69 63 23 120 80 29,75 9,65 24,60 231 132 44 277 24 110 80 26,45 7,55 22,20 254 156 36 311 27 140 75 22,30 15,50 41,10 289 203 33 267 30 147 90 20,60 13,60 39,80 153 89 49 77 31 170 100 23,15 20,15 46,50 251 173 44 168 33 137 90 31,28 14,12 31,74 187 114 44 145 35 90 60 17,70 14,40 44,80 164 112 40 60 38 118 77 28,80 19,80 40,75 215 138 39 191 39 100 60 22,85 12,95 36,10 193 127 39 136 41 100 70 15,75 13,55 46,35 182 105 54 113 47 112 72 19,70 13,40 40,55 238 168 39 155 Média 134,05 82,95 23,22 14,02 37,71 221,35 140,1 44,65 140,5 DP 28,95 14,3 4,42 3,32 6,73 49,69 44,04 9,98 189,25 127 Tabela A4: Pressão Arterial, Composição Corporal e Lípides no grupo Controle- Experimento 1 Número Paciente PAS PAD MM MG % MG CT LDL HDL TG 1 133 90 68,45 16,05 19,00 200 114 64 108 2 100 55 57,80 10,00 14,75 158 93 42 117 4 100 63 69,95 9,45 11,90 181 78 28 456 9 130 60 38,80 5,70 12,80 188 89 29 351 10 142 95 36,65 23,05 38,60 262 140 37 498 11 90 60 47,20 17,60 27,20 184 127 37 102 12 95 65 39,60 15,20 27,75 138 84 43 57 19 98 63 41,45 17,95 30,20 160 96 45 94 22 130 78 34,35 21,65 38,65 259 173 49 185 25 122 70 38,10 16,00 29,55 232 145 52 174 26 153 90 44,00 19,60 30,85 178 100 35 215 28 110 70 49,45 4,35 8,05 180 114 47 93 29 120 80 68,50 1,00 1,45 135 68 38 14432 118 77 51,08 23,42 31,44 183 111 60 60 34 130 90 43,50 15,70 26,50 165 70 60 174 37 113 80 41,00 23,40 36,40 131 64 52 76 42 110 70 52,15 14,85 22,20 200 116 70 69 43 140 90 54,95 32,05 36,85 141 76 47 88 44 110 75 31,80 14,20 30,90 245 168 45 158 45 110 70 55,20 17,80 24,40 237 166 52 94 50 105 70 47,50 17,50 26,90 312 209 59 219 51 98 68 39,25 18,75 32,30 187 114 61 61 Média 116,23 74,05 47,76 16,15 25,39 193,45 114,32 47,82 112,5 DP 17,05 11,45 11,08 7,01 10,19 46,98 38,87 11,38 107,5 128 Tabela A5: Dados laboratoriais do grupo DIGH- Experimento 1 Número Paciente PCRas Glicemia Insulina HOMAir Adiponectina Adiponectina/ MG kg Leptina Leptina/ MG Kg EUA 3 2,09 116 4 1,14 12,61 0,83 15,20 1,00 3,60 5 2,40 129 8 2,55 14,40 0,81 21,50 1,21 27,60 6 1,07 80 1 0,20 27,68 3,33 1,60 0,19 4,80 7 0,69 175 4 1,73 9,84 0,81 4,70 0,39 17,33 14 0,33 102 5 1,26 40,01 2,22 28,90 1,60 4,65 15 1,03 98 6 1,45 13,89 1,08 8,40 0,66 6,00 17 0,14 105 3 0,78 9,02 0,66 4,90 0,36 3,69 20 0,88 94 3 0,70 17,05 1,11 8,20 0,53 2,40 21 1,46 93 2 0,46 52,31 4,23 4,30 0,35 9,60 23 0,48 120 4 1,18 10,53 1,09 6,30 0,65 1,66 24 0,23 103 1 0,25 4,51 0,60 2,40 0,32 1,33 27 0,97 113 7 1,95 11,67 0,75 9,40 0,61 2,59 30 0,35 89 2 0,44 7,35 0,54 9,00 0,66 1,45 31 0,62 118 3 0,87 13,97 0,69 34,50 1,71 1,20 33 0,39 90 4 0,89 12,40 0,88 4,40 0,31 60,00 35 0,85 89 2 0,44 14,43 1,00 11,00 0,76 11,33 38 0,79 104 8 2,05 5,18 0,26 9,50 0,48 8,67 39 0,29 91 4 0,90 8,19 0,63 2,40 0,19 1,50 41 1,14 79 2 0,39 17,02 1,26 6,50 0,48 1,66 47 0,52 102 3 0,75 13,05 0,97 2,30 0,17 1,33 Média 0,84 102 3,5 0,88 12,83 0,85 7,35 0,63 8,62 DP 0,6 25 2,75 0,96 7,15 0,44 6,3 0,44 13,78 129 Tabela A6: Dados laboratoriais do grupo Controle- Experimento 1 Número Paciente PCRas Glicemia Insulina HOMAir Adiponectina Adiponectina/ MG kg Leptina Leptina/ MG Kg EUA 1 0,12 106 4 1,05 12,69 0,79 14,20 0,88 2,40 2 0,09 109 4 1,08 11,04 1,10 4,10 0,41 3,52 4 0,62 95 8 1,88 4,40 0,47 0,50 0,05 4,53 9 0,23 75 3 0,56 13,66 2,40 0,50 0,09 8,80 10 0,85 119 6 1,76 19,09 0,83 41,20 1,79 34,47 11 0,22 97 11 2,63 8,06 0,46 21,90 愀䘃 メ϶ 6,60 12 0,98 89 3 0,66 9,20 0,61 10,20 0,67 9,60 19 0,43 97 6 1,44 7,40 0,41 2,90 0,16 7,82 22 0,44 103 5 1,27 12,67 0,59 2,00 0,09 2,64 25 0,06 104 7 1,80 13,23 0,83 17,50 1,09 10,80 26 0,18 114 9 2,53 8,39 0,43 0,90 0,05 2,64 28 0,02 105 2 0,52 9,27 2,13 0,50 0,11 3,30 29 0,19 98 2 0,48 4,92 4,92 0,50 0,50 6,60 32 0,36 97 13 3,11 10,20 0,44 19,50 0,83 4,89 34 0,71 116 28 8,01 4,50 0,29 6,30 0,40 2,40 37 0,35 119 4 1,17 8,36 0,36 11,20 0,48 47,52 42 0,39 100 7 1,73 6,57 0,44 1,60 0,11 5,28 43 0,05 102 19 4,78 7,96 0,25 36,10 1,13 4,80 44 0,05 97 4 0,96 14,17 1,00 8,40 0,59 3,60 45 0,15 96 8 1,89 10,44 0,59 32,90 1,85 11,20 50 0,30 104 10 2,57 13,77 0,79 11,40 0,65 2,40 51 0,11 101 8 1,99 11,43 0,61 39,80 2,12 1,76 Média 0,31 101,5 6,5 1,74 9,73 0,6 9,3 0,7 8,52 DP 0,27 9,75 5,25 1,52 5 0,44 18,68 0,62 11,07 130 APÊNDICE 5 Tabelas experimento 2: avaliação da sensibilidade à insulina Tabela A7: Características basais do grupo DIGH- Experimento 2 Número Nome Sexo Idade Peso Altura IMC Cintura Quadril C/Q 1 ELFL F 32 31,2 119,6 22 64 79 0,81 4 EFL F 29 39,1 126,0 25 74 93 0,80 5 VSF F 25 39,0 140,0 20 74 83 0,90 6 VMF M 60 38,2 124,0 25 84 82 1,02 7 AEJS M 37 35,7 135,0 20 73 73 1,00 8 JEJS M 34 40,9 129,0 25 81 78 1,03 9 MJN F 54 40,0 126,0 25 80 88 0,91 10 MLN F 45 37,5 126,0 24 79 88 0,90 11 MNN F 42 36,9 125,0 24 81 91 0,89 12 CTJ M 29 35,8 136,0 19 73 80 0,91 13 CTJ M 27 27,8 129,0 17 60 73 0,82 14 MHCN F 42 44,2 122,0 30 88 94 0,94 15 MFSN F 32 31,9 122,0 21 70 89 0,79 16 WJS M 25 27,7 136,0 15 55 70 0,79 18 AFS F 30 27,4 119,0 19 62 64 0,97 19 JFC M 45 33,0 130,0 20 74 72 1,03 20 JDCS M 52 32,0 118,5 23 81 78 1,05 21 JAN M 50 42,7 137,0 23 80 79 1,01 22 NJS M 50 47,8 127,5 29 95 90 1,06 23 DFC F 25 51,1 143,5 25 77 85 0,91 24 MJM F 60 39,9 120,5 28 81 91 0,89 26 FMC M 27 38,5 143,5 19 88 82 1,07 27 JBJS M 35 35,9 139,0 19 71 77 0,92 61 JFJ F 55 38,5 103,0 36 94 91 1,03 Média 12M/12F 39,25 37,2 128,21 22,9 76,5 81,94 0,93 Desvio Padrão 11,73 5,95 9,42 4,68 9,99 8,01 0,09 131 Tabela A8: Características basais do grupo Controle - Experimento 2 Número Nome Sexo Idade Peso Altura IMC Cintur a Quadri l C/Q 2 MJS F 26 70,6 158,0 28 89 104 0,86 3 AMJS F 52 58,2 148,3 27 86 93 0,92 17 JJ M 48 69,9 174,0 23 91 94 0,97 29 AAB M 62 69,9 170,5 24 89 98 0,91 30 RS F 39 51,6 155,0 22 77 96 0,80 33 VPA F 25 55,4 168,0 20 67 100 0,67 41 ELBN F 37 51,1 153,5 22 72 92 0,78 43 MBGJ M 36 70,2 169,0 25 84 99 0,85 46 AHOS F 57 64,0 150,0 28 81 107 0,76 49 JOS F 60 55,6 160,0 22 78 92 0,85 52 EHOV F 43 90,7 158,0 36 107 119 0,89 54 SSO M 30 89,0 178,5 28 93 95 0,98 56 JRC M 46 75,9 179,5 24 88 91 0,97 57 JJS M 26 74,7 169,5 26 85 104 0,82 58 JJS M 26 49,1 154,0 21 79 82 0,96 59 MSJ F 45 69,7 168,5 25 86 100 0,86 60 LRC M 33 75,1 173,5 25 88 98 0,90 66 JN F 30 77,0 161,5 30 98 107 0,92 67 JES M 44 61,1 171,0 21 73 77 0,95 69 EM M 40 72,3 175,0 24 86 89 0,97 70 MHAO M 55 86,0 175,0 28 101 104 0,97 71 FHOS M 25 83,4 173,5 28 88 110 0,80 72 LAON M 26 97,9 176,0 32 112 114 0,98 83 JMCS F 60 63,0 155,0 26 86 98 0,88 89 JLJS M 28 60,0 164,5 22 81 93 0,87 Média 14M/11F 39,96 69,66 165,57 25,31 86,5 98,06 0,88 Desvio Padrão 12,49 13,06 9,46 3,86 10,3 9,27 0,08 132 Tabela A9: Glicemia nos 6 tempos do TTGO e ASC Glicose no grupo DIGH - Experimento 2 Paciente Número Dose de Glicose Glicemia 0 Glicemia 30 Glicemia 60 Glicemia 90 Glicemia 120 Glicemia 180 ASC Glicose 1 55 87 140 161 131 113 72 119,5 4 69 84 148 130 131 113 111 121,9 5 69 85 121 159 107 119 132 123,3 6 68 107 240 317 320 288 153 252,6 7 63 96 220 191 134 128 83 144,7 8 73 108 151 172 145 125 89 133,1 9 70 95 188 201 154 142 90 148,9 10 66 90 179 131 147 118 99 129,7 11 65 96 156 160 138 132 110 135,0 12 64 93 168 226 197 133 123 160,0 13 49 91 158 139 134 149 130 138,3 14 75 100 162 171 177 122 141 147,3 15 56 87 82 86 98 108 95 94,4 16 49 85 139 79 104 116 133 111,9 18 49 105 179 153 160 149 121 148,2 19 59 101 195 155 150 164 58 142,4 20 58 97 155 158 109 143 128 135,5 21 75 97 188 136 143 129 59 128,0 22 75 110 192 227 201 145 166 176,4 23 75 78 125 107 110 83 101 101,1 24 70 97 159 211 200 181 149 173,2 26 68 81 150 114 91 97 84 104,2 27 64 93 157 140 113 118 103 122,8 61 75 98 172 197 176 168 133 163,2 Média 65 94,2 163,5 163,4 148,8 136,8 111 139,8 Erro padrão 8,6 1,9 6,1 9,4 9 7,2 5,4 32 133 Tabela A10: Glicemia nos 6 tempos do TTGO e ASC Glicose no grupo Controle - Experimento 2 Paciente Número Dose de Glicose Glicemia 0 Glicemia 30 Glicemia 60 Glicemia 90 Glicemia 120 Glicemia 180 ASC Glicose 2 75 87 144 133 125 104 106 117,9 3 75 86 177 153 108 110 86 122,0 17 75 113 151 208 146 117 108 140,8 29 75 110 176 202 243 204 115 182,8 30 75 109 131 135 150 143 151 139,3 33 75 73 98 63 78 102 86 85,8 41 75 97 183 169 151 125 53 132,0 43 75 77 106 105 93 104 88 97,8 46 75 90 85 117 121 114 81 103,3 49 75 89 132 139 125 112 106 119,1 52 75 87 116 89 148 121 100 113,0 54 75 87 136 99 120 107 76 105,8 56 75 100 154 143 87 100 45 104,8 57 75 97 146 173 117 115 67 120,7 58 75 95 145 101 110 95 66 102,0 59 75 103 151 92 123 117 96 114,8 60 75 94 132 92 84 114 49 95,8 66 75 96 130 124 130 138 64 117,2 67 75 98 162 102 85 67 66 94,1 69 75 102 184 91 189 106 75 124,8 70 75 81 138 145 125 114 58 112,9 71 75 87 117 94 65 59 86 82,3 72 75 99 137 175 151 140 63 130,9 83 75 107 174 211 193 194 99 170,3 89 75 93 102 126 113 93 87 102,3 Média 75 94,3 140,3 131,2 127,2 116,6 83,1 117,3 Erro padrão 1,9 6,0 9,2 8,8 7,1 5,3 23,5 134 Tabela A11: Insulina nos 6 tempos do TTGO e ASC Insulina no grupo DIGH- Experimento 2 Paciente Número Insulina 0 Insulina 30 Insulina60 Insulina 90 Insulina 120 Insulina 180 ASC Insulina 1 1,78 14,6 22,9 26,4 29,2 6,31 19,2 4 1,35 41,5 29,3 26,2 21,5 14,20 24,0 5 1,92 13,4 49,0 8,5 16,6 21,10 19,7 6 4,25 31,8 42,0 45,1 88,6 26,80 46,8 7 1,57 26,1 31,6 35,2 27,0 5,07 23,2 8 3,44 20,0 121,0 62,6 63,7 6,27 51,2 9 4,18 71,7 101,0 76,6 67,8 13,70 61,1 10 2,51 41,0 28,6 41,5 32,3 19,70 30,1 11 2,49 37,3 33,2 34,2 41,0 46,85 35,7 12 1,59 29,1 127,0 94,4 73,4 35,70 66,2 13 1,44 30,6 36,0 17,9 18,8 17,30 21,8 14 5,14 36,0 27,3 60,1 18,0 33,90 31,1 15 1,21 23,0 16,1 10,8 9,6 3,90 11,5 16 1,96 27,3 8,2 15,9 21,4 16,60 16,8 18 2,13 64,2 61,8 62,2 50,4 24,20 48,2 19 2,52 32,1 27,4 27,9 29,9 1,60 22,5 20 ,97 25,3 21,1 7,2 19,9 15,10 16,5 21 2,20 34,6 23,8 22,8 23,0 2,31 19,9 22 7,10 23,9 44,5 47,4 40,5 46,20 37,7 23 3,50 41,4 18,4 24,0 15,9 16,90 21,1 24 2,69 17,6 24,7 41,4 41,5 2,47 25,0 26 1,54 47,6 33,4 14,8 18,7 9,95 22,4 27 2,84 58,3 43,2 36,5 31,4 13,65 33,3 61 4,92 28,7 38,9 65,6 73,9 38,80 47,6 Média 2,72 34,04 42,09 37,71 36,41 18,27 31,3 Erro padrão 0,3 3 6,4 4,7 4,5 2,8 14,9 135 Tabela A12: Insulina nos 6 tempos do TTGO e ASC Insulina no grupo Controle – Experimento 2 Paciente Número Insulina 0 Insulina 30 Insulina 60 Insulina 90 Insulina 120 Insulina 180 ASC Insulina 2 11,10 93,6 70,6 75,9 40,3 39,00 57,5 3 3,78 81,8 114,0 121,0 117,0 48,80 90,5 17 3,59 33,6 54,8 56,3 10,3 13,90 29,3 29 5,36 10,9 26,9 36,4 6,8 20,60 17,9 30 1,26 23,2 18,8 25,1 25,4 21,00 21,1 33 1,00 73,1 6,5 12,4 31,9 21,20 26,9 41 2,27 43,8 43,4 38,7 39,1 3,18 31,5 43 1,95 20,8 26,2 22,8 20,1 11,00 18,7 46 2,27 2,6 27,2 30,9 29,7 13,25 19,9 49 2,47 38,8 43,4 29,0 22,8 11,40 26,3 52 6,88 29,9 66,0 85,3 84,2 21,60 55,4 54 5,90 62,7 20,1 45,5 23,8 3,04 28,3 56 3,74 65,1 58,7 28,4 34,3 1,31 34,5 57 7,50 203,5 190,0 56,4 65,3 9,43 93,5 58 1,40 67,6 31,6 46,8 20,2 2,71 30,0 59 5,35 87,4 19,9 23,0 27,7 17,70 32,0 60 4,56 24,5 29,5 26,8 26,0 3,43 20,9 66 6,14 32,8 26,4 37,2 26,4 7,25 24,4 67 1,74 38,2 43,9 10,9 3,5 1,54 16,8 69 4,30 60,0 51,0 58,0 12,7 1,62 32,0 70 2,53 104,0 76,6 62,8 65,9 4,93 58,1 71 1,71 34,3 37,8 26,4 5,6 1,32 18,2 72 10,50 137,5 276,0 189,0 189,5 17,10 151,5 83 2,47 26,7 25,4 33,8 52,3 22,70 31,4 89 5,85 37,1 41,7 39,6 32,8 19,20 31,6 Média 4,23 58,76 57,05 48,73 40,54 13,56 39,9 Erro padrão 0,5 9,1 11,8 7,6 8,1 2,4 6,5 136 Tabela A13: HOMAir, OGIS 2, OGIS 3, HOMA- beta, índice insulinogênico e ASC I/G grupo DIGH - Experimento 2 Paciente Número HOMAir QUICKI OGIS 2 OGIS 3 HOMA- beta Índice insulinogênico ASC I/G 1 0,38 0,46 485,8 538,4 26,78 0,2 0,2 4 0,28 0,49 507,8 491,4 23,22 0,6 0,2 5 0,40 0,45 506,7 445,5 31,52 0,3 0,2 6 1,12 0,38 399,0 387,2 34,84 0,2 0,2 7 0,37 0,46 429,4 500,8 17,17 0,2 0,2 8 0,92 0,39 384,3 431,7 27,57 0,4 0,4 9 0,98 0,38 396,2 449,4 47,14 0,7 0,4 10 0,56 0,42 464,2 482,4 33,56 0,4 0,2 11 0,59 0,42 434,7 438,8 27,23 0,6 0,3 12 0,36 0,46 403,3 375,8 19,13 0,4 0,4 13 0,32 0,47 438,3 432,9 18,56 0,4 0,2 14 1,27 0,37 425,8 409,2 50,12 0,5 0,2 15 0,26 0,49 496,4 517,9 18,20 -4,4 0,1 16 0,41 0,45 478,5 402,5 32,17 0,5 0,2 18 0,55 0,43 366,4 381,8 18,29 0,8 0,3 19 0,63 0,42 399,3 533,5 23,93 0,3 0,2 20 0,23 0,51 431,0 435,5 10,29 0,4 0,1 21 0,53 0,43 453,5 569,6 23,35 0,4 0,2 22 1,93 0,35 404,0 328,2 54,49 0,2 0,2 23 0,67 0,41 555,3 502,9 84,36 0,8 0,2 24 0,64 0,41 424,0 411,7 28,55 0,2 0,1 26 0,31 0,48 534,6 551,5 30,91 0,7 0,2 27 0,65 0,41 438,8 458,2 34,17 0,9 0,3 61 1,19 0,37 406,0 410,0 50,72 0,3 0,3 Média 0,65 0,43 444,3 453,6 31,9 0,26 0,22 DP 0,4 0,04 49,6 62,14 16 1 0,08 137 Tabela A14: HOMAir, QUICKI, OGIS 2, OGIS 3, HOMA- beta, índice insulinogênico e ASC I/G grupo Controle- Experimento 2 Paciente Número HOMAir QUICKI OGIS 2 OGIS 3 HOMA- beta Índice insulinogênico ASC I/G 2 2,38 0,34 422,4 409,8 167,00 1,4 0,5 3 0,80 0,40 372,2 379,9 59,35 0,9 0,7 17 1,00 0,38 355,9 386,5 25,90 0,8 0,2 29 1,45 0,36 382,6 457,8 41,13 0,1 0,1 30 0,34 0,47 390,5 344,8 9,88 1,0 0,2 33 0,18 0,54 542,7 517,5 36,22 2,9 0,3 41 0,54 0,43 428,6 526,8 24,09 0,5 0,2 43 0,37 0,46 498,4 497,8 50,37 0,7 0,2 46 0,50 0,43 447,0 481,5 30,35 -0,1 0,2 49 0,54 0,43 462,2 446,1 34,30 0,8 0,2 52 1,48 0,36 399,1 362,7 103,51 0,8 0,5 54 1,27 0,37 432,2 473,9 88,76 1,2 0,3 56 0,92 0,39 395,1 507,0 36,47 1,1 0,3 57 1,79 0,35 385,1 430,7 79,60 4,0 0,8 58 0,33 0,47 436,7 543,3 15,79 1,3 0,3 59 1,36 0,36 406,1 413,0 48,25 1,7 0,3 60 1,06 0,38 396,3 529,5 53,09 0,5 0,2 66 1,45 0,36 394,3 502,8 67,14 0,8 0,2 67 0,42 0,45 485,6 533,4 17,94 0,6 0,2 69 1,08 0,38 410,8 472,8 39,78 0,7 0,3 70 0,51 0,43 431,9 468,1 50,79 1,8 0,5 71 0,37 0,46 493,1 418,7 25,73 1,1 0,2 72 2,56 0,33 276,7 310,9 105,24 3,3 1,2 83 0,65 0,41 369,9 418,2 20,25 0,4 0,2 89 1,34 0,37 447,4 448,5 70,38 3,5 0,3 Média 0,99 0,4 418,5 451,3 52 1,27 0,34 DP 0,64 0,05 54,1 63,1 35,6 1 0,24 01 02 03 04 05 06 07 08