Logo Passei Direto
Buscar

Tema 5 - Tensão e Deformação

Ferramentas de estudo

Questões resolvidas

MARQUE A ALTERNATIVA QUE APRESENTA O VALOR APROXIMADO DA TENSÃO DE TRAÇÃO DENTRO DE UMA BARRA DE AÇO DE DIÂMETRO DE 25 MM, CONSIDERANDO QUE A BARRA ENCONTRA-SE PUXADA POR UM ESFORÇO DE 50,0 KN.
A) 10,19 kN/cm2
B) 12,34 kN/cm2
C) 14,25 kN/cm2
D) 16,76 kN/cm2
E) 18,23 kN/cm2

A RESISTÊNCIA CARACTERÍSTICA DE ESCOAMENTO DO AÇO CATEGORIA CA-60 É DE 600 MPA QUE EQUIVALE EM KGF/MM2 A:
A) 60
B) 6
C) 0,60
D) 6.000
E) 0,06

UMA BARRA PRISMÁTICA DE AÇO DE SEÇÃO TRANSVERSAL DE ÁREA IGUAL A 200 MM2 ESTÁ SUBMETIDA A UMA CARGA AXIAL, COMO REPRESENTADO NA FIGURA. O MÓDULO DE ELASTICIDADE DO AÇO É IGUAL A 200 GPA, O COMPRIMENTO DA BARRA L É IGUAL A 40 CM, E A SOLICITAÇÃO P É IGUAL A 200 KN. COM BASE NO TEXTO, ASSINALE A ALTERNATIVA QUE APRESENTA O VALOR DA TENSÃO NORMAL AO LONGO DA BARRA.
A) 1 MPa
B) 10 MPa
C) 1 GPa
D) 10 GPa
E) 100 GPa

Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Questões resolvidas

MARQUE A ALTERNATIVA QUE APRESENTA O VALOR APROXIMADO DA TENSÃO DE TRAÇÃO DENTRO DE UMA BARRA DE AÇO DE DIÂMETRO DE 25 MM, CONSIDERANDO QUE A BARRA ENCONTRA-SE PUXADA POR UM ESFORÇO DE 50,0 KN.
A) 10,19 kN/cm2
B) 12,34 kN/cm2
C) 14,25 kN/cm2
D) 16,76 kN/cm2
E) 18,23 kN/cm2

A RESISTÊNCIA CARACTERÍSTICA DE ESCOAMENTO DO AÇO CATEGORIA CA-60 É DE 600 MPA QUE EQUIVALE EM KGF/MM2 A:
A) 60
B) 6
C) 0,60
D) 6.000
E) 0,06

UMA BARRA PRISMÁTICA DE AÇO DE SEÇÃO TRANSVERSAL DE ÁREA IGUAL A 200 MM2 ESTÁ SUBMETIDA A UMA CARGA AXIAL, COMO REPRESENTADO NA FIGURA. O MÓDULO DE ELASTICIDADE DO AÇO É IGUAL A 200 GPA, O COMPRIMENTO DA BARRA L É IGUAL A 40 CM, E A SOLICITAÇÃO P É IGUAL A 200 KN. COM BASE NO TEXTO, ASSINALE A ALTERNATIVA QUE APRESENTA O VALOR DA TENSÃO NORMAL AO LONGO DA BARRA.
A) 1 MPa
B) 10 MPa
C) 1 GPa
D) 10 GPa
E) 100 GPa

Prévia do material em texto

Tensão e deformação
Entendimento dos conceitos de tensão e deformação, dimensionamento de pequenos projetos de
acoplamento simples.
Prof. Julio Cesar José Rodrigues Junior
1. Itens iniciais
Propósito
Compreender a importância do cálculo das tensões/deformações como princípio norteador do
dimensionamento da Engenharia e iniciar os primeiros passos para projetar pequenas estruturas, o que
ocorrerá durante a formação de um engenheiro.
Preparação
Antes de iniciar o conteúdo deste tema, tenha em mãos papel, caneta e uma calculadora científica ou use a
calculadora de seu smartphone/computador.
Objetivos
Calcular as tensões médias normal e de cisalhamento;
Empregar as tensões admissíveis nos projetos de acoplamento simples;
Calcular as deformações normal e de cisalhamento.
Introdução
Neste tema, você será introduzido(a) aos conceitos fundamentais de análise de tensões e deformações,
essenciais para projetos e análises de componentes mecânicos e estruturais. 
 
Exploraremos o cálculo das tensões médias normal e de cisalhamento, compreendendo como elas atuam em
materiais submetidos a diferentes tipos de carregamentos. Em seguida, abordaremos o uso de tensões
admissíveis no dimensionamento de acoplamentos simples, garantindo projetos seguros e eficientes. Por fim,
você aprenderá a calcular as deformações normais e de cisalhamento, entendendo como prever o
comportamento de materiais sob esforço. 
 
Com uma abordagem prática e aplicada, este tema proporcionará as ferramentas necessárias para enfrentar
desafios técnicos no dia a dia profissional.
• 
• 
• 
1. Cálculo de tensões médias normal e de cisalhamento
Introdução
Inicialmente, é preciso fazer uma diferenciação qualitativa entre uma grandeza pontual e sua forma média.
Quando se fala em tensão normal média, trata-se de um valor que representa a média dos valores pontuais da
grandeza.
 
Um exemplo, que é bastante conveniente para que essas ideias fiquem claras, está na média de uma
disciplina em que foram realizadas quatro provas. O fato de a média ser 8,0 não significa que obrigatoriamente
as quatro notas foram iguais a 8,0 (pode até acontecer).
 
Estatisticamente, é provável que algumas notas tenham sido superiores à média e outras inferiores. Da mesma
forma, ocorre para as grandezas que serão estudadas neste módulo. Todas referem-se a valores médios. No
decorrer do seu curso de Engenharia, cada caso será estudado de forma mais pontual. Por exemplo, será
calculado o valor máximo dessas grandezas e o ponto, ou linha, de atuação delas.
 
Observe o desenho esquemático da figura 1, em que os valores de uma dada grandeza, por exemplo, tensão
normal, são representados. No primeiro desenho da figura, os valores são pontuais ao longo de uma linha da
seção, e no segundo desenho da figura, é apresentado o valor médio da mesma grandeza, nessa mesma
linha.
 
Note que na figura 1, a tensão normal determinada pontualmente apresenta valores maiores e menores que o
valor médio, que é constante ao longo da região de estudo.
Figura 1: Tensão normal ao longo de um comprimento e tensão média normal.
Tensões normal e de cisalhamento
Como foi visto, a resistência de uma peça não é uma função exclusiva do seu carregamento.
 
Duas barras do mesmo material (suponha o alumínio 7075 — T6) podem suportar cargas distintas antes do
rompimento. Dessa forma, é preciso associar a resistência do elemento à geometria deste. A partir dessa
ideia, surge o conceito de tensão.
Exemplo
O alumínio 7075 – T6 apresenta limite de resistência em torno de 500 MPa, o que não significa que
qualquer peça desse material resistirá a um mesmo carregamento (força ou momento). 
É importante que você perceba que a geometria da peça é fundamental. Daí surge o primeiro passo para o
dimensionamento de uma peça, ou seja, dizer qual dimensões mínimas ela deve possuir para resistir ao
carregamento que está submetida. Ratificando, duas peças do mesmo material podem suportar, por exemplo,
valores máximos de uma carga concentrada de 100 kN e 120 kN, dependendo de suas geometrias.
Resumindo
Os esforços internos normal e cisalhante serão normalizados pela área em que atuam. São as tensões
normal e de cisalhamento. 
Para iniciar o entendimento do conceito de tensão de maneira quantitativa, será suposto um elemento
infinitesimal volumétrico (dV) de uma peça submetida a um dado carregamento. Suponha, também, um
elemento infinitesimal de força (dF) atuando sobre uma face infinitesimal de área (dA), conforme a figura 2.
Figura 2: Elemento infinitesimal de um volume.
A partir de conhecimentos matemáticos, é possível escrever dF como suas projeções sobre os eixos
cartesianos x, y e z. Por exemplo, dFx, dFy e dFz. Assim, dF pode ser apresentada decomposta nas direções x,
y e z, conforme a figura 3.
Figura 3: Decomposição de dF em suas componentes retangulares.
Note que na figura 3, duas das projeções de dF (dFx e dFz) são tangentes (cisalhantes) ao elemento
infinitesimal de área dA e a outra projeção, dFy, é perpendicular à dA. A partir das grandezas dF e dA, define-
se a grandeza tensão como sendo a relação entre as duas, isto é, a divisão entre os valores de dF e dA.
A partir da descrição anterior, vemos que a tensão é dada pela equação 1:
Existe uma convenção para a nomenclatura das tensões. Para o caso das tensões normais, utiliza-se um único
índice à letra sigma que coincide com o eixo de aplicação da força. Na figura 3, a tensão normal atua na
direção do eixo y. Assim, a equação 2 determina o seu valor:
Caso a tensão normal atuasse nas direções x ou z, escreveríamos, respectivamente, σx e σz para denominá-
las.
Tensão normal 
Quando a força é 
perpendicular à área, a
grandeza é denominada de
tensão normal. 
 A letra
associada a
essa tensão
é: σ (sigma).
Tensão cisalhante 
Quando a força é tangente
à seção reta, a tensão
associada é denominada
de cisalhamento (ou
cisalhante). 
 A letra
associada
a essa
tensão é:
τ (tau).
Equação 1
Equação 2
 
No caso da tensão cisalhante, dois índices são utilizados. O primeiro relaciona-se com a direção perpendicular
à área de atuação da tensão cisalhante e, o segundo, com a direção da tensão. Perceba que na figura 3, tanto
dFx como dFz atuam numa seção que é perpendicular a y. Uma das tensões atua na direção x e a outra na
direção z, mas ambas estão numa área cujo eixo y é perpendicular. Assim, seus valores serão determinados
pelas equações 3 e 4.
A figura 4 mostra a atuação da tensão normal e das tensões cisalhantes em uma das faces do elemento
infinitesimal de estudo.
Figura 4: Tensão normal e tensões cisalhantes atuantes numa dada seção.
Perceba que as tensões determinadas foram calculadas a partir de um limite em que dA tende a zero. Assim,
são tensões pontuais e em uma área extremamente pequena. O que nos interessa, nesse momento, é a
tensão atuante numa dada área, ou seja, os valores médios para as tensões normal e cisalhante.
Tensões médias normal e de cisalhamento
O objetivo inicial da disciplina é apresentar situações em que os valores das tensões médias são adequados
para a resolução de problemas, inclusive para situações reais da Engenharia. O item anterior apresentou as
definições da tensão normal (σ) e tensão cisalhante (τ) pontualmente. Estendendo-se o conceito, as tensões
médias são apresentadas por relações matemáticas semelhantes. Observe as equações 5 e 6.
Equação 3
Equação 4
Cabe ressaltar que a convenção dos índices apresentada no item anterior continua a ser utilizada no caso das
tensões médias. As equações 5 e 6 foram escritas sem os índices, apenas por simplicidade.
Relembrando
Ratificando o que foi descrito na figura 1, o valor da tensão média é considerado constante ao longo da
seção analisada. É uma simplificação, mas com ampla utilização no dimensionamento de pequenas
estruturas na Engenharia. 
A tensão normal pode atuar no sentido de alongar o corpo, ou seja, tracioná-lo. Nesse caso, diz-se que a
tensão normal é trativa. No sentido oposto, a tensão normal é denominada comocompressiva. Como
convenção, adota-se o valor positivo para tensões normais trativas e o valor negativo para tensões
compressivas. Observe na figura 5, as duas situações possíveis para a tensão normal.
Figura 5: Tensões normais médias trativa e compressiva.
Equação 5
Equação 6
Em termos de unidades, a tensão é dada pela razão entre uma unidade de força e uma unidade de área. Por
exemplo, N/m2, kgf/mm2, N/mm2 etc. A razão N/m2 recebe o nome de pascal (Pa) e existem os múltiplos kPa
(103 vezes Pa), MPa (106 vezes Pa) e GPa (109 vezes Pa).
Dica
Na Engenharia, normalmente, os valores para as tensões apresentam ordem de grandeza de 106. Por
isso, é comum a utilização de MPa para as tensões. 
É bastante útil conhecer a relação abaixo:
Mão na Massa
Questão 1
(FGV ‒ 2014 ‒ SEDUC ‒ AM ‒ Engenharia Civil) Os esforços mecânicos ou as solicitações
simples a que uma estrutura pode estar submetida são muito diversificados. Observe a viga a
seguir.
Ela está submetida a um esforço de:
A
Compressão
B
Tração
C
Flexão
D
Torção
E
Cisalhamento
A alternativa B está correta.
A partir do desenho indicado na figura, é possível perceber que as forças agem perpendicularmente à
seção reta da barra. Ademais, agem no sentido de aumentar seu comprimento. Dessa forma, a tensão
associada é normal trativa.
Questão 2
(IBFC ‒ 2013 ‒ EBSERH ‒ Engenheiro Civil) Leia o enunciado e assinale a alternativa que
preenche corretamente a lacuna.
Em uma estrutura de um edifício, se a barra está em tração, a deformação é chamada de
deformação de tração, representando um __________. Se a barra está em compressão é
chamada de deformação de compressão e a __________.
A
Alongamento do material / barra encurta
B
Encurtamento do material / barra se alonga
C
Cisalhamento do material / barra se alonga
D
Rompimento do material / barra vira mola
E
Encurtamento do material / barra encurta.
A alternativa A está correta.
A força que atua perpendicularmente a uma área associa-se à tensão normal. Quando essa tensão normal
atua no sentido de alongar o corpo, diz-se que é uma tensão trativa (tração). No sentido oposto, isto é,
quando a força perpendicular à área age no sentido de diminuir o comprimento do corpo, a tensão normal é
denominada compressiva.
Questão 3
(MS CONCURSOS ‒ 2014 ‒ UFAC ‒ Engenheiro Civil) Marque a alternativa que apresenta o
valor aproximado da tensão de tração dentro de uma barra de aço de diâmetro de 25 mm,
considerando que a barra encontra-se puxada por um esforço de 50,0 kN.
A
10,19 kN/cm2
B
12,34 kN/cm2
C
14,25 kN/cm2
D
16,76 kN/cm2
E
18,23 kN/cm2
A alternativa A está correta.
O valor apresentado para o diâmetro (D) da barra é de 25mm, que equivale a 2,5cm. Logo, o raio (R = D/2)
vale 1,25cm. A área do círculo é dada por π.R2. Substituindo o valor de R, a área é aproximadamente de
4,90625cm2. A força aplicada na barra tem intensidade de 50kN. Assim, a tensão média normal será dada
por:
Questão 4
(INSTITUTO AOCP ‒ 2015 ‒ EBSERH ‒ Engenheiro Civil (HE-UFPEL)) A resistência
característica de escoamento do aço categoria CA-60 é de 600 MPa que equivale em Kgf/
mm2 a:
A
60
B
6
C
0,60
D
6.000
E
0,06
A alternativa A está correta.
A questão tem como objetivo a conversão de unidades utilizadas para tensão. Considerando a aceleração
da gravidade como 10 m/s2, é fato que 1 kgf = 10 N (0,1 kgf = 1 N). Ademais, 1 m2 = (103 mm)2 = 106 mm2. 1
MPa equivale a 106 Pa (N/m2), ou ainda, 1 MPa = 106 N/m2. Dessa forma:
Outra maneira de resolver esse exercício é conhecer a relação 1 MPa = 1 N/mm2. Assim:
Questão 5
(UPENET/IAUPE ‒ 2017 ‒ UPE ‒ Engenheiro) Uma chapa é fixada a uma laje de concreto por
meio de dois parafusos de diâmetro 20 mm, conforme mostra a figura. A tensão média de
cisalhamento nos parafusos para uma carga de P = 100 kN vale, aproximadamente:
A
159,2 MPa
B
318,5 MPa
C
478,5 MPa
D
79,6 MPa
E
39,8 MPa
A alternativa A está correta.
Assista ao vídeo Determinação da tensão média cisalhante para conferir a resolução da questão.
Conteúdo interativo
Acesse a versão digital para assistir ao vídeo.
Questão 6
(FUNIVERSA ‒ 2012 ‒ PC ‒ DF ‒ Perito Criminal ‒ Engenharia)
Uma barra prismática de aço de seção transversal de área igual a 200 mm2 está submetida a
uma carga axial, como representado na figura. O módulo de elasticidade do aço é igual a 200
GPa, o comprimento da barra L é igual a 40 cm, e a solicitação P é igual a 200 kN. Com base
no texto, assinale a alternativa que apresenta o valor da tensão normal ao longo da barra.
A
1 MPa
B
10 MPa
C
1 GPa
D
10 GPa
E
100 GPa
A alternativa C está correta.
Assista ao vídeo Determinação da tensão média normal para conferir a resolução da questão.
Conteúdo interativo
Acesse a versão digital para assistir ao vídeo.
Teoria na prática
Um aluno, estagiário de uma empresa de Engenharia, foi designado para fazer o dimensionamento de uma
barra que fará parte de uma estrutura maior. A situação problema é a apresentada na questão do concurso 
FGV ‒ 2014 ‒ Câmara Municipal do Recife ‒ PE ‒ Engenheiro Civil: Uma barra de aço com seção retangular,
em equilíbrio, está sujeita a um esforço axial de tração de 40 kN. A resistência ao escoamento e o coeficiente
de segurança do aço são, respectivamente, 250 MPa e 1,25. Sabendo que a relação entre as dimensões da
seção transversal da barra é igual a 2, o objetivo do aluno é determinar as dimensões da seção reta em
milímetros.
 
Inicialmente, ele fez um croqui da situação, gerando um modelo físico. Observe a figura a seguir.
Croqui da barra sob tração.
Feito isso, o aluno seccionou a peça e fez o diagrama do corpo livre (DCL) mostrando os esforços internos.
Observe a figura do DCL na forma bidimensional.
DCL de parte da barra sob tração.
A partir do equilibrio translacional em , logo .
A seção reta tem a forma de um retângulo, com altura h e base . Supondo que a base tenha um valor
desconhecido , isto é, e que a altura tenha valor (o enunciado afirma que a relação entre as
dimensões é 2 ). Assim, a área da seção reta em que atua o esforço normal é dada pelo produto base pela
altura, ou seja, .
 
A tensão admissível do material é de 250 MPa . O fator de segurança (FS), a ser estudado detalhadamente no
módulo seguinte, é a relação entre as tensões admissível e de trabalho, ou seja:
Assim, a tensão máxima que pode atuar durante o “trabalho” da peça é de 200 MPa. O aluno ainda utilizou o
fato de que 1 MPa = 1 N/mm2.
 
A tensão normal média atuante pode ser calculada pela seguinte relação:
Substituindo os valores, tem-se:
Portanto, as dimensões mínimas são: altura 20 mm e base 10 mm.
 
Assista ao vídeo Dimensionamento da seção reta de uma barra sob carregamento axial para entender melhor.
Conteúdo interativo
Acesse a versão digital para assistir ao vídeo.
Verificando o aprendizado
Questão 1
(IMA ‒ 2019 ‒ Prefeitura de Fortaleza dos Nogueiras ‒ MA ‒ Engenheiro Civil ‒adaptada)
Analise a frase abaixo:
“Nos projetos estruturais, o elemento sujeito basicamente a esforços axiais de compressão é
denominado de __________.” Assinale a alternativa que completa corretamente a frase acima:
A
Barra de ferro
B
Laje
C
Pilar
D
Andaime
E
Treliças
A alternativa C está correta.
Várias são as estruturas que compõem um edifício e podem estar sob vários efeitos. Algumas são
prioritariamente para serem submetidas a um tipo de esforço. Os pilares, por exemplo, estão na base de um
edifício e sustentam a carga de forma a serem comprimidos. As treliças são compostas por barras que
podem estar sujeitas a esforços trativos e compressivos.
Questão 2
Um pequeno projeto para a garagem de uma casa é basicamente composto por 4 colunas
metálicas e um telhado de peso P. Suponha que uma dessas colunas tenha comprimento L e
diâmetros externo e interno, respectivamente, iguais a D e d. O comprimento da coluna é L e a
carga atuante em cada coluna, devido ao peso do telhado, tem intensidade F. Supondo todas
as variáveis apresentadas em unidades do S.I., determine atensão média na coluna descrita:
A
B
C
D
E
A alternativa D está correta.
A tensão normal média é determinada pela seguinte equação:
A seção reta da coluna apresenta o aspecto da figura a seguir:
Seção reta da coluna.
A área "útil" para aplicação da carga F é dada pela região da figura na cor cinza e corresponde à figura
geométrica denominada coroa circular, cuja área A é dada pela diferença das áreas dos círculos
concêntricos. A área do círculo, em função do seu diâmetro, é dada por . Dessa forma, a área em
cinza da figura será dada por:
Na expressão para a determinação da tensão normal média, substituindo a força e a área, tem-se:
Como a força é parte do peso do telhado, sua atuação é no sentido de comprimir a coluna, logo a tensão é
compressiva.
2. Tensões nos projetos de acoplamento simples
Introdução
A partir das premissas adotadas aqui, é possível estudar projetos de acoplamentos simples, ou seja,
dimensionar pequenas peças que se acoplem a estruturas maiores. 
 
Neste módulo, essas peças estarão sujeitas ao esforço normal ou ao esforço cortante, o que remete
imediatamente às tensões normal e as de cisalhamento. No caso do cisalhamento, duas possibilidades serão
abordadas: o cisalhamento simples e o cisalhamento duplo. Ademais, será introduzido um conceito, o de fator
(ou coeficiente) de segurança (FS ou CS).
Cisalhamentos simples e duplo
Relembrando o conceito de cisalhar, esse fenômeno decorre de o ato de uma seção tender a escorregar sobre
outra adjacente. A força cortante associada dividida pela área em questão calcula a tensão média de
cisalhamento (τmédia). Em termos didáticos, serão apresentadas duas possibilidades de cisalhamento.
Cisalhamento simples
Uma maneira bastante didática para que o aluno consiga perceber, na prática, o cisalhamento simples, é
imaginar uma junta entre duas chapas que pode ocorrer por qualquer meio que una “firmemente” as chapas
(cola, solda, parafusos, rebites etc.). Na figura 6, há duas chapas retangulares planas unidas por meio de uma
cola. Atente que existe uma seção comum a essas chapas, uma área sobreposta A.
Figura 6 - Junta formada por duas placas sobrepostas.
Considerando que o equilíbrio estático, F1 e F2 são iguais em módulo. Separando uma das placas e
desenhando seu diagrama do corpo livre (DCL), a força agindo na união (Ftangencial) será, em módulo, igual a
F1 e F2. Observe o DCL de uma das placas da junta, na figura.
Figura 7 - DCL de parte da junta.
Do exposto, anteriormente, as forças F1 e F2 apresentam mesmo módulo. Supondo que as intensidades das
forças sigam a seguinte relação F1 = F2 = F, a tensão de cisalhamento (simples) será calculada pela equação 7.
Cisalhamento duplo
Utilizando a mesma ideia, ou seja, juntas entre placas planas utilizada no entendimento do cisalhamento
simples, é possível entender o cisalhamento duplo. O que muda é o fato de no último caso haver três placas
unidas por meio de parafusos, cola, solda etc. Observe, na figura 8, uma junta com as três placas unidas e
uma área comum (sobreposta).
Figura 8 - Junta formada por três placas sobrepostas.
A fim de se garantir o equilíbrio estático na direção horizontal, é necessário que e tenham o mesmo
módulo. Suponha que a força tenha intensidade , ou seja, . Como ,
logo . Separando a placa em destaque e desenhando seu , a força agindo na união ( 
 ) será, em módulo, igual a . Observe o , na figura 9 .
Figura 9 - DCL de parte da junta.
No caso do cisalhamento duplo, a tensão será determinada pela expressão da equação 8.
Fator de segurança (FS) ou coeficiente de segurança (CS)
Muitos alunos já têm a oportunidade de trabalhar nas diversas áreas da Engenharia ou suas afetas; em
indústrias, na construção civil, em escritórios de projetos de Engenharia ou Arquitetura etc. Certamente, esses
alunos já ouviram a respeito do fator de segurança (ou coeficiente de segurança). Em nosso estudo, muitas
vezes foi apresentado um modelo físico simplificado da situação real, a qual não levará, portanto, em
consideração, no dimensionamento de uma estrutura, todos os aspectos físicos envolvidos; muitos são
desprezados. 
 
Equação 7
Equação 8
Outra questão bastante presente é tratar os materiais envolvidos como homogêneos, sem defeitos etc. E
neste tema, em particular, as tensões calculadas foram tomadas como um valor médio. Sendo assim, em
algumas regiões da peça/estrutura existirão valores maiores e em outras valores menores que o valor médio.
Resumindo
Dessa forma, o fator de segurança é utilizado para garantir que essas premissas não tornem o
dimensionamento de uma peça, por exemplo, incorreto. 
O fator de segurança (FS) é uma grandeza adimensional, ou seja, sem unidade associada, sendo determinado
pela razão entre o limite de resistência do material e a resistência adotada para o trabalho. Observe na
equação 9, a expressão do FS para as duas situações de tensão (normal e de cisalhamento).
Uma vez que o fator de segurança é para que o projeto seja conservador, a tensão de trabalho é sempre
menor que a tensão admissível para o material. Sendo assim, a razão determinada pela equação 9 será um
número sempre maior que 1. Confirmando, esse número encontrado é adimensional.
Atenção
Em muitos problemas o FS não é citado. Nesse caso, será tratado como 1. Portanto, a partir da equação
9, conclui-se que a tensão de trabalho será a tensão admissível (de escoamento) do material. 
Projetos de acoplamento simples
Muitas situações em Engenharia apresentam pequenas estruturas que podem ser dimensionadas a partir de
modelos simplificados, dentre os quais o objeto de estudo desse tema: tensões médias. Alguns exemplos
simples, mas pertinentes e que ocorrem na Engenharia podem ser elencados.
 
Suponha uma barra que está vinculada a um apoio que possui um pino e deseja-se saber a dimensão
(diâmetro mínimo desse pino) para suportar determinada carga. Calcular o diâmetro mínimo de um cabo de
aço que será utilizado em um pequeno guincho para suspender peças com determinado peso e muitos outros.
A ideia geral é que se conheça o material e o carregamento da peça que se deseja dimensionar. Utilizando as
expressões para a determinação das tensões médias normal ( ) e cisalhante ( ) mostradas
nas equações 5 e 6, determina-se a área da seção. Conhecendo-se a forma da área e relações geométricas,
as dimensões são determinadas. As equações 10 e 11 mostram o descrito anteriormente.
Equação 9
Mão na Massa
Questão 1
Suponha que a tensão normal admissível de um material seja 300 MPa. O projeto é tal que o
fator de segurança a ser utilizado é igual a 1,5. Qual o valor de tensão normal de trabalho?
A
100 MPa
B
150 MPa
C
200 MPa
D
450 MPa
E
500 MPa
A alternativa C está correta.
O fator de segurança é dado pela equação 9, ou seja, . O enunciado do problema
apresenta os valores da tensão admissível e do fator de segurança. Assim, substituindo esses valores na
expressão do F.S., tem-se:
Equação 10
Equação 11
Questão 2
Seja uma estrutura em que parte dela é formada por uma junta entre duas placas metálicas de
aço soldadas, conforme a figura a seguir.
Suponha que a solda que une as duas placas resista a uma tensão cisalhante máxima de 150
MPa. Considere que a área comum tem 300 mm2. Qual a força máxima F que pode ser
aplicada à junta?
A
0,2 kN
B
20 kN
C
4,5 kN
D
45 kN
E
50 kN
A alternativa D está correta.
Assista ao vídeo Determinação de força máxima a ser aplicada em uma junta em cisalhamento simples para
conferir a resolução da questão.
Conteúdo interativo
Acesse a versão digital para assistir ao vídeo.
Questão 3
Considere uma barra de seção reta quadrada que faça parte de uma estrutura e esteja sujeita
a uma força axial, em módulo, de 200 kN. Considere que a tensão normal admissível seja de
200 MPa e o fator de segurança utilizado seja 2. Determine o menor lado da seção reta.
A
38,5 mm
B
44,7 mm
C
48,6 mm
D
56,4 mm
E
62,8 mm
A alternativa B está correta.
Inicialmente, como a força F = 200 kN, seu módulo será igual a 200.000N. O fator de segurança é dado
pela equação 9, ou seja, . Como o fator de segurança é 2 , a tensão de trabalho será igual
a 100 MPa . A seção reta é um quadrado de lado I, logo a área será dada por . Sendo a força axial,
a tensão é normal, cuja expressão é dada por . Substituindo os valores para a tensão de trabalho, a
força normal F, a expressão da área do quadrado e lembrando que 1 MPa equivale a , tem-se:
Questão 4
(IBFC ‒ 2013 ‒ PC-RJ ‒ Perito Criminal ‒ Engenharia Civil) Foi verificado que a seção
transversal retangular de uma viga não resiste à tensão de cisalhamento esperada. Sabe-se
que a tensão de ruptura do material ao cisalhamento é igual a 80 MPa e o fator de segurança
FS = 2. Sem alterar a altura da viga (h = 50 centímetros) e utilizando-se somente os
conhecimentos de resistência dos materiais, é possível calcular a largura mínima admissível
(b) de modo que a viga resista a uma força de cisalhamento de V = 5.000 kN. Esse valor, em
centímetros, é:
A
b = 0,25
B
b = 2,50
C
b = 6,25
D
b = 25,00
E
b = 62,50
A alternativa D está correta.
Assista ao vídeo Dimensionamento da seção reta de uma barra sujeita a cisalhamento simples para conferir
a resolução da questão.
Conteúdo interativo
Acesse a versão digital para assistir ao vídeo.
Questão 5
(FCC ‒ 2016 ‒ Copergás ‒ PE ‒ Técnico Operacional Mecânico) Considere a figura abaixo.
A junta com um pino foi submetida a uma força externa (Q) de 49 kN. Considerando a tensão
admissível de 50 MPa e admitindo-se a distribuição uniforme das tensões de cisalhamento
nas seções, o valor mínimo do diâmetro (d) do pino solicitado ao cisalhamento deve ser:
A
25 mm
B
12,5 mm
C
52,0 mm
D
50,0 mm
E
8,0 mm
A alternativa A está correta.
O acoplamento mostrado na figura do exercício, trata-se de um caso típico de cisalhamento duplo. Assim,
na expressão para a determinação da tensão média utiliza-se a metade do valor da força atuante. Nesse
caso, 24,5 kN ou ainda 24.500 N. Substituindo os valores apresentados e lembrando que 1 MPa = 1 N/mm2,
tem-se:
Como o pino apresenta seção circular, sua área é dada por . Igualando-se o valor encontrado para a
área, tem-se:
Assim, o diâmetro (2R) vale 25 mm.
Questão 6
(PaqTcPB ‒ 2010 ‒ Prefeitura de Patos ‒ PB ‒ Engenheiro Civil) Num teste de aderência, uma
barra de aço de 12,5 mm de diâmetro (d) é mergulhada 30 cm (L) num bloco de concreto e
submetida, após a cura, a uma força de tração (P) de 18 kN em sua extremidade, conforme a
figura abaixo. Assumir que a tensão de cisalhamento entre o aço e o concreto está
uniformemente distribuída ao longo do comprimento L. Nestas condições, a tensão de
cisalhamento entre o aço e o concreto será de aproximadamente:
A
1,15 MPa
B
1,53 MPa
C
2,29 MPa
D
3,27 MPa
E
4,19 MPa
A alternativa B está correta.
Assista ao vídeo Teste de aderência entre o aço e o concreto para conferir a resolução da questão.
Conteúdo interativo
Acesse a versão digital para assistir ao vídeo.
Teoria na prática
Um estagiário de uma empresa de projetos mecânicos irá ajudar a equipe de um novo projeto. O sistema
possui uma série de acoplamentos com cisalhamentos duplos que são presos por rebites e que estão
carregados de formas distintas. Sua função é dimensionar os diâmetros mínimos para os rebites. O
engenheiro, sabendo que é o primeiro dia do aluno estagiário, pede que ele faça uma questão teórica para
avaliar seus conhecimentos a respeito do assunto que necessitará dominar para dimensionar os rebites. A
questão escolhida é a seguinte:
 
(FGV ‒ 2016 ‒ SEE-PE ‒ Professor de Mecatrônica – adaptada): a figura a seguir apresenta um conjunto de
placas unidas por um rebite, sujeitas a uma força F de 22,5 kN.
Considerando que o rebite a ser empregado deva ser capaz de suportar uma tensão de cisalhamento de 100
MPa, e adotando um fator de segurança igual a 2, determine o menor diâmetro possível do rebite, em mm.
 
O aluno leu a questão e percebeu vários aspectos que já havia aprendido em sua faculdade: fator de
segurança, cisalhamento duplo, acoplamentos simples etc. Inicialmente, ele percebendo ser um cisalhamento
duplo, lembrou que o esforço cortante nas seções internas do rebite será dado por F/2, ou seja, 22,5/2 = 11,25
kN (11.250 N). Depois, pensou em como utilizar o fator de segurança FS (ou coeficiente de segurança). A
partir da definição de F.S., dada pela expressão , determinou a tensão de trabalho, ou seja,
50 MPa.
 
Como os rebites são comprados a partir dos seus diâmetros, em milímetros, resolveu utilizar uma expressão
matemática que apresentasse o valor desses em milímetros, sem necessidade de conversão. Dessa forma,
relembrou de suas aulas de Mecânica dos Sólidos, que é verdadeira a relação de que . Por
fim, escreveu a expressão que determina a área de um círculo em função de seu diâmetro D , isto é, .
Com todas as informações que necessitava e nas unidades adequadas, substituiu os valores na expressão a
seguir e determinou a área mínima de cada rebite:
Igualando-se o valor encontrado para a área dos rebites à expressão da área do círculo em função do
diâmetro D, tem-se:
Verificando o aprendizado
Questão 1
(CESGRANRIO ‒ 2014 ‒ Petrobras ‒ Técnico(a) de Manutenção Júnior ‒ Mecânica) Uma barra
de aço deve ser projetada para suportar uma carga de tração com um fator de segurança FS.
O valor da tensão de projeto da barra será determinado:
A
Multiplicando-se a tensão de escoamento do material por FS.
B
Multiplicando-se a tensão de ruptura do material por FS.
C
Dividindo-se a deformação referente ao limite de resistência do material por FS.
D
Dividindo-se a deformação de ruptura do material por FS.
E
Dividindo-se a tensão de escoamento do material por FS.
A alternativa E está correta.
O fator de segurança (FS) é uma grandeza adimensional calculada pela razão entre o limite de resistência
do material e a resistência adotada para o trabalho. Adotando-se como limite a região elástica, a tensão
admissível é a tensão de escoamento. Observe a equação a seguir:
Questão 2
(CESGRANRIO ‒ 2011 ‒ Petrobras ‒ Técnico de Projetos, Construção e Montagem Júnior ‒ Estruturas Navais
‒ 2011) Considere a junta rebitada submetida a uma carga F aplicada, conforme a figura abaixo.
Se os rebites possuem seção transversal circular de diâmetro igual a D, o valor da tensão de
cisalhamento vale:
A
B
C
D
E
A alternativa C está correta.
A situação apresentada na questão equivale a um cisalhamento simples com 4 rebites. Considerando a
simetria do arranjo geométrico, cada rebite suportará uma força cortante igual a F/4. A área do círculo em
função do seu diâmetro D é dada por π.D2/4. Substituindo na expressão da tensão média de cisalhamento,
tem-se:
3. Cálculo de deformações normal e de cisalhamento
Introdução
Neste momento, refletiremos sobre a deformação de um corpo sob ação de carregamentos particulares. A
primeira diferença que surge é que os corpos não são mais considerados sem deformação (rígidos). Ainda que
pequenas, as deformações na engenharia ocorrem.
 
Inicialmente, é importante fazer uma introdução aos tipos de deformações a que um corpo pode ficar sujeito.
Exemplo
Considere uma mola (corpo elástico). Suponhamos que a mola tenha comprimento normal (sem ação de
carga) dado por L0. Ao se aplicar uma força F, a mola tem seu comprimento aumentado em ΔL. Cessada
a causa da deformação (a força), a mola retorna ao seu comprimento original. 
Essa deformação temporária é denominada de elástica. Caso tivesse sido cessada a ação da força e a mola
não retornasse ao seu comprimento inicial L0, haveria ocorrido uma deformação permanente, também
denominada plástica.
 
Dependendo do campo da Engenharia, o interesse é que a estrutura se mantenha apenas na região elástica.
Não é desejável que essas deformações sejam temporárias, e sim permanentes. Portanto, nesse caso, a
Engenharia atua no campo plástico.
 
Macroscopicamente, o efeito da deformação é, por exemplo, um aumento no comprimento em dada direção.
Microscopicamente, o arranjo cristalinoé formado por átomos que estão separados a uma distância natural
(menor nível de energia do sistema).
Quando externamente ocorre um carregamento, cada par de átomos tem essa distância natural
alterada. A soma desses deslocamentos microscópicos leva ao resultado macroscópico, à variação
nas dimensões do corpo.
Deformação média normal
Laje 
Quando várias pessoas ocupam uma laje, há
uma deformação, mas que deixa de existir
na ausência delas.
Porta de automóvel 
A estampagem de uma porta de um
automóvel é feita a partir de uma fina
chapa plana de aço. Após a prensa
atuar, a porta toma a forma desejada
pelas deformações impostas.
Suponha uma barra homogênea de aço com seção reta A0 constante e comprimento L0. Um par de forças
axiais (F) perpendiculares à seção reta A0 é aplicado à barra, mantendo-a em equilíbrio. Como foi visto nos
módulos anteriores, associa-se uma tensão média normal. Em termos microscópicos, os átomos são retirados
de suas posições de equilíbrio no arranjo cristalino, afastando-se ou aproximando-se, dependendo de a
tensão ser trativa ou compressiva. Macroscopicamente, percebe-se uma variação no comprimento da barra
(ΔL). A figura 10 apresenta o que foi descrito para a situação de um aumento no comprimento.
A razão entre a variação do comprimento (ΔL) e o comprimento inicial da barra (L0), é definido como a
deformação normal média (εm). A equação 12 mostra a expressão matemática da deformação normal média
descrita anteriormente.
A partir da equação 12, é possível inferir que a deformação normal é um número adimensional (sem unidade),
uma vez que é a razão entre duas grandezas com a mesma unidade. Em termos de apresentação, a
deformação normal média também pode ser apresentada percentualmente.
Exemplo
εm = 0,001 ou, multiplicando por 100%, εm = 0,1%. Outra possibilidade é utilizar as unidades da variação
de comprimento e do comprimento inicial. No exemplo anterior, εm = 0,001 m/m. 
Tão importante quanto saber determinar a deformação normal média, é saber interpretar o seu resultado.
Utilizando o último exemplo, isto é, εm = 0,001 m/m, qual o significado prático desse número? O que essa
medida representa?
 
A partir da figura 10 e do valor de εm pode-se concluir que, em média, nas condições de carregamento
apresentadas, cada um metro da barra tem uma variação em seu comprimento de 0,001 m, ou ainda 1 mm. A
interpretação quando a deformação normal média é apresentada percentualmente é análoga. Para εm = 0,1%,
significa que a variação no comprimento é, em média, 0,1% do valor inicial. Supondo um metro o valor inicial,
Equação 12
0,1% de 1 m equivale a 0,001 m. Neste ponto do estudo, cabe ressaltar que, geralmente, os valores de
deformação normal na Engenharia são pequenos. Dessa forma, é comum utilizar o submúltiplo do m, o μm,
que equivale a
10-6 m. Por exemplo, εm = 0,00002 m/m equivale a εm = 20 μm/m.
Atenção
Deformações normais positivas indicam que houve um aumento nas dimensões do corpo na direção de
estudo. Para valores negativos da deformação normal, a interpretação é uma contração na direção de
estudo. 
Deformação média cisalhante
De maneira análoga à deformação normal, existe a deformação cisalhante. No primeiro caso, como foi visto no
item anterior, a deformação normal acarreta numa variação na dimensão de um corpo. Na deformação
cisalhante, a variação é angular, portanto, na forma dos corpos. Para o perfeito entendimento dessa
deformação, suponha um volume infinitesimal de estudo do corpo (um paralelepípedo, por exemplo, de
dimensões infinitesimais dx, dy e dz). Sejam duas dessas arestas perpendiculares quaisquer do
paralelepípedo infinitesimal de estudo, conforme a figura 11 e os eixos x, y e z.
Figura 11 - Elemento infinitesimal de estudo da deformação angular.
Sob a ação de um par de tensões cisalhantes nas faces superior e inferior do elemento de estudo, a tendência
é que as arestas, inicialmente perpendiculares passarão a formar um ângulo, em radianos, . A
figura 12 mostra a descrição apresentada. Perceba a mudança na forma do volume infinitesimal de estudo.
Figura 12 - Volume infinitesimal deformado pela ação de tensões cisalhantes.
Observe que as arestas que eram perpendiculares, sob a ação da tensão de cisalhamento, passam a fazer um
ângulo . Também é possível observar na figura 12 o ângulo Yyx. A deformação média de cisalhamento
é dada pela equação 13.
Observe que os índices utilizados para a deformação média dependem da orientação das retas iniciais, antes
da deformação. A partir da equação 13 é possível inferir que: para valores de maiores que rad, a
deformação cisalhante será negativa. Ao contrário, para valores de menores que rad, a deformação
cisalhante será positiva.
Mão na Massa
Questão 1
(FGV ‒ 2010 ‒ BADESC ‒ Engenheiro) A deformação permanente de um material é
denominada:
A
Deformação elástica
B
Deformação plástica
C
Deformação resiliente
D
Deformação transiente
E
Deformação uniaxial
Equação 13
A alternativa B está correta.
Quando um corpo é submetido à ação de uma força, ele sofre uma variação em suas dimensões. Duas
possibilidades são possíveis para essa deformação: quando ocorre uma deformação temporária, esta
receberá o nome de elástica e para deformações permanentes, a deformação é plástica.
Questão 2
(FCC ‒ 2010 ‒TRT ‒ 8ª Região (PA e AP) - Analista Judiciário ‒ Engenharia Civil) Para uma
barra de seção circular, com 3 metros de comprimento, tracionada axialmente, foi medida a
deformação axial de 0,003 mm/mm, por um extensômetro colado na barra. O alongamento
total da barra esperado, em mm, é:
A
9,0
B
7,5
C
6,0
D
3,0
E
1,5
A alternativa A está correta.
A partir da definição deformação normal média, tem-se: . Para os valores apresentados 
0,003 e L = 3 m = 3.000 mm), substituindo na expressão da deformação média, tem-se:
Questão 3
(CESGRANRIO ‒ 2011 ‒ Petrobrás ‒ Engenheiro Civil Júnior) Em ensaios de tração realizados
com três materiais, foram encontrados os seguintes valores de deformação correspondentes
aos respectivos comprimentos iniciais (L):
Material L (m) ∂ (m)
M1 0,500
M2 0,400
M3 0,300
 
Ao se analisar a deformação específica normal (e) de cada material, tem-se:
A
B
C
D
E
A alternativa E está correta.
Assista ao vídeo Determinação da deformação média normal para conferir a resolução da questão.
Conteúdo interativo
Acesse a versão digital para assistir ao vídeo.
Questão 4
Considere a seção abaixo em que o quadrado tem lado de 100 mm. Sob ação de um par de
tensões de cisalhamento, a seção quadrada transforma-se em um paralelogramo. As medidas
da deformação são mostradas na figura, também em milímetros. Em módulo, a deformação
média cisalhante γyx tem valor, em radianos, igual a:
A
0,051
B
0,065
C
0,070
D
0,082
E
0,100
A alternativa A está correta.
Assista ao vídeo Determinação da deformação média cisalhante para conferir a resolução da questão.
Conteúdo interativo
Acesse a versão digital para assistir ao vídeo.
Questão 5
Considere uma chapa retangular ABCD de base igual a 20 mm e altura 30 mm. Antes de ser
carregada, as arestas AB e AD formam um ângulo reto, conforme a figura. Após o
carregamento, essas mesmas arestas passam a formar um ângulo de 920. Determine a
deformação média cisalhante, em radianos, sofrida por essa chapa no vértice A. Observe a
figura que descreve a situação.
A
0,002/positiva
B
0,002/negativa
C
0,035/positiva
D
0,035/negativa
E
0,070/negativa
A alternativa D está correta.
A definição de deformação média cisalhante é dada, em radianos, pela expressão a seguir:
Quando está em graus, a relação para determinação da deformação média cisalhante é análoga, ou seja:
Nas expressões (*) e (**) e são os novos ângulos formados pelas arestas que eram perpendiculares,
antes da deformação que são apresentadas em radianos ou graus dependendo da relação matemática
utilizada. No exercício, os ângulos estão em graus, então será utilizada a equação (**). Substituindo o
ângulo após a atuação das tensõescisalhantes na expressão (**), tem-se: . Dessa
forma, a deformação média cisalhante é negativa. Utilizando uma regra de três simples e direta a partir da
igualdade rad, tem-se:
Assim:
Questão 6
Considere uma viga rígida com perfil I e de comprimento 5m. Ela está presa a uma parede por
um apoio de segundo gênero e, na extremidade livre, por um cabo de aço de 1,2m de
comprimento. Sem nenhum carregamento, a viga encontra-se na horizontal e o cabo de aço
na vertical. A ser carregada, ela gira no sentido horário o equivalente a 0,20. Determine a
deformação normal média no cabo de aço em termos percentuais.
(*)
(**)
180°……. -2° ……. 
A
2,45
B
1,86
C
1,45
D
0,97
E
0,53
A alternativa C está correta.
Inicialmente, será desenhada a situação final da barra após o carregamento.
No triângulo retângulo ABB’, o ângulo  é igual a 0,20. Em radianos, tem-se:
Assim:
Para ângulo com pequenos valores, em radianos, é verdade que . Dessa forma:
Para o cabo de aço, a partir da definição de deformação normal média, é possível escrever que:
Teoria na prática
Suponha que um estagiário tenha ficado incumbido de determinada atividade no projeto de uma estrutura
metálica. A situação que foi apresentada para ele é a seguinte: uma barra de aço AB de comprimento 5 m e
seção em forma de I tem peso desprezível. Ela apresenta-se vinculada em um apoio de segundo gênero A e a
um cabo de aço de comprimento 2 m preso de maneira que ele fique na vertical. Na situação sem
carregamento, a viga permanece em equilíbrio na horizontal. Contudo, uma carga concentrada de
20 kN será aplicada na extremidade livre B da viga, o que fará com que ela se desloque verticalmente. Deve-
se evitar que tal deslocamento seja superior a 5 mm para que a viga AB não apoie em outra viga da estrutura e
transfira parte da carga que suporta. O desenho abaixo apresenta um croqui da descrição quando a viga está
descarregada. O objetivo é que o aluno determine a deformação normal média do cabo de aço.
180° .............. π rad 0,2° .............. θ
Quando a força F de 20 kN é aplicada na extremidade da viga I, B sofre um deslocamento ΔB = 5 mm, sem
tocar a viga que se encontra abaixo. A figura a seguir mostra esta situação.
Para que o aluno determine a deformação média normal do cabo de aço, ele utilizou como premissa o fato de
os deslocamentos da extremidade B e do cabo de aço serem pequenos e, portanto, poderem ser aproximados
a segmentos de retas. Ademais, utilizará a expressão para a determinação da deformação normal média, isto
é:
Ele percebeu que Lo é conhecido, pois se trata do comprimento inicial do cabo de aço (2 m). No entanto, não
conhece ainda ΔL. Relembrando suas aulas de Geometria (semelhança de triângulos), propôs o seguinte
modelo matemático:
Os triângulos ACC’ e ABB’ são semelhantes. Assim, foi possível que o aluno escrevesse:
Substituindo os valores, o aluno determinou o deslocamento do ponto C (ΔC).
Nesse ponto da solução, o aluno pode determinar a deformação normal média sofrida pelo cabo de aço
quando a carga concentrada está atuando.
Assista ao vídeo Aplicação de um caso concreto de cálculo da deformação normal máxima para entender
melhor.
Conteúdo interativo
Acesse a versão digital para assistir ao vídeo.
Verificando o aprendizado
Questão 1
No estudo das deformações de um corpo, dois tipos são apresentados: a deformação normal
e a deformação cisalhante. A respeito da deformação média cisalhante são feitas as seguintes
afirmativas:
I – Quando um corpo está sujeito à tensão por cisalhamento, a deformação correspondente é
a de cisalhamento que provoca uma variação angular;
II – As deformações médias cisalhantes sempre apresentam valores positivos;
 
III - A expressão que determina a deformação média cisalhante no plano é dada por , sendo
o ângulo em radianos.
 
Das afirmativas acima, é correto afirmar que:
A
Apenas a afirmativa I é verdadeira.
B
Apenas as afirmativas I e II são verdadeiras.
C
Apenas as afirmativas I e III são verdadeiras.
D
Apenas as afirmativas II e III são verdadeiras.
E
Todas as afirmativas são verdadeiras.
A alternativa C está correta.
A deformação cisalhante está associada à deformação angular. Por exemplo, uma seção com a forma de
quadrado transforma-se em uma seção com a forma de um paralelogramo. O ângulo pode ser menor ou
maior que radianos. Sendo assim, a deformação média cisalhante pode assumir valores positivos e
negativos, una vez que a relação matemática para a determinação da deformação cisalhante é dada por 
.
Questão 2
(CESGRANRIO - 2018 ‒ Transpetro ‒ Engenheiro Júnior ‒ Civil) Considere um corpo de prova
prismático submetido a uma força de tração no seu eixo longitudinal. Tendo o comprimento
inicial de 0,45 m, esse corpo de prova apresenta uma deformação axial igual a 8 x 10-4 mm/
mm. Qual foi, em mm, o alongamento axial desse corpo?
A
B
C
D
E
A alternativa C está correta.
Considerando a definição de deformação normal média, ou seja, . Para os valores
apresentados e , substituindo na expressão da deformação
média tem-se:
4. Conclusão
Considerações finais
Neste tema, foram abordados os conceitos de tensão e de deformação. Em ambos, houve a divisão em normal
e cisalhante. Inicialmente, foi apresentada a definição de tensão normal média, valor associado a uma carga
concentrada atuando perpendicularmente à seção.
 
De maneira análoga, analisamos o conceito de tensão de cisalhamento, que é a razão entre a força tangencial
à área (esforço cortante) e esta. Dois cisalhamentos foram apresentados: o simples e o duplo. Pequenas
estruturas foram dimensionadas, a partir dos conceitos anteriores e da introdução do conceito de fator de
segurança (FS).
 
No último módulo, apresentamos as deformações ocorridas em estruturas devido às tensões. Dessa forma,
Foram apresentadas a diferença conceitual entre as deformações normais e cisalhantes e, também, as
expressões matemáticas para determiná-las.
Podcast
Para encerrar, ouça sobre Tensão e deformação.
Conteúdo interativo
Acesse a versão digital para ouvir o áudio.
Explore+
Para saber mais sobre os assuntos tratados neste tema, leia:
Sobre tensões e projetos de acoplamento simples (capítulo 1), Resistência dos Materiais, de R. C.
Hibbeler;
Sobre deformações (capítulo 2), Resistência dos Materiais, de R. C. Hibbeler.
Referências
BEER, F. P.; JOHNSTON, E. R. J. Resistência dos Materiais. 3. ed. São Paulo, SP: Pearson, 1995.
 
CALLISTER, W. D.; RETHWISCH, D. G. Ciência e Engenharia de Materiais ‒ Uma Introdução. 8. ed. Rio de
Janeiro, RJ: LTC, 2016.
 
HIBBELER, R. C. Resistência dos Materiais. 7. ed. São Paulo, SP: Pearson, 2010.
• 
• 
	Tensão e deformação
	1. Itens iniciais
	Propósito
	Preparação
	Objetivos
	Introdução
	1. Cálculo de tensões médias normal e de cisalhamento
	Introdução
	Tensões normal e de cisalhamento
	Exemplo
	Resumindo
	Tensões médias normal e de cisalhamento
	Relembrando
	Dica
	Mão na Massa
	Questão 1
	(FGV ‒ 2014 ‒ SEDUC ‒ AM ‒ Engenharia Civil) Os esforços mecânicos ou as solicitações simples a que uma estrutura pode estar submetida são muito diversificados. Observe a viga a seguir.
	Ela está submetida a um esforço de:
	(IBFC ‒ 2013 ‒ EBSERH ‒ Engenheiro Civil) Leia o enunciado e assinale a alternativa que preenche corretamente a lacuna.Em uma estrutura de um edifício, se a barra está em tração, a deformação é chamada de deformação de tração, representando um __________. Se a barra está em compressão é chamada de deformação de compressão e a __________.
	(MS CONCURSOS ‒ 2014 ‒ UFAC ‒ Engenheiro Civil) Marque a alternativa que apresenta o valor aproximado da tensão de tração dentro de uma barra de aço de diâmetro de 25 mm, considerando que a barra encontra-se puxada por um esforço de 50,0 kN.
	(INSTITUTO AOCP ‒ 2015 ‒ EBSERH ‒ Engenheiro Civil (HE-UFPEL)) A resistência característica de escoamento do aço categoria CA-60 é de 600 MPa que equivale em Kgf/mm2 a:
	Questão 5
	(UPENET/IAUPE ‒ 2017 ‒ UPE ‒ Engenheiro) Uma chapa é fixada a uma laje de concretopor meio de dois parafusos de diâmetro 20 mm, conforme mostra a figura. A tensão média de cisalhamento nos parafusos para uma carga de P = 100 kN vale, aproximadamente:
	Conteúdo interativo
	Questão 6
	(FUNIVERSA ‒ 2012 ‒ PC ‒ DF ‒ Perito Criminal ‒ Engenharia)
	Uma barra prismática de aço de seção transversal de área igual a 200 mm2 está submetida a uma carga axial, como representado na figura. O módulo de elasticidade do aço é igual a 200 GPa, o comprimento da barra L é igual a 40 cm, e a solicitação P é igual a 200 kN. Com base no texto, assinale a alternativa que apresenta o valor da tensão normal ao longo da barra.
	Conteúdo interativo
	Teoria na prática
	Conteúdo interativo
	Verificando o aprendizado
	(IMA ‒ 2019 ‒ Prefeitura de Fortaleza dos Nogueiras ‒ MA ‒ Engenheiro Civil ‒adaptada) Analise a frase abaixo:“Nos projetos estruturais, o elemento sujeito basicamente a esforços axiais de compressão é denominado de __________.” Assinale a alternativa que completa corretamente a frase acima:
	Um pequeno projeto para a garagem de uma casa é basicamente composto por 4 colunas metálicas e um telhado de peso P. Suponha que uma dessas colunas tenha comprimento L e diâmetros externo e interno, respectivamente, iguais a D e d. O comprimento da coluna é L e a carga atuante em cada coluna, devido ao peso do telhado, tem intensidade F. Supondo todas as variáveis apresentadas em unidades do S.I., determine a tensão média na coluna descrita:
	2. Tensões nos projetos de acoplamento simples
	Introdução
	Cisalhamentos simples e duplo
	Cisalhamento simples
	Cisalhamento duplo
	Fator de segurança (FS) ou coeficiente de segurança (CS)
	Resumindo
	Atenção
	Projetos de acoplamento simples
	Mão na Massa
	Suponha que a tensão normal admissível de um material seja 300 MPa. O projeto é tal que o fator de segurança a ser utilizado é igual a 1,5. Qual o valor de tensão normal de trabalho?
	Questão 2
	Seja uma estrutura em que parte dela é formada por uma junta entre duas placas metálicas de aço soldadas, conforme a figura a seguir.
	Suponha que a solda que une as duas placas resista a uma tensão cisalhante máxima de 150 MPa. Considere que a área comum tem 300 mm2. Qual a força máxima F que pode ser aplicada à junta?
	Conteúdo interativo
	Considere uma barra de seção reta quadrada que faça parte de uma estrutura e esteja sujeita a uma força axial, em módulo, de 200 kN. Considere que a tensão normal admissível seja de 200 MPa e o fator de segurança utilizado seja 2. Determine o menor lado da seção reta.
	(IBFC ‒ 2013 ‒ PC-RJ ‒ Perito Criminal ‒ Engenharia Civil) Foi verificado que a seção transversal retangular de uma viga não resiste à tensão de cisalhamento esperada. Sabe-se que a tensão de ruptura do material ao cisalhamento é igual a 80 MPa e o fator de segurança FS = 2. Sem alterar a altura da viga (h = 50 centímetros) e utilizando-se somente os conhecimentos de resistência dos materiais, é possível calcular a largura mínima admissível (b) de modo que a viga resista a uma força de cisalhamento de V = 5.000 kN. Esse valor, em centímetros, é:
	Conteúdo interativo
	Questão 5
	(FCC ‒ 2016 ‒ Copergás ‒ PE ‒ Técnico Operacional Mecânico) Considere a figura abaixo.
	A junta com um pino foi submetida a uma força externa (Q) de 49 kN. Considerando a tensão admissível de 50 MPa e admitindo-se a distribuição uniforme das tensões de cisalhamento nas seções, o valor mínimo do diâmetro (d) do pino solicitado ao cisalhamento deve ser:
	Questão 6
	(PaqTcPB ‒ 2010 ‒ Prefeitura de Patos ‒ PB ‒ Engenheiro Civil) Num teste de aderência, uma barra de aço de 12,5 mm de diâmetro (d) é mergulhada 30 cm (L) num bloco de concreto e submetida, após a cura, a uma força de tração (P) de 18 kN em sua extremidade, conforme a figura abaixo. Assumir que a tensão de cisalhamento entre o aço e o concreto está uniformemente distribuída ao longo do comprimento L. Nestas condições, a tensão de cisalhamento entre o aço e o concreto será de aproximadamente:
	Conteúdo interativo
	Teoria na prática
	Verificando o aprendizado
	(CESGRANRIO ‒ 2014 ‒ Petrobras ‒ Técnico(a) de Manutenção Júnior ‒ Mecânica) Uma barra de aço deve ser projetada para suportar uma carga de tração com um fator de segurança FS. O valor da tensão de projeto da barra será determinado:
	Questão 2
	Se os rebites possuem seção transversal circular de diâmetro igual a D, o valor da tensão de cisalhamento vale:
	3. Cálculo de deformações normal e de cisalhamento
	Introdução
	Exemplo
	Deformação média normal
	Exemplo
	Atenção
	Deformação média cisalhante
	Mão na Massa
	(FGV ‒ 2010 ‒ BADESC ‒ Engenheiro) A deformação permanente de um material é denominada:
	(FCC ‒ 2010 ‒TRT ‒ 8ª Região (PA e AP) - Analista Judiciário ‒ Engenharia Civil) Para uma barra de seção circular, com 3 metros de comprimento, tracionada axialmente, foi medida a deformação axial de 0,003 mm/mm, por um extensômetro colado na barra. O alongamento total da barra esperado, em mm, é:
	Questão 3
	(CESGRANRIO ‒ 2011 ‒ Petrobrás ‒ Engenheiro Civil Júnior) Em ensaios de tração realizados com três materiais, foram encontrados os seguintes valores de deformação correspondentes aos respectivos comprimentos iniciais (L):
	Ao se analisar a deformação específica normal (e) de cada material, tem-se:
	Conteúdo interativo
	Questão 4
	Considere a seção abaixo em que o quadrado tem lado de 100 mm. Sob ação de um par de tensões de cisalhamento, a seção quadrada transforma-se em um paralelogramo. As medidas da deformação são mostradas na figura, também em milímetros. Em módulo, a deformação média cisalhante γyx tem valor, em radianos, igual a:
	Conteúdo interativo
	Questão 5
	Considere uma chapa retangular ABCD de base igual a 20 mm e altura 30 mm. Antes de ser carregada, as arestas AB e AD formam um ângulo reto, conforme a figura. Após o carregamento, essas mesmas arestas passam a formar um ângulo de 920. Determine a deformação média cisalhante, em radianos, sofrida por essa chapa no vértice A. Observe a figura que descreve a situação.
	Questão 6
	Considere uma viga rígida com perfil I e de comprimento 5m. Ela está presa a uma parede por um apoio de segundo gênero e, na extremidade livre, por um cabo de aço de 1,2m de comprimento. Sem nenhum carregamento, a viga encontra-se na horizontal e o cabo de aço na vertical. A ser carregada, ela gira no sentido horário o equivalente a 0,20. Determine a deformação normal média no cabo de aço em termos percentuais.
	Teoria na prática
	Conteúdo interativo
	Verificando o aprendizado
	No estudo das deformações de um corpo, dois tipos são apresentados: a deformação normal e a deformação cisalhante. A respeito da deformação média cisalhante são feitas as seguintes afirmativas:I – Quando um corpo está sujeito à tensão por cisalhamento, a deformação correspondente é a de cisalhamento que provoca uma variação angular;II – As deformações médias cisalhantes sempre apresentam valores positivos;
	Das afirmativas acima, é correto afirmar que:
	(CESGRANRIO - 2018 ‒ Transpetro ‒ Engenheiro Júnior ‒ Civil) Considere um corpo de prova prismático submetido a uma força de tração no seu eixo longitudinal. Tendo o comprimento inicial de 0,45 m, esse corpo de prova apresenta uma deformação axial igual a 8 x 10-4 mm/mm. Qual foi, em mm, o alongamento axial desse corpo?
	4. Conclusão
	Considerações finais
	Podcast
	Conteúdo interativo
	Explore+
	Referências

Mais conteúdos dessa disciplina