Prévia do material em texto
Problem 6.43PP determine the value for K that will yield PM > 30° and the maximum possible closed-loop bandwidth. Use Matlab to find the bandwidth. For the open-loop system Step-by-step solution step 1 of 10 Step 1 of 10 The open loop system is. j= (s + 2 0 ) The phase margin of the system is. PM = 180®+^^ The phase of the system is. * -1 8 0 ® + t a n " '® - 2 ta n " '— 20 Step 2 of 10 Hence, the phase margin of the system is. PM = l8 0 * -1 8 0 » + t iin - '® -2 ta n - ' 20 ■ - I= tan *0 - 2 tan — 20 Since the phase margin is calculated at gain cross over frequency PM * Ian"' - 2 ta n " ‘ — 20 Step 3 of 10 Since the phase margin. PM ^30®> 30“ S t a n " ' - 2 tan " '- £ • ” 20 tan"'«i - la n " '^ - t a n " '^ a 3 0 “ 20 20 tan"' a- 20 ” 20 J - t a n " '- 2 - a 30“ 20 t a n " ' - t a n " ' ^ 2 30“1̂20+n.J, J 20 Step 4 of 10 Further simplify. 1 9 ® , - ^ 20 379a. 2 3 0 “ 2 0 + (2 0 + ® i) » , 379® . 2 0 + ( 2 0 + « ^ . ) ® ^ ] ^ '^ 656.447® ^ 2 20 + 20® ^ + aij, ® ? - 6 3 6 .4 4 7 ® .+ 2 0 S 0 2 0 ; 2 tan 30“ 1 The roots are, 0 ^ — 25.24 /® '+ i ) |A:c(a)|= i*(V®“ +400) Since the gain of the system at 0 ^ is unity or 0 dB, L + 400T ^ ® ; . f e + 4 0 0 ) (fflj,+ 4 0 0) = a: ( ( 26085.37 Thus, the value o f /25.21 The bandwidth is, = 2 5 .2 1 -0 .0 3 1 4 = 20.178 rad/s Thus, the maximum possible bandwidth is 120.178 rad/sl • Step 9 of 10 The MATLAB code to k=26085.37; num=[k k]: den=[1 40 400 0 0]; sys=tf(num,den); bodeplot(sys) margin(sys) grid Step 10 of 10 ^ Thus, the plot of MATLAB is sown in Figure 1. B ode D iagram F reqacncy (rad /s)