Logo Passei Direto
Buscar

Uso da Fibra de Coco como reforço em tijolo

Material
páginas com resultados encontrados.
páginas com resultados encontrados.

Prévia do material em texto

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE 
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA 
 
 
 
 
ESTUDO DA FIBRA DE COCO COMO REFORÇO EM TIJOLO DE SOLOCIMENTO 
 
 
 
Dissertação submetida à apreciação pela, 
 
 
 
 
 
UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE 
 
Como parte dos requisitos para a obtenção do grau de 
 
 
MESTRE EM ENGENHARIA MECÂNICA 
 
 
 
 
 
CLÁUDIO MARIO NASCIMENTO 
Mestrando 
 
 
 
 
 
Prof. Dr. JOSÉ UBIRAGI DE LIMA MENDES 
Orientador 
 
 
 
 
 
 
 
 
Natal, Julho de 2011. 
 
 
 
II 
 
 UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE 
 
 
PROGRAMA DE PÓS-GRADUAÇÃO EM 
 
 
 
ENGENHARIA MECÂNICA 
 
 
ESTUDO DA FIBRA DE COCO COMO REFORÇO EM TIJOLO DE SOLOCIMENTO 
 
 
 
CLÁUDIO MARIO NASCIMENTO 
 
 
Esta dissertação foi julgada adequada para a obtenção do título de 
 
 
MESTRE EM ENGENHARIA MECÂNICA 
 
Sendo aprovada em sua forma final. 
 
 
 
_______________________________ 
JOSÉ UBIRAGI DE LIMA MENDES 
(ORIENTADOR) 
 
 
 
 
 
 
BANCA EXAMINADORA 
 
 
 
 
_________________________________ 
Prof. Dr. José Ubiragi de Lima Mendes – Presidente 
 
__________________________________ 
Prof. Dr. Roberto Silva de Souza – Examinador Externo 
 
 
__________________________________ 
Prof. Dr. Luiz Guilherme Meira de Souza – Examinador Interno 
 
 
 
 
 
 
III 
 
 
PENSAMENTO 
 
 
 
 
 “Uma pessoa humilde defende as ideias que julga nobres, sem se importar de quem 
elas venham. A pessoa orgulhosa defende sempre suas ideias, não porque acredite 
nelas, mas porque são suas. 
 Enfim, como se pode perceber, o orgulho é grilhão que impede a evolução das 
criaturas, a humildade é chave que abre as portas da perfeição. Você sabe por que o 
mar é tão grande? Tão imenso? Tão poderoso? É porque foi humilde o bastante para 
colocar-se a alguns centímetros abaixo de todos os rios. Sabendo receber, tornou-se 
grande. Se quisesse ser o primeiro, se quisesse ficar acima de todos os rios, não seria 
mar, seria uma ilha. E certamente estaria isolado. “ 
 
 
 Autor Desconhecido 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IV 
 
 
 
 
AGRADECIMENTOS 
 
 
 Deus. 
 
 Enquanto vivo eu estiver continuarei te agradecendo por tudo que tem feito por 
mim. A fé infinita em Ti me dá a certeza de que nunca estarei só. 
 
 Aos meus pais. (in memória). 
 Nada seria possível se eles não me proporcionassem a condição de aprender, de ser 
humilde e de respeitar as pessoas, não apenas agradeço como dedico a eles o resultado 
desse projeto ( Maria Augusta e Francisco ). 
 
 A minha família. 
 A essa grande família de grandes mulheres, esposa e filhas (Aparecida, Maíra, 
Amanda, Yasmin), agradeço por me aceitar do jeito que sou. Talvez tenha privado vocês 
de muitas coisas nessa jornada de trabalho, mas, o resultado desse trabalho é a certeza de 
que seremos sempre vencedores. Obrigado, vocês foram compreensivas e maravilhosas. 
 
 Aos meus colegas. 
 Agradeço pelo apoio que vocês me deram grandes incentivadores na minha 
caminhada profissional, como professor e estudante de pós-graduação. Vocês 
contribuíram com a realização desse sonho. Prefiro não citar nomes, pois seria injusto 
com alguns se por ventura esquecesse. Valeu pessoal! 
 
 Ao meu orientador. 
 Nem sempre as pessoas entendem e aceitam as dificuldades ou imprevistos na vida 
do outro, nas coisas que são programadas e nem sempre são executadas. As pessoas que 
acreditam em nossa capacidade e necessidade de vencer essas sim entendem nossos 
problemas e nos ajudam, você é esta pessoa! Agradeço muito à sua compreensão e 
colaboração. Muitíssimo obrigado ao prof. Dr. José Ubiragi de Lima Mendes. 
 
 
 
 
V 
 
 
 
 À instituição IFBA. 
 Oportunidades precisam ser agarradas com confiança acreditando que talvez seja a 
primeira e a ultima. Agradeço ao Instituto Federal de Educação, Ciência e Tecnologia 
da Bahia – IFBA, pela oportunidade e pelas condições que proporcionou para que eu 
pudesse desenvolver esse projeto de pesquisa; com o afastamento temporário, a ajuda 
dos colegas da área de Desenho me substituindo nas aulas; com os co-orientadores 
professor doutor Adriano S. Fortes e o professor José Lamartine A. Neto em seus 
laboratórios de ensaios não pouparam esforços nem incentivos nas orientações; com 
minha coordenadora de área professora Roberta Lordello e minha chefe de departamento 
professora Maria Estela Smolka. Meus sinceros agradecimentos. 
 
 
 À instituição UFRN. 
 A Universidade Federal do Rio Grande do Norte – UFRN, como tantas outras 
universidades, não é apenas um grande centro de conhecimentos universalizados para 
todos, é muito mais, é a realização de metas e objetivos bem definidos de cada estudante 
de graduação e pós-graduação, é a transformação de sonhos em realidades, é a busca pela 
liberdade. Meus agradecimentos a todos os professores da UFRN que contribuíram para o 
meu sucesso. 
 
 
 A todos que me apoiaram. 
 
 “Mesmo que tivesse em minhas mãos todo o perfume das rosas, toda a beleza do 
céu, toda a pureza dos anjos, toda a inocência das crianças, toda a grandeza do mar, 
toda a força das ondas, mesmo que eu tivesse todas as coisas belas da vida e todos os 
belos lugares do mundo nada teria sentido se eu não tivesse o presente mais valioso, 
mais nobre e mais sagrado que Deus pôde me dar... A amizade de vocês! Eu só tenho a 
agradecer por vocês existirem em minha vida.” 
 
 
 Autor Desconhecido. 
 
 
VI 
 
SUMÁRIO 
 
LISTA DE FIGURAS.................................................................................IX 
LISTA DE TABELAS...............................................................................XI 
LISTA DE ABREVIATURAS E SIGLAS ...........................................XIII 
RESUMO................................................................................................XIV 
ABSTRACT..............................................................................................XV 
 
CAPITULO I - INTRODUÇÃO...................................................1 
1.1. Apresentação do Trabalho...................................................................1 
1.2. Objetivo Geral.....................................................................................2 
1.3. Objetivos Específicos..........................................................................2 
 
CAPITULO II – REVISÃO BIBLIOGRÁFICA.......................3 
2.1. Produção do Coco.............................................................................3 
2.2. Comercialização do Coco...................................................................8 
2.3. O comércio de Coco no Exterior.......................................................12 
2.4. Estrutura e Características das Fibras de Coco..............................12 
2.5. Fibras de Coco e Outros Compósitos...........................................15 
2.5.1. Comportamento Termografímetrico.................................................17 
2.5.2. Características Naturais das Fibras de Coco.....................................17 
2.5.3. Tratamento das Fibras de Coco Verde............................................18 
VII 
 
2.5.4. Características Físico-Químicas e Mecânicas...................................18 
2.6. Isolante Térmico e Acústico.............................................................24 
2.7. Solocimento....................................................................................25 
2.7.1. Modo de Utilização do Solo.............................................................25 
2.8. Tijolos Convencionais.....................................................................262.8.1. Tijolos de Cerâmica.........................................................................26 
2.8.2. Modelos Especiais de Tijolos...........................................................27 
2.8.3. Tijolo Baiano...................................................................................28 
2.8.4. Tijolo Laminado...............................................................................29 
2.8.5. Tijolo de Concreto............................................................................30 
2.8.6. Tijolo de Concreto Celular...............................................................29 
2.9. Cimento Portland...........................................................................30 
2.9.1. Clinquer...........................................................................................31 
 
CAPITULO III – MATERIAIS E METÓDOS......................32 
3.1 Tijolos com e sem Fibra de Coco....................................................32 
3.2. Preparo do Solocimento...................................................................32 
3.3. Confecção do tijolo de solocimento com fibra de coco...................33 
3.4. Composição dos traços de massa........................................................37 
3.5. Processo de Compactação e Cura do Solo-cimento.............................40 
3.6. Teste de Resistência à Compressão.......................................................42 
3.7. Teste de Variação de Temperatura...................................................43 
3.8. Teste de Tamanhos e Densidades dos Tijolos..................................44 
3.8.1. Teste de Tamanhos.............................................................................44 
3.8.2. Teste de Densidade e Massa Específica..............................................45 
3.9. Teste de Absorção de Água.................................................................50 
VIII 
 
CAPITULO IV – RESULTADOS E DISCUSSÕES..............51 
4.1. Tijolo de Solocimento com e sem Fibra de Coco...............................51 
4.1.1. Absorção de Água ...........................................................................51 
4.1.2. Resistência a Compressão................................................................55 
4.1.3. Densidade.........................................................................................60 
4.1.4. Variação de Temperatura..................................................................61 
 
CAPITULO V – CONCLUSÕES E SUGESTÕES................64 
6. FONTES BIBLIOGRÁFICAS..........................................66 
 
7. ANEXOS..............................................................................71 
7.1. Planilha de Variação de Temperatura, L1B com Fibra de Coco.........71 
7.2. Planilha de Variação de Temperatura, L3D com Fibra de Coco.........72 
7.3. Planilha de Variação de Temperatura, L3D sem Fibra de Coco.........73 
7.4. Planilha de Variação de Temperatura, L2E com Fibra de Coco........ 74 
 
 
 
 
 
 
 
 
 
IX 
 
LISTA DE FIGURAS 
 
Figura 1. Participação percentual dos principais países produtores de coco.....................5 
Figura 2 - Produção de frutos de coco nos principais estados produtores, no ano 2005...6 
Figura 3. Área colhida (ha) de coco nos principais estados produtores, no ano de 2005..7 
Figura 4. Fluxos e canais de comercialização do coco no Brasil.......................................9 
Figura 5. Coco híbrido.......................................................................................................11 
Figura 6. Estrutura Interna do Coco Verde - seção vertical..............................................14 
Figura 7. Tijolo modelo convencional..............................................................................26 
Figura 8. Tijolo especial de cerâmico tipo 45º.................................................................27 
Figura 9. Tijolo tipo meia lua...........................................................................................27 
Figura 10. Tijolo especial de cerâmico tipo bico de pato.................................................27 
Figura 11. Tijolo especial de cerâmico tipo canto curvo.................................................27 
Figura 12. Tijolo tipo bico de papagaio...........................................................................28 
Figura 13 . Tijolo tipo terço de volta................................................................................28 
Figura 14. Tijolo tipo 9 furos............................................................................................28 
Figura 15. Tijolo tipo estrutural........................................................................................28 
Figura 16. Tijolo tipo laminado........................................................................................29 
Figura 17. Tijolo tipo bloco concreto...............................................................................29 
Figura 18. Tijolo de concreto celular....................................................................30 
Figura 19. Pesagem do solo peneirado.............................................................................34 
Figura 20. Medição proporcional do solo na fôrma de prensagem manual......................34 
Figura 21. Solo na bacia de pedreiro depois de peneirado e medidos..............................35 
Figura 22. Pesagem e medição cimento para mistura ao solo..........................................35 
Figura 23. Exocarpo e mesocarpo fibroso da casca de coco.............................................35 
Figura 24. Casca de coco seca desfibrada.........................................................................36 
Figura 25. Pó residual do desfibramento da casca de coco seca......................................36 
Figura 26. A água dosada na mistura para formar a massa do solo cimento...................37 
Figura 27. Consistência da massa do solo cimento e fibra de coco..................................37 
Figura 28. Fôrma de prensagem manual e o tijolo...........................................................39 
Figura 29. Fôrma manual de madeira nas dimensões 110x230x55mm, com peça superior 
 para prensar e desmoldar................................................................................41 
 
X 
 
Figura 30. Os tijolos de solo cimento com e sem fibra de coco.......................................41 
Figura 31. Tijolos de solocimento numerados.................................................................41 
Figura 32. Os corpos de prova sob compressão axial ......................................................41 
Figura 33. Os testes de resistência a compressão axial foram realizados na prensa do 
 modelo universal do laboratório de ensaios tecnológicos do IFBA................42 
Figura 34. Termopar digital com fios sensores, T1 e T2..................................................43 
Figura 35.Termopar digital com fios sensores T1 e T2 realizados a medição de 
 temperatura......................................................................................................44 
Figura 36. Câmara de calor com duas lâmpadas de 100 w e o teste para teste................44 
Figura 37. Tijolo pesado em balança de precisão.............................................................50 
Figura 38. Índice de absorção de água – tijolos com formulação FS...............................52 
Figura 39. Índice de absorção de água – tijolos com formulação F1...............................53 
Figura 40. Índice de absorção de água – tijolos com formulação F2...............................54 
Figura 41. Índice de absorção de água – tijolos com formulação F3...............................55 
Figura 42. Índice de resistência individual e média dos tijolos com formulação FS........56Figura 43. Índice de resistência individual e média dos tijolos com formulação F1.......57 
Figura 44. Índice de resistência individual e média dos tijolos com formulação F2.......58 
Figura 45. Índice de resistência individual e media dos tijolos com formulação F3......59 
Figura 46. Variação de temperatura dos tijolos com formulação FS.........................................62 
Figura 47. Variação de temperatura dos tijolos com formulação F1..........................................62 
Figura 48. Variação de temperatura dos tijolos com formulação F2............................................63 
Figura 49. Variação de temperatura dos tijolos com formulação F3...........................................63 
 
 
 
 
 
 
 
 
 
 
 
 
 
XI 
 
LISTA DE TABELAS 
 
 
Tabela 1. Produção de coco, em 2005. Fonte: FAO, 2006...............................................4 
Tabela 2. Principais estados produtores de coco no Brasil - Fonte: Agrianual 2006.......6 
Tabela 3. Evolução do rendimento e dos porcentuais de participação regional 
 na produção e área colhida com coco, entre 1985 e 2001. Fonte: IBGE- 
 Produção Agrícola Municipal............................................................................8 
Tabela 4. Massa especifica real de algumas fibras vegetais no estado seco...................19 
Tabela 5. Comprimento critico determinado para algumas fibras vegetais....................21 
Tabela 6. Resistência à tração das fibras das fibras de coco ......................................... 22 
Tabela 7. Elongação na tração das fibras........................................................................23 
Tabela 8. Composição quimica do clinquer do cimento portland...................................30 
Tabela 9. Composição química e classificação do cimento Portland.............................31 
Tabela 10. Quatro formulações de traços com teor de argila e areia compatível, 
 cimento, água e fibra de coco.........................................................................38 
Tabela 11. Lotes de tijolos sem fibra de coco, formulação – FS......................................39 
Tabela 12. Lotes de tijolos com fibra de coco, formulação – F1, F2, F3.........................39 
Tabela 13. Massa específica dos tijolos nas quatro formulações......................................45 
Tabela 14. Tamanhos e densidades dos tijolos com formulação FS................................46 
Tabela 15. Tamanhos e densidades dos tijolos com formulação F1................................47 
Tabela 16. Tamanhos e densidades dos tijolos com formulação F2.................................48 
Tabela 17. Tamanhos e densidades dos tijolos com formulação F3.................................49 
Tabela 18. Teste de absorção de água – tijolos com formulação – FS.............................51 
Tabela 19. Teste de absorção de água – tijolos com formulação – F1..............................52 
Tabela 20. Teste de absorção de água – tijolos com formulação – F2.............................53 
Tabela 21. Teste de absorção de água – tijolos com formulação – F3..............................54 
Tabela 22. Teste de resistência à compressão axial – tijolo com formulação FS............56 
Tabela 23. Teste de resistência à compressão axial – tijolo com formulação F1............57 
Tabela 24. Teste de resistência à compressão axial – tijolo com formulação F2............57 
Tabela 25. Teste de resistência à compressão axial – tijolo com formulação F3............58 
Tabela 26. Teste de resistência à compressão axial nas quatro formulações...................59 
Tabela 27. Desvio padrão do teste de densidade...............................................................60 
Tabela 28. Teste de variação de temperatura das quatros formulações............................63 
XII 
 
LISTA DE ABREVIATURAS E SIGLAS 
 
ABNT . - Associação Brasileira de Normas Técnicas 
FAO. - Organização das Nações Unidas para Agricultura e Alimentação 
WBI. - Development Marketplace I World Bank Institute 
SINDCOCO. - Sindicato Nacional dos Produtores de Coco do Brasil 
CEASA - Central de Abastecimento de Salvador 
EMBRAPA -Empresa Brasileira de Pesquisa Agropecuária 
SECEX - Secretaria de Comércio Exterior 
FNP. - Consultoria & Comércio 
SMA. - Solar Technology Ag 
ICTA - Confederação Internacional de Análise Térmica 
IBGE - Instituto Brasileiro de Geografia e Estatísticas 
IFBA - Instituto Federal de Educação Ciência e Tecnologia da Bahia 
INMETRO - Instituto Nacional de Metrologia, Normalização e 
Qualidade Industrial. 
CP - Corpo de Prova 
T1 - Temperatura inicial 
T2 - Temperatura final 
°C - Graus Celsius 
mm - Milimetro 
 
XIII 
 
 RESUMO 
 
 
Para atender a demanda das novas construções nas comunidades de baixa renda e 
incrementar a produção de um tijolo alternativo reforçado com fibras de coco, capaz de 
contribuir principalmente com a reciclagem do coco verde e maduro nos lixões urbanos e 
rurais, foi desenvolvida essa pesquisa, para confeccionar tijolos de solocimento com fibra 
de coco. Material ecologicamente correto e de baixo custo, já que será fabricado sem o 
uso de estufa ou forno para queima. O estudo apresenta um conjunto de tabelas e gráficos 
que comprovam bons índices encontrados nos valores da densidade, absorção de água, 
resistência à compressão axial e isolamento termo acústica, com resultados 
comprobatórios que possibilitam a produção em caráter industrial com prensa mecânica 
ou no local da obra com fôrma manual. A preparação das fibras de coco foi feita de forma 
natural sem uso de produtos químicos para não descaracterizar as propriedades físico-
químicas e mecânicas das mesmas. Os sessenta tijolos produzidos em prensa simples e 
manual foram realizados em quatro lotes de quinze unidades. A mistura dos agregados foi 
feita em quatro traços diferentes compostos por: solo arenoso, cimento, fibra de coco seco 
e água; os tijolos foram compactados na prensa e curados em meio natural sob uma área 
coberta durante o tempo mínimo de sete dias. 
 
 
 
 
Palavras chave: Fibra de coco, reforço, solocimento. 
 
 
 
 
 
 
 
XIV 
 
 ABSTRACT 
 
 
To take care of to the demand of the new constructions in the low income communities 
and to develop the production of a strengthened alternative brick with staple fibers of 
coconut, capable to contribute mainly with the recycling of the green and mature coconut 
in the urban and agricultural lexes, this research was developed, to confection bricks of 
soil-cement with coconut fiber. Ecologically correct material and of low cost, since the 
greenhouse use of or oven for burning will be manufactured without. The study it 
presents a set of tables and graphs that prove good indices found in the values of the 
density, water absorption, axial compressive strength and isolation term acoustics, with 
evidential results that make possible the production in industrial character with press 
mechanics or the place of the workmanship with manual form. The preparation of 
coconut staple fibers was made of natural form without use of chemical products not to 
deprive of characteristics the properties mechanical physicist-chemistries and of the same 
ones. The sixty bricks produced in simple and manual press had been carried through in 
four lots of fifteen units. The mixture of aggregates was made in four different traces 
composites for: ground erinaceous, cement, fiber of dry coconut and water; the bricks had 
been compact in the press and cured in natural way under an area covered during the 
minimum time of seven days. 
 
 
 
 
Words key: Fiber of coconut, reinforcement, soil-cement.1 
 
 
 
 CAPITULO I - INTRODUÇÃO 
 
 1.1. Apresentação do trabalho 
 
 Considerando o problema da moraria no Brasil, principalmente nas regiões de baixo poder 
econômico e social, tem-se buscado diversas alternativas que possibilitem diminuir a quantidade 
de famílias sem moradias. 
Os programas de incentivo a construção de moradias para atender as populações de baixa 
renda não conseguem resolver de forma significativa essa problemática, pois, enfrentam grandes 
dificuldades principalmente na fomentação de recursos financeiros para construção de habitação 
popular. 
Os incentivos promovidos pelo governo através dos ministérios e secretarias responsáveis por 
esses programas de habitação nem sempre conseguem oferecer uma boa proposta de financia-
mento dos imóveis construídos, proporcional à renda da população carente, tendo em vista o cus-
to dos materiais da construção civil e a mão-de-obra empregada. 
 Em função da interdependência da questão da moradia com outras esferas recorrentes e 
complementares, nem sempre um simples incremento dos programas de habitação se apresenta 
como solução mais indicada para melhorar as condições habitacionais da população mais pobre. 
Em primeiro lugar, porque esses programas podem ser inviabilizados caso outras políticas urba-
nas, como as de transportes, de energia elétrica, de esgotamento sanitário abastecimento de água, 
não estejam integradas Azevedo (1990). 
 Em segundo lugar, porque em certas ocasiões, em função do trade-of entre diversas políticas 
publicas, mudanças em outros setores como – maior investimento em saneamento básico (esgoto 
e água), incremento no nível de emprego, aumento do salário mínimo, regularização fundiária, 
entre outras podem ter um impacto bem maior nas condições habitacionais das famílias de baixa 
renda do um simples investimento no setor. 
Por conta desses e tantos outros fatores, é que se tornam necessárias à pesquisa de novos 
materiais alternativos com capacidade de atender as condições de qualidade e reduzir o custo da 
construção. A potencialidade observada nas fibras de coco a partir das primeiras experiências ci-
entifica forneceram dados importantíssimos que contribuíram para a aplicação da fibra como re-
2 
 
 
forço agregado aos mais variados tipos de materiais compósitos capazes de atuar como substituto 
dos materiais convencionais, com vistas a soluções de caráter ambiental, técnico e financeiro. 
As principais motivações para o presente trabalho foram fatores biológicos da fibra e pro-
blemas ambientais ligados ao consumo do coco. 
Este trabalho apresenta um estudo de viabilidade de utilização de um compósito de matriz 
cerâmica composto por solo-cimento, cimento e fibra de coco. Serão apresentados dados de resis-
tências térmica e mecânica, absorção de água e massa específica do compósito, em quatro distin-
tas formulações. 
Foi desenvolvida e construída uma forma para a fabricação de tijolos que poderão ser uti-
lizados para a construção de moradias populares. 
 
 1.1. Objetivo geral. 
 
 Demonstrar a viabilidade de utilização de compósito de solo-cimento e fibra de coco para 
fabricação de tijolos a baixo custo destinados a construção de casas populares. 
 
 1.2. Objetivos específicos 
 
1. Escolher as proporções do compósito a serem estudadas 
2. Projetar e construir a forma para a fabricação dos blocos 
3. Processar as fibras de coco para serem utilizadas no compósito 
4. Selecionar o solo e suas formulações no compósito 
5. Fabricar os tijolos ecológicos a baixo custo 
6. Caracterizar o compósito 
7. Comparar os resultados do material compósito com os materiais tradicionalmente utilizados na 
construção civil 
 
 
 
3 
 
 
 
 CAPITULO II - REVISÃO BIBLIOGRÁFICA 
 
 
 2.1. Produção do coco 
 
 As origens desta planta são passíveis de discussão. Enquanto algumas autoridades reclamam 
o Sudeste Asiático (região peninsular) como o seu local de origem, outros colocam a sua origem 
no nordeste da América do Sul. Registros fósseis da Nova Zelândia indicam aí a existência de 
pequenas plantas similares ao coqueiro de mais de 15 milhões de anos. Fósseis ainda mais 
antigos foram também descobertos no Rajastão, na Índia. Qualquer que fosse a sua origem, os 
cocos espalharam-se através dos trópicos, em particular ao longo da linha costeira tropical. 
 Como o seu fruto é pouco denso e flutua, a planta é espalhada prontamente pelas correntes 
marinhas que podem carregar os cocos a distâncias significativas. A palmeira do coco prospera 
em solos arenosos e salinos nas áreas com luz solar abundante e pancada de chuva regular (75-
100 cm anualmente), o que torna a colonização da costa relativamente fácil. 
 Já foram encontrados cocos transportados pelo mar tão ao norte como na Noruega em estado 
viável, que germinaram subseqüentemente em circunstâncias apropriadas. Entretanto, há muito 
tempo por viajantes polinésios de sua terra natal no Sul do Pacífico. 
 As fibras celulósicas constituem matéria-prima renovável e com aceitação internacional, há 
mais de vinte anos, em países, como, por exemplo, a Austrália e os EUA. Também nos países em 
desenvolvimento, as fibras naturais têm despertado interesse como reforço de matrizes frágeis à 
base de cimento, pelo seu valor reduzido, disponibilidade a partir de madeiras e também de plan-
tas fibrosas, possibilidade de uso de fibras consideradas subprodutos de outras aplicações (cordo-
aria, indústria têxtil e de papel), economia de energia e ainda por questões ambientais. Estas fi-
bras são adequadas à produção em equipamentos Hastschek, com adaptações, Savastano (1992), 
 Na última década, o cultivo mundial do coqueiro registrou acréscimo, tanto na produção, 
quanto na área colhida. Em 1995 a produção mundial foi de 48,9 milhões de toneladas, numa 
área colhida de 10,6 milhões de hectares, enquanto que, no ano de 2004 a produção foi aproxi-
4 
 
 
madamente de 53,5 milhões de toneladas em uma área colhida de 10,7 milhões de ha, represen-
tando um incremento de 9,4% na produção e de apenas cerca de 1,0 % na área colhida. 
 Os principais países produtores de coco e suas respectivas áreas colhidas, no ano de 2005, 
estão apresentados na Tabela 1. Observa-se que a Indonésia é o maior produtor mundial, seguido 
por Filipinas e Índia. O Brasil é o quarto maior produtor mundial com uma produção pouco supe-
rior a três milhões de toneladas, em uma área colhida de 280,8 mil ha. A Tabela 1 apresenta a 
produção de coco, em 2005, em vários países do mundo. (Fonte: FAO, 2006) 
 
 
Tabela 1. Produção de coco, em 2005. (Fonte: FAO, 2006) 
 
 
 
 
 
 
 
 Embora o cultivo do coqueiro esteja presente em mais de 90 países, os dez principais 
produtores, representam mais de 90% da produção mundial. A Indonésia e Filipinas respon-
dem por mais de 55%, e o Brasil por 6% da produção mundial de coco. O gráfico da Figura 1 
mostra a participação percentual dos principais países produtores de coco. 
 
 
 
5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1. Participação percentual dos principais países produtores de coco. 
 
 No Brasil, a produção e a área colhida de coco, apresentaram crescimento na ultima dé-
cada. Em 1995 a produção de foi de 949,4 milhões de frutos em uma área colhida de 237 mil 
ha, enquanto, em 2004 a produção foi cerca de 1,9 bilhões de frutos em uma área colhida de 
274 mil hectares. 
 A evolução da produção e da área colhida com coco no Brasil, no período de 2000 a 
2005, pode ser observada na Tabela 2. Entre os anos de 2002 e 2005 a produção manteve-se 
estável, porém, houve variação da área colhida. Em 2005 a área colhida deve ultrapassar a 
276 mil ha com uma produção estimada, próxima de dois bilhões de frutos. A Tabela 2apre-
senta os principais estados produtores de coco no Brasil - Fonte: Agrianual, 2006. 
 
 
 
 
 
 
 
6 
 
 
 
Tabelas 2. Principais estados produtores de coco no Brasil - Fonte: Agrianual, 2006. 
 
 
 
 
 
 
 
 
 Os dez estados brasileiros, maiores produtores de coco no ano de 2005, estão representa-
dos na Figura 3. Dentre eles, destaca-se a Bahia como o maior produtor, representando 35,2%, 
da produção nacional, seguido pelo Pará com 12,2% e Ceará com 11,9%. O gráfico da Figura 
2 mostra a produção de frutos de coco nos principais estados produtores, no ano 2005. 
 
 
 
 
 
 
 
 
 
Figura 2 - Produção de frutos de coco nos principais estados produtores, no ano 2005. 
 
7 
 
 
Em relação à área colhida, destaca-se o estado da Bahia com 78,5 mil ha, seguido por 
Ceará com 40,4 mil ha e Sergipe com 39,4 mil ha. Estes três estados representam 57,2% da 
área brasileira colhida com coco no ano de 2005. O gráfico mostra na Figura 3 a área colhida 
(ha) de coco nos principais estados produtores, no ano de 2005. 
 
 
 
 
 
 
 Figura 3. Área colhida (ha) de coco nos principais estados produtores, no ano de 2005. 
 
A tecnologia da Embrapa foi uma das vencedoras do programa de competição global 
“Development Marketplace 2003”, do Banco Mundial, que premiou 47 projetos de um total 
de 2.726 propostas apresentadas por 133 países. 
O Brasil é um dos grandes produtores de coco-anão verde, com uma área de cultivo 
em torno de 90 mil hectares. Cerca de 70% do lixo gerado na orla das grandes cidades brasi-
leiras é composto por cascas de coco verde, material de difícil degradação e foco de prolifera-
ção de doenças, diminuindo a vida útil de aterros sanitários e lixões. Em Fortaleza, nos meses 
de alta estação, só na Avenida Beira-Mar e na Praia do Futuro são 40 toneladas por dia do 
resíduo. 
 
 
 
 
8 
 
 
 2.2. Comercialização do coco 
 
A produção de coco no Nordeste é realizada, geralmente, por pequenos e médios pro-
dutores caracterizando-se por ter uma organização incipiente, principalmente na comerciali-
zação, derivando daí o baixo poder de barganha e vulnerabilidade às imposições dos interme-
diários que retêm maior percentual da margem de lucro na comercialização, tendo em vista 
que agregam somente os custos de transporte e vendem a preços bastante elevados, em rela-
ção aos pagos ao produtor. A Tabela 3 apresenta a evolução do rendimento e dos porcentuais 
de participação regional na produção e área colhida com coco, entre 1985 e 2001. Fonte: 
IBGE - Produção Agrícola Municipal 
Tabela 3. Evolução do rendimento e dos porcentuais de participação regional na produção e 
área colhida com coco, entre 1985 e 2001. Fonte: IBGE-Produção Agrícola Municipal. 
 
 A organização dos produtores pode influenciar as margens de comercialização em seu 
favor, pois aumenta seu poder de barganha através da eliminação da excessiva intermediação 
na hora de vender sua produção, Cuenca (1997). 
 A comercialização do coco para o mercado interno, pelo fato, da facilidade do trans-
porte de grandes quantidades a granel e a grandes distâncias sem acondicionamento e/ou em-
balagens especificas; oferece grandes vantagens quando comparadas à comercialização de 
outras frutas tropicais. 
Estima-se que do total de coco seco produzido no país, de acordo com dados levanta-
dos pelo Sindicato dos Produtores de Coco (SINDCOCO), a produção brasileira é comerciali-
zada da seguinte forma: 35% destinam-se à agroindústria, que produz, principalmente, coco 
ralado e leite de coco, para atender a demanda de grandes empresas produtoras de chocolate, 
biscoitos, iogurtes, sorvetes, confeitarias e padarias. 35% destinam-se aos mercados Sudes-
Região % de Produção % de área colhida Rendimento/ha 
 1985 2001 1985 2001 1985 2001 
Nordeste 94,4 71,2 9,2 87,6 3.354 4.070 
Norte 3,8 14,8 2,3 7,7 5.642 9.692 
Sudeste 1,8 14,0 1,5 4,7 4.207 14.869 
9 
 
 
te/Sul para atender às pequenas indústrias, a exemplo de docerias, padarias, sorveterias, etc. 
Destes, cerca de 90%, são constituídos de frutos verdes. Os 30% restantes ficam no mercado 
nordestino, para atender ao consumo in natura, tanto de coco seco, como de coco verde. 
 Estima-se que 80% do consumo nordestino, sejam de coco seco e os outros 20% são na 
forma de coco verde. O processo de abertura da economia e conseqüente liberação das impor-
tações de matéria prima, ocorridos na última década, penalizaram os produtores de coco, de-
vido a pouca flexibilidade da produção agrícola para se adaptar a essas mudanças Virgílio 
(1997). 
 O processo de comercialização do coco in natura, seco ou verde, no Nordeste compre-
ende os canais e fluxos da produção. O organograma mostra na Figura 4 os fluxos e canais de 
comercialização do coco no Brasil 
 
 
 
 
 
 
 
 
 
 
 Figura 4. Fluxos e canais de comercialização do coco no Brasil 
 
 Segundo Cuenca (2002), O primeiro fluxo compreende o coco que é vendido direta-
mente às indústrias de processamento ou pelos próprios agentes, excluindo-se a participação 
dos intermediários externos. Atuam nesse fluxo os grandes e alguns médios proprietários. 
10 
 
 
Pequenos produtores, quando organizados em cooperativas ou associações, poderiam facil-
mente vir a participar desse fluxo, apropriando-se de maiores lucros proporcionados pela ca-
deia produtiva do coco. 
O segundo fluxo inclui quatro agentes econômicos: produtores, pequenos intermediá-
rios (agente), grandes intermediários e indústrias. 
O terceiro fluxo é uma variação do segundo, pois na ausência do grande intermediário, 
é o atacadista quem o substitui na canalização do produto para a indústria. 
No processo de comercialização, as maiores margens de lucro ficam na intermediação, 
pois existe uma diferença muito grande entre os preços pagos aos produtores e os preços que 
são cobrados aos consumidores. 
Devido à lucratividade e margens obtidas na comercialização, alguns produtores mé-
dios e grandes, atuam também como intermediários, comprando e concentrando consideráveis 
quantidades de coco seco, para posterior revenda a outros intermediários ou diretamente a 
indústria. 
Os pequenos atacadistas localizam-se na sede dos municípios produtores e transportam 
o coco em pequenos caminhões, ao passo que, os grandes atacadistas concentram grandes 
volumes e se localizam nos grandes centros urbanos, além de possuírem um maior grau de 
informação a respeito dos preços e da demanda do produto nos principais centros consumido-
res do país. 
A criação das Ceasas, objetivando melhorar a estrutura de comercialização de produ-
tos hortifrutigranjeiros no País e diminuir o número de intermediários nesse processo, não foi 
capaz de eliminar a forte presença dos mesmos no comércio de coco. Isto se deve ao fato, de 
que as centrais de abastecimento vêm desempenhando, ao longo dos anos, nas principais capi-
tais, apenas uma função centralizadora da produção, chegando em alguns casos a favorecer a 
ação dos intermediários. 
 A sazonal idade do consumo: Em função da maior demanda na época de férias escola-
res e verão no Sudeste do Brasil, principalmente nos meses de novembro a março. Mesmo 
havendo produção de frutos durante todos os meses do ano, o volume comercializado se retrai 
durante os meses mais frios. Pesquisa realizada no estado do Rio de Janeiro mostrou que as 
estações climáticas definem a intensidade do consumo, sendo de 56% no verão; outono e pri-
mavera 19% e no inverno apenas 6%. 
11 
 
 
A permissibilidade do fruto: Segundo pesquisa realizada junto a vendedores de coco, 
no varejo, constatou-se que as perdas na comercialização chegam a 8% do total de frutos co-
mercializados. Após a colheita, sua vida útil é de aproximadamente quinze dias, se manusea-
do corretamente. 
A aparência do fruto: Devido ao manuseio e transporteos frutos chegam muitas vezes 
a apresentar deformações e manchas escuras, fazendo o consumidor pensar que aquele produ-
to não está mais apto para o consumo. 
As quantidades comercializadas têm evoluído em grandes porcentagens, a exemplo do 
que ocorreu no estado de Minas Gerais, que de 1990 a 1995 teve um aumento de 1.170%, 
passando de 480 t para 6.104 t. 
 O coco verde pesa em torno de 1,5kg, quando bem padronizado chega a 2 kg, possui 
cerca de 20% de água e 80% de casca. Portanto, é um produto pesado e volumoso, o que difi-
culta e encarece o transporte. 
Atualmente, o que se tem disponível para comercialização em termos de água de coco 
envasada em embalagens de conveniência, são produtos de duas naturezas distintas: água de 
coco verde congelada sem uso de conservantes e água de coco maduro envasada em embala-
gens do tipo longa vida, produzida em grandes fábricas que processam o coco seco para reti-
rar leite de coco e coco ralado. A Figura 5 mostra o coco híbrido. 
 
 
 
 
 
 
 
 
Figura 5. Coco híbrido. 
 
 
12 
 
 
 2.3. O mercado de coco no exterior 
 
 O Brasil, em 2001, ocupava o quinto lugar na produção mundial de coco, sendo supe-
radas apenas por Indonésia, Filipinas, Índia e Sri Lanka; apesar disso, vem importando mais 
do que exporta. 
Segundo levantamento da Secex (Secretaria de Comércio Exterior), citados pelo Jornal 
Folha de São Paulo edição de 18 de janeiro de 2000, o Brasil importou cerca de US$42,3 mi-
lhões em coco entre 1996 e 1999. Nesse período a exportação do coco brasileiro rendeu cerca 
de US$982 mil. 
A concorrência do Brasil com os países Asiáticos, donos dos maiores coqueirais do 
mundo, é na opinião do Sindicato dos Produtores de Coco, desigual, tendo em vista o subsídio 
que os governos daqueles países dão aos seus produtores locais. 
Segundo o anuário da Agricultura Brasileira, Agrianual 2000, de FNP Consultoria & 
Comércio, as indústrias brasileiras importaram coco seco dos seguintes países: República 
Dominicana, Vietnã, Índia, Sri Lanka, Venezuela, México, Costa do Marfim e Filipinas. Já a 
Argentina, Paraguai e Uruguai são os principais consumidores do coco brasileiro. 
Desde 1995, o país decidiu sobretaxar a importação de coco seco e ralado, essa medida 
atingiu os seguintes Países: Sri Lanka, Indonésia, Malásia, Costa do Marfim e Filipinas. Já em 
1998, estabeleceram-se barreiras sanitárias ao produto, visando evitar a entrada de doenças. 
 
 2.4. Estrutura e caracteristicas das fibras de coco 
 
 Do ponto de vista da ciência botânica, um coco é um fruto seco simples classificado 
como drupa fibrosa (não uma noz). A casca (mesocarpo) é fibrosa e existe um "caroço" 
interno (o endocarpo lenhoso). Este endocarpo duro tem três poros de germinação que são 
claramente visíveis na superfície exterior, uma vez que a casca é removida. É através de um 
destes que a pequena raiz emerge quando o embrião germina. 
 O uso das fibras de coco como reforço em matrizes poliméricas é recente, porem apre-
senta vantagens em relação a outras fibras vegetais. A utilização de fibra vegetal, em particu-
lar a fibra de coco, como reforço em compósito. 0s materiais como plásticos apresenta varias 
vantagens quando comparadas a outros materiais sintéticos, como, altas propriedades mecâni-
13 
 
 
cas especificas, biodegradabilidade, reciclabilidade, baixa densidade, não abrasividade, baixo 
consumo de energia, baixo custo e oferta de empregos rurais Santiago et al. (2005 
 Fisicamente, as fibras vegetais são compostas de fibrilas, material celulósico unido pelo 
material ligante da planta. Em relação à composição química, as fibras vegetais são muito 
semelhantes, sendo compostas basicamente de celulose e lignina, associada a outros materiais 
em pequenas proporções. Nutri. 
 A falta de adesão superficial matriz/fibra e o principal problema encontrado para o em-
prego efetivo em materiais compósitos. As características das fibras vegetais como materiais 
hidrofílicos vão de encontro com as propriedades hidrofóbicas dos materiais poliméricos. I-
números são os tratamentos propostos na literatura entre físicos e químicos para melhorar as 
características dos compostos reforçados com fibras naturais Mendes (2002). 
 A influência da lignina como agente compatibilizante nas propriedades mecânicas de 
compósitos polipropileno-fibra de coco. O estudo mostrou que a lignina melhora as proprie-
dades de reflexão do compósito; no entanto não se verificou melhorias nas propriedades trati-
vas do mesmo. Através de microscopia eletrônica de varredura, constataram melhor compati-
bilidade na região interfacial. A lignina também provocou redução de absorção de água pelos 
compósitos Rozman et al. (2000). 
 Foram feitas modificações nas fibras naturais para melhorar suas propriedades de resis-
tência mecânica e torná-las adequadas para o uso em substituição às fibras naturais aplicadas 
como reforço em compósitos. As fibras de coco apresentam um aumento de 30% da resistên-
cia à tração e um aumento de 9% no modulo inicial; já as fibras de coco e sisal tratadas com 
NaAl apresentam 15% de aumento na ultima resistência à tração Satianayrana et al. (1986 e 
1990). 
 Submeteram a fibra do coco a tratamento alcalino com objetivo de melhorar a molhabi-
lidade das fibras por resinas comercialmente disponíveis como poliéster. Verificando o au-
mento de 15% na resistência a tração depois que as fibras foram embebidas em 5% de solução 
de NaAl a 28°C por 72h, a tensão de cisalhamento das fibras tratadas foi de 90% maior que as 
fibras não tratada Prasad et al. (1992). 
 Verificaram a redução na resistência mecânica das fibras do coco e sisal tratadas em 
solução de hidróxidos de cálcio, Ca (OH)2, foi constatado que, depois de 120 dias de imersão 
as fibras do coco e sisal mantinham, respectivamente, 58,7% e 33,7% de sua resistência origi-
nal, que desaparecem depois de 300 dias. As fibras de coco e sisal imersas em solução de hi-
14 
 
 
dróxido de sódio (NaOH) mantêm respectivamente 60,9% e 72,7% de sua resistência original 
após 420 dias. Sua redução de 17-23% na resistência inicial das fibras após 420 dias em água 
foi atribuída à ação microbiológica Filho et al. (2000). 
Cada fibra vegetal, denominada de fibra técnica, é constituída de várias fibras elemen-
tares fortemente ligadas entre si por um material de cimentação, constituído principalmente de 
lignina. Esta possui uma parede espessa formada por várias micro fibrilas de celulose estão 
desenvolvidas por uma matriz de lignina e hemicelulose. A lignina atua como material de 
cimentação, unindo as microfibrilas e a hemicelulose como interface entre a microfibrila de 
celulose e a lignina. A Figura 6 apresenta a estrutura interna do coco verde - seção vertical. 
 
 
 
 
 
 
 
 
Figura 6. Estrutura Interna do Coco Verde - seção vertical. 
 
O termo "coco" foi desenvolvido pelos portugueses no território asiático de Malabar, 
na viagem de Vasco da Gama à Índia (1497-1498), a partir da associação da aparência do 
fruto, visto da extremidade, em que o endocarpo e os poros de germinação assemelham-se à 
face de um "coco" (monstro imaginário com que se assustam as crianças; papão; ogro), 
conforme conta o historiador João de Barros no seu livro Décadas da Ásia (1563) "[...] por 
razão da qual figura, sem ser figura, os nossos lhe chamaram coco, nome imposto pelas 
mulheres a qualquer coisa, com que querem fazer medo às crianças, o qual nome assi lhe 
ficou, que ninguém lhe sabe outro, [...]." [1]. Do português o termo passou ao espanhol, 
francês e inglês "coco", ao italiano "cocco", ao alemão "Kokos" e aos compostos inglês 
"coconut" e alemão "Kokosnuss". 
15 
 
 
Em algumas partes do mundo, macacos treinados são usados na colheita do coco. 
Escolas de treinamentospara macacos ainda existem no sul da Tailândia. Todos os anos são 
realizadas competições para identificar o mais rápido colhedor. 
 O coco leva sete meses para amadurecer. A colheita é feita quatro ou cinco vezes por 
ano. Para realizar a colheita do coco em coqueiros gigantes, o colhedor ou “tirador” de coco 
deve utilizar “peias” de couro ou nylon para subir nas plantas. O uso de esporas deve ser 
evitado visto que estas causam ferimentos no tronco do coqueiro, o que pode transmitir 
doenças letais nas plantas. 
 Chegando ao topo da árvore, o tirador amarra uma corda no pedúnculo do cacho e o 
secciona co um facão. Com isso, a queda do cacho é evitada já que a corda está segurando. 
Aproveita-se este momento para realizar a limpeza das copas, desbastando das folhas velhas, 
que são cortadas também com o facão. Não é recomendado cortar ainda verde, pois pode 
ocorrer ainda a atração de mosquitos causadores de doenças. 
O fruto inteiro está envolto numa casca externa que no começo é amarela e depois fica 
marrom. Sob a casca encontra-se a camada de fibras com 3 a 5 cm de espessura. Esta casca é 
desmanchada em vários pedaços com uma faca de bater. Os pedaços ficam varias semanas em 
água salobra, onde são macerados. Água salobra é uma mistura de água doce com a água do 
mar. É a água das embocaduras dos rios. As fibras são depois batidas trituradas para poderem 
ser separadas. Segue-se a lavagem e secagem. Treze a quinze cocos fornecem mais ou menos 
um quilo de fibras. 
 
 2.5. Fibras de coco e outros compósitos 
 
 Realizaram estudos em misturas asfálticas tipo SMA utilizando a fibra de coco, seguin-
do o ensaio de escorrimento da (AASHTO T 305/97) para determinar o percentual de fibra 
utilizada na mistura, que deve ser no máximo 0,3%. Nesta pesquisa o percentual de fibras de 
coco utilizado durante o ensaio de escorrimento variou entre 0,1 a 0,7% do peso da mistura. 
Os resultados mostraram que para misturas do tipo SMA o percentual incorporado de fibras 
de coco variou entre 0,5 e 0,7%. A fibra de coco apresentou boa eficiência com relação ao 
escorrimento, sendo também, satisfatórios os resultados dos ensaios mecânicos (resistência à 
tração, módulo de resiliência e fadiga Vale et al. (2006). 
16 
 
 
 O uso de fibras de coco como reforço em matrizes poliméricas é recente, porém apre-
senta vantagens em relação a outras fibras vegetais. A utilização de fibra vegetal, em particu-
lar fibra de coco, como reforço em compósitos com plásticos, apresenta várias vantagens 
quando comparada a outros materiais sintéticos, como, altas propriedades mecânicas específi-
cas, biodegradabilidade, reciclabilidade, baixa densidade, não abrasividade, baixo consumo de 
energia, baixo custo e oferta de empregos rurais Santiago et al, ( 2005). 
 As fibras, do modo como denominadas usualmente, na verdade são feixes constituídos 
por células individuais que, por sua vez, compõem-se de micro fibrilas (Figura 1). Essas mi-
cro fibrilas, por sua vez, são ricas em celulose - polímero vegetal com grau de polimerização 
da ordem de 25000 Savastano Junior e Agopyan, (1997). 
As células são compostas por quatro camadas de microfibrilas e uma cavidade central. 
As duas camadas mais externas têm estrutura reticulada. A camada subseqüente (S2) apresen-
ta microfibrilas orientadas segundo o ângulo e diâmetro, com relação ao eixo longitudinal da 
célula, em espiral; é também a camada mais espessa e com maior teor de celulose. Uma fibra 
de coco, por exemplo, nada mais é do que um conjunto de até 200 células individuais Coutts, 
(1992). 
 Registraram, ainda, a presença de protuberâncias na superfície lateral dessas fibras, 
com diâmetro de 8mm a 15mm, que podem justificar a sua maior aderência com matrizes 
frágeis. Tecnicamente serão observadas todas as variáveis possíveis para que o tijolo de solo-
cimento com fibra de coco verde possua condições de resistência e durabilidade funcionando 
como elemento de vedação na construção de moradias, oferecendo segurança ao morador. 
Etapas importantes como: seleção e preparação das fibras de coco, teste de resistência das 
fibras, corte trituração, medições serão fundamentais no processo de composição das amostras 
e exames nos laboratórios de ensaios tecnológicos Shimizu e Jorillo Junior, (1992). 
 
 
 
 
 
 
 
17 
 
 
 2.5.1. Comportamento termogravimétrico. 
 
 As técnicas termoanalíticas têm sido definidas como sendo métodos nos quais se mede a 
variação de uma determinada propriedade física de uma amostra em função do tempo ou da 
temperatura. Esta definição foi proposta por Mackenzie (1979) e aceita pela Confederação 
Internacional de Análise Térmica (ICTA). Como um caso particular das técnicas termoanalíti-
cas, a Termogravimetria (TG), é a que acompanha a propriedade física da massa na amostra 
em função do tempo (com a temperatura constante), ou em função da temperatura. 
 O tipo mais comum de experimentos empregando essa técnica é a “Termogravimetria 
Dinâmica, em que se submete a amostra a uma variação constante de temperatura em um for-
no, em quanto uma balança monitora sua massa”. O aparelho utilizado para a técnica é cha-
mado “Termobalança” e para que se tenham resultados, é preciso que se originem produtos de 
decomposição térmica voláteis, ou que ocorra incorporação de átomos ou moléculas, proveni-
entes dos gases da atmosfera do forno, respectivamente diminuindo ou aumentando a massa 
da amostra. 
 
 2.5.2. Características naturais das fibras de coco 
 
As principais características técnicas da fibra da casca de coco que lhe garante vanta-
gens para utilização industrial são as seguintes: 
Inodora, resistente a umidade, amplia a difusão, não é atacada por roedores, não apodrece, não 
produz fungos, condutibilidade térmica de 0.043 a 0.045 W/mk e comportamento ao fogo 
classe B2. 
O coco maduro pode ser usado como combustível para caldeiras, ou na manufatura de 
cordoalha, tapetes, estofamentos e capachos, estudos mais recentes sugerem ainda a utilização 
do resíduo da casca verde na agricultura intensiva, principalmente no cultivo de plantas orna-
mentais e hortaliças; na indústria de papel; na engenharia de alimentos para complementação 
alimentar humana e animal e na produção de enzimas; na indústria de construção civil e em 
matrizes poliméricas. 
18 
 
 
Embora a alta umidade (80%) e as características da fibra de coco imaturo reduzam o 
seu aproveitamento, não descartam a sua utilização e nem inviabilizam economicamente, 
mesmo tendo o material que ser tratado por diversos processos industriais. 
 2.5.3. Tratamento das fibras de coco verde 
 Existem dois métodos para obtenção de fibras: método convencional e método moderno. 
No método convencional existem dois procedimentos para extração de fibras: no primeiro é 
colocada a bucha em tanques d’água por seis meses ou em tanques salgados ou lagoas que 
requerem de 10 a 12 meses de fermentação anaeróbia para retirada das fibras, eles são amaci-
ados e podem ser descascados, extraídas por batidas que pode ser feita a mão. Depois de ta-
lhadas, lavadas e secas as fibras são afrouxada e limpas. O resíduo remanescente, que é previ-
amente considerado um desperdício, está recentemente usado como produto horticultural. 
 O segundo procedimento é o processo mecânico que usa um desfibrador, o qual proces-
sa a casca após cinco dias de processo de imersão em água, talhando a casca, amaciando e 
abrindo as fibras. Há o uso de cilindros para separar a fibra. Como tratamento e controle as 
fibras foram imersas em água destilada. Todas as fibras de coco resultantes desses tratamen-
tos foram lavadas, secas e avaliadas através do toque e inspeção visual contra a luz. 
 As fibras mais fortes são lavadas, limpas, secas e amaciadas. A qualidade da fibra é ex-tremamente afetada por tal processo. Finalmente temos o método moderno, o qual faz uso de 
biotecnologia através de aproximação especifica de enzima microbiana, havendo uma redução 
substancial de tempo para três dias ao invés de seis meses. A alta qualidade da fibra é manti-
da. 
 Para cada unidade da casca do coco é produzida de 80-90g de fibras. A casca é compos-
ta de 70% de pó e 30% de fibras (3). Os tratamentos enzimáticos testados, especialmente os 
com filtrado enzimático, resultaram em características de toque, maleabilidade e coloração 
que agregam valor às fibras de coco, contribuindo para viabilizar seu aproveitamento em nível 
industrial. 
 
19 
 
 
 2.5.4. Características físico-químicas e mecânicas 
 
 Observou a composição química média de uma fibra de coco, com ampliação de 180x e 
500x respectivamente. (Celulose = 53,0), ( cinzas = 1,2), ( lignina = 0,8). Perda das hidroli-
ses: (Alfa =10,6), ( Beta = 15,3); (perda de purificação ácida = 1,4 ) 
fibra de coco madura bruta e seus dados relevantes: a) Peso médio da casca de coco: 1,840kg; 
b) Casca de coco coletada no período: 767un; c) Total de resíduos (mês): 1,2 tonela-
das;d)Mesocarpo: 79% a 81% dos resíduos do coco; e) Dos 80 a 85% do coco verde torna-se 
resíduo após o consumo da água Savastano junior, (1996). 
 O diâmetro da fibra está numa faixa de 0,2 a 1,2mm, sendo o diâmetro médio de 0,3mm. 
Nas tabelas 5 e 6 seguem analises de fibra de coco em comparação com a fibra de juta quanto 
a resistência a tração e elongação, sendo as fibras testadas em diferentes estados. São feitos 
ensaios em seu estado natural seco, imersa em meio alcalino ( solução de hidróxido de sódio – 
ph=11) por 7 e 28 dias e retirada de uma peça rompida de concreto de seis meses de idade, 
com uma média de 20 corpos de prova para cada umas das situações descritas acima. A Ta-
bela 4 apresenta a massa especifica real de algumas fibras vegetais no estado seco. 
 Tabela 4. Massa especifica real de algumas fibras vegetais no estado seco. 
 
 
 
 
 
 
 
 
Massa especifica real de algumas fibras vegetais no estado seco 
Fibra Massa específica real (por picnômetro) 
(g/cm³) 
Coco 
(Cocos nucifera L) 
1,0765 
Sisal 
(Agave sinsalana) 
1,2700 
Bambu 
(Bambusavulgaris) 
1,0542 
Piaçava 
(Attaleafunifera) 
1,1585 
Cana-de-açúcar 
(Saccaharumofficinarum L) 
0,7509 
20 
 
 
 Esse enfraquecimento seria devido à transferência para as fibras de água capilar alcali-
na existente no concreto. As fibras de coco também aumentam sua fragilidade quando sujeitas 
a situações alternadas de umedecimento e secagem. Esse enfraquecimento, no entanto, é bas-
tante inferior que o sofrido por fibras de sisal em compósitos com argamassa de cimento 
 A composição química e propriedades morfológicas das fibras de coco certamente 
conferem maior proteção contra sua decomposição. É ainda importante ressaltar que tempera-
turas elevadas (por volta de 50°) aceleram o enfraquecimento das fibras, pois o processo quí-
mico torna-se mais rápido. No entanto pode-se dizer pelos resultados expostos nas tabelas 5, 
6,7 e 8, que, para uma aplicação de fibras de coco em compósitos com matriz de argamassa de 
cimento para fins não estruturais, não se torna necessário qualquer método de tratamento da 
fibra ou diminuição da alcalinidade da matriz, já que o enfraquecimento da fibra é pequeno no 
tempo. 
A fibra vegetal tem suas características físicas e mecânicas bastantes susceptíveis a va-
riabilidades de acordo de acordo com o clima, qualidade do solo onde são produzidas e época 
do ano em que são colhidas. Mesmo os processos de obtenção de fibra em si, se mais sofisti-
cado ou rudimentar, utilizando processamentos químicos ou não, influem na qualidade final 
da fibra. 
 Assim comparando caracterizações feitas sobre fibras de coco brasileiras e de outros 
países, chega-se a discrepâncias que podem ultrapassar 50%. Mesmo fibras de coco proveni-
entes de diferentes regiões brasileiras certamente apresentarão variações em suas característi-
cas físicas e mecânicas. A Tabela 5 apresenta o comprimento critico determinado para algu-
mas fibras vegetais 
 
 
 
 
21 
 
 
 Tabela 5. Comprimento critico determinado para algumas fibras vegetais 
 
 
 
 
 
 
 
 Pela tabela 6 averiguam-se as perdas da resistência das fibras de coco em meios alcali-
nos (ensaio tido como bastante rigoroso) não ultrapassam 5%, comportamento bem melhor 
que o registrado para fibras de juta, e que, no caso das fibras retiradas de uma peça quebrada 
de concreto de seis meses de idade, a queda das tensões não atinge 1,5%, permanecendo bas-
tante elevada. 
 Nas tabelas 6 e 7 seguem as análises de fibra de coco em comparação com a fibra de 
juta quanto à resistência a tração e elongação, sendo as fibras testadas em diferentes estados. 
São feitos ensaios em seu estado natural seco, imersa em meio alcalino (solução de hidróxido 
de sódio com ph=11) por 7 e 28 dias e retirada de uma peça rompida de concreto de seis me-
ses de idade, com uma média de 20 corpos de prova para todas as umas das situações descri-
tas acima. A Tabela 6 apresenta à resistência a tração das fibras de coco. 
 
 
 
 
Comprimento critico determinado para algumas fibras vegetais 
Fibra Matriz Comprimento crítico* 
(mm) 
Sisal Gesso 55 
Coco “ 43 
Coco Pasta Cimento 37 
Bagaço Cana “ “ 26 
Capim Elefante “ “ 25 
Sisal “ “ 20 
*definido como o menor comprimento de ancoragem da fibra 
22 
 
 
 Tabela 6. Resistencia a tração das fibras de coco. 
 
 Quanto à elongação das fibras quando tracionadas, nota-se que a perda de dutibilidade 
nas situações de imersão em solução alcalina e retiradas de peças de concreto é bastante pe-
quena, sempre inferior a 1%, vê-se, ainda, que a elongação das fibras de coco caracteriza-se 
como bastante superior a das fibras de juta. Conclui-se, assim, que as fibras de coco têm uma 
tendência insignificante de se enfraquecerem em um ambiente constantemente seco Savastano 
junior, (1996). A Tabela 7 apresenta a elongação na tração das fibras. 
 
 
Fibras de coco - resistência à tração . 
Fibra: Coco 
Estado em que a fibra é 
testada 
Carga média de 
ruptura (g) 
Tensão 
(Mpa) 
% de redução 
na tensão 
1. Estado natural seco 558 140,0 _ 
2. Imersão em meio alca-
lino por 7 dias 
538 134,5 3,58 
3. Imersão em meio alca-
lino em 28 dias 
530 132,5 5,00 
4. Fibra retirada de uma 
peça rompida de concreto 
(6 meses de idade) 
550 137,5 1,43 
Fibra: JUTA 
Estado em que a fibra é 
testada 
Carga média de 
ruptura (g) 
Tensão 
(Mpa) 
% de redução na 
tensão 
1. Estado natural seco 105,5 226,0 _ 
2. Imersão em meio alca-
lino por 7 dias 
88,0 188,5 17,0 
3. Imersão em meio alca-
lino por 28 dias 
72,0 154,2 32,00 
4. Fibra retirada de uma 
peça rompida de concerto 
(6 meses de idade) 
102,5 219,5 2,90 
23 
 
 
 
 Tabela 7. Elongação na tração das fibras. 
 
 
 
 
 
 
Elongação na tração das fibras. 
Fibra: Coco 
Estado em que a fibra é 
testada 
Elongação 
(cm) 
Elongação 
% 
Redução 
% 
1. Estado natural seco 1,57 26,25 _ 
2. Imersão em meio 
alcalino por 7 dias 
1,57 26,25 _ 
3. Imersão em meio 
alcalino por 28 dias 
1,53 25,60 0,65 
4. Fibra retirada em 
meio alcalino (6 meses 
de idade) 
1,56 26,00 0,25 
Fibra: JUTA 
Estado em que a fibra é 
testada 
Elongação 
(cm) 
% Elongação % Redução 
1. Estado natural seco 0,077 1,28 _ 
2. Imersão em meio 
alcalino por 7 dias 
0,063 1,05 0,23 
3. Imersão em meio 
alcalino por 28 dias 
0,058 0,97 0,31 
4. Fibra retirada em 
meio alcalino (6 meses 
de idade) 
0,075 1,27 0,01 
24 
 
 
 
 2.6. Isolante térmicoe acústico 
 
 A resistência, durabilidade e resiliência convertem a fibra de coco em um material versá-
til e perfeitamente indicado para os mercados de isolamento, térmico e acústico. Atualmente, 
a fibra de coco, devido às novas tecnologias, satisfaz os padrões técnicos exigidos pelo mer-
cado, sendo utilizada como isolamento térmico e acústico, onde apresenta uma elevada eficá-
cia. A utilização desta matéria-prima natural e renovável, existente no mundo em grandes 
quantidades, traz inúmeras vantagens, face ao aproveitamento de um material que se viria a 
perder, e que é transformado sem prejuízo do ambiente, colocando a fibra de coco na gama de 
produtos ecológicos. 
Utilizada há várias décadas como um produto isolante em diversas situações, a fibra de 
coco tem hoje uma diversidade de aplicações, pelas características que apresenta. Devido às 
suas excepcionais performances acústicas, a fibra de coco verde e madura contribui para uma 
redução substancial dos níveis sonoros, quer de impacto, quer aéreo, sendo a solução ideal 
para muitos dos problemas dos problemas na área acústica, superando largamente os resulta-
dos obtidos com a utilização de outros materiais. 
 A fibra é 100% natural e cria-se na casca exterior do coco. A estrutura destas células é 
estreita e oca com paredes grossas de celulose. Esta estrutura dá as qualidades de absorção 
sonora destas fibras. As fibras maduras contêm mais lignina, e menos celulose do que as 
fibras de linho ou algodão. Isto faz com que a casca do coco seja mais forte e menos flexível. 
É relativamente impermeável e um material ideal para paredes de absorção sonora. 
 O controle acústico de ambientes é muito importante, pois o som como pode acal-
mar uma pessoa e até aumentar a produtividade de uma empresa, pode também irritar e até 
causar problemas de saúde, uma vez que o som exerce influências fisiológicas como psico-
lógicas. Aconselha-se que o controle do ruído seja feito como forma de minimizarem-se 
esses efeitos. 
 
 
 
25 
 
 
 2.7. Solocimento 
 A idéia do tijolo solo-cimento não é novidade e já foi empregada na construção da Mu-
ralha da China, há mais de 4 milênios. De lá para cá, sua utilização sofreu modificações quan-
to ao uso e formatos, porém em pequena escala, comparado ao processo tradicional de cons-
truções. O solo-cimento é um material alternativo, de baixo custo, obtido pela mistura de solo, 
cimento e um pouco de água. 
 No início, essa mistura parece uma "farofa" úmida. Após ser compactada, ela endurece 
e com o tempo ganha consistência e durabilidade suficiente para diversas aplicações no meio 
rural. Uma das grandes vantagens do solo-cimento é que o solo um material local, constitui 
justamente a maior parcela da mistura Casanova (2002). 
 A solo-cimento é uma evolução de materiais de construção do passado, como o barro e 
a taipa. Só que as colas naturais, de características muito variáveis, foram substituídas por um 
produto industrializado e de qualidade controlada: o cimento. 
 2.7.1. Modo de utilização do solo 
 
 Há quatro modos de utilização do solo-cimento: tijolos ou blocos, pavimento, parede 
maciça, ensacado. Os tijolos ou blocos de solo-cimento são produzidos em prensas, dispen-
sando a queima em fornos. Eles só precisam ser umedecidos, para que se tornem resistentes. 
Além de grande resistência, outra vantagem desses tijolos ou blocos é o seu excelente aspecto. 
As paredes maciças São compactadas no próprio local, em camadas sucessivas, no sentido 
vertical, com o auxílio de formas ou guias. 
 O processo de produção assemelha-se ao sistema antigo de taipa de pilão, formando 
painéis inteiriços, sem juntas horizontais. Os pavimentos também são compactados no local, 
com o auxílio de fôrmas, mas em uma única camada. Eles constituem placas maciças, total-
mente apoiadas no chão. 
 O solocimento ensacado resulta da colocação da "farofa"úmida em sacos, que fun-
cionam como fôrmas. Depois de terem a sua boca costurada, esses sacos são colocados na 
posição de uso, onde são imediatamente compactados, um a um. O processo de execução se-
melha-se à construção de muros de arrimo com matacões de pedra. 
 
26 
 
 
 
 2.8. Tijolos convencionais 
 
 A escolha do tijolo ou bloco deve ser pautada pelo tipo mais adequado ao projeto, le-
vando em consideração a resistência térmica, o peso das peças e o custo. Ao analisar o custo, 
não pense somente no valor do bloco, mas no valor final das paredes. Para isso, considere a 
argamassa de assentamento e revestimento. Blocos ruins costumam ser mais baratos, mas dão 
prejuízo, pois a perda é grande e as imperfeições precisam ser corrigidas com aumento na 
espessura da massa. As figuras a seguir os tijolos e blocos mais utilizados e suas medidas. 
 
 2.8.1. Tijolos de cerâmica 
 
 Geralmente são mais baratos e com bom desempenho térmico. A facilidade de ser en-
contrado e utilizado (não existe uma loja de materiais para construção que não venda o mate-
rial e um pedreiro que não saiba trabalhar com ele) é outra de suas vantagens. No entanto, a 
falta de padronização da maior parte das peças gera muitas quebras para encaixe durante a 
obra, contribuindo com o desperdício e produção de entulho. A Figura 7 mostra o tijolo cerâ-
mico modelo convencional. 
 
 
 
 
 
 Figura 7. Tijolo cerâmico modelo convencional. 
 
 
 
27 
 
 
 2.8.2. Modelos especiais de tijolos 
 
 As Figuras 8 e 9 mostram tijolo especial cerâmico tipo 45º e tijolo cerâmico tipo meia lua.
 
 
 
 
 
 
 
 
 
 
Figura 8. Tijolo especial cerâmico tipo 45º Figura 9. Tijolo cerâmico tipo meia lua 
 
 As Figuras 10 e 11 mostram tijolo especial de cerâmico tipo bico de pato e tijolo tipo 
canto curvo. 
 
 
 
 
 
 
 
 
 
 
Figura 10. Tijolo especial cerâmico Figura 11. Tijolo especial cerâmico 
 tipo bico de pato. tipo canto curvo. 
28 
 
 
 As Figuras 12 e 13 mostram tijolo especial cerâmico tipo bico de papagaio e tijolo 
cerâmico tipo terço de volta. 
 
 
 
 
 
 
 
 
 
Figura 12. Tijolo tipo bico de papagaio. Figura 13. Tijolo cerâmico tipo terço de volta. 
 
 
 2.8.3. Tijolo baiano 
 
 As ranhuras do tijolo baiano facilitam a aderência da argamassa e os furos diminuem 
seu peso, além de contribuírem para o isolamento térmico da parede. Apesar de ser barata, a 
parede pode sair cara quando computados acabamentos e perdas. As Figuras 14 e 15 mostram 
bloco cerâmico tipo 9 furos e bloco cerâmico furado tipo estrutural. 
 
 
 
 
 
 
 
 
Figu- gu-
ra 14. Bloco cerâmico tipo 9 furos. Figura 15. Bloco cerâmico furado tipo estrutural 
 
 
29 
 
 
 
 2.8.4. Tijolo laminado 
 O tijolo laminado pode ser aplicado em alvenaria aparente, pois ao mesmo tempo em 
que sua superfície lisa confere bom acabamento, não permite a aplicação de argamassa de 
revestimento. No entanto, seu assentamento é mais caro, pois os furos absorvem grande quan-
tidade de argamassa. A Figura 16 mostra o tijolo cerâmico tipo laminado. 
 
 
 
 
 Figura 16. Tijolo cerâmico tipo laminado 
 
 2.8.5. Bloco de concreto 
 Estes blocostêm como inconveniente o peso, que dificulta o transporte na obra, e o 
desempenho térmico inferior ao do bloco cerâmico. No entanto, seu isolamento acústico é 
bom, o consumo de argamassa é menor que o bloco cerâmico e seu tempo para assentamento 
é reduzidos além da possibilidade de poderem ficar aparentes, dispensando gastos com aca-
bamento. São muito utilizados para construção de muros de arrimo e piscinas. A Figura 17 
mostra o bloco de concreto. 
 
 
 
 
 
 
 
 Figura 17. Bloco de concreto 
 
30 
 
 
 2.8.6. Tijolo de concreto celular 
 
 Criado na Europa, o material possui a aparência de uma espuma endurecida e caracteri-
za-se pela sua leveza (aproximadamente 550 kg/m³ contra 1400 kg/m³ do tijolo comum), sen-
do muito utilizada em reformas onde não se pode sobrecarregar a estrutura existente. Possui 
bom desempenho térmico devido aos seus poros, no entanto o isolamento acústico é baixo por 
seu peso reduzido. A Figura 18 mostra o tijolo de concreto celular. 
 
 
 
 
 
 
 
 Figura 18. Tijolo de concreto celular 
 
 2.9. Cimento Portland 
 
O Cimento Portland é composto de clínquer e de adições que distinguem os diversos 
tipos existentes, conferindo diferentes propriedades mecânicas e químicas a cada um. As 
adições também são ou não utilizadas em função de suas distribuições geográficas. A Tabela 
8 apresenta a composição quimica do clinquer do cimento Portland. 
 
 Tabela 8. Composição quimica do clinquer do cimento Portland 
 2.9.1. Clinquer 
Silicato tricálcico (CaO)3SiO2 45-75% C3 S (alíta) 
Silicato dicálcico (CaO)2SiO2 7-35% C2 S (belíta) 
Aluminato tricálcico (CaO)3Al2O3 0-13% C3 A (celíta) 
Ferroaluminatotetracálcico (CaO)4Al2O3Fe2O3 0-18% C4A F (brownmerita) 
31 
 
 
 O clínquer é o principal item na composição de cimentos portland, sendo a fonte de 
Silicato tricálcico (CaO)3SiO2 e Silicato dicálcico (CaO)2SiO2. Estes compostos trazem 
acentuada característica de ligante hidráulico e estão diretamente relacionados com a 
resistência mecânica do material após a hidratação. A produção do clínquer é o núcleo do 
processo de fabricação de cimento, sendo a etapa mais complexa e crítica em termos de 
qualidade e custo. As matérias-primas são abundantemente encontradas em jazidas de 
diversas partes do planeta, sendo de 80% a 95% de calcário, 5% a 20% de argila e pequenas 
quantidades de minério de ferro. Composição química e classificação do cimento Portland. A 
Tabela 9 apresenta a composição química e classificação do cimento Portland. 
 Tabela 9. Composição química e classificação do cimento Portland. 
 
 
 
 
 CAPITULO III - MATERIAIS E METÓDOS 
Cimento Portland 
(ABNT) 
Tipo Clínquer 
+ Gesso 
(%) 
Escória side-
rúrgica (%) 
Material pozolâ-
nico (%) 
Calcário 
(%) 
CP I Comum 100 - - - 
CP I – S Comum 95-99 1-5 1-5 1-5 
CP II – E Composto 56-94 6-34 - 0-10 
CP II – Z Composto 76-94 - 6-14 0-10 
CP II – F Composto 90-94 - - 6-10 
CP III Alto-
forno 
25-65 35-70 - 0-5 
CP IV Pozolâni-
co 
45-85 - 15-50 0-5 
CP V – ARI Alta resis-
tência 
inicial 
95-100 - 
32 
 
 
 3.1. Tijolos com e sem fibra de coco. 
 
Em todos os ensaios e testes foram avaliados os tijolos sem e com fibra de coco. 
Lotes de tijolos sem fibra de coco foram construídos com traço – tipo ( S ) e lotes de tijolos 
com fibra de coco foram constituídos com os traços – tipo ( F ) agregando arenoso, cimento, 
fibra de coco e água. Com alterações crescentes na razão 1,2,3 (ver tabela de traços). 
 3.2. Preparo do solo-cimento 
 Os materiais e procedimentos citados abaixo foram norteadores para a confecção dos 
tijolos de solo-cimento com fibra de coco. 
 Para preparação do solocimento foram realizadas as seguintes etapas: 
1)Dosagem do solocimento. 
Nas obras de pequeno porte é usado um traço padrão, de 1 para 12 (uma parte de cimento para 
12 partes de solo adequado, que é um solo arenoso aprovado no teste da caixa). 
Esse traço padrão para pequenas obras será sempre o mesmo, qualquer que seja o modo de 
utilização. Em obras de grande porte, o solo-cimento chega a ser produzido em usinas ou 
centrais de mistura. Em obras de pequeno porte, a mistura é manual. Betoneiras não servem 
para preparar o solo cimento. 
2) Mistura manual do solocimento 
a) O solo foi peneirado em peneira de malha (abertura) de 4 cm a 6cm; 
b) Esparramou-se o solo sobre uma superfície lisa e impermeável, formando uma camada de 
20cm a 30cm. Espalhe o cimento sobre o solo peneirado e revolva bem, até que a mistura 
fique com uma coloração uniforme, sem manchas de solo ou de cimento; 
c) Espalhou-se a mistura numa camada de 20cm a 30cm de espessura, adicione água, aos 
poucos (de preferência usando um regador com "chuveiro" ou crivo), sobre a superfície e 
misture tudo novamente. 
33 
 
 
Os componentes do solocimento podem ser misturados até que o material pareça uma 
"farofa" úmida, de coloração uniforme, próxima da cor do solo utilizado, embora levemente 
escurecida, devido à presença da água. 
É muito importante que a quantidade de água da mistura esteja correta. O solo-cimento 
compactado com muita água perde resistência e pode até trincar. Se a mistura tiver pouca 
água, a compactação fica difícil e também haverá perda de resistência. 
Existem testes práticas para verificar se a quantidade da mistura está correta: 
enche-se bem a mão com a mistura e aperte com muita força. Logo em seguida, abra a mão. 
O bolo formado deve apresentar a marca dos seus dedos com nitidez. Se não apresentar essas 
marcas, há falta de água na mistura. Nesse caso, ponha aos poucos mais água na mistura, e 
repita o teste até aparecer à marca dos dedos. 
A seguir, deixe o bolo cair no chão, de uma altura de cerca de 1m. No impacto, o bolo 
deve se desmanchar. Se isso não ocorrer, há excesso de água na mistura. Nesse caso, 
esparrame e resolva a mistura, para que o excesso de água evapore. Repita o teste, deixando o 
bolo cair de novo, para verificar se a quantidade de água chegou ao ponto correto. 
A mistura do solo-cimento começa a endurecer rapidamente. Por isso, ela deve ser usada, no 
máximo, duas horas após o preparo. Portanto, evite preparar mais solo-cimento que possa 
utilizar nesse intervalo de tempo. 
 As ferramentas necessárias para o preparo do solo-cimento são: colher de pedreiro, pe-
neira de malha 4 mm a 6mm, lata de 18 litros, regador com "chuveiro", pá, enxada. 
 
 3.3. Confecção do tijolo de solo-cimento com fibra de coco. 
 
 
 O solo arenoso seco foi peneirado para separação dos grãos maiores e Impurezas, numa 
peneira com abertura de 4,8 mm, de acordo as Normas Técnicas da ABNT, n º 04 (Analise 
granulométrica dos solos, peneiramento do solo). O cimento usado na composição é de boa 
qualidade do tipo Portland, CPII-Z-32, RS (Poty). 
 No teste de qualidade do solo arenoso foi observado através do “Teste do Frasco”, fa-
vorecido em termos de resultados, considerando que os percentuais na composição do solo é 
compatível e contribui para a resistência do tijolo de solo-cimento com fibra de coco, 20% de 
argila e 80% de areia (nos lotes 01 e 02). 
34 
 
 
 Nos (lotes 03 e 04) o teste do frasco acusou resultados diferentes no solo arenoso dos 
primeiros lotes, com 30% de argila e 70% de areia com isso o rendimento e a coloração dos 
tijolos mudaram. 
 "Teste do Frasco"- Utilizou-se um frasco de vidro com tampa, de boca larga, colocou-se 
no frasco o solo a ser testado (peneirado) até a metade do vidro, acrescentou-se ao solo duas 
colheres de chá de sal e completou com água, com cuidado de não encher completamente o 
fraco, agitou a mistura do frasco e deixouem repouso por trinta minutos, passado este tempo, 
nota-se que a mistura ficou dividida em três partes. Na parte de baixo areia, no meio argila e 
em cima água. Com uma régua fez-se a medição, se a quantidade de areia estiva maior ou 
igual à quantidade de argila, tem-se um solo perfeito. Caso contrario o solo deve ser descarta-
do. As Figuras 19 e 20 mostram a pesagem do solo peneirado e a medição proporcional do 
Solo na fôrma de prensagem manual. 
 
 
 
 
 
 
 
 
 
Figura 19. Pesagem do solo peneirado. 
 
 
 
 
 
 
 
 
 Figura 20. Medição proporcional do solo na fôrma de prensagem manual. 
 
35 
 
 
 As três matérias-primas usadas na composição do traços dos tijolos com fibra de coco 
serão colocadas na bacia de pedreiro para serem misturados. As Figuras 21, 22 e 23 mostram 
solo na bacia de pedreiro depois de peneirado e medido, a pesagem do cimento para mistura 
ao solo, o exocarpo e mesocarpo fibroso da casca de coco. 
 
 
 
 
 
 
 
 Figura 21. Solo na bacia de pedreiro depois de peneirado e medido. 
 
 
 
 
 
 
 
 
 
Figura 22. Pesagem do cimento para mistura ao solo. 
 
 
 
 
 
 
 
 
 Figura 23. Exocarpo e mesocarpo fibroso da casca de coco. 
36 
 
 
 As fibras de coco foram tratadas em água fervente a uma temperatura de 100ºC, para 
retirar o excesso de cera após ter sido desfibrada. A Figura 24 mostra a casca de coco seca 
desfibrada. 
 
 
 
 
 
 
 
 
 
 Figura 24. Casca de coco seca desfibrada. 
 
 
 A parte interna desfibrada (mesocarpo) gera o pó, a morfologia típica do pó de coco é 
caracterizada por partículas de aspecto irregular, similar ao da capa porosa das fibras. A Figu-
ra 25 mostra o pó residual do desfibramento da casca de coco seca. 
 
 
 
 
 
 
 
 
 
 Figura 25. Pó residual do desfibramento da casca de coco seca. 
 
 
 
37 
 
 
 O volume de água consumido nos traços realizados na confecção de cada cinco tijolos 
foi de 400 ml. As Figuras 26 e 27 mostram a água dosada na mistura para formar a massa de 
solocimento e a consistência da massa do solo-cimento e fibra de coco 
 
 
 
 
 
 
 
 
Figura 26. A água dosada na mistura para formar a massa de solocimento. 
 
 
 
 
 
 
 
 
 
 Figura 27. Consistência da massa do solo-cimento e fibra de coco. 
 
 3.4. Composição dos traços de massa. 
 
 A confecção dos tijolos com e sem fibra de coco seco maduro foi realizada de acordo os 
traços de massa descritos nas tabelas abaixo, observando-se que em cada traço foram produ-
zidas quinze unidades de tijolos, totalizando sessenta unidades classificadas por formulações: 
lotes do tipo (FS) sem fibra de coco e do tipo (F1, F2 e F3) com fibra de coco, nos lotes com 
fibra de coco foram usadas duas variedades de solo com percentuais de argila e areia diferen-
tes. Apenas o lote do tipo (FS) sem fibra de coco teve percentual menor de cimento os demais 
38 
 
 
lotes tiveram o mesmo percentual. Para facilitar a organização de todos os testes e separação 
os tijolos foram numerados em ordem crescentes de 1 a 60 e cada 5 unidades foi marcada com 
a letra “ L de lote, com números 1, 2, 3; com letras (A, B, C, D, E), e ( S ) ou ( F ) para definir 
com e sem fibra. O volume de água foi igual para todos os lotes. 
 Os traços de massa foram classificados como formulações de acordo com os percentuais 
de materiais, definidos como formulação (FS) para tijolo sem fibra de coco e formulações 
(F1, F2 e F3) para tijolos com fibra de coco em proporções diferentes. A Tabela 10 apresenta 
as quatro composições de traços com teor de argila e areia compatível, cimento, água e fibra 
de coco; a Tabela 11 mostra lotes dos tijolos sem fibra, formulação – FS e a Tabela 12 mostra 
lotes dos tijolos com fibra, formulação – F1, F2, F3. 
 
 
 
 Tabela 10. Quatro formulações de traços com teor de argila e areia compatível, 
 cimento, água e fibra de coco. 
 
 
 
 
 
 
 
 
 Tijolos sem e com fibra de coco 
 
 (30% Argila + 70% Areia) e (20% Argila + 80% Areia) 
 Tipo 
de formulações 
 (traços) 
% 
Argila 
% 
Areia 
% 
Cimento 
% Fibra 
de coco 
ml 
Água 
 
Lotes/ 
Serié 
Total de 
unida-
des 
 FS 0,2 0,8 0,07 0,0 400 L1,L2,3 
A,B,C,D,E 
 15 
 F1 0,2 0,8 0,1 0,05 400 L1 
A,B,C,D,E 
 15 
 F2 0,3 0,7 0,1 0,08 400 L2 
A,B,C,D,E 
 15 
 F3 0,3 0,7 0,1 0,06 400 L3 
A,B,C,D,E 
 15 
39 
 
 
 
 Tabela 11. Lotes dos tijolos sem fibra, formulação – FS. 
 
 
 Lotes dos tijolos sem fibra 
 Formulação FS FS FS 
 Lotes/Serie 
 (15 unida-
des) 
L1A,L1B,L1C, 
L1D,L1E 
 (5 unidades ) 
L2A,L2B,L2C,L2D,L2
E 
 (5 unidades) 
L3A,L3B,L3C,L3D,L3
E 
 (5 unidades) 
 
 
 Tabela 12. Lotes dos tijolos com fibra, formulação – F1, F2, F3. 
 
 
 
 
 Lotes dos tijolos com fibra 
Formulação F1 F2 F3 
 Lotes/Serie 
 (45 unidades) 
L1A,L1B,L1C,L1D,L1E 
 (3 unidades de cada) 
L2A,L2B,L2C,L2D,L2E 
 (3 unidades de cada) 
L3A,L3B,L3C,L3D,L3E 
 (3 unidades de cada) 
 
 
 
 Todos os tijolos foram passaram pelo mesmo processo de execução em forma de madei-
ra. A Figura 28 mostra a fôrma de prensagem manual e o tijolo. 
 
 
 
 
 
 
 
 
 Figura 28. A fôrma de prensagem manual e o tijolo. 
40 
 
 
 
 3.5. Processo de compactação e cura do solo-cimento. 
 No processo convencional para fabricação de tijolos de fibrocimento, utilizam-se os 
seguintes procedimentos: 
1. Devem usar uma prensa manual, de baixo custo e com produção de ordem de 1500 tijo-
los maciços por dia. Essas prensas são pequenas e pesam menos de 150 kg. 
2. Abrir a tampa da fôrma da prensa e coloque a mistura de solo-cimento; 
3. Fechar a tampa da fôrma da prensa, nivelando a mistura e retirando o excesso. 
4. Movimentar a alavanca no sentido de compactação da mistura, até o fim do seu curso. 
5. Logo após a prensagem, retorne a alavanca à posição inicial. A seguir, abra a tampa da 
fôrma e acione novamente a alavanca, no sentido de compactação. Isso empurrará os ti-
jolos para fora da fôrma (desforma); 
6. Após a desforma, os tijolos podem ser imediatamente retirados da prensa, mas com cui-
dado. Eles devem ser empilhados em local protegido do sol e do vento. As pilhas não 
devem ter mais que 1,5m de altura. Nesse local, eles devem ser molhados, pelo menos 3 
vezes ao dia, durante os 7 primeiros dias. Após essa fase, chamada de cura, os tijolos es-
tarão prontos para o uso. As prensas manuais não produzem blocos de solo-cimento. No 
entanto, existem no mercado as prensas hidráulicas, que podem fabricar tanto os tijolos 
quanto os blocos de solo-cimento. Elas têm grande volume de produção, mas o volume 
inicial é elevado e só se justifica em obras de grande porte. A ABCP pode fornecer aos 
interessados a relação dos fabricantes de prensas manuais e hidráulicas. 
 Os tijolos foram curados de forma natural, em área coberta com tempo de sete dias, em 
condições para a fase de testes de laboratório, porém os testes só foram realizados após trinta 
dias NBR 12025 (1990). A Figura 29 mostra a fôrma manual de madeira nas dimensões 
110x230x55mm,com peça superior para prensar e desmoldar. Depois de prontos são selecio-
nados e separados para testes como mostra nas Figuras 30 e 31 respectivamente os tijolos de 
solo-cimento com e sem fibra de coco e os tijolos de solo-cimento numerados. 
 
 
41 
 
 
 
 
 
 
 
 
 
 
 
 Figura 29. Forma manual de madeira nas dimensões 110x230x55mm, com peça superior 
 para presar e desmoldar. 
 
 
 
 
 
 
 
 
 Figura 30. Os tijolos de solo-cimento com e sem fibra de coco. 
 
 
 
 
 
 
 
 
 
 Figura 31. Tijolos de solocimento numerados. 
 
42 
 
 
 3.6. Teste de resistência à compressão. 
 
 Consistiu em analisar a resistência das amostras de tijolos comprimidos em máquina de 
compressão universal capaz de aplicar determinada força de compressão, em tonelada, até 
alcançar a ruptura ou destruição do material que irá definir sua resistência. 
 Os ensaios de compressão em dezoito amostras de tijolos dos lotes A, B, C e D com e 
sem fibra de coco. As Figuras 32 e 33 mostram respectivamente os corpos de prova sob com-
pressão axial e os testes de resistência à compressão axial realizados na prensa de Modelo 
universal do laboratório de ensaios tecnológicos do IFBA. 
 
 
 
 
 
 
 
 
 Figura 32. Os corpos de prova sob compressão axial. 
 
 
 
 
 
 
 
 
 
 
 
 Figura 33. Os testes de resistência à compressão axial realizados na prensa de 
 Modelo universal do laboratório de ensaios tecnológicos do IFBA. 
43 
 
 
 Os tijolos selecionados do lote – 1 sem fibra de coco, depois de saturados durantes 24 
horas e secos artificialmente, foram capeados com cimento a uma espessura de 2 mm nas fa-
ces de contato com a prensa e em passaram pelo teste de compressão axial. 
 
 3.7. Teste de variação de temperatura. 
 As amostras selecionadas em cada uma das quatro formulações de tijolos passaram pelo 
teste de variação de temperatura através de uma câmara de calor. 
 O objetivo principal foi medir a capacidade de absorver o calor em cada amostra e ob-
servar a condução de calor do ambiente externo para dentro da edificação. A câmara de calor 
feita de madeira resistente na qual foram instaladas duas lâmpadas de 100wattes possui ape-
nas uma abertura onde esta situada a face externa do tijolo, cada amostra foi colocada em po-
sição singela dentro da câmara, conforme aparece na Figura 35e 36. 
 Dois sensores conectados ao medidor de temperatura (termopar), ligados paralelamente 
às faces frontais a luz interna e externamente, onde T1 era (Temperatura inicial interna) me-
dindo o calor recebido e T2 (Temperatura final – externa), transferência de calor para o ambi-
ente externo. Na transferência de calor três mecanismos funcionaram e foram analisados cui-
dadosamente: Condução, conversão e radiação. A variação de temperatura T1 – T2 foi medida 
em graus Celsius; as figuras a seguir mostram respectivamente o processo de medição de 
temperatura. A Figura 34 o Termopar digital com fios sensores, T1 e T2; a Figura 35 o Ter-
mopar digital com fios sensores T1 e T2 realizando a medição de temperatura e a Figura 36 
câmara de calor aberta com duas lâmpadas de 100 w e o tijolo para teste. 
 
 
 
 
 
 
 
 
 
 Figura 34. Termopar digital com fios sensores, T1 e T2. 
 
44 
 
 
 
 
 
 
 
 
 
Figura 35. Termopar digital com fios sensores T1 e T2 realizando a medição de temperatura. 
 
 
 
 
 
 
 
 
 
Figura 36. Câmara de calor aberta com duas lâmpadas de 100 w e o tijolo para teste. 
 
 3.8. Teste de tamanho e densidade dos tijolos. 
 
 3.8.1. Teste de tamanho 
 
 Processo de medição com paquímetro e régua metálica nos tijolos das quatro formula-
ções com e sem fibra para avaliar o nível de retração e possíveis fissuras pós-secagem por 
ventilação natural em área coberta ou seja, sem estufa e sem exposição ao sol. Foram analisa-
das sessenta amostras das quatro formulações. Concluímos que a perda de água na secagem 
provocou uma pequena retração em todas as amostras, porém com maior ênfase na altura dos 
tijolos. 
 
45 
 
 
 
 3.8.2. Teste da densidade e massa específica. 
 Esse teste consistiu em pesar as amostras em balança de precisão digital com selo 
INMETRO (Modelo MP-S, classe-3, marca-BALMAK) com capacidade de até 5000g. Foram 
pesadas sessenta amostras de tijolos secos das quatro formulações com e sem fibra de coco 
onde se observou que a variação de peso em todos, porém a média ficou em 2145g, atendendo 
a especificação da norma técnica. Foram selecionadas dezoito amostras das formulações, 
colocados em um reservatório de água durante vinte e quatro horas, em seguida pesados, re-
gistrou-se índices variados de absorção de água, atingindo a média de 2582 g. 
 Após o processo de medição e pesagem calculou-se a massa especifica das amostras de 
tijolos das quatro formulações com e sem fibra de coco, onde se observou que a massa especi-
fica dos tijolos de fibrocimento nas formulações com fibra de coco o percentual chegou a 19% 
a menor de peso e a 25% menor de massa especifica em relação ao de maior peso e massa, 
nas mesmas condições de cura e tamanho. A Tabela 13 apresenta a massa especifica dos tijo-
los nas quatro formulações. 
 
 Tabela 13. Massa específica dos tijolos nas quatro formulações 
 
 
 
 
 
 A etapa de medidas e pesagem das sessenta unidades de tijolos está apresentada de acordo 
com as formulações nas tabelas a seguir; Tabela 14 tamanhos e densidades dos tijolos com 
formulação FS; Tabela 15 tamanhos e densidades dos tijolos com formulação F1; Tabela 16 
tamanhos e densidades dos tijolos com formulação F2; Tabela 17 tamanhos e densidades dos 
tijolos com formulação F3. 
 
 Massa Especifica 
Formulação Peso (kg.) Volume (m³) M.E. (km/m³) 
 FS 2,351 0,0014 1,76 
 F1 1,976 0,0014 1,40 
 F2 2,036 0,0014 1,45 
 F3 2,284 0,0014 1,63 
46 
 
 
 Tabela 14. Tamanhos e densidades dos tijolos com formulação FS. 
Lotes Lotes - L1A Lotes - L2A Lotes - L3A Média 
Dimensões 
(mm) 
111 x 230 x53 110 x 228 x 52 
 
110 x 230 x 52 110x230x52 
Peso(g) 2490 2368 2222 2360 
Lotes Lotes - L1B Lotes - L2B Lotes - L3B 
Dimensões 
(mm) 
111 x 228 x 50 111 x 228 x 52 112 x 230 x 53 110x230x52 
Peso (g) 2255 2440 2465 2387 
Lotes Lotes - L1C Lotes - L2C Lotes - L3C 
Dimensões 
(mm) 
110 x 228 x 53 110 x 229 x 51 113 x 230 x51 110x230x52 
Peso(g) 2331 2353 2305 2329 
Lotes Lotes - L1D Lotes - L2D Lotes – L3D 
Dimensões 
(mm) 
111 x 230 x 50 110 x 228 x 50 113 x 228 x 53 112x230x51 
Peso(g) 2314 2319 2433 2355 
Lotes Lotes - L1E Lotes - L2E Lotes - L3E 
Dimensões 
(mm) 
110 x 229 x 52 110 x 228 x 50 113 x 230 x 52 111x230x51 
Peso(g) 2453 2280 2245 2326 
Peso Médio 
(g) 
2368 2352 2334 2351 
47 
 
 
 
 Tabela 15. Tamanhos e densidades dos tijolos com formulação F1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Lotes Lotes - L1A Lotes - L1A Lotes - L1A Média 
 Dimensões 
 (mm) 
112 x 230 x 54 116 x 230 x 57 112 x 230 x 54 113x230x55 
 
 Peso(g) 2080 2120 1830 2010 
 Lotes Lotes – L1B Lotes - L1B Lotes - L1B 
 Dimensões 
 (mm) 
110 x 230 x 58 111 x 229 x56 110 x 228 x 57 110x23x57 
 Peso 
 (g) 
1930 1940 2110 1993 
 Lotes Lotes - L1C Lotes - L1C Lotes - L1C 
 Dimensões 
 (mm) 
110 x 230x 56 110 x 230 x 56 111 x 231 x55 110x230x56 
 Peso 
 (g) 
1880 1862 1990 1910 
 Lotes Lotes - L1D Lotes - L1D Lotes - L1D 
 Dimensões 
 (mm) 
110 x 230 x 57 110 x 230 x 58 112 x 230 x 52 110x230x56 
 Peso 
 (g) 
1800 2010 1990 1933 
 Lotes Lotes - L1E Lotes - L1E Lotes - L1E 
 Dimensões 
 (mm) 
111 x 229 x53 111 x 230 x 55 110 x 230 x 53 110x230x54 
 Peso 
 (g) 
2090 2090 1920 2033 
 Peso Médio 
 (g) 
1956 2004 1968 1976 
48 
 
 
 
 Tabela 16. Tamanhos e densidades dos tijolos com formulação F2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Lotes Lotes - L2A Lotes - L2A Lotes - L2A Média 
 Dimensões 
 (mm) 
110 x 230 x 54 110 x 228 x 56 110 x 230 x 57 110x230x55 
 Peso(g) 1987 1915 1900 1935 
 Lotes Lotes - L2B Lotes - L2B Lotes – L2B 
 Dimensões 
 (mm) 
110 x 228 x 55 112 x 228 x 58 110 x 230 x 57 110x229x56 
 Peso(g) 1882 2210 2005 2032 
 Lotes Lotes - L2C Lotes - L2C Lotes – L2C 
 Dimensões 
 (mm) 
112 x 228 x 55 110 x 228 x 55 110 x 227 x 55 110x228x55 
 Peso 
 (g) 
1940 1950 2115 2001 
 Lotes Lotes - L2D Lotes - L2D Lotes - L2D 
 Dimensões 
 (mm) 
110 x 228 x 55 110 x 230 x 55 110 x 228 x 55 110x229x55 
 Peso 
 (g) 
2200 2055 1915 2056 
 Lotes Lotes - L2E Lotes - L2E Lotes - L2E 
 Dimensões 
 (mm) 
112 x 230 x 56 110 x 227 x 54 112 x 228 x 53 111x229x54 
 Peso 
 (g) 
2365 2035 2070 2156 
 Peso Médio 
 (g) 
2074 2033 2001 2036 
49 
 
 
 
 Tabela 17. Tamanhos e densidades dos tijolos com formulação F3. 
 
 
 
 
 
 
 
 
 
 
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
. 
 
 
 Lotes Lotes - L3A Lotes - L3A Lotes - L3A Média 
 Dimensões 
 (mm) 
112 x 230 x 53 111 x 228 x 54 112 x 228 x 55 112x229x54 
 Peso 
 (g) 
2225 2305 2420 2316 
 Lotes Lotes - L3B Lotes - L3B Lotes - L3B 
 Dimensões 
 (mm) 
110 x 228 x 55 112 x 230 x 55 110 x 230 x 55 110x230x55 
 Peso 
 (g) 
2224 2137 2435 2265 
 Lotes Lotes - L3C Lotes - L3C Lotes - L3C 
 Dimensões 
 (mm) 
112 x 230 x 53 112 x 228 x 55 113 x 230 x 55 112x230x54 
 Peso 
 (g) 
2195 2277 2575 2349 
 Lotes Lotes - L3D Lotes - L3D Lotes - L3D 
 Dimensões 
 (mm) 
113 x 229 x 54 110 x 228 x 56 110 x 230 x 53 112x230x55 
 Peso 
 (g) 
2185 2362 2260 2269 
 Lotes Lotes - L3E Lotes - L3E Lotes - L3E 
 Dimensões 
 (mm) 
112 x 230 x 55 112 x 228 x 54 112 x 228 x 54 112x229x54 
 Peso 
 (g) 
2220 2283 2162 2222 
 Peso Médio 
 (g) 
2220 2283 2163 2284 
50 
 
 
 
 Todos os tijolos foram cuidadosamente pesados com balança de precisão de acordo com as 
normas de pesagem. A Figura 37 mostra o tijolo pesado em balança de precisão. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figura 37. Tijolo pesado em balança de precisão. 
 
 3.9. Teste de absorção de água 
 
 Consistiu em emergir as amostras num reservatório de água por um tempo determinado 
para medir o percentual de absorção de água e possíveis reações nas amostras como: aumento do 
peso e expansão nas medidas. 
 As amostras testadas tiveram índices variados de absorção e aumento das medidas que 
após a perda de água retornou às medidas de origem. A média do excesso de peso das amostras 
de tijolos molhados foi de 0, 437 kg. 
 Observou-se também que as amostras de tijolo sem fibra absorveram em média 12,41% de 
água do seu peso inicial enquanto os tijolos com fibra de coco nas formulações 1,2 e 3, respecti-
vamente absorveram – 19,10%, 22,02% e 16,60%, visto que a formulação 3 é a mais resistente 
absorveu menos água havendo uma estabilidade maior nos resultados, ou seja, sem picos de va-
riações na pesagem. 
 
 
51 
 
 
 CAPITULO IV – RESULTADOS E DISCUSSOES 
 
 4.1. Tijolo de solo-cimento com e sem fibra de coco. 
 4.1.1. Absorção de água 
 
 Considerando os parâmetros estabelecidos pela NBR 8492, as analises dos tijolos fica-
ram em maioria dentro dos níveis aceitáveis nos resultados individuais e na média entre eles. Os 
índices individuais e médios de absorção de água dos tijolos deverão ser menor ou igual a 20% e 
22% respectivamente no valor individual e na media, conforme normalização da NBR - 8492. 
Nas tabelas e gráficos apresentados abaixo, observou-se que os tijolos sem fibra de coco 
imersos em água potável absorveram individualmente aproximadamente 45% do nivel estabele-
cido no parâmetro individual e médio de aceitação que é 20% e 22%, da norma técnica, enquan-
to os demais tijolos com fibra de coco em sua maioria absorveram individualmente aproxima-
damente 80% do nível aceitável que é 20%. Poucos tijolos com fibra ficaram abaixo desse ulti-
mo nível. 
 Os Tijolos foram imersos em água potável num reservatório durante 24 horas, em seguida 
medido com escalimetro e paquímetro na escala 1/1, e pesados em balança de precisão digital, 
em grama. 
 A Tabela 18 apresenta ensaios de absorção de água – tijolos com formulação (FS) e o grá-
fico da Figura 38 mostra o índice de absorção de água – tijolos com formulação (FS). 
 
 Tabela 18. Ensaios de absorção de água – tijolos com formulação (FS). 
 
 
 
 CP 
 
Massa Seca 
 (g) 
 
Massa Saturada 
 (g) 
 
 Resultados 
 (%) 
 
 
 Parâmetros da NBR 8492 
 (%) 
 Lote 
 (FS) 
 
Individual 
 
Média 
 
Individual 
 
 Média 
 
 
 L1A 
 
 
2490 
 
2717 
 
 9,2 
 
 
 
 
 9,83 
 
 
 
 
 ≤ 20 
 
 
 
 
 
 ≤ 22 
 
 L2A 
 
 
2365 
 
2680 
 
 8,8 
 
 L3A 
 
 
2222 
 
2555 
 
 11,5 
52 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figura 38. Índice de absorção de água – tijolos com formulação (FS). 
 
 
 As Tabelas 19, 20 e 21 apresentam ensaios de absorção de água – tijolos com formulações 
(F1, F2 e F3) e os gráficos das Figuras 39, 40 e 41 mostram índices de absorção de água – tijolos 
com formulações (F1, F2 e F3). 
 
 
 
 Tabela 19. Ensaio de absorção de agua – tijolo com formulação (F1). 
 
 
 
 
 
 
 
 
 
 CP 
 
Massa Seca 
 (g) 
 
 Massa Saturada 
 (g) 
 
 Resultados 
 (%) 
 
 
 Parâmetros da NBR 8492. 
 (%) 
 
 Lote 
 ( F1 ) 
 
Individual 
 
Média 
 
Individual 
 
 Mé-
dia 
 
 
 L1A 
 
 
2080 
 
2467 
 
18,5 
 
 
 
 
 21,5 
 
 
 
 
 ≤ 20 
 
 
 
 
 
 ≤ 22 
 
 L1C 
 
 
1880 
 
2380 
 
26,6 
 
 L1E 
 
 
2090 
 
2500 
 
19,6 
L1A
L3A
Média de 
Absorção
Parâmetro 
Individual
Parâmtro 
Médio
L2A
53 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figura 39. Índice de absorção de água – tijolos com formulação (F1). 
 
 
 
 Tabela 20. Ensaio de absorção de agua – tijolo com formulação (F2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figura 40. Índice de absorção de água – tijolos com formulação (F2). 
 
 
 
 CP 
 
Massa Seca 
 (g) 
 
Massa Saturada 
 (g) 
 
 Resultados 
 (%) 
 
 
 Parâmetros da NBR 8492 
 (%)Lote 
 (F2) 
 
Individual 
 
Média 
 
Individual 
 
 Média 
 
 
 L2A 
 
 
1987 
 
2459 
 
23,1 
 
 
 
 
17,8 
 
 
 
 
 ≤ 20 
 
 
 
 
 
 ≤ 22 
 
 L2D 
 
 
2200 
 
2630 
 
19,5 
 
 L2E 
 
 
2365 
 
2785 
 
17,8 
L1A
L1E
Média de 
Absorção
Parâmetro 
Individual
Parâmtro 
Médio
L1C
L2A
L2E
Média de 
Absorção
Parâmetro 
Individual
Parâmtro 
Médio
L2D
54 
 
 
 Tabela 21. Ensaio de absorção de agua – tijolo com formulação (F3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figura 41. Índice de absorção de água – tijolos com formulação (F3). 
 
 
 Os tijolos L1C e L2A com fibra de coco atingiram percentual de absorção individual 
acima dos parâmetros exigidos pela NBR – 8492, o peso não-saturado é compatível, prova-
velmente este resultado tenha ocorrido em algumas peças em função da distribuição não ho-
mogenia dos agregados considerando que o traço da massa foi o mesmo. Os demais tijolos 
ficaram dentro dos parâmetros desta norma técnica, todos foram saturados em água durante 
24 horas. 
 
 
 
 CP 
 
Massa Seca 
 (g) 
 
Massa Saturada 
 (g) 
 
 Resultados 
 (%) 
 
 
 Parâmetros da NBR 8492 
 (%) 
 Lote 
 ( F3 ) 
 
Individual 
 
Média 
 
Individual 
 
 Média 
 
 
 L3A 
 
 
2225 
 
2582 
 
16,1 
 
 
 
 
16,4 
 
 
 
 
 ≤ 20 
 
 
 
 
 
 ≤ 22 
 
 L3B 
 
 
2243 
 
2620 
 
16,8 
 
 L3C 
 
 
2195 
 
2556 
 
16,5 
0
5
10
15
20
25
Indice de Absoção
L3A
L3C
Média de 
Absorção
Parâmetro 
Individual
Parâmtro 
Médio
L3B
 
55 
 
 
 4.1.2. Resistência à compressão. 
. 
A resistência dos tijolos é a grande responsável pela resistência da alvenaria; esta au-
menta modestamente com o aumento da resistência da argamassa, mas cresce consideravel-
mente com a resistência dos tijolos (Franco, 1988) 
Este mesmo autor relembrou que a resistência da alvenaria aumenta com a resistência 
do tijolo, porém não linearmente, e que a resistência da alvenaria é proporcional à raiz qua-
drada da resistência dos tijolos. 
Fator importante ressaltado por Franco (1988) é o que se refere à resistência à tração 
dos tijolos, pois, quando a alvenaria submetida à compressão uniforme, a ruptura se dá pelo 
desenvolvimento de fissuras, devido aos esforços de tração nos tijolos, transversais ao esforço 
de compressão aplicado. A argamassa, por sua vez, geralmente menos rígida que os tijolos, 
tende a deformar-se transversalmente, quando submetida a esforços de compressão. 
 O movimento da argamassa é restringido pelos tijolos, que ficam submetidos à tensão de 
tração lateral levando, inicialmente, à fissuração e, finalmente, à ruptura. Hoath, citado Apud 
(1988), afirmou que uma argamassa com cal, comparada com a de cimento, sendo ambas de 
resistência equivalente, produz paredes de maior resistência à compressão e atribuiu este fato 
ao maior potencial de aderência das argamassas de cal. 
 As tabelas resumo dos testes de compressão axial apresentaram resultados interessantes 
e satisfatórios. 
 Os tijolos selecionados de todos os lotes testados, depois de saturados durantes 24 horas 
e secos artificialmente, foram capeados com cimento a uma espessura de 2 mm nas faces de 
contato com a prensa universal e passaram pelo teste de compressão axial. 
 A Tabela 22 apresenta ensaio de resistência à compressão axial - tijolo com formulação 
(FS) e o gráfico da Figura 42 mostra o índice de resistência individual e média dos tijolos com 
formulação (FS). 
 
 
 
 
 
 
56 
 
 
 
A Tabela 22 apresenta ensaio de resistência à compressão axial - tijolo com formulação (FS) e 
o gráfico da Figura 42 mostra o índice de resistência individual e média dos tijolos com for-
mulação (FS). 
 
 
 
Tabela 22. Ensaio de resistência à compressão axial. Tijolo com formulação (FS). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 42. Índice de resistência individual e média dos tijolos com formulação (FS). 
 
 
 
 
 
 
 
 
 
 CP 
 ( FS ) 
 
 CARGA 
 (N) 
 
 Área 
 (mm) 
 Resistência 
 (Mpa) 
 Parâmetros da 
 NBR10834 (Mpa) 
 Individual Média Individual Média 
 
 L1A 
 
 273,80 
 
 115,00 
 
 2,37 
 
 
 
 1,75 
 
 
 
 ≥ 1,7 
 
 
 
 ≥ 2,0 
 
 L2A 
 
 233,20 
 
 115,00 
 
 2,03 
 
 L3A 
 
 97,20 
 
 115,00 
 
 0,84 
L1A
L2A
L3A
Média Resistêcia
Parêmetros Mpa 
Individual
57 
 
 
A Tabela 23 apresenta ensaio de resistência à compressão axial - tijolo com formulação (F1) e 
o gráfico da Figura 43 mostra o índice de resistência individual e média dos tijolos com for-
mulação (F1). 
 
 
 
 
 Tabela 23. Testes de resistência à compressão axial - Tijolo com formulação (F1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figura 43. Índice de resistência individual e média dos tijolos com formulação (F1). 
 
 
 
A Tabela 24 apresenta ensaio de resistência à compressão axial - tijolo com formulação (F2) e 
o gráfico da Figura 44 mostra o índice de resistência individual e média dos tijolos com for-
mulação (F2). 
 
 
 
 
 
 
 CP 
 ( F1) 
 
 CARGA 
 (N) 
 
 Área 
 (mm) 
 Resistência 
 (Mpa) 
 Parâmetros da 
 NBR10834 (Mpa) 
 Individual Média Individual Média 
 
 L1A 
 
 824,00 
 
 115,00 
 
 7,17 
 
 
 
 4,82 
 
 
 
 ≥1,7 
 
 
 
 ≥ 2,0 
 
 L1C 
 
 232,00 
 
 115,00 
 
 2,01 
 
 L1E 
 
 670,00 
 
 115,00 
 
 5,82 
L1A
L1C
L1E
Média Resistêcia
Parêmetros Mpa 
Individual
58 
 
 
 Tabela 24. Teste de resistência à compressão axial - Tijolo com formulação F2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figura 44. Índice de resistência individual e média dos tijolos com formulação F2. 
 
 
 
 A Tabela 25 apresenta ensaio de resistência à compressão axial - tijolo com formulação F2 
e o gráfico da Figura 45 mostra o índice de resistência individual e média dos tijolos com 
formulação F2. 
 
 Tabela 25. Teste de resistência à compressão axial - Tijolo com formulação F3. 
 
 
 
 
 
 
 CP 
 (F2 ) 
 
 CARGA 
 (N) 
 
 Área 
 (mm) 
 Resistência 
 (Mpa) 
 Parâmetros da 
 NBR10834 (Mpa) 
 Individual Média Individual Média 
 
 L2A 
 
 586,00 
 
 115,00 
 
 5,01 
 
 
 
 7,29 
 
 
 
 ≥1,7 
 
 
 
 ≥ 2,0 
 
 L2D 
 
 980,00 
 
 115,00 
 
 8,52 
 
 L2E 
 
 958,00 
 
 115,00 
 
 8,33 
 
 CP 
 ( F3 ) 
 
 CARGA 
 (N) 
 
 Área 
 (mm) 
 Resistência 
 (Mpa) 
 Parâmetros da 
 NBR10834 (Mpa) 
 Individual Média Individual Média 
 
 L3A 
 
 1400,00 
 
 115,00 
 
 12,17 
 
 
 
 11,03 
 
 
 
 ≥ 1,7 
 
 
 
 ≥2,0 
 
 L3C 
 
 1200,00 
 
 115,00 
 
 10,43 
 
 L3E 
 
 1206,00 
 
 115,00 
 
 10,49 
L2A
L2D
L2E
Média Resistêcia
Parêmetros Mpa 
Individual
59 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figura 45. Índice de resistência individual e media dos tijolos com formulação F3. 
 
 
 Dos testes de resistência a compressão realizada em todos os tijolos selecionados apenas 
a amostra L3A sem fibra de coco teve resistência individual abaixo do mínimo exigido pela 
NBR – 10834 ficando abaixo de 1,7 MPa. A fibra de coco maduro melhorou consideravel-
mente os níveis de resistência comparados com os tijolos convencionais no mercado, aumen-
toua resistência proporcionalmente de acordo com as formulações aplicadas. 
 Os ensaios ocorreram após preparação dos corpos de prova que receberam capeamento de 
2 mm na superfície maior, os resultados obtidos sem fibra atingiu a média de: FS=1,75Mpa; 
nas com fibra de coco maduro: F1= 4,43Mpa; F2=6,47Mpa; F3=9,60MPa. 
 Os valores individuais e médios de compressão simples obtidos nas amostras de tijolos 
prismáticos com dimensões 110x230x55mm, confeccionados com solo arenoso e fibra de 
coco com adições proporcionais crescentes desses agregados, atingiu resultados acima das 
expectativas em termos resistência à compressão axial. 
 As tabelas e os gráficos apresentados demonstram a evolução dos resultados e confirma 
as possibilidades de uso dos tijolos de fibrocimento como material resistente em alvenaria de 
vedação principalmente nas moradias de baixa renda. 
O valor médio obtido para resistência à compressão simples dos tijolos de solo-
cimento está de acordo com o disposto pela norma NBR-08492, que estabelece como mínimo 
o valor médio de 2,0MPa, e nenhum valor inferior a 1,7MPa nos tijolos individuais. Ver tabe-
las 22, 23, 24 e 25. A Tabela 26 apresenta o teste de resistência à compressão nas quatro for-
mulações. 
 
 
L3A
L3C
L3E
Média Resistêcia
Parêmetros Mpa 
Individual
60 
 
 
 Tabela 26. Teste de resistência à compressão nas quatro formulações 
 
 
 
 
 
 
 
 
 4.1.3. Densidade. 
 
 Os ensaios realizados atenderam a NBR – 8491, visto que nos cálculos de desvio padrão 
foi possível observar nas variações de peso e medidas a retração e dilatação foi inferior a 1%, 
portanto as variações dimensionais são normais e aceitáveis. 
 As dimensões estabelecidas de 11cmx5cmx23mm variou em torno ± 3 mm, atendendo a 
Portaria Inmetro nº 127/2005. A Tabela 27 apresenta o desvio padrão do teste de densidade. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Teste de Resistência a Compressão 
 Formulação Carga (MPa) Área (m²) RC (MPa/m²) 
 FS 201,40 0,0013 1,75 
 F1 575,33 0,0013 4,43 
 F2 841,33 0,0013 6,47 
 F3 1.268,66 0,0013 9,60 
61 
 
 
 
 Tabela 27. Desvio padrão do teste de densidade. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 O desvio padrão do peso calculado nas quatro formulações atingiu valores com variação 
de 0,02% a 0,18% ficando abaixo 1,0%, antes da saturação em água potável. Observa-se que a 
variação de traços na mistura dos agregados não comprometeu o peso após a secagem, isso 
demonstra um equilíbrio na dosagem e compactação dos compósitos utilizados. 
 
 
 Desvio padrão das amostras – teste de densidade. 
Nº Lote (solocimento sem fibra de coco) Serie Peso Médio (g) Desvio Padrão (%) 
01 L1A, L1B, L1C, L1D, L1E 1ª 2,368 0,09 
02 L2A, L2B, L2C, L2D, L2E 2ª 2,352 0,05 
03 L3A, L3B, L3C, L3D, L3E 3ª 2,334 0,22 
 Lote (solocimento com fibra de coco) Serie Peso Médio (g) Desvio Padrão (%) 
04 L1A, L1B, L1C, L1D, L1E 1ª 1,956 0,11 
05 L1A, L1B, L1C, L1D, L1E 2ª 2,004 0,10 
06 L1A, L1B, L1C, L1D, L1E 3ª 1,968 0,09 
 Lote (solocimento com fibra de coco) Serie Peso Médio (g) Desvio Padrão (%) 
07 L2A, L2B, L2C, L2D, L2E 1ª 2,074 0,18 
08 L2A, L2B, L2C, L2D, L2E 2ª 2,033 0,10 
09 L2A, L2B, L2C, L2D, L2E 3ª 2,001 0,08 
 Lote (solocimento com fibra de coco) Serie Peso Médio (g) Desvio Padrão (%) 
10 L3A, L3B, L3C, L3D, L3E 1ª 2,209 0,02 
11 L3A, L3B, L3C, L3D, L3E 2ª 2,273 0,07 
12 L3A, L3B, L3C, L3D, L3E 3ª 2,370 0,14 
62 
 
 
T
e
m
p
e
ra
tu
ra
 (
g
ra
u
s
) 
C
°
Tempo (minuto) 
Gráfico de Condução de Calor
T1
T2
T1-T2
T
e
m
p
e
ra
tu
ra
 (
g
ra
u
s
) 
C
°
Tempo (minuto)
Gráfico de Condução de Calor
T1
T2
T1-T2
 
 4.1.4. Variação de temperatura. 
 
 Os testes de variação de temperatura atingiram uma estabilidade em T2, na 1ª amostra 
sem fibra de 99ºC em 6 horas, nas demais amostras com fibra: 37ºC em 7 horas, 85ºC em 6 
horas e 46ºC em 6 horas. Observa-se que as amostras com fibra de coco tiveram um isolamen-
to térmico maior que o tijolo convencional. Os gráficos abaixo mostram a variação de tempe-
ratura da seguinte forma: A Figura 46 mostra a variação de temperatura dos tijolos com for-
mulação FS; A Figura 47 mostra a variação de temperatura dos tijolos com formulação F1; A 
Figura 48 mostra a variação de temperatura dos tijolos com formulação F2; A Figura 49 mos-
tra a variação de temperatura dos tijolos com formulação F3. 
 
 
 
 
 
 
 
 
 
 
 
Figura 46. Variação de temperatura dos Figura 47. Variação de temperatura dos 
tijolos com formulação FS tijolos com formulação F1. 
Temperatura máxima: T1= 180ºC. Temperatura máxima: T1= 187ºC. 
Temperatura máxima: T2= 99º C. Temperatura máxima: T2= 37º C. 
Índice de transmissão de calor: 45%. Índice de transmissão de calor: 20%. 
Índice de retenção de calor 55% Índice de retenção de calor: 80% 
Estabilização; após 6 horas Estabilização: após 7 horas. 
 
 
 
 
 
63 
 
 
T
e
m
p
e
ra
tu
ra
 
(g
ra
u
s
) 
C
°
Tempo (minuto)
Gráfico de Condução de Calor
T1
T2
T1-T2
T
e
m
p
e
ra
tu
ra
 (
g
ra
u
s
) 
C
°
Tempo (minuto) 
Gráfico de Condução de Calor
T1
T2
T1-T2
 
 
 
 
 
 
 
 
 
 
 
Figura 48. Variação de temperatura dos Figura 49.Variação de temperatura dos 
 tijolos com formulação F2. tijolos com formulação F3. 
Temperatura máxima: T1= 196ºC. Temperatura máxima: T1 = 180ºC. 
Temperatura máxima: T2 = 85º C. Temperatura máxima: T2 = 46º C. 
Índice de transmissão de calor: 43%%. Índice de transmissão de calor: 25%. 
Índice de retenção de calor: 57%. Índice de retenção de calor: 75%. 
Estabilização: após 6,5 horas. Estabilização: após 6 horas. 
 
 As quatro amostras utilizadas de cada formulação foram analisadas em iguais condições 
de temperatura no ambiente do laboratório a 24ºC, tomando por base o tijolo sem fibra com 
isolamento térmico 55% do calor estável de 180ºC, o isolamento nas amostras com fibras a-
presentou resultados em T2 maiores: em L1B 80%, L2E 57% e L3D (com fibra) 75%. As 
temperaturas máximas de T1 estabilizadas na câmara de calor foram respectivamente 187ºC, 
197ºC e 180ºC. 
 É provável que a formulação F2 não tenha apresentado um melhor isolamento térmico 
em função da distribuição desigual das fibras na mistura dos agregados e na formulação F3, 
talvez seja necessário aumentar a quantidade de fibra de coco,portanto a titulo de confirma-
ção sugere-se que outros testes sejam realizados. A Tabela 28 apresenta os testes de variação 
de temperatura nas quatro formulações. 
 
 
 
64 
 
 
 Tabela 28. Testes de variação de temperatura das quatro formulações 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Teste de Variação de Temperatura 
 Formulação Temperatura T1 
 ˚C 
Temperatura T2 
 ˚C 
 V.T. 
 ˚C 
 FS 180 99 81 
 F1 187 37 150 
 F2 196 85 111 
 F3 180 46 134 
65 
 
 
 
 CAPITULO V – CONCLUSÕES E SUGESTÕES 
 
 Em consonância com os objetivos previstos e esperados para o presente mestrado são 
apresentadas as seguintes conclusões e sugestões: 
 1 - Os tijolos fabricados apresentam propriedades adequadas para ser utilizado como ele-
mento construtivo de vedação em parede de alvenaria. 
 2 - O tijolo com fibra de coco seca apresenta propriedades que comprovam as suas vanta-
gens e aceitação em relação aos tijolos convencionais. 
 3 - Os testes de resistência à compressão, absorção de água, massa especifica, variação de 
temperatura e densidade forneceram resultados importantes e satisfatórios para a comerciali-
zação do tijolo para construção civil. 
 4 - A facilidade na aquisição dos materiais compósitos do tijolo ecológico viabiliza a fabri-
cação em escala industrial ou em sistema de mutirão tendo em vista a simplicidade no proces-
so tecnológico de fabricação. 
 5 - A principal vantagem do tijolo ecológico é a função social. 
 6 - Em relação aos testes de compressão axial e absorção de água a melhor formulação foi 
 F3, nos testes de variação de temperatura e da massa especifica a melhor formulação foi F1. 
 7 - O custo estimado do tijolo ecológico é 50% menor que os tijolos convencionais. Tal 
confirmação necessita de uma análise de custo mais criteriosa. 
 8 - A fabricação dos tijolos de fibra de coco deve proporcionar frentes de trabalhos e solu-
cionar problemas ambientais com a redução de coco nos lixões e aterros sanitários através do 
processo de reciclagem. 
 9 - Considerando as variações ocorridas em alguns testes e medições sugerem-se novos 
testes em algumas etapas do processo. 
 10 - Para melhor comprovação na composição dos tijolos sugerem-se alterações na formu-
lação F2. 
 Todos os testes e procedimentos realizados atenderam as determinações das Normas Téc-
nicas da ABNT – Associação Brasileira de Normas Técnicas. 
 
 
66 
 
 
6 – FONTES BIBLIOGRÁFICAS 
 
1 - Castor JPA. Modelos para Aproveitamento, Técnico-Econômico do Endocarpo do Coco 
da Baía. Tese de Doutorado, USP, São Paulo/SP, 1985. 
 
2 - AGOPYAN, V. Materiais reforçados com fibras para a construção civil nos 
países em desenvolvimento: o uso de fibras vegetais. São Paulo, 1991. 204p. 
Tese (Livre-Docência) - Escola Politécnica, Universidade de São Paulo. 
 
3 - CARVALHO FILHO, A.C. Argamassa reforçada com fibras de sisal: 
comportamento mecânico à flexão. São Paulo, 1989. 161p. Dissertação (Mestrado) - 
Escola Politécnica, Universidade de São Paulo. 
 
4 - CORREA, C.A.; FONSECA, C. N. P.; NEVES, S.; RAZZINO, C.A.; HAGE Jr,.- 
Compósitos Termoplásticos com Madeira. Polímeros: Ciência e Tecnologia, v. 13, 
n.3, p. 154-165. 2003. 
 
5 - DACOSTA, L. P. E. Utilização de resíduos do processamento mecânico da 
madeira para a fabricação de chapas aglomeradas. 2004. 118p. Dissertação 
(Mestrado em Engenharia Florestal) Universidade Federal de Santa Maria, Santa 
Maria, 2004. 
 
6 - JOHN, V. M. Pesquisa e desenvolvimento de mercado para resíduos. In: 
WORKSHOP RECICLAGEM E REUTILIZAÇÃO DE RESÍDUOS COMO MATERIAIS 
DE CONSTRUÇÃO CIVIL, São Paulo, 1996. Anais. São Paulo, Antac, 1996. p.21- 
 
7 - KAEFER, L. F; Concreto de Alto Desempenho com Sílica de Casca de Arroz. 
Disponível em: < http://www.unilivre.org.br >. Acessoem: 15 ago.2002. 
 
8 - MANO, E. B. Introdução a Polímeros, Ed. Edgar Blucher. São Paulo. 111p, 1985. 
 
67 
 
 
9 - MORAES, et. al. Não se pode esconder o lixo debaixo do tapete: resíduos sólidos 
- problemas e soluções. Belo Horizonte: [s.n], 1994. 
 
9 - NEVES, C. J. A. Resistência Química de PE's a Vários Reagentes Químicos, 
Boletim Técnico nº13. OPP Petroquímica S.A., Agosto 1999. 
 
10 - PEDRAZZI, C. Qualidade de chapas de partículas de madeira aglomeradas com 
resíduos de uma indústria de celulose. 2005. 122p. Dissertação (Mestrado em 
Engenharia Florestal) – Universidade Federal de Santa Maria, Santa Maria, 2005. 
 
11 - SILVA, A. L. N. Preparação e Avaliação de Propriedades Térmicas, 
Morfológicas, Mecânicas e Reológicas de Misturas à Base de Polipropileno e 
Poli(etileno-co-1-octeno). Tese de Doutorado, Universidade Federal do Rio de 
Janeiro, Brasil 1999. 
 
12 - VALLE, C. E. Qualidade ambiental: o desafio de ser competitivo protegendo o meio 
ambiente. São Paulo, Pioneira, 1995. 
 
13 - VIANNA, W.L.; CORREA, C.A.; RAZZINO, C.A. Efeitos do tipo de poliestireno de 
alto impacto nas propriedades de compósitos termoplásticos com farinha de resíduo de 
madeira. Polímeros. v.14, n. 5, p. 339-348. 2004. 
 
14 - ANUÁRIO BRASILEIRO DO PLÁSTICO. Plástico moderno. São Paulo: 2000. 
 
15 - CARVALHO FILHO, A.C. Argamassa reforçada com fibras de sisal: 
comportamento mecânico à flexão. São Paulo, 1989. 161p. Dissertação (Mestrado) - 
Escola Politécnica, Universidade de São Paulo.n.3, p. 154-165. 2003. 
 
16 - COUTINHO, F. M. B., MELLO, I. L.; SANTA MARIA, L. C. Polietileno: principais 
tipos, propriedades e aplicações. Polímeros. v.13, n.1, p. 01-13, 2003. 
 
17 - LIBÓRIO, J; SOUZA, M. F. Projeto: Concreto de Alto Desempenho Com Sílica. 
68 
 
 
Ativa da Casca de Arroz. Disponível em: <http://www.icelpa.com.br/>. Acesso em: 
20 ago.2002. 
 
18 - ROQUE, C.A.L. Painéis de madeira aglomerada. Disponível 
em:<www.bndes.gov.br>. Acesso em: 20 set.1998. 
 
19 - ABCP. Fabricação de tijolos de solo-cimento com a utilização de prensas manuais. 
São Paulo: Associação Brasileira de Cimento Portland, 1985. 8p. BT-111 
 
20 - NBR-06457: Preparação de amostras de solo para ensaio normal de compactação e 
ensaio de caracterização. Rio de Janeiro: Associação Brasileira de Normas Técnicas, 
1984.3p. 
 
21 - NBR-0659: Solo - determinação do limite de liquidez. Rio de 
Janeiro: Associação Brasileira de Normas Técnicas, 1984. 3p. 
 
22 - NBR-07180: Solo - determinação do limite de plasticidade. Rio 
de Janeiro: Associação Brasileira de Normas Técnicas, 1984. 1p. 
 
23 - NBR-07181: Solo - análise granulométrica. Rio de Janeiro: 
Associação Brasileira de Normas Técnicas, 1984. 13p. 
 
24 - NBR-07182: Solo - ensaio normal de compactação. Rio de 
Janeiro: Associação Brasileira de Normas Técnicas, 1984. 2p. 
 
25 - NBR-08492: Solo - Cimento - tijolos maciços de solocimento: determinação da resis-
tência à compressão e da absorção de água. Rio de Janeiro: Associação Brasileira de Nor-
mas Técnicas, 1984. 5p. 
 
26 - NBR-12023: Solocimento - ensaio de compactação. Rio de Janeiro: Associação Brasi-
leira de Normas Técnicas, 1990. 9p. 
 
69 
 
 
27 - NBR-12024: Solo-Cimento - moldagem e cura de corpos-de-prova 
cilíndricos. Rio de Janeiro: Associação Brasileira de Normas Técnicas, 1990. 8p. 
 
28 - NBR-12025: Solo-Cimento - ensaio de compressão simples de corpos-de-prova cilín-
dricos. Rio de Janeiro: Associação Brasileira de Normas Técnicas, 1990. 3p. 
 
30 - BARBOSA, N.P; MATTONE, R. Estudo sobre tijolos de terra 
crua desenvolvidos na Universidade Federal da Paraíba e 
Politécnico di Torino. In: CONGRESSO DE ENGENHARIA 
CIVIL, II, 1996, Juiz deFora, MG. Anais, v.1, p. 21-30. 
 
31 - COLLANTES, M.C.; FRANCO, L.S; SABBATINI, F. H. Resistência de aderência ao 
cisalhamento da alvenaria estrutural não armada de blocos cerâmicos. In: 
INTERNATIONAL SEMINAR ON STRUCTURAL MASONRY FOR DEVE LOPING 
COUNTRIES, 5, 1994, Florianopolis, SC. Procee - dings...UFSC/University of 
Edinburgh/ANTAC, 1994. p. 204-213. 
 
32 - FRANCO, L.S. Desempenho da alvenaria à compressão. São Paulo: USP/ 
POLITÉCNICA, 1988. 14p. BT-20/88 
 
33 - GOBETTI, L.C.W.; WANNI, L.F. & CAMPAGNOLO, J.L. Análise experimental sobre 
tijolos cerâmicos maciços e furados fabricados em olarias situadas na Grande Porto Alegre. 
In: 
 
34 - NASCIMENTO, A.A.P.; HELENE, P. Estudos de fissuras em paredes de solo-cimento 
destinadas a edificações habitacionais. São Paulo: USP/POLITÉCNICA, 1988. 26 p. 
(BT/PCC-108). 
 
35 - PETRUCCI, E.G.R. Materiais de construção. 8. Ed. Rio de Janeiro: Globo, 1987.435p. 
 
36 - SABBATINI, F.H. Argamassa de assentamento para paredes de alvenaria resistente. 
São Paulo: USP/POLITÉCNICA, 1986. 26 p. (BT02/86) 
70 
 
 
7. ANEXOS. 
 
7.1. Planilha de ensaios de condução de calor. L1B com fibra de coco. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Ensaio de Condução de Calor 
 
Nº 
 Tempo (minuto) 
 
Temperatura graus C° Amostra (CP) 
 L1B (com fibra de coco) 
 Previsto 
 
Corrido 
 
 T1 
interna 
 T2 
externa 
T1-T2 
 
 Medição (horas) 
25/02/2011 
 
00 00 00 26 0 0 Inicio 11:44 
01 30 30 130 4 126 12:14 
02 60 60 145 9 136 12:44 
03 90 90 152 14 138 13:14 
04 120 120 159 22 137 13:44 
04 150 150 162 26 136 14:14 
05 180 180 165 30 135 14:44 
06 210 210 168 31 137 15:14 
07 240 240 170 32 138 15:44 
08 270 270 178 36 142 16:14 
09 300 300 184 37 150 16:44 
10 330 330 187 37 151 17:14 
11 360 360 187 36 151 17:44 
12 390 390 188 37 151 18:14 
13 420 420 187 37 150 18:44 
14 450 450 187 37 150 Término 19:14 
To
tal 
 450 450 187 37 150 7 horas 
71 
 
 
 
7.2. Planilha de ensaios de condução de calor. L3D com fibra de coco. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Ensaio de Condução de Calor 
 
Nº 
 Tempo (minuto) 
 
Temperatura 
 graus C° 
 Amostra (CP) 
 L3D (com fibra de coco) 
 Previsto 
 
Corrido 
 
 T1 
interna 
 T2 
externa 
 T1-T2 
 
 Medição (horas) 
26/02/2011 
00 00 00 25 00 0 Inicio 9:38 
01 30 30 138 06 132 10:08 
02 60 60 150 18 132 10:38 
03 90 90 154 28 126 11:08 
04 120 120 161 36 125 11:38 
04 150 150 165 39 126 12:08 
05 180 180 167 42 125 12:38 
06 210 210 171 43 128 13:08 
07 240 240 174 44 130 13:38 
08 270 270 177 45 132 14:08 
09 300 300 179 46 133 14:38 
10 330 330 180 46 134 15:08 
11 360 360 180 46 134 15:38 
12 390 390 180 46 134 Término 16:08 
Total 390 390 180 46 134 6 horas 
72 
 
 
 
7.3. Planilha de ensaios de condução de calor. L3D. sem fibra. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Ensaio de Condução de Calor 
 
Nº 
 Tempo (minuto) 
 
Temperatura graus C° Amostra (CP) 
 L3D (sem fibra de coco) 
 Previsto 
 
Corrido 
 
 T1 
interna 
 T2 
externa 
 T1-T2 
 
 Medição (horas) 
28/02/2011 
00 00 00 28 0 0 Inicio 11:50 
01 30 30 123 50 73 12:20 
02 60 60 146 70 76 12:50 
03 90 90 159 82 77 13:20 
04 120 120 166 88 78 13:50 
04 150 150 171 93 78 14:20 
05 180 180 174 96 78 14:50 
06 210 210 174 98 76 15:20 
07 240 240 176 98 78 15:50 
08 270 270 179 99 80 16:20 
09 300 300 180 99 81 16:50 
10 330 330 180 99 81 17:00 
11 360 360 180 99 81 17:00 
Total 360 360 180 99 81 6 horas 
73 
 
 
 
7.4. Planilha de ensaios de condução de calor. L2E com fibra. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Ensaio de Condução de Calor 
 
Nº 
 Tempo (minuto) 
 
 Temperatura graus C° Amostra (CP) 
 L2E (com fibra de coco) 
 Previsto 
 
Corrido 
 
 T1 
interna 
 T2 
externa 
T1-T2 
 
 Medição (horas) 
 01/03/2011 
00 00 00 26 26 00 Inicio 11:15 
01 30 30 128 37 91 11:45 
02 60 60 151 52 99 12:15 
03 90 90 164 57 107 12:45 
04 120 120 176 65 111 13:15 
04 150 150 180 67 115 13:45 
05 180 180 183 78 105 14:15 
06 210 210 187 81 106 14:45 
07 240 240 191 84 107 15:15 
08 270 270 192 85 107 15;45 
09 300 300 196 85 111 16:15 
10 330 330 196 85 111 16:45 
11 360 360 196 85 111 17:15 
Total 360 360 196 85 111 6 horas

Mais conteúdos dessa disciplina