Buscar

89965258 DIMENSIONAMENTO DE GALPAO EM ESTRUTURA METALICA 1

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 171 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 171 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 171 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

ALEX BUNESE JUK 
 
LEANDRO RUTHES GAROFALO 
 
 
 
 
 
 
 
 
 
 
 
 
 
DIMENSIONAMENTO DE GALPÃO EM ESTRUTURA METÁLICA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FLORIANÓPOLIS 
2008 
 
 
i 
ALEX BUNESE JUK 
 
LEANDRO RUTHES GAROFALO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DIMENSIONAMENTO DE GALPÃO EM ESTRUTURA METÁLICA 
 
 
Trabalho apresentado à Universidade 
Federal de Santa Catarina, como requisito 
para a conclusão do Curso de Graduação 
em Engenharia Civil. 
 
Orientador: Profº.: Moacir Henrique de 
Andrade Carqueja 
 
 
 
 
 
 
 
 
 
 
 
 
 
FLORIANÓPOLIS 
2008 
 
 
ii 
TERMO DE APROVAÇÃO 
 
 
 
 
ALEX BUNESE JUK 
 
LEANDRO RUTHES GAROFALO 
 
 
 
 
 
 
 
TITULO 
 
 
 
 
Monografia aprovada em 27/06/2008, como requisito parcial para a obtenção do 
grau de Bacharel em Engenharia Civil, Centro Tecnológico, Departamento de 
Engenharia Civil – Universidade Federal de Santa Catarina, pela seguinte banca 
examinadora: 
 
 
 
______________________________________ 
Moacir Henrique de A. Carqueja, Msc. - Orientador 
 
 
 
 
______________________________________ 
Raphael Barp Garcia, Msc. - Membro 
 
 
 
______________________________________ 
Ivo José Padaratz, Dr. - Membro 
 
 
 
______________________________________ 
Lia Caetano Bastos, Dra. - Coordenadora 
 
 
 
 
Florianópolis, 27 de junho de 2008. 
 
 
iii
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Este trabalho é integralmente dedicado 
aos nossos familiares, professores e 
amigos, que direta e indiretamente 
contribuíram para nossa formação 
acadêmica. 
 
 
iv 
AGRADECIMENTOS 
 
 
Agradeço a meus pais e avós, pela educação e exemplo de vida. 
Aos professores pelas horas de aprendizagem e aos amigos pelas horas de 
lazer. 
A Regiane Sbroglia pelos incentivos e paciência. 
Agradecimento especial ao amigo Alex e ao Professor Moacir pela 
possibilidade de realização deste trabalho. 
 
Leandro Ruthes Garofalo 
 
 
 
Agradeço ao grande Leandro pela luta e aprendizado que tivemos ao longo 
desse curso de graduação e em especial neste trabalho. 
Ao meu pai, mãe e irmã que estiveram juntos comigo em todas as fases da 
vida. 
Aos professores e amigos, meu muito obrigado. 
Agradeço especialmente ao professor Carqueja, que me ensinou o que é 
engenharia e deu rumo ao meu curso. 
 
Alex Bunese Juk 
 
 
v
RESUMO 
 
 
Neste trabalho são apresentados os procedimentos relacionados ao 
dimensionamento de estrutura metálica de um galpão com fins comerciais. A 
estrutura foi dimensionada de forma a suportar as solicitações de utilização, 
garantindo, durante sua vida útil, plenas condições de uso e integridade. Integram 
este trabalho pranchas de projeto, memórias de cálculo e considerações teóricas e 
práticas. 
 
 
Palavras-chave: Ventos. Estrutura metálica. Dimensionamento estrutural. 
 
 
vi 
LISTA DE FIGURAS 
 
 
Figura 1: Modelagem 3D....................................................................................................................................... 14 
Figura 2: Mapa de isopletas ................................................................................................................................... 26 
Figura 3: Pressão do vento perpendicular à cumeeira: vista superior .................................................................... 28 
Figura 4: Pressão do vento perpendicular à cumeeira: vista frontal ...................................................................... 29 
Figura 5: Considerações: vista frontal ................................................................................................................... 29 
Figura 6: Considerações: vista superior ................................................................................................................. 30 
Figura 7: Pressões nas paredes de fechamento ...................................................................................................... 31 
Figura 8: Pressões do vento paralelo à cumeeira ................................................................................................... 34 
Figura 9: Pressões do vento na cobertura .............................................................................................................. 34 
Figura 10: Bulbo de sucção ................................................................................................................................... 35 
Figura 11: Hipótese: peso próprio + sobrecarga .................................................................................................... 42 
Figura 12: Diagrama de esforços cortantes (kN) ................................................................................................... 43 
Figura 13: Diagrama de esforços normais (kN) .................................................................................................... 43 
Figura 14: Diagrama de momento fletor (kN.m) ................................................................................................... 44 
Figura 15: Deformada ........................................................................................................................................... 44 
Figura 16: Hipótese: peso próprio + vento frontal ................................................................................................. 45 
Figura 17: Diagrama de esforços normais (kN) .................................................................................................... 45 
Figura 18: Diagrama de esforços cortantes (kN) ................................................................................................... 46 
Figura 19: Diagrama de momento fletor (kNm) .................................................................................................... 46 
Figura 20: Deformada ........................................................................................................................................... 47 
Figura 21: Diagrama de numeração dos nós.......................................................................................................... 47 
Figura 22: Numeração das peças ........................................................................................................................... 77 
Figura 23: Viga 2 ................................................................................................................................................... 82 
Figura 24: Diagrama de momento fletor da viga 2 ................................................................................................ 82 
Figura 25: Diagrama de esforço normal da viga 2................................................................................................. 83 
Figura 26: Diagrama de esforço cortante da viga 2 ............................................................................................... 84 
Figura 27: Viga 3 ................................................................................................................................................... 88 
Figura 28: Diagrama de momento fletor da viga 3 ................................................................................................ 89 
Figura 29: Diagrama de esforço cortante da viga 3 ............................................................................................... 89 
Figura 30: Viga 5 ...................................................................................................................................................94 
Figura 31: Diagrama de momento fletor da viga 5. ............................................................................................... 95 
Figura 32: Diagrama de esforço normal da viga 5................................................................................................. 96 
Figura 33: Diagrama de esforço cortante da viga 5 ............................................................................................... 97 
Figura 34: Escada em perfil ................................................................................................................................. 100 
Figura 35: Numeração das peças ......................................................................................................................... 106 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
vii 
 
LISTA DE TABELAS 
 
 
 
Tabela 1: Esforços Normais (kN) .......................................................................................................................... 48 
Tabela 2: Esforços Cortantes (kN) ........................................................................................................................ 48 
Tabela 3: Momentos fletores (kN.m) .................................................................................................................... 49 
Tabela 4: Esforços Normais (kN), Cortantes (kN) e Momentos (kN.m) ............................................................... 49 
Tabela 5: Dimensões nominais mínimas de soldagem ........................................................................................ 147 
Tabela 6: Dimensões nominais máximas de soldagem ....................................................................................... 147 
Tabela 7: Ligações de vigas de duas cantoneiras de extremidades soldadas ....................................................... 148 
Tabela 8: valores dos esforços na base do pilar (cargas em kN e kN.m) ............................................................ 158 
Tabela 9: Limites do aço SAE 1020 .................................................................................................................... 159 
 
 
viii
SUMÁRIO 
 
 
1 INTRODUÇÃO ................................................................................................... 12 
2 OBJETIVOS ....................................................................................................... 13 
2.1 gerais .......................................................................................................... 13 
2.2 ESPECÍFICOS ............................................................................................ 13 
3 GENERALIDADES ............................................................................................ 14 
3.1 DADOS DO PROJETO ............................................................................... 14 
3.2 CARACTERÍSTICAS DO GALPÃO ............................................................ 14 
3.3 AÇO ............................................................................................................ 16 
3.3.1 Escolha do Aço .................................................................................. 16 
3.3.2 Perfis utilizados ................................................................................. 17 
3.4 Estrutura ..................................................................................................... 17 
3.5 Ligações ...................................................................................................... 18 
3.6 Juntas de dilatação ..................................................................................... 20 
3.7 LAJES ......................................................................................................... 20 
3.8 FUNDAÇÕES ............................................................................................. 21 
3.9 AÇÕES ....................................................................................................... 21 
3.9.1 Cargas permanentes ......................................................................... 22 
3.9.2 Cargas variáveis ................................................................................ 22 
3.9.2.1 Carga de vento ............................................................................. 22 
3.9.2.2 Sobrecarga ................................................................................... 23 
4 CARREGAMENTO APLICADO Á ESTRUTURA .............................................. 24 
4.1 Valores das cargas gravitacionais .............................................................. 25 
4.2 CARREGAMENTO DEVIDO ÀS AÇÕES DE VENTO ................................ 25 
4.2.1 Velocidade básica do vento .............................................................. 26 
4.2.2 Fator topográfico ............................................................................... 26 
4.2.3 Fator de rugosidade .......................................................................... 27 
4.2.4 Fator estatístico ................................................................................. 27 
4.2.5 Pressões devidas ao vento perpendicular à cumeeira ................... 28 
4.2.5.1 Pressões na cobertura .................................................................. 29 
4.2.5.1.1 Pressão na água de barlavento ................................................. 30 
4.2.5.1.2 Pressão na água de sotavento .................................................. 31 
4.2.5.2 Pressões nas paredes de fechamento ......................................... 31 
4.2.5.2.1 Pressão na parede “A”............................................................... 32 
4.2.5.2.2 Pressão na parede “B”............................................................... 32 
4.2.5.2.3 Pressões nas paredes paralelas à ação do vento ..................... 33 
4.2.6 Pressões devidas ao vento paralelo á cumeeira ............................. 33 
4.2.6.1 Pressões na cobertura .................................................................. 34 
4.2.6.1.1 Pressão na região de barlavento ............................................... 36 
4.2.6.1.2 Pressão na região de sotavento ................................................ 36 
4.2.6.2 Pressões nas paredes de fechamento ......................................... 36 
4.2.6.2.1 Pressões nas paredes paralelas à ação do vento - região A ..... 37 
4.2.6.2.2 Pressão na parede “C” .............................................................. 37 
4.2.6.2.3 Pressão na parede “D” .............................................................. 37 
5 ESFORÇOS ....................................................................................................... 38 
5.1 MÉTODO DE OBTENÇÃO DOS ESFORÇOS ........................................... 38 
5.2 CÁLCULO DAS ENVOLTÓRIAS ................................................................ 39 
 
 
ix 
5.2.1 Cálculo das envoltórias para vigas de cobertura .......................... 40 
5.2.2 Cálculo das envoltórias para vigas principais ................................ 41 
5.2.3 Cálculo das envoltórias para vigas em balanço ............................. 41 
6 DIMENSIONAMENTO ....................................................................................... 50 
6.1 DIMENSIONAMENTO DAS TERÇAS DA COBERTURA ........................... 50 
6.1.1 Carregamentos ................................................................................... 50 
6.1.1.1 Peso próprio ................................................................................. 50 
6.1.1.2 Sobrecarga ................................................................................... 51 
6.1.1.3 Vento ............................................................................................ 51 
6.1.2 Decomposição dos esforços segundo os eixos “X” e “Y” ............52 
6.1.2.1 Peso próprio ................................................................................. 52 
6.1.2.2 Sobrecarga ................................................................................... 52 
6.1.3 Combinações de carga ...................................................................... 52 
6.1.3.1 Hipótese de peso próprio + sobrecarga ........................................ 52 
6.1.3.2 Hipótese de peso próprio + vento ................................................. 52 
6.1.4 Dimensionamento .............................................................................. 53 
6.1.5 Flambagem local ................................................................................ 53 
6.1.6 Verificação para hipótese de peso próprio + sobrecarga .............. 54 
6.1.7 Verificação para hipótese de peso próprio + vento ........................ 55 
6.1.8 Verificação da flecha ......................................................................... 55 
6.2 DIMENSIONAMENTO DOS PILARES ........................................................ 56 
6.2.1 Carregamentos ................................................................................... 56 
6.2.2 Dimensionamento .............................................................................. 57 
6.2.3 Verificação da flecha ......................................................................... 60 
6.3 DIMENSIONAMENTO DAS VIGAS PRINCIPAIS ....................................... 61 
6.3.1 Carregamentos ................................................................................... 61 
6.3.2 Dimensionamento .............................................................................. 61 
6.3.3 Verificação da flecha ......................................................................... 63 
6.4 DIMENSIONAMENTO DAS VIGAS EM BALANÇO ................................... 64 
6.4.1 Carregamentos ................................................................................... 64 
6.4.2 Dimensionamento .............................................................................. 65 
6.5 DIMENSIONAMENTO DAS VIGAS SECUNDÁRIAS ................................. 67 
6.5.1 Carregamentos ................................................................................... 67 
6.5.2 Dimensionamento .............................................................................. 68 
6.6 DIMENSIONAMENTO DAS VIGAS DA COBERTURA ............................... 70 
6.6.1 Carregamentos ................................................................................... 70 
6.6.2 Dimensionamento .............................................................................. 70 
6.7 DIMENSIONAMENTO DOS TIRANTES DE CONTRAVENTAMENTO ...... 73 
6.7.1 Carregamentos ................................................................................... 73 
6.7.2 Dimensionamento .............................................................................. 74 
7 ESCADA METÁLICA EXTERNA ...................................................................... 76 
7.1 CONSIDERAÇÕES ..................................................................................... 76 
7.2 CARGAS ..................................................................................................... 76 
7.3 DIMENSIONAMENTO ................................................................................ 77 
7.3.1 Viga 1 .................................................................................................. 78 
7.3.2 Viga 2 .................................................................................................. 81 
7.3.3 Viga 3 .................................................................................................. 87 
7.3.4 Viga 5 .................................................................................................. 92 
7.3.5 Pilar 1 ................................................................................................ 100 
7.3.6 Pilar 3 ................................................................................................ 102 
 
 
x
7.4 RESULTADOS FINAIS ............................................................................. 104 
8 ESCADA METÁLICA interna .......................................................................... 105 
8.1 CONSIDERAÇÕES ................................................................................... 105 
8.2 CARGAS ................................................................................................... 105 
8.3 DIMENSIONAMENTO .............................................................................. 106 
8.3.1 Viga 1 ................................................................................................ 107 
8.3.2 Viga 2 ................................................................................................ 110 
8.3.3 Viga 3 ................................................................................................ 116 
8.3.4 Viga 5 ................................................................................................ 121 
8.3.5 Tirantes ............................................................................................. 129 
8.3.5.1 Dimensionamento ....................................................................... 129 
8.3.6 Viga c ................................................................................................ 131 
8.3.6.1 Carregamentos ........................................................................... 131 
8.3.6.2 Dimensionamento ....................................................................... 131 
8.3.7 Viga D ................................................................................................ 134 
8.3.7.1 Carregamentos ........................................................................... 134 
8.3.7.2 Dimensionamento ....................................................................... 135 
8.3.8 Viga principal B ................................................................................ 138 
8.3.8.1 Carregamentos ........................................................................... 138 
8.3.8.2 Dimensionamento ....................................................................... 139 
8.3.9 Viga principal C ................................................................................ 140 
8.3.9.1 Carregamentos ........................................................................... 140 
8.3.9.2 Dimensionamento ....................................................................... 141 
8.3.10 Viga secundaria B ............................................................................ 141 
8.3.10.1 Carregamentos ........................................................................... 141 
8.3.10.2 Dimensionamento ....................................................................... 143 
9 LIGAÇÕES ...................................................................................................... 146 
9.1 LIGAÇÕES ENTRE VIGAS PRINCIPAIS E PILARES .............................. 147 
9.1.1 Dimensionamento da cantoneira .................................................... 148 
9.2 LIGAÇÕES ENTRE VIGAS SECUNDÁRIAS E PILARES ........................ 149 
9.2.1 Dimensionamento da ligação ......................................................... 149 
9.2.1.1 Condição da verificação 01 (metal solda) ................................... 150 
9.2.1.2 Condição da verificação 02 (metal base) .................................... 150 
9.3 LIGAÇÕES ENTRE VIGAS DE COBERTURA E PILARES ...................... 151 
9.3.1 Verificação das condições de solda .............................................. 151 
9.3.1.1 Condição da verificação 01 (metal solda) ................................... 152 
9.3.1.2 Condição da verificação 02 (metal base) .................................... 152 
9.4 LIGAÇÕES ENTRE VIGAS EMBALANÇO E PILARES ........................... 152 
9.4.1 Verificação das condições de solda .............................................. 153 
9.4.1.1 Condição da verificação 01 (metal solda) ................................... 153 
9.4.1.2 Condição da verificação 02 (metal base) .................................... 154 
9.5 LIGAÇÕES ENTRE VIGAS DA COBERTURA ......................................... 154 
9.5.1 Verificação das condições de solda .............................................. 154 
9.5.1.1 Condição da verificação 01 (metal solda) ................................... 155 
9.5.1.2 Condição da verificação 02 (metal base) .................................... 155 
9.6 LIGAÇão ENTRE TIRANTE DE CONTRAVENTAMENTO E ESTRUTURA
 156 
9.6.1 Chapa de ligação ............................................................................. 156 
9.6.2 Verificação das condições de solda .............................................. 157 
9.6.2.1 Condição da verificação 01 (metal solda) ................................... 157 
 
 
xi 
9.6.2.2 Condição da verificação 02 (metal base) .................................... 157 
10 INTERFACE AÇO-CONCRETO ...................................................................... 158 
10.1 DIMENSIONAMENTO .............................................................................. 159 
10.1.1 Cisalhamento puro .......................................................................... 160 
10.1.2 Placa submetida à compressão ...................................................... 160 
10.1.3 Placa submetida à compressão e momento.................................. 162 
11 CONCLUSÃO .................................................................................................. 165 
12 Referências Bibliográfica .............................................................................. 167 
apêndices ............................................................................................................... 168 
apêndice A ............................................................................................................. 169 
 
 
 
 
 
 
 
 
 
 
12 
1 INTRODUÇÃO 
 
 
Este trabalho apresenta a memória de cálculo de dimensionamento da 
estrutura metálica de um galpão comercial para fins de escritório e lojas, de dois 
pavimentos, com área de 691,20 m². As peças que formam o galpão são perfis 
metálicos, sendo estes ligados entre si de modo a formar pórticos. Para garantir a 
estabilidade global da estrutura foram utilizados contraventamentos entre alguns 
pórticos e ligações rígidas, criando zonas de rigidez. Os pórticos ainda são unidos 
por vigas secundárias e lajes pré-moldadas de concreto, completando o conjunto. 
O galpão em questão se localiza muito próximo ao mar (atmosfera marinha), 
sendo um meio agressivo ao aço exigindo assim cuidados contra corrosão. 
No local onde será executado o edifício, existe hoje, um galpão executado em 
concreto pré-moldado, com paredes de alvenaria. Este projeto estrutural prevê a 
total retirada do mesmo e a reconstrução de fundações apropriadas ao novo galpão. 
O processo de dimensionamento está de acordo com as seguintes normas: 
* NBR-8800/86 – Projeto e Execução de Estruturas de Aço de Edifícios; 
* NBR-6123/88 – Forcas Devidas ao Vento em Edificações; 
* NBR-6118/03 – Projeto de Estruturas de Concreto - Procedimento; 
* NBR 6120/80 – Cargas para o Cálculo de Estruturas de Edificações; 
 
 
 
 
 
 
 
13 
2 OBJETIVOS 
 
2.1 GERAIS 
 
 
O presente trabalho tem por objetivo contribuir para o aprendizado, 
fornecendo conhecimento sobre este ramo da engenharia civil. 
No desenvolver deste trabalho, algumas das técnicas aprendidas ao longo do 
curso são utilizadas e detalhadas, fazendo com que este trabalho se torne um 
projeto estrutural metálico preciso, completo e de fácil compreensão. 
É também, objetivo deste, certificar os conhecimentos adquiridos no decorrer 
do curso, nas variadas disciplinas que fazem parte do conhecimento do engenheiro 
civil. 
 
2.2 ESPECÍFICOS 
 
- Dimensionar a estrutura de um galpão metálico para fins comerciais; 
- elaborar pranchas detalhadas o suficiente para a execução; 
- buscar soluções econômicas e estéticas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14 
 
3 GENERALIDADES 
 
 
3.1 DADOS DO PROJETO 
 
 
- COMPRIMENTO: 32,00m 
- LARGURA: 10,80m 
- ÁREA DA PROJEÇÃO: 345,60m² 
 
 
 Figura 1: Modelagem 3D 
 
 
3.2 CARACTERÍSTICAS DO GALPÃO 
 
 
O galpão em questão é formado por pórticos bi-dimensionais em estrutura 
metálica. Estes pórticos são ligados entre si por vigas. Os pilares tem comprimento 
de 8 metros. As vigas principais tem vão 10,70 metros de eixo a eixo de pilar 
enquanto as vigas secundárias tem 4,00 metros. 
 
 
15 
A estrutura de sustentação da cobertura é composta de vigas perfil “I”, 
inclinadas a 18° em relação a horizontal. A altura total do galpão é de 9,70 metros 
sendo que 1,70 metros são provenientes da inclinação das vigas da cobertura. 
As paredes de vedação são de alvenaria com blocos de cerâmica e 
argamassa para reboco. 
O plano de uso da estrutura prevê salas de escritórios e lojas comerciais de 
equipamentos náuticos. Entretanto, não se pode descartar a idéia do uso de parte 
da estrutura como oficina de embarcações, o que se fez pensar na escolha da 
sobrecarga para o dimensionamento, pois alguns anos após o término da 
construção, o uso da estrutura poderá sofrer mudanças, sendo que a mesma deverá 
permanecer íntegra. 
 
 
 
 
16 
3.3 AÇO 
 
 
3.3.1 Escolha do Aço 
 
 
A escolha do aço para estruturas metálicas, é feita em função de aspectos 
ligados ao ambiente em que as estruturas se localizam e da previsão do 
comportamento estrutural de suas partes, devido à geometria e aos esforços 
solicitantes. 
Se o local da obra for de atmosfera marítima ou de natureza agressiva, e se 
uma manutenção deficiente for prevista, deve-se escolher aços de alta resistência à 
corrosão. 
Para a execução da obra, foi escolhido o aço A 588 que, além de apresentar 
resistência elevada à corrosão, conforme a NBR-8800/86, apresenta 345 MPa para 
limite de escoamento e 485 MPa para limite de ruptura. 
O processo de fabricação deste aço lhe dá uma boa resistência à corrosão, o 
que é altamente recomendado para garantir a integridade das peças durante a sua 
vida útil. 
Um bom aço para a obra deve apresentar as seguintes características: 
1. Ter resistência mecânica compatível com a importância da obra, permitindo 
que se usem peças com dimensões adequadas ao projeto arquitetônico 
ou tornando possível uma diminuição proporcional da seção, para a 
redução do peso final da estrutura; 
2. Boa resistência à corrosão atmosférica. Este é um fator importante a 
considerar, porque os perfis metálicos, em geral, são pouco espessos. A 
utilização de seções mais finas pode significar vida útil mais curta da 
estrutura, a não ser que a redução da seção seja acompanhada por um 
aumento correspondente da resistência à corrosão do material, garantindo 
durabilidade; 
3. Boa resistência ao choque mecânico e o limite de fadiga. 
 
 
 
17 
É importante a observação de que a flecha das peças não é afetada pela 
resistência do aço, e sim pelo módulo de elasticidade, que de acordo com a NBR-
8800/86 é igual para todos os aços estruturais estabelecidos nesta norma. 
 
 
3.3.2 Perfis utilizados 
 
 
Por serem, em sua maioria, industrializados, os perfis estruturais em aço 
possuem dimensões definidas. Para estes perfis existem tabelas que informam as 
características geométricas necessárias para o dimensionamento, o que facilita 
muito a escolha do perfil mais adequado. De maneirageral pode-se dizer que os 
perfis de aço utilizados na construção de edifícios de andares múltiplos, são os 
mesmos empregados na construção de galpões e outras estruturas. 
Os perfis mais comuns em estruturas metálicas são: 
- Perfil “H” , muito utilizado para pilares, pois apresenta grande inércia nos 
dois eixos transversais ao eixo principal da peça; 
- Perfil “I” , muito utilizado para vigas, pois apresenta grande inércia em um só 
eixo transversal; 
- Perfil “U” , utilizado largamente para terças, escadas e acabamentos; 
-Perfil “L”, utilizado para construção de escadas, tesouras, contraventamentos 
e detalhes construtivos. 
 
 
3.4 ESTRUTURA 
 
 
A escolha do sistema estrutural que sustentará a edificação é de fundamental 
importância para o resultado final do conjunto da obra, no que tange aos aspectos 
de peso das estruturas, da facilidade de fabricação, da rapidez de montagem e, 
conseqüentemente, do custo final da estrutura. A estrutura e os elementos que a 
constituem devem ter resistência e rigidez permitindo adequada funcionalidade 
durante sua vida útil. 
 
 
18 
As peças estruturais são classificadas em função do tipo de cargas que nelas 
atuam, assim, pode-se resumidamente, explicitar o seguinte: 
- Elementos fletidos ou vigas: são elementos que suportam cargas 
transversais ao eixo principal; 
- Elementos comprimidos: elementos que recebem cargas axiais, por 
exemplo, pilares com ligações flexíveis absorvendo somente esforços 
axiais; 
- Elementos flexo-comprimidos: elementos recebendo cargas axiais 
juntamente com cargas perpendiculares ao eixo principal ou momento fletor, 
por exemplo, pilares, que suportam os esforços gravitacionais juntamente 
com os esforços de vento, que são perpendiculares aos seus eixos, gerando 
momento fletores em suas seções. 
 
Neste galpão utiliza-se o sistema de pórtico bidimensional com ligações 
rotuladas e rígidas, uma vez que o projeto arquitetônico permite o uso de 
contraventamentos por barras ou cabos, que são os mais econômicos e eficientes 
para enrijecer a estrutura. 
O sistema de pórtico com ligações flexíveis é composto por pilares e vigas 
ligadas nos nós de forma a não transmitir momentos à peça em seqüência. As 
ligações rígidas transferem momento à peça adjacente. Estas ligações podem ser 
feitas por solda ou parafusos. Neste trabalho utilizam-se ligações soldadas por 
apresentarem simplicidade de dimensionamento, detalhamento, ser comumente 
utilizadas e terem bom funcionamento estrutural. 
 
 
3.5 LIGAÇÕES 
 
 
Entende-se por ligação a união entre peças constituinte de um todo em 
qualquer tipo de estrutura. Em estruturas metálicas as ligações representam maior 
importância, pois delas depende a segurança da estrutura. É um item que exige 
cuidado. Além da segurança, também representa um papel importante na logística 
de execução. Uma ligação muito complexa pode ocasionar atrasos devido a erros e 
 
 
19 
acidentes. Outro fator importante é o econômico, pois a ligação pode se tornar muito 
dispendiosa. 
Os pontos mais comuns a serem unidos em estruturas metálicas são: VIGA-
VIGA, VIGA-PILAR, PILAR-PILAR e PILAR-FUNDAÇÃO. Estas uniões são 
realizadas de duas maneiras atualmente: através de soldas ou através de parafusos. 
As ligações soldadas oferecem as vantagens relacionadas abaixo segundo 
Bellei (1986): 
- economia de material, pois o uso da solda permite o aproveitamento total da 
seção (seção liquida = seção bruta); 
- não utilizam chapas de ligação tipo gusset, tornando a estrutura mais leve e, 
consequentemente mais barata; 
- facilidade de se realizar modificações nos desenhos das peças e corrigir 
erros durante a montagem a custos menores que as parafusadas; 
- demanda menor tempo de execução, menor tempo de detalhe e quantidade 
de peças. 
A solda especificada neste projeto é a solda do tipo filete, pois é a mais 
econômica para cargas de menor intensidade, devido a pouca preparação do 
material. 
Para se obter uma boa solda deve-se ficar atento a quatro passos: 
- Um bom projeto de junta, pois se pode chegar a soluções mais simples, 
eficientes e baratas. Uma solda mal feita pode ocasionar problemas como: 
trincas, porosidade, empenamento da peça, distorção, etc.; 
- Estabelecer bons procedimentos de soldagem; 
- Usar soldadores devidamente qualificados pelas normas; 
- Empregar pessoas bem treinadas e inspetores competentes. 
Neste trabalho utiliza-se o eletrodo E70XX com resistência mínima de 48,5 
kgf/cm². 
 
 
 
 
 
 
 
 
20 
3.6 JUNTAS DE DILATAÇÃO 
 
 
As juntas de dilatação têm a finalidade de reduzir os efeitos da variação 
térmica. A distância entre juntas de dilatação é de difícil avaliação e interfere 
diretamente na vida útil da estrutura. Para estruturas em aço, a AISC-LFRD 
apresenta como guia o que foi definido no FEDERAL CONSTRUCTION COUNCILS 
TECNICAL REPORT Nº. 65, EXPANSION JOINTS IN BUILDING ~ para variações 
acima de 20 graus e edificações em formato retangular, constituídos por pórticos, a 
distância máxima será de 120 m. Como o galpão em questão mede 32 metros de 
comprimento, foi descartado o uso de juntas de dilatação. 
 
 
3.7 LAJES 
 
 
Neste projeto adota-se o sistema de laje de vigotas pré-fabricada com tavelas 
de cerâmica, por serem utilizadas em larga escala nas construções, de rápida e 
barata execução. Neste trabalho foi necessário somente dos dados relacionados às 
características estruturais da laje, como a carga máxima aplicável, sistema de apoio 
nas vigas. 
As lajes não foram calculadas, pois, trata-se de peças pré-fabricadas. 
Contudo, o peso próprio da laje foi considerado, visto que a estrutura metálica deve 
suportá-lo. O valor foi obtido em catálogo do fabricante de pré-moldados. 
 
 
 
 
21 
3.8 FUNDAÇÕES 
 
 
As fundações têm a função de transmitir as cargas da estrutura para o solo, e 
são elementos importantes para o bom funcionamento da estrutura. O 
dimensionamento destas não foi realizado neste trabalho, pois, são peças de 
concreto, Fugindo do escopo do trabalho. 
Este projeto prevê a utilização das fundações calculadas em função de dados 
dos solos os quais não são disponíveis. Supõe-se, entretanto, que as mesmas 
sejam suficientes para suportar as cargas do edifício a ser executado. 
 
 
3.9 AÇÕES 
 
 
A obtenção do projeto mais econômico e eficiente depende da correta 
obtenção das cargas atuantes na estrutura e principalmente do correto 
dimensionamento. Para tal estima-se as principais ações e quais destas podem agir 
em simultaneidade, gerando os maiores esforços na estrutura, formando o que se 
chama de envoltória de esforços. Busca-se o dimensionamento a fim de fazer com 
que a estrutura resista a tais carregamentos, garantindo conforto e durabilidade. 
Uma má determinação das cargas atuantes pode gerar uma estrutura 
superdimensionada (consequentemente não-econômica) ou levar a estrutura ao 
colapso quando agem cargas de magnitudes maiores que as consideradas. 
As ações na estrutura podem ser classificadas em: 
-Cargas permanentes; 
-Cargas acidentais; 
-Cargas de vento; 
-Outras ações que geram esforços; como variação térmica, recalque de 
fundação, etc. 
 
Para obtenção das cargas deste trabalho foi seguido o que preconiza a NBR 
6120/80, e também o uso ao qual se destina a edificação. 
 
 
 
22 
3.9.1 Cargas permanentes 
 
 
Segundo a NBR-8800/86, são consideradas permanentes as seguintes 
cargas: 
- Peso próprio dos elementos da estrutura; 
- Peso de todos os elementos da construção permanentemente suportados 
pela estrutura, tais como pisos, paredes fixas, coberturas, forros, escadas, 
revestimentos, acabamentos, etc.; 
- Peso de instalações, acessórios e equipamentos permanentes, tais como 
tubulações de água,esgoto, águas pluviais, gás, dutos e cabos elétricos; 
- Quaisquer outras ações de caráter praticamente permanente ao longo da 
vida útil da estrutura. 
 
 
3.9.2 Cargas variáveis 
 
 
As cargas variáveis são aquelas que não são permanentes durante a 
utilização da edificação. Na estrutura em estudo, serão consideradas cargas 
variáveis, a sobrecarga e o vento. 
 
 
3.9.2.1 Carga de vento 
 
 
As solicitações na estrutura devido às ações de vento influem 
consideravelmente em estruturas altas, esbeltas ou leves. As edificações em 
estrutura metálica são consideradas leves em relação a um edifício similar 
construído em concreto armado. 
O formato da estrutura influi na intensidade das solicitações, isto é percebido 
pelos coeficientes de forma que estão na NBR-6123/88. 
 
 
23 
Outro fator que influi é a região onde se localiza a edificação, pois quanto 
menor for o numero de obstáculos para o vento maior será a intensidade de sua 
força aplicada à estrutura. 
 
 
3.9.2.2 Sobrecarga 
 
 
A carga de utilização estimada para a edificação foi considerada de 500 
kg/m², tendo em vista o uso final da estrutura, que funcionará como lojas de 
equipamentos náuticos e provavelmente terão de servir como depósito desses 
objetos. 
Um cálculo estimativo para esta carga pode ser dado da seguinte forma: 
Um motor marítimo (carga mais pesada e comumente encontrada) pode 
pesar 123 kg em uma caixa de 50 x 75 cm, conforme dados do fabricante Yanmar. 
Calcula-se então o numero de motores que cabem em 1 m²: 
67,2
75,05,0
²1²1
=
⋅
=
m
Amotor
m
motores 
Verificando o peso desses motores: 
²/32812367,2 mKg=⋅ 
Como neste cálculo não se inclui, por exemplo, peso da caixa, possibilidade 
de empilhar pequenos objetos sobre a caixa, etc. e principalmente por diferentes 
pesos para diferentes marcas de motor é prudente colocar um acréscimo nesta 
carga. 
Na falta de dados tabelados pela NBR-6120/80, optou-se pelo valor de 500 
kg/m² após conversa com pessoas ligadas ao ramo náutico e engenheiros civis, que 
garantiram ser este um bom valor, que favorece a segurança da estrutura, pois 
dificilmente será ultrapassado. 
 
 
 
 
24 
4 CARREGAMENTO APLICADO Á ESTRUTURA 
 
 
Após a avaliação dos valores das cargas e das ações de vento atuantes na 
edificação, obtêm-se os carregamentos aplicados aos pórticos, possibilitando o 
cálculo dos esforços devido a esses carregamentos, nos elementos estruturais. 
Assim têm-se quatro hipóteses de carga (Peso Próprio, Sobrecarga, Vento 
Perpendicular à Cumeeira, Vento Paralelo à cumeeira) para a realização das 
envoltórias que possibilitarão encontrar os maiores esforços que os elementos irão 
sofrer. 
As envoltórias são calculadas a partir da fórmula 1.1, recomendada pela NBR-
8800/86. A norma também fornece os valores dos coeficientes. 
 
 
Sd = ( ) ( )∑∑
=
++
n
j
jjqjqg QQG
2
11 ψγγγ (1.1) 
 
Onde: 
G = ações permanentes; 
Q 1= ação preponderante para efeito considerado; 
Q j= demais ações variáveis que atuam simultaneamente com a ação 
principal; 
gγ = coeficiente de majoração das ações permanentes; 
1qγ = coeficiente de majoração da ação variavel preponderante; 
qjγ = coeficiente de majoração das demais ações variáveis; 
jψ = fator de combinação. 
 
 
 
 
25 
4.1 VALORES DAS CARGAS GRAVITACIONAIS 
 
 
Os valores das cargas que supostamente a estrutura irá suportar foram 
obtidos em consulta à NBR-6120/80, catálogos de produtos a serem utilizados e 
estudo do uso final da estrutura. 
O estudo para obtenção de cargas, foi auxiliado por observações do projeto 
arquitetônico, onde foi previsto piso cerâmico, laje pré-moldada, forro de gesso, 
carga de parede e a sobrecarga que foi estimada prevendo os utensílios que 
poderão ser armazenados pelos proprietários da obra. 
Foram considerados os seguintes valores: 
- Peso próprio da estrutura metálica: 150 kg/m² para vigas principais e pilares, 
15 kg/m para as terças e 50 kg/m para as vigas de cobertura; 
- Peso próprio da laje: a laje solicita a estrutura com 150 kg/m². Este valor foi 
obtido pelo catálogo de fabricante de pré-moldados. (TATU pré-moldados); 
- Peso próprio da camada de regularização mais revestimento: resulta no 
valor de 80 kg/m²; 
- Peso próprio do forro: o peso arbitrado foi de 50 kg/m², como recomenda a 
norma NBR-6120/80; 
- Peso próprio das paredes de fechamento: fazendo a composição dos 
materiais utilizados na confecção de alvenarias chegou-se ao valor de 1460 
kg/m³. A espessura destas paredes é de 15 centímetros e sua altura 
considerada igual ao valor do pé-direito do pavimento da obra; 
- Sobrecarga: foi estimado o valor de 500 kg/m², em decorrência do uso 
previsto para a estrutura. 
 
 
4.2 CARREGAMENTO DEVIDO ÀS AÇÕES DE VENTO 
 
 
O vento tem grande influência no dimensionamento de estruturas metálicas. 
Assim tomou-se cuidado para o correto levantamento das magnitudes das 
solicitações provocadas pelo vento, levando-se em consideração as recomendações 
da NBR-6123/88. 
 
 
26 
4.2.1 Velocidade básica do vento 
 
 
De acordo com o mapa de isopletas, de autoria do professor Ivo José 
Padaratz, publicada na NBR6123/88, o vento com velocidade básica na região do 
projeto é de 43 m/s. 
Os passos para obtenção da pressão de projeto são prescritos na NBR 
6123/88. 
V = 43 m/s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 2: Mapa de isopletas 
Fonte: NBR 6123/88. Autor: Ivo José Padaratz 
 
 
 
 
 
 
 
 
4.2.2 Fator topográfico 
 
 
O fator topográfico é determinado conforme as variações do relevo onde a 
edificação está localizada. 
Observando-se as características da região e considerando-se a topografia 
plana, sendo então, o fator S1= 1,0. 
 
 
 
27 
4.2.3 Fator de rugosidade 
 
 
Para a determinação deste fator, a rugosidade do terreno foi dividida em cinco 
categorias e as dimensões da edificação em três classes. 
O galpão está voltado para o mar, portanto, está desprotegido do vento e 
suas dimensões implicam no uso do fator S2 = 1,09, pois sua altura é maior que 5 
metros, o que caracteriza CATEGORIA I, e seu comprimento igual a 32 metros, 
sendo então, CLASSE B. 
 
 
4.2.4 Fator estatístico 
 
 
Este fator considera o grau de segurança e a vida útil do prédio. Considera-se 
o fator S3 = 1,0,(GRUPO 3),pois o uso da edificação implica em alto fator de 
ocupação, visto que o mesmo se destina ao uso diário de atividades comerciais. 
Com estes coeficientes pode-se calcular a velocidade característica do vento. 
Cálculo da velocidade característica: 
 
Vk = Vo . S1 . S2 . S3 (NBR 6123/88) 
Vk = 43 . 1,0 . 1,09 . 1,0 
Vk = 46,87 m/s 
Esta será a velocidade característica utilizada no dimensionamento. 
 
Pressão Dinâmica 
Com a velocidade característica do vento, calcula-se a pressão dinâmica: 
qk = Vk² / 16 
 
qk = kgf/m² = 1,373 kN/m² 
 
 
 
 
30,137
16
87,46
16
22
==
Vk
 
 
28 
4.2.5 Pressões devidas ao vento perpendicular à cumeeira 
 
 
O vento é perpendicular à cumeeira quando o ângulo de incidência do vento 
em relação à cumeeira do telhado é de 90°. 
As pressões que ocorrem devidas a este vento dependem da velocidade 
característica do vento (já calculada) e dos coeficientes de pressão e forma da 
edificação. 
Os coeficientes de pressão e forma são obtidos através de tabelas fornecidas 
na NBR-6123/88, e dependem das dimensões da edificação; da sua altura em 
relação ao solo e da inclinação do telhado. 
 
 
Figura 3: Pressão do vento perpendicular à cumeeira: vista superior29 
 
Figura 4: Pressão do vento perpendicular à cumeeira: vista frontal 
 
 
4.2.5.1 Pressões na cobertura 
 
 
Coeficientes de pressão e forma externos para a edificação; 
 
- Altura Relativa = 74,0
80,10
0,8
==
b
h ; 0,5 < 0,74 < 3/2 
 
Figura 5: Considerações: vista frontal 
 
 
 
 
 
 
30 
- Proporção em planta = 296,2
80,10
0,32
>==
b
a
 
 
Figura 6: Considerações: vista superior 
 
 
- inclinação do telhado: 18°; 
- pressão dinâmica do Vento: 1,373 kN/m²; 
- Coeficiente de Pressão Interna: por se tratar de uma edificação em que as 
quatro paredes são consideradas igualmente impermeáveis, a NBR-6123/87 
recomenda que este coeficiente varie entre -0,3 ou 0,0. Adotamos o valor de 
-0,3, por ser o de maior influência. 
 
 
4.2.5.1.1 Pressão na água de barlavento 
 
 
A pressão exercida pelo vento nesta face é obtida multiplicando-se a pressão 
dinâmica do vento pelo coeficiente de pressão externa para telhados com duas 
águas em Edificações de Planta Retangular (Cpe), obtido na NBR-6123/88: 
- Coeficiente de Pressão Externa (Ce) = - 0,82 
 
Pb = Ce . q 
Pb = -0,82 . 1,373 = -1,126 kN/m² (o sinal negativo indica sucção) 
 
 
 
31 
4.2.5.1.2 Pressão na água de sotavento 
 
 
Adotando-se os mesmos procedimentos de cálculo utilizado na face de 
barlavento, obtêm-se o seguinte valor de pressão para esta água: 
-Coeficiente de Pressão Externa (Ce) = - 0,54 
 
Ps = Ce . q 
Ps = -0,54 . 1,373 = -0,741 kN/m² (o sinal negativo indica sucção) 
 
 
4.2.5.2 Pressões nas paredes de fechamento 
 
 
Os estudos aerodinâmicos consideram que os esforços provenientes do vento 
variam ao longo da parede no sentido vertical e também no sentido horizontal 
conforme esquema da figura 6, conforme é publicado em Bellei (1994). Por 
simplificação e por ser a favor da segurança, considera-se o esforço atuante como 
sendo o igual ao máximo em todas as partes do edifício. 
 
 
Figura 7: Pressões nas paredes de fechamento 
 
 
 
 
 
 
 
 
32 
Coeficientes de pressão e forma, externos para a edificação: 
 
- Altura Relativa = 74,0
80,10
0,8
==
b
h ; 0,5 < 0,74 < 3/2 
- Proporção em planta = 296,2
80,10
0,32
>==
b
a
 
- inclinação do telhado: 18% 
- pressão dinâmica do Vento: 1,373 kN/m² 
 
 
4.2.5.2.1 Pressão na parede “A” 
 
 
Assim como na cobertura, calcula-se a pressão exercida pelo vento nesta 
face, multiplicando-se a pressão dinâmica do vento pelo coeficiente de pressão 
externa para paredes de edificações de plantas retangular (Cpe), obtido na NBR-
6123/88: 
 
- Coeficiente de Pressão Externa (Ce) = + 0,70 
 
Pa= Ce . q 
Pa= +0,70 . 1,373 = +0,961kN/m² (o sinal positivo indica pressão) 
 
 
4.2.5.2.2 Pressão na parede “B” 
 
 
-Coeficiente de Pressão Externa (Ce) = -0,6 
 
Pb= Ce . q 
Pb = -0,6 . 1,373 = - 0,824 kN/m² (o sinal negativo indica sucção) 
 
 
 
 
 
33 
4.2.5.2.3 Pressões nas paredes paralelas à ação do vento 
 
 
A atuação do vento perpendicular à cumeeira gera pressões de sucção de 
igual intensidade nas paredes paralelas à ação do vento. Estas pressões 
apresentam uma variação na sua intensidade ao longo da estrutura, diminuindo de 
barlavento à sotavento da estrutura. 
Para o dimensionamento será utilizada apenas a pressão de maior 
intensidade, a favor da segurança. 
 
-Coeficiente de Pressão Externa (Ce) = -0,9 
 
Pcd = Ce . q 
Pcd = -0,9 . 1,373 = -1,236 kN/m² 
 
 
4.2.6 Pressões devidas ao vento paralelo á cumeeira 
 
 
O vento é paralelo à cumeeira quando o ângulo de incidência do vento em 
relação à mesma é de 0°. 
As pressões geradas pela ação do vento paralelo à cumeeira dependem, 
assim como no vento perpendicular à cumeeira, da velocidade característica do 
vento e dos coeficientes de pressão e forma, que são obtidos através de tabelas 
fornecidas pela NBR-6123/88. 
 
 
34 
 
Figura 8: Pressões do vento paralelo à cumeeira 
 
 
4.2.6.1 Pressões na cobertura 
 
 
 
Figura 9: Pressões do vento na cobertura 
 
 
Coeficientes de pressão e forma, externos para a edificação; 
 
- Altura Relativa = 74,0
80,10
0,8
==
b
h ; 0,5 < 0,74 < 3/2; 
- Proporção em planta = 296,2
80,10
0,32
>==
b
a ; 
- inclinação do telhado: 18%; 
- pressão dinâmica do Vento: 1,373 kN/m²; 
 
 
35 
- Coeficiente de Pressão Interna: por se tratar de uma edificação em que as 
quatro paredes são consideradas igualmente permeáveis, a NBR-6123/88 
recomenda que este coeficiente varie entre - 0,3 ou 0,0. Adota-se o valor de 
-0,3, por ser a favor da seguraça. 
 
As ações de maiores intensidades, para ventos incidindo paralelamente à 
cumeeira, ocorrem nas regiões de barlavento. Assim a NBR-6123/88 recomenda 
que, na incidência desses ventos, a segunda tesoura da cobertura tenha sua área 
de influência totalmente imersa no bulbo de sucção gerado pela ação do vento (ver 
figura 9). Sabe-se que o bulbo se estende ate uma distância de 2.h em relação à 
face de barlavento da edificação, como cita Bellei (1994). 
 
 2 . h = 2 . 8 = 16,00 m 
 
Como a distância entre pórticos é de 4,00 metros, a zona de influência atua 
integralmente na zona de abrangência da segunda tesoura, como recomenda a 
NBR-6123/88. 
 
 
 
Figura 10: Bulbo de sucção 
 
 
 
 
 
 
 
 
36 
4.2.6.1.1 Pressão na região de barlavento 
 
 
Para o dimensionamento da estrutura do pórtico utilizaram-se as pressões 
geradas pelo bulbo em toda a extensão do galpão, a favor da segurança. 
 
- Coeficiente de Pressão Externa (Ce) = -0,80 (NBR-6123/88) 
 
Pb = Ce . q 
Pb = -0,80 . 1,373 = -1,10 kN/m² (o sinal negativo indica sucção) 
 
 
4.2.6.1.2 Pressão na região de sotavento 
 
 
Adotando-se os mesmo procedimentos de cálculo utilizados na região de 
barlavento, obtêm-se o seguinte valor de pressão para: 
-Coeficiente de Pressão Externa (Ce) = - 0,20 
Ps= Ce . q 
Ps= -0,20 . 1,373 = -0,274 kN/m² (o sinal negativo indica sucção) 
 
 
4.2.6.2 Pressões nas paredes de fechamento 
 
 
Dados iniciais: 
Coeficientes de pressão e forma, externos para a edificação; 
- Altura Relativa = 74,0
80,10
0,8
==
b
h ; 0,5 < 0,74 < 3/2 
- Proporção em planta = 296,2
80,10
0,32
>==
b
a
 
- inclinação do telhado: 18° 
- pressão dinâmica do Vento: 1,373 kN/m² 
 
 
 
37 
As pressões nas paredes de fechamento devido à ação de ventos paralelos a 
cumeeira esta representado na figura 7. 
 
 
4.2.6.2.1 Pressões nas paredes paralelas à ação do vento - região A 
 
 
A ação do vento incidente paralelo à cumeeira gera pressões de sucção de 
igual intensidade nas paredes paralelas à ação do vento. Estas pressões 
apresentam uma variação na sua intensidade ao longo da estrutura, diminuindo de 
barlavento para sotavento da estrutura. 
Para o dimensionamento será utilizada apenas a pressão de maior 
intensidade, a favor da segurança. 
 
- Coeficiente de Pressão Externa (Ce) = -0,90 
Pab= Ce . q 
Pab= -0,90 . 1,373 = -1,236 kN/m² (sinal negativo indica sucção) 
 
 
4.2.6.2.2 Pressão na parede “C” 
 
 
-Coeficiente de Pressão Externa (Ce) = +0,70 
Pc= Ce . q 
Pc= +0,70 . 1,373 = + 0,961kN/m² (o sinal positivo indica pressão) 
 
 
4.2.6.2.3 Pressão na parede “D” 
 
 
- Coeficiente de Pressão Externa (Ce) = -0,30 
Pd= Ce . q 
Pd= -0,30 . 1,373 = -0,412 kN/m² (o sinal negativo indica sucção) 
 
 
 
 
38 
 
5 ESFORÇOS 
 
 
Nesta parte do processo de dimensionamento utiliza-se o programa FTOOL, 
desenvolvido para a obtenção de esforços que atuarão nas barras da estrutura. Os 
valores das cargas foram obtidoscom as envoltórias e seus coeficientes no capítulo 
anterior. 
 
 
5.1 MÉTODO DE OBTENÇÃO DOS ESFORÇOS 
 
 
Como as ações sobre as estruturas podem atuar simultaneamente ou não, 
devemos usar a equação da envoltória com os coeficientes de ponderação 
adequados para cada caso conforme prescreve a NBR-8800/86. Buscou-se, assim, 
os casos nos quais são gerados os maiores esforços na estrutura. 
 
Sd = ( ) ( )∑∑
=
++
n
j
jjqjqg QQG
2
11 ψγγγ (1.1) 
Os valores dos coeficientes usados para o cálculo dos esforços são 
explicitados abaixo: 
gγ = 1,3 ( peso próprio de estrutura metálica) 
1qγ = 1,5 (sobrecarga de uso da edificação) 
qjγ = 1,4 (demais cargas) 
ψ = 0,75 ( fator de combinação); 
 
 
As envoltórias possíveis, atuantes na laje, que carregarão as vigas principais 
são: 
- PP 
- PP + SC 
 
 
39 
Aqui não será considerado o esforço devido ao vento, porque ele causaria 
esforço axial nas vigas, porém, esse esforço é absorvido pela laje, ou seja, a laje 
oferece resistência. 
As envoltórias possíveis, atuantes na cobertura, são: 
- PP 
- PP + V 
- PP + SC 
 
A sobrecarga mínima na cobertura exigida pela NBR-8800/07, refere-se a 
uma pessoa realizando manutenção na cobertura. Essa situação é improvável 
durante a ocorrência do vento de 43m/s. 
 
 
5.2 CÁLCULO DAS ENVOLTÓRIAS 
 
 
Os valores dos carregamentos são: 
- Peso próprio das terças: 15 kgf/m; 
- Peso próprio das vigas principais: 150 kgf/m; 
- Peso próprio das vigas da cobertura: 50 kgf/m; 
- Peso próprio das vigas secundárias: 20kgf/m; 
- Peso próprio da laje: 150 kgf/m²; 
- Peso próprio do revestimento: 80 kfg/m²; 
- Peso próprio do forro: 50 kgf/m²; 
- Peso próprio de parede: 1460 kgf/m³ . 0,15 m . 4,00 m = 876 kgf/m; 
- Sobrecarga de cobertura: 25kgf/m²; 
- Sobrecarga das vigas principais: 500 kgf/m² 
- Força de vento (maior intensidade na cobertura) = -112,60 kgf/m². 
 
Para a realização do cálculo das envoltórias é preciso transformar os 
carregamentos que são dados por metro quadrado para carregamento por metro 
linear. 
 
 
 
 
40 
- Distância entre terças: 
d = 2,40 metros; 
 
- Distância entre vigas: 
d = 4,00 metros; 
 
Portanto: 
- Sobrecarga na cobertura = 25,0 . 2,40 = 60 kgf/m; 
- Força de vento = -112,60 . 2,40 = 270,24 kgf/m; 
- Peso da telha = 9,52 . 2,40 = 22,85 kgf/m; 
- Sobrecarga na viga principal = 500,0 . 4,0 = 2000,0 kgf/m; 
- Peso do revestimento = 80 . 4,0 = 320,0 kgf/m; 
- Peso do forro = 50,0 . 4,0 = 200,0 kgf/m; 
- Peso da laje = 150,0 .4,0 = 600,0 kgf/m 
 
Assim o carregamento devido ao peso próprio da viga de cobertura será: 
q = (22,85 + 15) . 4,0 = 151,40 kgf/m 
q = (151,40 / 2,40 ) cos 18° = 60,00 kfg/m 
 
Deve-se ser acrescido o peso próprio da viga: 
q = 60,00 + 50,0 =110,00 kgf/m 
 
 
 
5.2.1 Cálculo das envoltórias para vigas de cobertura 
 
 
- 1ª HIPÓTESE : Peso Próprio 
Sd = ( ) ( )∑∑
=
++
n
j
jjqjqg QQG
2
11 ψγγγ 
Sd = 110.3,1 = 143 kgf/m ⇒1,43 kN/m 
 
 
 
 
 
41 
-2ª HIPÓTESE : Peso Próprio + Sobrecarga 
Sd = ( ) ( )∑∑
=
++
n
j
jjqjqg QQG
2
11 ψγγγ 
Sd = 0,60.4,1)110.3,1( + =227kgf/m ⇒2,27 kN/m 
 
-3ª HIPÓTESE : Peso Próprio + Vento 
Sd = ( ) ( )∑∑
=
++
n
j
jjqjqg QQG
2
11 ψγγγ 
Sd = )24,270.(4,1)110.0,1( −+ =-268kgf/m ⇒ -2,68 kN/m 
 
 
5.2.2 Cálculo das envoltórias para vigas principais 
 
 
- 1ª HIPÓTESE : Peso Próprio 
Sd = ( ) ( )∑∑
=
++
n
j
jjqjqg QQG
2
11 ψγγγ 
Sd = ( )[ ]876600200320.4,1)150.3,1( ++++ = 2989,4 kgf/m ⇒29,90kN/m 
 
-2ª HIPÓTESE : Peso Próprio + Sobrecarga 
Sd = 
Sd= =5989,4kgf/m 59,90kN/m 
 
 
 
5.2.3 Cálculo das envoltórias para vigas em balanço 
 
-1ª HIPÓTESE : Peso Próprio + Sobrecarga 
 
 
42 
Sd = 
Sd= =4483kgf/m 44,83kN/m 
 
 
 
Os dados das hipóteses foram inseridos no programa ftool, de forma a se 
obter mais facilmente os esforços distribuídos por todo o pórtico, conforme os 
esquemas na seqüência: 
 
- HIPÓTESE : Peso Próprio + Sobrecarga 
 
 
Figura 11: Hipótese: peso próprio + sobrecarga 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43 
Diagrama de Esforços Cortantes: 
 
Figura 12: Diagrama de esforços cortantes (kN) 
 
 
Diagrama de Esforços Normais: 
 
Figura 13: Diagrama de esforços normais (kN) 
 
 
 
 
 
 
 
44 
Diagrama de Momento Fletor: 
 
Figura 14: Diagrama de momento fletor (kN.m) 
 
 
 
Deformada: 
 
Figura 15: Deformada 
 
 
 
 
45 
- HIPÓTESE: Peso Próprio + Vento frontal 
 
Figura 16: Hipótese: peso próprio + vento frontal 
 
 
Diagrama de Esforços Normais: 
 
Figura 17: Diagrama de esforços normais (kN) 
 
 
 
 
46 
Diagrama de Esforços Cortantes: 
 
Figura 18: Diagrama de esforços cortantes (kN) 
 
 
 
Diagrama de Momento Fletor: 
 
Figura 19: Diagrama de momento fletor (kNm) 
 
 
 
47 
 
Deformada
 
Figura 20: Deformada 
 
A seguir são apresentados, nas tabelas 1 a 4, os esforços máximos obtidos 
para cada tipo de elemento que compõem a estrutura. Serão com estes valores que 
se dimensionarão as peças. A estrutura foi numerada como segue abaixo para 
facilitar obtenção dos esforços: 
 
 
Figura 21: Diagrama de numeração dos nós 
 
 
 
 
48 
Tabela 1: Esforços Normais (kN) 
 
 Envoltória com vento frontal Envoltória pp e sc 
 Normal Normal 
1 -314,5 -350,8 
2 -306,7 -343,0 
3 13,8 -22,5 
4 -2,4 9,7 
5 21,6 -14,7 
6 13,2 -5,7 
7 13,3 -5,8 
8 12,0 -7,1 
9 11,8 -7,0 
10 17,3 -19,1 
11 -2,4 9,7 
12 9,5 -26,9 
13 0 0 
14 -382,7 -419,1 
15 -390,5 -426,9 
16 -2,4 9,7 
 
 
 
Tabela 2: Esforços Cortantes (kN) 
 
 Envoltória com vento frontal Envoltória pp e sc 
 Cortante Cortante 
1 4,5 8,4 
2 4,5 8,4 
3 6,9 -1,3 
4 320,5 320,5 
5 6,9 -1,3 
6 -12,9 8,8 
7 1,9 -4,1 
8 -6,1 0 
9 8,8 -12,9 
10 -6,9 1,3 
11 -320,5 -320,5 
12 -6,9 1,3 
13 71,7 71,7 
14 -4,5 -8,4 
15 -4,5 -8,4 
16 0 0 
 
 
 
 
 
 
 
 
 
49 
Tabela 3: Momentos fletores (kN.m) 
 
 Envoltória com vento frontal Envoltória pp e sc 
 Momento Momento 
1 23,1 28,3 
2 5,2 5,5 
3 5,2 5,5 
4 0 0 
5 2,4 0,9 
6 28,2 4,7 
7 2,6 8,5 
8 2,6 8,5 
9 5,1 27,9 
10 0,8 22,8 
11 0 0 
12 28,4 17,7 
13 57,4 57,4 
14 29,0 39,7 
15 11,1 28,3 
16 857,2 857,2 
 
 
 
 
 
 
 
Tabela 4: Esforços Normais (kN), Cortantes (kN) e Momentos (kN.m) 
 
 Envoltória com vento frontal Envoltória pp e sc 
 Normal Cortante Momento Normal Cortante Momento 
1 -314,5 4,5 23,1 -350,8 8,4 28,3 
2 -306,7 4,5 5,2 -343,0 8,4 5,5 
3 13,8 6,9 5,2 -22,5 -1,3 5,5 
4 -2,4 320,5 0 9,7 320,5 0 
5 21,6 6,9 2,4 -14,7 -1,3 0,9 
6 13,2 -12,9 28,2 -5,7 8,8 4,7 
7 13,3 1,9 2,6 -5,8 -4,1 8,5 
8 12,0 -6,1 2,6 -7,1 0 8,5 
9 11,8 8,8 5,1 -7,0 -12,9 27,9 
10 17,3 -6,9 0,8 -19,1 1,3 22,8 
11 -2,4 -320,5 0 9,7 -320,5 0 
12 9,5 -6,9 28,4 -26,9 1,3 17,7 
13 0 71,7 57,4 0 71,7 57,4 
14 -382,7 -4,5 29,0 -419,1 -8,4 39,7 
15 -390,5 -4,5 11,1 -426,9 -8,4 28,3 
16 -2,4 0 857,2 9,7 0 857,2 
 
 
 
 
 
50 
6 DIMENSIONAMENTO 
 
 
Este capítulo apresenta os procedimentos adotados para realizar o 
dimensionamento da estrutura. 
Com os carregamentos obtidos, atuantes na estrutura, pode-se dimensioná-la 
de modo que resista a estas solicitações, que são: o peso próprio da estrutura, 
sobrecarga e ações de vento. 
 
 
6.1 DIMENSIONAMENTO DAS TERÇAS DA COBERTURA 
 
 
O espaçamento entre as terças é regido pelo vão suportado pelas telhas a 
serem utilizados. Para este galpão será adotadaa telha da marca DANICA, modelo 
TERMOZIP-EPS, espaçadas com vão de 2,40 metros e com 9,52 kg/m² de peso 
próprio. 
 
 
6.1.1 Carregamentos 
 
 
6.1.1.1 Peso próprio 
 
 
Utilizando o esquema de área de influência obtemos o carregamento devido 
ao peso próprio das telhas: 
-Peso Próprio das telhas: 
PP telha = 9,52 kg/m² . 2,40 m = 228,48 N/m 
-Peso Próprio da Terça, perfil “U” enrijecido 127 x 50,0 x 4,75 mm 
PP terça = 7,78 kg/m ⇒ 77,8 N/m 
 
Portanto: 
qpp = 228,48 N/m + 77,8 N/m = 306,28 N/m 
 
 
 
51 
6.1.1.2 Sobrecarga 
 
 
A norma NBR-8800/07 recomenda uma sobrecarga mínima de 25 kgf/m², 
assim: 
qSC = 25 kgf/m² . 2,40 m = 60 kgf/m ⇒ 0,60 kN/m 
 
 
6.1.1.3 Vento 
 
 
-Vo = 43 m/s (Gráfico de Isopletas – Região de Florianópolis) 
- Fator topográfico (S1) = 1,0 (Terreno plano ou fracamente acidentado) 
- Fator de Rugosidade do terreno e Dimensões da Edificação (S2) = 1,09 
*Categoria I – o terreno esta em campo aberto, poucas edificações ao redor; 
*Classe B – Seu comprimento é de 32 metros, caracterizando esta classe; 
 
- Fator Estatístico (S3) = 1,0 ( Galpão comercial com alto fator de ocupação) 
Vk = Vo . S1 . S2 . S3 = 43 . 1,0 . 1,09 . 1,0 = 46,87 m/s 
qk = Vk² / 16 
qk = 30,137
16
87,46
16
22
==
Vk
 kgf/m² ⇒ 1,373 kN/m² 
 
Sabendo-se que a situação mais desfavorável ocorre na água de barlavento, 
com a incidência do vento perpendicular à cumeeira. 
Assim: 
-Coeficiente de Pressão Externa (Cpe) = -0,82 
-Coeficiente de Pressão Interna (Cpi) = -0,30 
 
Pb = Cpe . q Pb = -0,82 . 137,30 = -112,59 kgf/m² ⇒ -1,126 kN/m² 
qv = Pb . l qb = -112,59 . 2,40 = -270,21 kgf/m ⇒ -2,70 kN/m 
(o sinal negativo indica sucção) 
 
 
 
 
 
52 
6.1.2 Decomposição dos esforços segundo os eixos “X” e “Y” 
 
 
Inclinação da Terça = 18° 
 
 
6.1.2.1 Peso próprio 
 
 
qy = 0,306 . cos 18° = 0,291 kN / m 
qx = 0,306 . sen 18° = 0,095kN / m 
 
 
6.1.2.2 Sobrecarga 
 
 
qy = 0,6 . cos 18° = 0,571 kN / m 
qx = 0,6 . sen 18° = 0,185 kN / m 
 
 
6.1.3 Combinações de carga 
 
 
6.1.3.1 Hipótese de peso próprio + sobrecarga 
 
 
qy = 1,3 . 0,291 + 1,5 . 0,570 = 1,233 kN / m 
qx = 1,3 . 0,095 + 1,5 . 0,185 = 0,401 kN / m 
 
 
6.1.3.2 Hipótese de peso próprio + vento 
 
 
qy = 1,0 . 0,291 + 1,4 . (- 2,70) = - 3,49 kN/m ( o sinal negativo indica sucção) 
qx = 1,3 . 0,095 = 0,123 kN / m 
 
 
 
53 
6.1.4 Dimensionamento 
 
 
Para o dimensionamento utiliza-se o perfil “U” enrijecido 127 x 50 x 4,75 mm, 
produzido com o aço A 588, que apresenta as seguintes propriedades: 
A = 9,91 cm² 
h = 127,0 mm 
tw = 4,75 mm 
tf = 4,75 mm 
Wx = 35,5 cm³ 
Wy = 6,16 cm³ 
Ix = 225,9 cm4 
Iy = 22,66 cm4 
 
Onde: 
W: Módulo de resistência; 
A = Área da seção transversal do perfil; 
h = altura do perfil; 
tw = espessura da alma do perfil; 
tf = espessura da aba do perfil; 
I
 
= momento de inércia. 
 
 
6.1.5 Flambagem local 
 
 
As cargas aplicadas a perfis “U” devem passar pelo centro de cisalhamento 
para não provocarem torção. Considera-se que as fixações das telhas sobre as 
terças coincidem sobre o centro de cisalhamento, evitando esse tipo de problema, 
uma vez que é a própria telha oferece resistência no sentido de menor inércia do 
perfil U, evitando assim a torção da terça. 
Segunda a tabela 1 da NBR-8800/86 a flexão obliqua de perfis que não 
apresentem dois eixos de simetria exige que se restrinja ao regime elástico, portanto 
 
 
54 
devem pertencer à Classe 3, mesmo que os valores obtidos nos cálculos abaixo 
representem um perfil de uma classe 1 ou 2. 
 
λalma = fy
E
t
th
w
f 47,1
)2(
≤
⋅−
 
λalma = 36
345
20500047,174,24
75,4
)75,42(0,127
=<=
⋅−
 
λmesa = ==<
−
fy
E
t
tb
f
w 55,0 
λmesa = 53,9
75,4
75,4.250
=
−
< 13
345
20500055,0 =
 
 
O perfil se enquadra na classe 3. 
 
 
6.1.6 Verificação para hipótese de peso próprio + sobrecarga 
 
 
A NBR-8800/86 não cobre o dimensionamento de perfis metálicos de chapa 
fina dobrados a frio. Utilizou-se, portanto, o método das tensões admissíveis, que é 
o mais usual. 
Mx = 
8
.
2lq y
 = 
8
0,4.233,1 2
= 2,46 kN . m 
My = 8
.
2lqx
 = 
8
0,4.401,0 2
= 0,80 kN . m 
Fbx = =
Wx
Mx
 =
50,35
100.46,2
 6,93 kN / cm² 
Fby = =
Wy
My
 =
16,6
100.80,0
 12,99 kN / cm² 
 
A soma das tensões devidas à flexão segundo o eixo “x” e o eixo”y”, deverá 
ser menor do que 90% da tensão de escoamento do aço, conforme NBR-8800/86. 
Fbx + Fby ≤ 0,9fy 
6,93 + 12,99 = 19,92 ≤ 0,9 . 34,5 = 31,05 kN/cm² 
 
 
55 
 
Como: 
19,92 kN/cm² < 31,05 kN/cm² ⇒OK! 
 
6.1.7 Verificação para hipótese de peso próprio + vento 
 
 
Mx = 
8
.
2lq y
 = 
8
0,4.49,3 2
= 6,98 kN . m 
My = 8
.
2lqx
 = 
8
0,4.123,0 2
= 0,246 kN . m 
Fbx = =
Wx
Mx
 =
50,35
100.98,6
 19,66 kN / cm² 
Fby = =
Wy
My
 =
16,6
100.246,0
 4,00 kN / cm² 
 
A soma das tensões devidas à flexão segundo o eixo “x” e o eixo “y”, deverá 
ser menor do que 90% da tensão de escoamento do aço, segundo o professor 
Moacir Carqueja em sua apostila de aula. 
Fbx + Fby ≤ 0,9fy 
19,66 + 4,00 = 23,66 ≤ 0,9 . 34,5 = 31,05 kN/cm² 
 
Como: 
23,66 kN/cm² < 31,05 kN/cm² ⇒OK! 
 
 
6.1.8 Verificação da flecha 
 
 
A tabela 26 da NBR8800/86 recomenda que, para barras bi-apoiadas 
suportando elementos de cobertura elásticos, a deformação máxima para as ações 
de sobrecarga seja de: 
==
180
max
Lδ 2,22 cm 
 
 
 
56 
A flecha em uma viga bi-apoiada com carga uniformemente distribuída é dada 
por: 
=
⋅⋅
⋅⋅
=
IE
Lq
384
5 4δ 
 
Flecha máxima Eixo “x”: =
⋅⋅
⋅⋅
=
YIE
Lq
384
5 4δ =
⋅
⋅⋅
90,225.20500384
4000057,05 4 0,41 cm 
Flecha máxima Eixo “Y”: =
⋅⋅
⋅⋅
=
XIE
Lq
384
5 4δ =
⋅⋅
⋅⋅
66,2220500384
40000185,05 4 1,33 cm 
 
Com os resultados acima, pode-se confirmar que o perfil escolhido é 
adequado para suportar as cargas atuantes. 
 
 
6.2 DIMENSIONAMENTO DOS PILARES 
 
 
Diferentemente das terças, os esforços dos pilares foram obtidos pelo 
programa Ftool. O programa de análise estrutural apenas apresenta os esforços que 
surgem nas barras da estrutura uma vez carregada. 
Para o dimensionamento dos pilares optou-se pela escolha de perfil “H”, pois 
apresenta grande inércia em ambos os eixos, assim, garantindo maior rigidez tanto à 
peça quanto à estrutura. 
A estrutura contém dezoito pilares. Os pilares são responsáveis pela 
sustentação do telhado, das vigas e por suportar as ações de ventos. 
 
 
6.2.1 Carregamentos 
 
 
Pelos dados fornecidos pelo ftool, pode-se perceber que o elemento pilar está 
sofrendo flexo-compressão, pois está submetido simultaneamente a esforço de 
compressão axial e flexão. A flexão é devida ao engaste com o bloco de fundação, 
 
 
57 
que é necessário para garantir a estabilidade global da estrutura e devido a cargas 
de vento. 
Os esforços seccionais máximos são: 
- Nd = -426,9 kN (compressão) 
- Vd = 8,4 kN 
- Md = 39,7 kN.m = 3970kN.cm 
 
 
6.2.2 Dimensionamento 
 
 
Foi escolhido o perfil laminado CS 250 x 76, que apresenta as seguintes 
características geométricas: 
- d = 250mm 
- b = 250 mm 
- tf = 16,0 mm 
- tw = 8,0 mm 
- A = 97,4 cm² 
- Zy = 503,5 cm³ 
- ry = 6,54 cm 
- Zx = 1031 cm³ 
- rx = 10,9 cm 
- Ix = 11659 cm4 
- Iy = 4168 cm4 
 
Onde: 
Z = Módulo de resistência; 
A = Área da seção transversal do perfil; 
h = altura do perfil; 
tw = espessura da alma do perfil; 
tf = espessurada aba do perfil. 
I
 
= momento de inércia 
 
O aço do perfil é o A 588 com fy = 34,5 kN/cm² . 
 
 
58 
- FLEXO-COMPRESSAO 
 
- FLAMBAGEM LOCAL 
t
b
 mesa = 
0,16
0,8)5,0.250( −
 = 7,31 > 7 ⇒ indica classe 2. 
t
b
alma = ( )
0,8
0,16.2250 −
= 27,25 < 36 ⇒ indica classe 1. 
Sendo o perfil classe 2, não haverá flambagem local e o valor de Q é 1. 
Dessa forma o perfil suporta a plastificação, porém, não permite a redistribuição dos 
momentos. 
 
- ESBELTEZ DA PEÇA 
λ = 
yr
k l.
 = 
54,6
0,400.8,0
= 48,93 < 200 ⇒ a peça passou na verificação de 
esbeltez. 
_
λ = 
E
fQ y.
pi
λ
= 
205000
345.1
1415,3
93,48
= 0,64 
Através do valor de 
_
λ , obtém-se o valor de ρ na tabela fornecida pela NBR-
8800/86. 
 
ρ = 0,869 
 
- RESISTÊNCIA DE CÁLCULO 
A resistência de cálculo é dada multiplicando-se a resistência nominal por um 
coeficiente de minoração (φ ), que vale 0,9 segundo a NBR-8800/86. 
- Resistência Nominal ( Nn) a compressão: 
Nn = ρ . Q . fy . A 
Nn = 0,869 . 1 . 34,5 . 97,4 = 2920,10 kN 
 
- Resistência de Cálculo (NR) a compressão: 
NR = φ . Nn 
NR = 0,9 . 2920,10 =2628,09 kN 
 
 
 
59 
- Resistência Nominal (Mn) a flexão: 
Mn = Zy . fy 
Mn = 503,5 . 34,5 = 17370,75 kN.cm 
 
- Resistência de Cálculo (MR) a flexão: 
MR = φ . Mn 
MR = 0,9 . 17370,75 = 15633,68 kN.cm 
 
Supondo que o material permita fazer a hipótese de sobreposição de 
esforços, pode-se verificar o perfil fazendo com que a seguinte relação seja 
verdadeira: 
0,1≤+
R
d
R
d
M
M
N
N
 
!0,142,0
68,15633
3970
09,2628
9,426
ok⇒≤=+ 
 
- CISALHAMENTO 
O máximo valor do esforço de cisalhamento se dá no meio da alma e próximo 
dos apoios do elemento. 
Não havendo enrijecedores entre os apoios, a = l . Então, 
h
a
 = ( )0,16.2250
8000
−
= 36,69 > 3 ⇒ k = 5,34 
 
O índice de esbeltez da alma é 
wt
h
=λ = ( )
0,8
0,16.2250 −
= 27,25 
 
Os limites para comparação são pλ e rλ . O pλ é limite entre classe 2 e 
classe 3. O rλ é limite entre a classe 3 e classe 4. 
y
p f
Ek.08,1=λ = 
345
205000.34,508,1 = 60,84 
y
r f
Ek.49,1=λ = 
345
205000.34,549,1 = 83,93 
 
 
60 
 
Sendo pλλ < , a resistência nominal é da por: 
Vn = Vpl =0,6 . Aw . fy 
 
Sendo o perfil laminado, 
Aw = d . tw = ( )0,16.2250 − . 8,0 = 1744,0 mm²⇒ 17,44 cm² 
Vn = Vpl =0,6 . 17,44 . 34,5 = 361,01 kN 
 
A resistência de cálculo é dada por, 
VR = φ . Vn 
VR = 0,9 . 361,01 = 324,91 kN 
 
Sendo, 
Vd = 8,4 kN 
VR > Vd ⇒ ok! 
 
 
6.2.3 Verificação da flecha 
 
 
A NBR8800/86 recomenda que a flecha horizontal devido à carga de vento, 
em galpões em geral e edifícios de um pavimento, seja de no máximo de: 
300
max
L
=δ 
300
800
max =δ = 2,67 cm. 
 
A deformação é obtida inserindo-se os perfis corretos no Ftool juntamente 
com os carregamentos: 
δ =17,59 mm para o pilar da direita 
δ =22,13 mm para o pilar da esquerda 
 
Com os resultados acima, pode-se confirmar que o perfil escolhido é 
adequado para suportar as cargas atuantes. 
 
 
61 
 
6.3 DIMENSIONAMENTO DAS VIGAS PRINCIPAIS 
 
 
6.3.1 Carregamentos 
 
 
A viga principal está carregada com cargas perpendiculares ao seu eixo 
principal e também com cargas axiais provindas da ação do vento, assim 
caracterizando flexo-compressão. 
Os valores dos carregamentos foram tratados no capitulo 5. 
Os esforços seccionais máximos são: 
- Nd = 9,7 kN (compressão) 
- Vd = 320,5 kN 
- Md = 857,2 kN.m = 85720 kN.cm 
 
 
6.3.2 Dimensionamento 
 
 
Foi escolhido o perfil soldado CVS 450 x 130 que apresenta as seguintes 
características geométricas: 
- d = 450 mm 
- b = 300 mm 
- tf = 19,0 mm 
- tw = 12,5 mm 
- A = 165,5 cm² 
- Zx = 2987 cm³ 
- rx = 19,1 cm 
- Zy = 871,1 cm³ 
- ry = 7,19 cm 
-Ix = 60261 cm4 
-Iy = 8557 cm4 
 
O aço do perfil é o A 588 com fy = 34,5 kgf/cm² . 
 
 
62 
 
- RESISTENCIA A FLEXÃO 
 
- FLAMBAGEM LOCAL 
t
b
 mesa = 
0,19
5,12)5,0.300( −
 = 7,24 > 7 ⇒ indica classe 2. 
t
b
alma = ( )
5,12
0,19.2450 −
= 32,96 < 36 ⇒ indica classe 1. 
 
Sendo o perfil classe 2, não haverá flambagem local. 
O perfil também suporta a plastificação, porém, não permite a redistribuição 
dos momentos. 
 
- Resistência Nominal (Mn) a flexão: 
Mn = Zx . fy 
Mn = 2987 . 34,5 = 103051,5 kN.cm 
 
- Resistência de Cálculo (MR) a flexão: 
MR = φ . Mn 
MR = 0,9 . 103051,5 = 92746,35 kN.cm 
 
Sendo, 
Md = 85720,0 kN.cm 
MR > Md ⇒ OK! 
 
- CISALHAMENTO 
O máximo valor do esforço de cisalhamento se dá no meio da alma e próximo 
do apoio do elemento. 
Não havendo enrijecedores entre os apoios, a = l . Então, 
h
a
 = ( )0,19.2450
10700
−
= 25,97 > 3 ⇒ k = 5,34 
 
O índice de esbeltez da alma é 
 
 
63 
wt
h
=λ = ( )
5,12
0,19.2450 −
 = 32,96. 
Os limites para comparação são pλ e rλ . 
y
p f
Ek.08,1=λ = 
345
205000.34,508,1 = 60,84 
y
r f
Ek.49,1=λ = 
345
205000.34,549,1 = 83,93 
 
Sendo pλλ < , a resistência nominal é da por: 
Vn = Vpl =0,6 . Aw . fy 
 
Onde Aw é a área da alma do perfil 
Sendo o perfil laminado, 
Aw = d . tw = ( ) 5,12.0,19.2450 − = 5150,0 mm²⇒ 51,5cm² 
Vn = Vpl =0,6 . 51,5 . 34,5 = 1066,0 kN 
 
A resistência de cálculo é dada por, 
VR = φ . Vn 
VR = 0,9 . 1066,0 = 959,4 kN 
 
Sendo, 
VR > Vd ⇒ OK! 
 
 
6.3.3 Verificação da flecha 
 
 
A NBR8800/86 recomenda que a flecha vertical máxima, devido à sobrecarga, 
em barras bi-apoiadas de pisos, suportando construções e acabamentos sujeitos à 
fissuração, seja de no máximo de: 
360
max
L
=δ 
 
 
64 
360
1070
max =δ = 2,97 cm. 
A flecha em uma viga bi rotulada com carga uniformemente distribuída é dada 
por: 
XIE
Lq
⋅⋅
⋅
=
384
.5 4δ 
 
Flecha máxima Eixo “Y”: 
XIE
Lq
⋅⋅
⋅
=
384
.5 4δ = 
6026120500384
10702,0.5 4
⋅⋅
⋅
=δ =2,76cm 
 
Com os resultados acima, pode-se confirmar que o perfil escolhido é 
adequado para suportar as cargas atuantes. 
 
 
6.4 DIMENSIONAMENTO DAS VIGAS EM BALANÇO 
 
 
6.4.1 Carregamentos 
 
 
A viga em balanço está carregada somente com cargas perpendiculares ao 
seu eixo principal, caracterizando flexão. Há também os esforços de cisalhamento. 
Os valores dos carregamentos foram tratados no capitulo 5. 
Os esforços seccionais máximos são: 
- Nd = 0,0 kN 
- Vd = 71,7 kN 
- Md = 5740,0 kN.cm 
 
 
 
 
 
 
 
 
 
65 
 
6.4.2 Dimensionamento 
 
 
Foi escolhido o perfil laminado IP 200 x 22,4 que apresenta as seguintes 
características geométricas: 
- d = 200 mm 
- b = 100 mm 
- tf = 8,5 mm 
- tw = 5,6 mm 
- A = 28,5 cm² 
- Zx = 220,0 cm³ 
- rx = 8,26 cm 
- Zy = 43,9 cm³ 
- ry = 2,24 cm 
 
O aço do perfil é o A 588 com fy = 34,5 kgf/cm² . 
 
- FLAMBAGEM LOCAL 
t
b
 mesa =
5,8
6,5)5,0.100( −
 = 5,22 < 7 ⇒ indica classe 1. 
t
b
alma = ( )
6,5
5,8.2200 −
= 32,68 < 36 ⇒ indica classe 1. 
 
Sendo o perfil classe 1, não haverá flambagem local. 
O perfil também suporta a plastificação, e permite a redistribuição dos 
momentos. 
 
- MOMENTO RESISTENTE 
Para resistir aos esforços solicitantes a equação deverá ser verdadeira, 
Md ≤ MR = φ . Mn 
 
A resistência nominal do perfil escolhido é : 
Mn = Zx . fy 
 
 
66 
Mn = 220,0 . 34,5 = 7590 kN.cm 
 
Por fim, temos a resistência de cálculo multiplicando o valor de Mn pelo 
coeficiente minorador de resistência (φ ). 
MR = φ . Mn 
MR = 0,9 . 7590 = 6831,0 kN.cm 
 
Sendo, 
Md = 5740,0 kN.cm, 
Md < MR ⇒ OK!

Continue navegando