Buscar

Eletroquímica

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Eletroquímica
Introdução  
A Eletroquímica está presente em sua vida mais do imagina. Basta olhar para o relógio de parede, celulares, computadores e para seu próprio automóvel e lá está ela. A eletroquímica encontra-se disponível em pilhas, baterias, enfim, em todos estes dispositivos que dão vida a tantos utensílios que usamos em casa, no trabalho e nas horas de lazer. Este campo científico abrange todos os processos químicos que envolvam transferência de elétrons entre substâncias, logo, a transformação de energia química em energia elétrica. 
 A matéria é composta de partículas eletricamente carregadas, portanto não é surpreendente a possibilidade de converter energia elétrica em energia química e vice‐versa. A Eletroquímica trata do estudo da participação de energia elétrica em transformações químicas nas células eletrolíticas, assim como da conversão de energia química em energia elétrica nas células galvânica (nas pilhas ou baterias).   As células eletroquímicas podem ser células galvânicas ou células eletrolíticas. 
Na eletrólise, a passagem de uma quantidade suficiente de eletricidade através de uma solução produz‐se uma reação não‐espontânea, desta forma pode‐se produzir Na(s) e Cl2(g) a partir do NaCl(l). O sódio, o alumínio, o magnésio e o cobre, são metais obtidos industrialmente por eletrólise.   
Nas pilhas, através de uma reação espontânea, produz‐se uma quantidade de eletricidade capaz de acender uma lâmpada ou fazer funcionar um pequeno motor. É difícil imaginar algum aparato eletrônico que funcione sem uma pilha, desde um relógio de pulso, uma lanterna, uma calculadora e até os celulares. A indústria automobilística usa em larga escala baterias de chumbo. Não podemos deixar de mencionar a grande importância e ascensão das células de combustível, nas quais se produz energia elétrica e térmica a partir das reações eletroquímicas do hidrogênio com o oxigeno sem que ocorra a combustão, despontando como uma alternativa promissora para produzir energia a partir de fontes de energia limpa como rios, energia nuclear e energia solar. 
Deve‐se lembrar também de que algumas vezes, a formação de uma célula galvânica é a responsável pela corrosão observada na junção de dois metais diferentes.   Ainda podemos citar a importância da eletroquímica em pesquisas médicas e biomédicas, áreas da ciência cujos cientistas estudam as reações eletroquímicas em células vivas. Os bioquímicos estão interessados na natureza elétrica dos impulsos nervosos e especialmente de aqueles animais que, como a enguia, transformam energia química em elétrica com potência para dar um respeitável choque nos seus inimigos.  
Reações de oxirredução
Processos de oxidação e redução estão envolvidos no estudo da eletroquímica, onde as reações químicas ocorrem com o envolvimento de transferência de elétrons de um reagente para outro. Os dois processos ocorrem simultaneamente e não podem coexistir independentemente.
Frequentemente temos reações químicas que ocorrem com transferência de elétrons. Sendo, assim, chamadas de reações de oxidação e redução, ou simplesmente reações de oxirredução. Nesse tipo de reação, podemos agrupar os reagentes principais em dois grupos:
Dessa forma, podemos entender as reações de oxirredução como um processo dinâmico, onde uma espécie reduz a outra porque se oxida ao mesmo tempo em que só o faz porque a outra se reduz.
A espécie química que perde elétrons passa por uma oxidação e fica com o Nox (número de oxidação) maior. Já a espécie química que recebe esses elétrons passa por uma redução e o seu Nox fica menor.
Por exemplo, a seguir há uma reação desse tipo, na qual uma placa de zinco metálico (Zn0) é colocada em uma solução de sulfato de cobre (que possui cátions cobre II (Cu2+) dissolvidos). O zinco sofre oxidação, perdendo dois elétrons e transformando-se no cátion zinco (Zn2+), enquanto os íons cobre recebem esses elétrons e transformam-se em cobre metálico (Cu0). Veja a equação iônica desse processo:
Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s)
Assim, nos fenômenos eletroquímicos, sempre ocorrem reações semelhantes a essa. Porém, isso pode ocorrer de duas formas. Os dois campos de estudo principais da Eletroquímica são:
 Condução eletrolítica ou iônica  
Para que uma solução seja considerada condutora de eletricidade a mesma deve ser capaz de permitir que cargas internas se movam de um ponto a outro com a finalidade de completar o circuito.  
Nas soluções de eletrólitos, os portadores de carga têm liberdade de movimento, cada íon experimenta um movimento oposto à carga do eletrodo. Na condução eletrolítica ocorrem reações químicas de oxidação‐redução no instante em que os íons do líquido entram em contato com os eletrodos. Assim, ocorre uma oxidação do ânodo e uma redução do cátodo. Na condução eletrolítica, diferente da condução metálica, o aumento da temperatura geralmente aumenta a condutividade da solução. Isto porque nessas soluções, não apenas a energia cinética média dos íons aumenta com o aumento da temperatura, mas também a viscosidade do dissolvente diminui e, portanto os íons podem mover‐se com maior velocidade e melhorar a condutividade.  
A corrosão eletroquímica será o foco da publicação de hoje, visto que é a mais frequente na natureza. Para que haja a ocorrência de corrosão eletroquímica, é necessária a transferência de elétrons, isto é, a ocorrência de reações de oxirredução. Este tipo de corrosão desencadeia-se através da formação de uma pilha de corrosão eletroquímica, a qual contém obrigatoriamente quatro elementos:
Ânodo: Região em que ocorrem as reações de oxidação. Consequentemente, é a superfície na qual a corrosão ocorre.
Cátodo: Região em que ocorrem as reações de redução. Assim, a superfície torna-se protegida, não há corrosão.
Eletrólito: Solução condutora que envolve o cátodo e o ânodo.
Ligação elétrica entre cátodo e ânodo
O exemplo clássico das pilhas de corrosão eletroquímicas são as pilhas galvânicas, aquelas formadas entre dois metais diferentes, que costumamos estudar no ensino médio. Este tipo de pilha é ilustrado pela figura abaixo, representando os quatro elementos obrigatórios para a ocorrência das reações de oxirredução.
Corrosão galvânica 
A pilha de corrosão galvânica ocorre devido à diferença de potencial de eletrodo entre os diferentes metais, e é mais reativa quanto maior for esta diferença de potencial. Para prever qual metal será corroído e qual será reduzido, existem algumas tabelas práticas. A mais famosa delas é a tabela de potenciais de eletrodos padrão, para a qual foi convencionada a reação de redução do hidrogênio (2H+ + 2e- H2) como um potencial de valor zero. A partir de análise comparativa da tendência de outros metais em sofrerem redução, em relação ao hidrogênio, criou-se uma tabela que permite comparar todos eles e prever qual será mais “nobre”, termo utilizado quando um metal tem menor tendência a sofrer corrosão em relação a outro.
A limitação deste tipo de tabela é que ela foi construída para um determinado metal imerso em uma solução iônica em que os cátions são de mesma composição que o metal, por exemplo, o alumínio foi imerso em uma solução contendo Al3+, o lítio em uma solução de Li+ e assim por diante. Isto nem sempre é encontrado na natureza, tornando a tabela limitada. Para isso, existem tabelas avaliando a redução dos metais em ambientes que simulam o ambiente real em que estes se encontram, por exemplo a água do mar:
A formação de pilhas galvânicas é apenas uma das maneiras através da qual pode ser desencadeada a corrosão eletrolítica. Além destas, podem ocorrer por exemplo a formação de pilhas de ação local, ativo-passiva, concentração iônica diferencial ou aeração diferencial. Vejamos resumidamente como cada uma delas funciona:
Pilha de ação local: É causada em um mesmo metal devido a heterogeneidades em sua composição química, textura ou mesmo em suas tensões internas de uma região para outra. Assim, qualquer diferença no material, sejam poros, inclusões,trincas, diferentes estados de tensão, acabamento superficial ruim, diferença nos tamanhos de grão, tratamentos térmicos diferentes, materiais de épocas diferentes, entre outros, irá desencadear um processo de corrosão eletrolítica. Por esta razão, este tipo de pilha é o mais frequente na natureza.
Pilha ativo-passiva: Ocorre em materiais que formam películas apassivadoras, aquelas que são formadas por um processo corrosivo mas que tem ação protetora, recobrindo a superfície de um material metálico e impedindo que o processo corrosivo tenha continuidade. Como o material está protegido, se houver por alguma razão um dano na película em alguma região da superfície, esta região será extremamente suscetível à corrosão. Isto ocorrerá porque se formará uma pequena região anódica em meio à uma imensa região catódica, levando à primeira a uma forte corrosão localizada, característica das pilhas ativo-passivas.
Pilhas de concentração e de aeração diferencial: Ocorrem respectivamente em condições em que um metal é exposto a diferentes concentrações de seus próprios íons ou de oxigênio. A região mais concentrada em íons será protegida, enquanto a menos concentrada sofrerá corrosão. De forma semelhante, para o gás oxigênio também ficará protegida a região mais aerada e será atacada aquela com menor teor de oxigênio.
 Considerando a possibilidade quase certa de um metal apresentar uma ou mais dessas condições que favorecem o processo corrosivo, é possível compreender porque afinal estes materiais são tão suscetíveis à corrosão.
Pilhas
Toda pilha é um dispositivo em que ocorre uma reação espontânea de oxidorredução que gera corrente elétrica, que, por sua vez, é aproveitada para fazer algum equipamento funcionar.
As pilhas são sempre formadas por dois eletrodos e um eletrólito. O eletrodo positivo é chamado de cátodo e é onde ocorre a reação de redução. Já o eletrodo negativo é o ânodo e é onde ocorre a reação de oxidação. O eletrólito é também chamado de ponte salina e é a solução condutora de íons.
Para você entender como isso gera corrente elétrica, veja o caso de uma das primeiras pilhas, a pilha de Daniell, em que havia um recipiente com uma solução de sulfato de cobre (CuSO4(aq)) e, mergulhada nessa solução, estava uma placa de cobre. Em outro recipiente separado, havia uma solução de sulfato de zinco (ZnSO4(aq)) e uma placa de zinco mergulhada. As duas soluções foram ligadas por uma ponte salina, que era um tubo de vidro com uma solução de sulfato de potássio (K2SO4(aq)) com lã de vidro nas extremidades. Por fim, as duas placas foram interligados por um circuito externo, com uma lâmpada, cujo acendimento indicaria a passagem de corrente elétrica:
O que acontece é que o zinco tem maior tendência de se oxidar, isto é, de perder elétrons, por isso, o zinco metálico da lâmina funciona como o eletrodo negativo, o ânodo, onde ocorre a oxidação: Zn( s) ↔ Zn2+(aq) + 2 e-. Os elétrons perdidos pelo zinco são transportado pelo circuito externo até o cobre, gerando a corrente elétrica que liga a lâmpada. Os íons cobre da solução recebem os elétrons (reduzem-se) e transformam-se em cobre metálico que se deposita sobre a lâmina de cobre. Isso significa que esse é o eletrodo positivo, cátodo, onde ocorre a redução: Cu2+(aq) + 2 e- ↔ Cu( s).
As pilhas atuais possuem esse mesmo princípio de funcionamento, em que um metal doa elétrons para outro, por meio de uma solução condutora, e é produzida a corrente elétrica. A diferença é que as pilhas usadas hoje são secas, porque não utilizam como eletrólito uma solução líquida, como ocorre na pilha de Daniell.
Hoje existe uma diversidade muito grande de pilhas que são vendidas comercialmente. Entre elas as mais comuns são as pilhas ácidas (de Leclanché) e as pilhas alcalinas.
Ambas possuem o zinco como o eletrodo negativo; já como polo positivo, há uma barra de grafita instalada no meio da pilha envolvida por dióxido de manganês (MnO2), carvão em pó (C) e por uma pasta úmida. A diferença é que, na pilha ácida, usa-se na pasta úmida o cloreto de amônio (NH4Cl) e cloreto de zinco (ZnCl2) – sais de caráter ácido – além de água (H2O). Já na pilha alcalina, usa-se o hidróxido de potássio.
As pilhas de Leclanché são mais indicadas para equipamentos que requerem descargas leves e contínuas, como controle remoto, relógio de parede, rádio portátil e brinquedos. Já as pilhas alcalinas dispõem de 50 a 100% a mais de energia que uma pilha comum do mesmo tamanho, sendo indicadas para equipamentos que exigem descargas rápidas e mais intensas, tais como rádios, tocadores de CD/DVD, MP3 portáteis, lanternas, câmeras fotográficas digitais etc.
O primeiro dispositivo que aproveitou a energia das reações de oxirredução para gerar eletricidade foi a pilha de Alessandro Volta. Ela foi feita em 1800 e era formada por discos de metais diferentes, como zinco e cobre, intercalados e conectados por um fio condutor, além de um disco umedecido em salmoura.
Célula de Daniell
A pilha de Daniell era constituída por duas semicélulas ou semicelas eletroquímicas. A primeira era formada por uma placa de zinco mergulhada em uma solução de sulfato de zinco (ZnSO4) em um béquer, e a outra era formada por uma placa de cobre mergulhada em uma solução de sulfato de cobre II (CuSO4) em outro béquer. Essas duas placas eram interligadas por um fio de cobre condutor. Além disso, as duas soluções estavam conectadas por um tubo que continha uma solução eletrolítica, isto é, uma ponte salina.
O funcionamento dessa pilha ocorria da seguinte forma: Como mostra a fila de reatividade dos metais mostrada no texto Reações de simples troca, o zinco é mais reativo que o cobre, por isso, tem maior tendência de oxidar-se, isto é, de perder elétrons. Assim, a placa de zinco constitui o eletrodo negativo, chamado de ânodo, onde ocorre a seguinte reação de oxidação:
Semirreação no ânodo: Zn( s) ↔ Zn2+(aq) + 2 e-
Os elétrons perdidos pelo zinco são transferidos através do fio de cobre para a placa de cobre e depois para a solução de sulfato de cobre II. Os íons cobre (Cu2+) presentes na solução recebem esses elétrons e sofrem redução. Isso nos mostra que a placa de cobre constitui o eletrodo positivo, chamado de cátodo, onde ocorre a seguinte reação de redução:
Semirreação no cátodo: Cu2+(aq) + 2 e- ↔ Cu( s)
Somando essas duas semirreações, chegamos à reação global da pilha de Daniell:
Semirreação no ânodo: Zn( s) ↔ Zn2+(aq) + 2 e-
Semirreação no cátodo: Cu2+(aq) + 2 e- ↔ Cu( s)
Reação Global:  Zn( s) + Cu2+(aq) ↔ Zn2+(aq) + Cu( s)
Inicialmente a solução de CuSO4 era azul por causa da presença dos cátions Cu2+. Mas com a ocorrência da reação de redução desses cátions, sua concentração diminiu em solução e, consequentemente, a solução ficou incolor. Além disso, na reação de redução do cátion cobre, é formado cobre metálico Cu(s),que se deposita na placa de cobre. É por isso que depois do funcionamento da pilha de Daniell pode-se observar que a massa da placa de cobre está maior.
Por outro lado, a placa de zinco é corroída, pois o zinco metálico (Zn(s)) é transformado em íons zinco (Zn2+) que são transferidos para a solução de ZnSO4. Esses fenômenos podem ser observados na ilustração a seguir:
Pilha de Daniell depois de seu funcionamento
A convenção mundial de representação das pilhas é feita com base na seguinte ordem:
Convenção mundial de representação das pilhas
Assim, a representação da pilha de Daniell é dada por:
Zn / Zn2+// Cu2+ / Cu
Eletrodo-padrão de hidrogênio
Como sabemos o hidrogênio é um gás, e por isso utilizamos um eletrodo inerte, ou seja, um material não reativo que conduz corrente elétrica; normalmente esse eletrodo é a platina. O gás H2 é borbulhado em torno do eletrodo da platina que está mergulhado numa solução que contém íons H+. O hidrogênio fica detido na superfície da platina. Utilizando uma solução nas condições padrão (1 mol/L de H+, pressão do H2 a 1 atm e a 25°C), temos o eletrodo-padrão de hidrogênio. 
 Potencial padrão de um eletrodoPara superar-se a dificuldade de medir-se o potencial individual de um eletrodo, um eletrodo de potencial de redução desconhecido pode ser emparelhado com um eletrodo de referência de potencial conhecido. O referencial final é elétrodo padrão de hidrogênio (EPH) cujo potencial é definido para ser exatamente zero volts em todas as temperaturas.
Por exemplo, para medir-se o potencial padrão de redução de um eletrodo de zinco metálico, uma célula eletroquímica pode se construída com um eletrodo de zinco metálico (e.g. um eletrodo de zinco imerso em solução 1 M de ZnSO4) como ânodo. A semi-reação do ânodo é então:
Zn(s) → Zn2+(aq,1 M) + 2e-
A EPH é usada como cátodo e a célula como um todo pode ser descrita de forma simplificada como:
Zn(s) | Zn2+(aq,1 M) || 2H+(aq,1 M) | H2(g,1 bar)
Desde que a semi-reação de redução tem um potential de zero, a EMF da célula, Eocell, corresponde ao potencial do eletrodo de zinco metálico porque:
Eocell(0.76V)= Eo2H+(aq) → H2(g)(0V) + EoZn(s) → Zn2+(aq)(0.76V)
onde os o superescritos designam que estados padrão são empregados.
Já que potenciais de eletrodo são convencionalmente definidos como potenciais de redução, o sinal do potencial para o metal sendo oxidado deve ser invertido quando calculado o potencial total da célula. Note-se que os potenciais de eletrodo são independentes do número de elétrons transferidos e então os dois potenciais de elétrons podem ser simplesmente combinados para dar o potencial total da célula se diferentes números de elétrons estão envolvidos nas duas reações dos eletrodos (mais cuidado é requerido se combina-se potenciais de eletrodos para obter um terceiro potencial de eletrodo).
Equação de nernst
A ddp de uma pilha diminui ao passar do tempo, conforme diminui a concentração de cátions da solução do cátodo e aumenta a concentração de cátions na solução do ânodo.
O físico-alemão Walther Hermann Nernst (1864-1941) deduziu uma equação que permite calcular a variação do potencial de uma pilha em determinado instante a partir das concentrações em quantidade de matéria das soluções dos eletrodos:
Nessa equação, o significado de seus componentes é o seguinte: E0 é a força eletromotriz ou potencial normal da pilha correspondente (que se obtém a partir dos potenciais normais dos eletrodos); n é o número de elétrons transferidos; e Q é o quociente de reação. Esse quociente é o produto das concentrações das espécies ativas do segundomembro da reação de oxi-redução, elevadas a seus respectivos coeficientes estequiométricos (coeficientes que precedem as fórmulas na equação química equilibrada), e seu denominador é o produto análogo das concentrações dos reagentes. Quando a concentração que tem lugar em uma pilha alcança o estado de equilíbrio, a força eletromotriz da pilha torna-se zero, o quociente de reação coincide com a constante de equilíbrio e a equação de Nernst é, então, expressa da seguinte maneira:
Essa expressão possibilita o cálculo da constante de equilíbrio, tendo como base a força eletromotriz normal.
As principais aplicações práticas da equação de Nernst são a determinação eletroquímica do pH de uma solução e a determinação do produto de solubilidade de um sal.
Contexto sobre Eletrólise:
A eletrólise é um processo que separa os elementos químicos de um composto através do uso da electricidade. Resumindo, procede-se primeiro à decomposição (ionização ou dissociação) do composto em íons e, posteriormente, com a passagem de uma corrente contínua através destes íons, são obtidos os elementos químicos. Em muitos casos, dependendo da substância a ser eletrolisada e do meio em que ela ocorre, além de formar elementos ocorre também a formação de novos compostos. O processo da eletrólise é uma reação de oxirredução oposta àquela que ocorre numa célula galvânica, sendo, portanto, um fenômeno físico-químico não espontâneo. Na eletrólise, usa-se eletrodos inertes, ou seja sao compostos de elementos que não regem frente aos compostos que estão sendo eletrolizados, como o carbono grafite (grafita) ou platina. Para que a eletrólise ocorra deve haver corrente elétrica contínua e voltagem suficiente para provocar a eletrólise íons livres ( por fusão ou dissolução).
Eletrólise
É um processo não-espontâneo de descarga de íons, no qual, à custa de energia elétrica, se faz o cátion receber elétrons e o ânion doar elétrons, de modo que ambos fiquem com carga elétrica zero e com energia química acumulada.
Para que ocorra, é necessário que haja íons livres no sistema, o que só pode ser conseguido de duas maneiras:
pela fusão ( passagem para a fase líquida) de uma substância iônica;
pela dissociação ou pela ionização de certas substâncias em meio aquoso.
Eletrólise ígnea: ausência de água, é feita com a substância iônica na fase líquida (fundida). Ex.: eletrólise ígnea do cloreto de sódio.
Eletrólise em meio aquoso: considera-se não só os íons provenientes do soluto, mas também os da água, provenientes de sua ionização.
Leis da eletroquímica
1ª Lei de Faraday: A massa , m, de determinada substância, formada ou transformada pela eletrólise, é diretamente proporcional à carga elétrica, Q, que atravessa o sistema de um eletrodo a outro.
m = k’Q
k’ é uma constante de proporcionalidade.
Mas das leis físicas sabemos que,
Q = it ,
i é a corrente elétrica em ampères e t o tempo da passagem da corrente elétrica em segundos.
Deste modo, podemos escrever:
m = k’it
2ª Lei de Faraday: A massa, m, de determinada substância formada ou transformada por eletrólise, na passagem de uma carga elétrica, Q, entre os eletrodos, é diretamente proporcional ao equivalente-grama, E, dessa substância.
m = k”E
K” é uma constante de proporcionalidade.
Equação geral da eletrólise:
m = QE
96500
A eletrólise é usada industrialmente para produzir o alumínio e o magnésio, para extrair metais de seus sais, para preparar o cloro, o flúor e o hidróxido de sódio, e para refinar o cobre. Ela também é usada na eletrodeposição (galvanoplastia).- Galvanoplastia: é uma técnica que permite dar um revestimento metálico a uma peça, colocando-a como cátodo (pólo negativo) em um circuito de eletrólise. O processo da galvanoplastia consiste em um metal que, submergido em um substrato, transfere íons para outra superfície (metálica ou não), através da eletrólise. O objeto cuja superfície será revestida sofre a redução e deve estar ligado ao polo negativo, o cátodo, de uma fonte de energia, enquanto o metal que sofre a oxidação deve ser ligado a um polo positivo, o ânodo. No processo, as reações não são espontâneas. É necessário fornecer energia elétrica para que ocorra a deposição dos elétrons (eletrólise). Trata-se, então, de uma eletrodeposição na qual o objeto que recebe o revestimento metálico é ligado ao polo negativo de uma fonte de corrente contínua enquanto o metal que dá o revestimento é ligado ao polo positivo. Para que a película do metal se ligue a outro, além de uma perfeita limpeza e desengorduramento da superfície, é preciso conhecer suas naturezas e propriedades químicas.
A relação entre Eletroquímica e Termodinâmica: Energia livre, tensão de célula e equilíbrio 
Até aqui limitamos nossas discussões às pilhas contendo reagentes com concentrações unitárias. No laboratório, contudo, geralmente, os trabalhos não se restringem a essas condições e tem‐se verificado que a força eletromotriz (f.e.m.) das pilhas e o próprio sentido da reação podem ser controlados pelas concentrações do ponto de vista quantitativo.   O potencial ou tensão gerada por uma célula eletroquímica associada a uma reação de oxi‐redução dá uma idéia da espontaneidade das reações, também as grandezas termodinâmicas* entropia (S) e energia livre de Gibbs (G) darão idéia de espontaneidade das reações. Define‐se em termodinâmica, a entropia, S, como o aumento da desordem do sistema e a energia livre de Gibbs, G, como a quantificação da perda de energia quando um sistema realiza trabalho (W). A relação entre S e Gé dada pela relação:

Outros materiais