Buscar

186 sistemas esgoto sanitario

Esta é uma pré-visualização de arquivo. Entre para ver o arquivo original

Sistemas de esgotamento sanit�rio.pdf
Universidade Católica de Goiás
Departamento de Engenharia
Curso de Engenharia Civil
Disciplina de Saneamento Básico
NOTAS DE AULA – SANEAMENTO BÁSICO 
SISTEMA DE ESGOTAMENTO SANITÁRIO 
Autor: Professor João Bosco de Andrade.
Colaboração: Acadêmica Fernanda Posch Rios
Notas de aula da Discipl ina de 
Saneamento Básico do Curso de 
Engenharia Civi l da Universidade 
Catól ica de Goiás , ministrada pelo 
Professor João Bosco de Andrade.
 2006
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
S U M Á R I O
CAPÍTULO I - FOSSAS SÉPTICAS E SUMIDOUROS_________________________9
INTRODUÇÃO________________________________________________________________________________9
 HISTÓRICO________________________________________________________________________________10
CONCEITO__________________________________________________________________________________10
DEFINIÇÃO_________________________________________________________________________________10
FUNCIONAMENTO__________________________________________________________________________10
1.AFLUENTES A UMA FOSSA SÉPTICA___________________________________________________11
DIMENSIONAMENTO_______________________________________________________________________11
EFICIÊNCIA DAS FOSSAS SÉPTICAS______________________________________________________15
SUMIDOUROS_______________________________________________________________________________15
Teste para determinação de absorção de um solo____________________________________________16
CAPÍTULO II - SISTEMA COLETOR DE ESGOTOS SANITÁRIOS__________19
INTRODUÇÃO_______________________________________________________________________________19
PARTES CONSTITUTIVAS DE UM SISTEMA CONVENCIONAL DE ESGOTOS.__________19
 LOCALIZAÇÃO DOS COLETORES EM RELAÇÃO AO SISTEMA VIÁRIO.______________20
LOCALIZAÇÃO DOS INTERCEPTORES___________________________________________________21
Vias Sani tár ias ou Marginais .______________________________________________________________21
Fundos de Vale Tratados.__________________________________________________________________22
VAZÕES DE DIMENSIONAMENTO DO SISTEMA COLETOR_____________________________22
VELOCIDADE NOS COLETORES___________________________________________________________23
DECLIVIDADES DOS COLETORES________________________________________________________23
1.TRAÇADO DOS COLETORES_____________________________________________________________24
NUMERAÇÃO DOS COLETORES.__________________________________________________________28
POÇO DE VISITA.___________________________________________________________________________29
Definição _________________________________________________________________________________29
Disposição Construt iva_____________________________________________________________________29
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
2
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
Situações em que se empregam os poços de vis i ta . _________________________________________30
Terminal de Limpeza ( TL )________________________________________________________________32
Caracter ís t icas básicas dos poços de vis i ta_________________________________________________32
PROFUNDIDADE DOS COLETORES._______________________________________________________35
DETERMINAÇÃO DA PROFUNDIDADE MÍNIMA DOS COLETORES_____________________36
 CAPÍTULO III - CARACTERÍSTICAS DOS ESGOTOS______________________38
CONCEITO__________________________________________________________________________________38
CARACTERÍSTICAS FÍSICAS______________________________________________________________38
Matéria Sólida_____________________________________________________________________________39
CARACTERÍSTICAS QUÍMICAS___________________________________________________________40
Demanda Bioquímica de Oxigênio ( DBO )_________________________________________________41
CARACTERÍSTICAS BIOLÓGICAS_________________________________________________________41
ESGOTOS INDUSTRIAIS - EQUIVALENTE POPULACIONAL DAS INDÚSTRIAS_________41
CAPÍTULO IV - PROCESSOS E GRAUS DE TRATAMENTO DOS ESGOTOS 
SANITÁRIOS________________________________________________________________42
INTRODUÇÃO_______________________________________________________________________________42
OPERAÇÕES UNITÁRIAS___________________________________________________________________42
PROCESSOS DE TRATAMENTO____________________________________________________________43
Processos Fís icos__________________________________________________________________________43
Processos Químicos________________________________________________________________________44
Processos Biológicos_______________________________________________________________________44
CLASSIFICAÇÃO DOS PROCESSOS________________________________________________________44
Em Função da Remoção____________________________________________________________________44
Em Função da Eficiência das Unidades_____________________________________________________45
Grau de Tratamento________________________________________________________________________46
CAPÍTULO V - REMOÇÃO DE SÓLIDOS GROSSEIROS – TRATAMENTO 
PRELIMINAR________________________________________________________________48
CONCEITO__________________________________________________________________________________48
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
3
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
FINALIDADES______________________________________________________________________________48
CARACTERÍSTICAS DAS GRADES DE BARRAS___________________________________________49
Disposi t ivos de Retenção___________________________________________________________________49
Disposi t ivos de Remoção___________________________________________________________________49
Dest ino do Material Removido_____________________________________________________________50
FUNCIONAMENTO DAS GRADES__________________________________________________________50
Velocidade de Passagem dos Esgotos Entre as Barras_______________________________________50
Perdas de Carga____________________________________________________________________________50
Dimensionamento__________________________________________________________________________50
CAPÍTULO VI – REMOÇÃO DE SÓLIDOS SEDIMENTÁVEIS_______________51
CONCEITO__________________________________________________________________________________51
FINALIDADES DA REMOÇÃO DAS AREIAS_______________________________________________51
CARACTERÍSTICAS________________________________________________________________________51
DIMENSIONAMENTO_______________________________________________________________________52
DETALHES EXECUTIVOS__________________________________________________________________53
CAPÍTULO VII – LAGOAS DE ESTABILIZAÇÃO___________________________54
HISTÓRICO_________________________________________________________________________________54
CONCEITO E CLASSIFICAÇÃO____________________________________________________________54
EFICIÊNCIA E APICABILIDADE DAS LAGOAS___________________________________________55
FATORES QUE INTERFEREM NO PROCESSO_____________________________________________55
Fatores Incontroláveis_____________________________________________________________________55
Fatores Parcialmente Controláveis__________________________________________________________56
PARÂMETROS DE INTERESSE_____________________________________________________________56
PRINCÍPIOS DE DIMENSIONAMENTO E FUNCIONAMENTO____________________________58
LAGOAS ANAERÓBIAS___________________________________________________________________58
Princípios de Funcionamento_______________________________________________________________58
Parâmetros de Dimensionamento___________________________________________________________58
LAGOAS FACULTATIVAS________________________________________________________________59
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
4
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
Princípios de Funcionamento_______________________________________________________________59
Parâmetros de Dimensionamento___________________________________________________________59
Condições Locais__________________________________________________________________________59
CAPÍTULO VIII - LAGOAS DE ESTABILIZAÇÃO – ASPECTOS 
CONSTRUTIVOS____________________________________________________________60
INTRODUÇÃO_______________________________________________________________________________60
FASES DE IMPLANTAÇÃO_________________________________________________________________61
 Locação___________________________________________________________________________________62
Desmatamento_____________________________________________________________________________62
Raspagem__________________________________________________________________________________62
Escavação_________________________________________________________________________________62
Escari f icação______________________________________________________________________________63
Terraplenagem_____________________________________________________________________________63
Construção dos Diques_____________________________________________________________________63
DISPOSITIVOS DE ENTRADA______________________________________________________________69
DISPOSITIVOS DE SAÍDA__________________________________________________________________71
REFERÊNCIAS BIBLIOGRÁFICAS__________________________________________73
Í N D I C E D E T A B E L A S
TABELA 1 - PERÍODO DE DETENÇÃO (T) EM FUNÇÃO DA VAZÃO 
AFLUENTE (NC)_____________________________________________________________10
TABELA 2 - CONTRIBUIÇÕES UNITÁRIAS DE ESGOTOS ( C ) E DE LODO 
FRESCO ( LF ) POR TIPO DE PRÉDIOS E DE OCUPANTES________________13
TABELA 3 - TEMPO DE PENETRAÇÃO EM FUNÇÃO DO TIPO DE SOLO__16
TABELA 4 - DECLIVIDADES MÍNIMAS, CONFORME OS DIÂMETROS:___24
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
5
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
TABELA 5 - DIMENSÕES MÍNIMAS PARA CHAMINÉ E BALÃO DE POÇO 
DE VISITA.__________________________________________________________________30
TABELA 6 - TIPOS DE GRADE E ESPAÇAMENTO ENTRE AS BARRAS____49
TABELA 7 - DIMENSÕES DAS BARRAS_____________________________________49
TABELA 8 – TEMPO DE DETENÇÃO E EFICIÊNCIA DE REMOÇÃO DE 
DBO EM FUNÇÃO DA TEMPERATURA MÉDIA ____________________________58
TABELA 9 - TAXAS DE APLICAÇÃO, POPULAÇÃO EQUIVALENTE E 
TEMPOS DE DETENÇÃO EM LAGOAS FACULTATIVAS___________________59
Í N D I C E D E F I G U R A S
FIGURA 1 - DETALHES EXECUTIVOS DE UMA FOSSA SÉPTICA 
PRISMÁTICA RETANGULAR DE CÂMARA ÚNICA_________________________14
FIGURA 2 - CURVA DA CAPACIDADE DE ABSORÇÃO DE UM SOLO______16
FIGURA 3 - DETALHES CONSTRUTIVOS DO SUMIDOURO________________17
FIGURA 4 - ESQUEMA COM EXISTÊNCIA DE DOIS SUMIDOUROS_______18
FIGURA 5 - LOCALIZAÇÃO DAS REDES COLETORAS_____________________21
FIGURA 6 - LOCALIZAÇÃO DE INTERCEPTORES EM FUNDOS DE VALE 
CANALIZADOS______________________________________________________________21
FIGURA 7 - LOCALIZAÇÃO DE INTERCEPTORES EM FUNDOS DE VALE 
TRATADOS__________________________________________________________________22
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
6
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
FIGURA 8 - TIPO 1 DE TRAÇADO DE COLETORES________________________25
FIGURA 9 - TIPO 2 DE TRAÇADO DE COLETORES________________________26
FIGURA 10 - TIPO 3 DE TRAÇADO DE COLETORES_______________________27
FIGURA 11 - PARTES CONSTITUTIVAS DO SISTEMA CONVENCIONAL__28
FIGURA 12 – DETALHE DO FUNDO DO POÇO_____________________________29
FIGURA 13 – DETALHES DOS DEGRAUS DO P.V.__________________________30
FIGURA 14 - MODELO DE TAMPÃO DE FO FO PARA POÇO DE VISITA__31
FIGURA 15 - DETALHE DO TERMINAL DE LIMPEZA TL__________________32
FIGURA 16 - POÇO DE VISITA EM ANÉIS PRÉ MOLDADOS_______________33
FIGURA 17 – PEÇA DE TRANSIÇÃO EM CONCRETO ARMADO___________33
FIGURA 18 - DETALHE DA CHEGADA DO COLETOR AO PV______________34
FIGURA 19 - PROFUNDIDADES MAIS CONVENIENTES____________________35
FIGURA 20 - POSIÇÃO DO COLETOR EM PRFIL___________________________36
FIGURA 21 - COMPOSIÇÃO DOS SÓLIDOS NOS ESGOTOS________________39
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
7
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
FIGURA 22 - ESQUEMA GERAL DE SISTEMA DE ABASTECIMENTO DE 
ÁGUA E TRATAMENTO DE ESGOTO_______________________________________47
FIGURA 23 - DESLOCAMENTO DAS PARTÍCULAS NO INTERIOR DO 
DESARENADOR_____________________________________________________________52
FIGURA 24 - DETALHE DA CAIXA DE AREIA DE LIMPEZA MANUAL____53
FIGURA 25 - LAGOA DE ESTABILIZAÇÃO_________________________________57
FIGURA 26 - DETALHE DO DIQUE: FOLGA E COROAMENTO____________64
FIGURA 27 - DETALHE DO DIQUE: LINHA DE INFILTRAÇÃO____________64
FIGURA 28 - DETALHE DO DIQUE: BERMA________________________________65
FIGURA 29 - DETALHE DO DIQUE: EMPRÉTIMO LATERAL______________66
FIGURA 30 - DETALHE DO DIQUE: DESLOCAMENTO DO DIQUE_________66
FIGURA 31 - DETALHE DO DIQUE: VALA CENTRAL______________________67
FIGURA 32 - DETALHE DO DIQUE: DRENO - FILTRO_____________________68
FIGURA 33 – DETALHE DO FILTRO COM MATERIAL DE 
GRANULOMETRIA DECRESCENTE________________________________________68
FIGURA 34 - LAJE DE PEDRAS PARA PROTEÇÃO DOS TALUDES CONTRA 
IMPACTO DAS ONDAS______________________________________________________69
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
8
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
FIGURA 35 - ENTRADA TIPO SUBMERSO HORIZONTAL__________________70
FIGURA 36 - ENTRADA TIPO SUBMERSO COM JATO POR BAIXO________70
FIGURA 37 - ENTRADA TIPO SUBMERSO COM JATO PARA CIMA_______71
FIGURA 38 - ENTRADA TIPO ESTRUTURA ELEVADA_____________________71
FIGURA 39 - ESQUEMA DE SAÍDA DAS LAGOAS__________________________72
CAPÍTULO I - FOSSAS SÉPTICAS E SUMIDOUROS
INTRODUÇÃO
A ausência, total ou parcial, de serviços públicos de esgotos nas áreas urbanas, suburbanas 
e rurais exige a implantação de algum meio de disposição dos esgotos locais, com o objetivo de 
evitar a contaminação do solo e da água. Em sua maioria, estas regiões são também desprovidas 
de sistemas de abastecimento de
água e utilizam poços como fonte de suprimento de água, razão 
pela qual se exige extremo cuidado para não ocorrer a contaminação da água do subsolo, utilizada 
para consumo.
A defasagem na implantação dos serviços públicos, em relação ao crescimento 
populacional, principalmente nos países em desenvolvimento, permite prever que as soluções 
individuais para o destino dos esgotos serão ampla e permanentemente adotadas.
A fossa séptica é uma solução técnica e econômica para dispor os esgotos de residências 
isoladas.
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
9
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
 HISTÓRICO
As fossas sépticas evoluíram a partir das fossas Mouras. Em 1860, Jean Louis Mouras 
construiu um tanque de alvenaria, para o qual encaminhou, antes de destiná-los a um sumidouro, 
os esgotos de uma habitação, na cidade de Vesoul, na França. Este tanque aberto, 12 anos mais 
tarde, não apresentava acumulada a quantidade de sólidos para lá endereçada, em função da 
redução apresentada no efluente líquido do tanque, em termos de teor de sólidos. Essa fossa foi 
patenteada em 1881.
CONCEITO
Fossa séptica é um dispositivo de tratamento de esgotos destinado a receber a contribuição 
de um ou mais domicílios, dando aos esgotos um grau de tratamento compatível com a sua 
simplicidade e custo.
DEFINIÇÃO
Fossas sépticas são câmaras construídas em alvenaria de tijolos ou pré-moldadas em 
concreto, e destinadas a reter os despejos por um período de tempo especificamente estabelecido, 
de forma a permitir a sedimentação dos sólidos e a retenção do material graxo (gorduras e óleos) 
contidos nos esgotos, transformando-os, bioquimicamente, em substâncias mais simples e 
estáveis.
FUNCIONAMENTO
Em uma fossa séptica ocorrem os seguintes fenômenos:
• retenção dos esgotos - o esgoto é retido na fossa por um período de tempo 
racionalmente estabelecido, que pode variar de 12 a 24 horas, dependendo das 
contribuições afluentes. (Tabela 1).
• sedimentação e flotação - 60 a 70% dos sólidos em suspensão nos esgotos sedimentam-
se formando o “lodo”. Óleos, graxas e gorduras ficam flutuando formando a “escuma”.
• digestão anaeróbia - ambos, lodo e escuma são atacados por bactérias anaeróbias, 
provocando a destruição, total ou parcial, da matéria orgânica e de organismos 
patogênicos.
• redução de volume - do fenômeno anterior, digestão anaeróbia, resultam gases, líquidos 
e acentuada redução de volume dos sólidos retidos e digeridos, que adquirem 
características estáveis capazes de permitir que o efluente líquido das fossas sépticas possa 
ser disposto em melhores condições de segurança.
Tabe la 1 - Pe r íod o de de te nç ão ( T) e m fu nç ão da vaz ão af lu en te ( NC )
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
10
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
Contribuição (NC) l itros /dia Período de detenção
Horas Dias
Até 6000 24 1
6000 a 7000 21 0,875
7000 a 8000 19 0,790
8000 a 9000 18 0,750
9000 a 10000 17 0,710
1000 a 11000 16 0,670
11000 a 12000 15 0,625
12000 a 13000 14 0,585
13000 a 14000 13 0,540
Acima de 14000 12 0,500
1. AFLUENTES A UMA FOSSA SÉPTICA
A fossa séptica pode receber todos os despejos domésticos de cozinhas, lavanderias domiciliares, 
lavatórios, vasos sanitários, bidês, banheiras, chuveiros, mictórios, ralos de pisos. É conveniente a 
insta1ação de dispositivos retentores de óleos, gorduras e graxas (caixas de gordura) evitando o aporte 
de quantidades expressivas desses materiais nas fossas.
DIMENSIONAMENTO
O volume útil de uma fossa séptica é calculado da seguinte forma:
1 2 3V = V + V + V , em que: 
• V1 = volume decorrente do tempo de detenção - 1V = N C T⋅ ⋅ ;
• V2 = volume decorrente do período de armazenamento do lodo - 2 1 AV = N R L T⋅ ⋅ ⋅ ;
• V3 = volume correspondente ao lodo em digestão - 3 2 DV = N R L T⋅ ⋅ ⋅ .
Os termos adotados correspondem aos seguintes valores:
• N = número de usuários da fossa;
• C = contribuição unitária de esgotos em litros/pessoa/dia (Tabela 2);
• T = tempo de detenção, em dias (Tabela 1);
• R1= coeficiente de redução de volume do lodo armazenado (R1 = 0,25); 
• L = contribuição de lodo, em litros/pessoa/dia (Tabela 2);
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
11
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
• TA = período de armazenamento do lodo, (período entre limpezas consecutivas da 
fossa), ( considerado TA = 300 dias );
• R2 = coeficiente de redução de volume do lodo em processo de digestão (R2 = 0,50);
• TD = tempo de digestão do lodo, ( considerado TD = 50 dias ).
Substituindo os termos, na fórmula obtém-se:
1 2 3
( ) (0, 25 300 ) (0,50 50 )
100
( 100 )
V V V V
V N C T N L N L
V N C T N L
V N C T L
= + +
∴ = ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅
∴ = ⋅ ⋅ + ⋅ ⋅
∴ = ⋅ ⋅ + ⋅
A profundidade útil mínima é ≥ 1,00m e nas fossas prismáticas retangulares L ≥ 2B, em 
que L é o comprimento e B é a largura da fossa.
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
12
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
Tab e la 2 - C ont r ibu iç õe s un i t ár ia s d e e sgo t os ( C ) e d e l od o f re sc o ( Lf ) por t ip o d e p ré d ios e d e ocu p an te s
Prédio Unidade Contribuição ( Litros / dia )
Esgotos ( C ) Lodo fresco ( 
LD )
1. Ocupantes permanentes
 Hospitais leitos 250 1,00
 Apartamentos pessoa 200 1,00
 Residências pessoa 150 1,00
 Escola – Internatos pessoa 150 1,00
 Casas populares – rurais pessoa 120 1,00
 Hotéis (sem cozinha e lavanderia) pessoa 120 1,00
 Alojamentos temporários pessoa 80 1,00
2. Ocupantes temporários
 Fábricas em geral operário 70 0,30
 Escritórios pessoa 50 0,20
 Edifícios públicos ou comerciais pessoa 50 0,20
 Escolas – externatos pessoa 50 0,20
 Restaurantes e similares refeição 25 0,10
 Cinema, teatro e templos. lugar 2 0,02
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
13
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
F igu r a 1 - D et a lh e s exec ut ivos de um a f o s sa s ép t i c a pr i sm át i c a r e t an gu lar de câm ar a ú n ic a






  
  

 

 

 




  













  



  
  





  



  
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
14
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
EFICIÊNCIA DAS FOSSAS SÉPTICAS
A remoção de DBO varia de 30 a 60%, conforme a ABNT. Os sólidos em suspensão podem 
ser reduzidos até 60%.
SUMIDOUROS
Os sumidouros ou poços absorventes recebem os efluentes das fossas sépticas. Têm, 
portanto, vida útil longa, devido a facilidade de infiltração do líquido praticamente isento dos 
sólidos causadores da colmatação do solo.
Consistem em escavações cilíndricas, tendo as paredes protegidas por pedras, tijolos, 
madeira ou por anéis de concreto perfurados. O material utilizado na proteção não deve ser 
rejuntado, para permitir fácil infiltração do líquido no terreno.
A cobertura dos sumidouros deverá ser de lajes de concreto armado, dotadas de abertura de 
inspeção, cuja dimensão será no mínimo de 0,60m, com tampão de fechamento hermético.
As dimensões do sumidouro serão determinadas em função das características de absorção 
do solo.
Vários processos podem ser utilizados para o reconhecimento das características de 
absorção do solo, todos eles, é verdade, sujeitos à limitações.
O mais comum é o de estimar a permeabilidade em termos da textura do solo, isto é, das 
proporções de areia, silte e argila existentes.
Um outro método de se conhecer a permeabilidade do solo é a cor do mesmo. Solos que, 
em corte, se apresentam com colorações entre o marrom e o avermelhado, indicam que existem 
condições favoráveis de oxidação e que há movimento de água e de ar em seu seio. Ao contrário, 
solos acinzentados nas camadas superficiais e escuros e matizados nas camadas inferiores 
significam falta de aeração ou movimentos restritos de ar e de água.
Os processos até aqui mencionados podem auxiliar na escolha do terreno para disposição 
dos efluentes de uma fossa séptica, mas são, entretanto, de valor limitado.
O mais aconselhável é recorrer a um ensaio de infiltração, de modo a se estimar a 
capacidade de absorção do solo, feito da seguinte maneira:
Em três pontos do terreno que vai ser utilizado para disposição do efluente líquido da fossa 
séptica utiliza-se o método da abertura de covas, que consiste em:
♦ proceder a abertura de uma vala cujo fundo vai coincidir com o plano útil de absorção;
♦ no fundo de cada vala abrir um buraco cúbico de 30cm x 30cm x 30cm, retirando a terra 
solta e colocando 5cm de brita nº 1, bem limpa. Em seguida manter o buraco cheio de 
água durante 4 horas, adicionando água, à proporção que ocorre infiltração no terreno, 
com a finalidade de que o terreno fique em condições semelhantes aos de época de 
grandes chuvas;
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
15
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
♦ no dia seguinte encher o buraco com água, aguardando que a mesma escoe 
completamente;
♦ encher novamente a cavidade com água, até a altura de 15cm, marcando o tempo que o 
nível da mesma baixa 1cm. Quando o tempo for inferior a 3 minutos, deve-se refazer 
esta etapa do ensaio por 5 vezes. O intervalo de tempo verificado para o último teste 
deve ser adotado como o real. Com o tempo determinado poderá ser obtida, na curva que 
se segue, a capacidade de absorção em litros/m2/dia. Para sumidouros, fazer o teste em 
diferentes profundidades e adotar o menor coeficiente de infiltração.
F igur a 2 - Cu r va da c ap ac id ade d e ab sorç ão d e u m so lo
CURVA DE ABSORÇÃO DO SOLO
0
5
10
15
20
0 25 50 75 100 125 150 175 200
LITROS POR m 2 POR DIA
M
IN
UT
OS
VA
LA
 D
E 
FI
LT
R
AÇ
Ã
O
VA
LA
 D
E 
IN
FI
LT
R
AÇ
Ã
O
40


  





Teste para determinação de absorção de um solo
Na impossibilidade de se realizar ensaio de infiltração, poderão ser adotados os valores da 
tabela abaixo.
Tabe la 3 - Tem p o de Pe ne tr aç ão em F un ção d o T ip o d e S o lo
Descrição do Solo Tempo de Penetração
Areia grossa limpa 13 segundos a 1 minuto
Cinza, carvão 30 segundos a 1 minuto
Cascalhos e argila com poros não cheios 13 segundos a 45 segundos
Areia fina 2 minutos a 5 minutos
Areia com argila 5 minutos a 10 minutos
Argila com um pouco de areia 30 minutos a 60 minutos
Argila compacta ou rocha decomposta 2 horas a 5 horas
O diâmetro dos sumidouros varia de 1,5m a 1,8m. Como segurança, a área do fundo não 
deve ser considerada pois o fundo logo ficará colmatado pelos sedimentos eventualmente contidos 
nos efluentes das fossas sépticas.
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
16
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
A área das paredes necessária para que haja a infiltração poderá ser determinada pela 
expressão:
, :
i
QA em que
C
= 
Q = contribuição de esgotos em litros por dia = NC; 
Ci = coeficiente de infiltração, em litros/m2/dia.
O volume útil mínimo do sumidouro deverá ser igual ao volume da fossa contribuinte.
A área lateral das paredes é dada por:
LA D Ppi= ⋅ ⋅
Assim é determinada a profundidade ( P ) necessária. O fundo do sumidouro deve estar no 
mínimo a l,50m do nível do lençol freático. A distância mínima, entre sumidouros e poços rasos 
(cisternas ), deve ser de 15m.
Deve-se reservar terreno para futuras ampliações.
F igu r a 3 - D et a lh e s con s tr ut ivos do su m id our o
 
  
     


   
  







 





      
  
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
17
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
F igu r a 4 - Esq ue m a c om e x i s tê nc ia de do i s su m id ou r os

  



 

  
       
       
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
18
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
CAPÍTULO II - SISTEMA COLETOR DE ESGOTOS 
SANITÁRIOS
INTRODUÇÃO
Em 1778, Joseph Bramah patenteou o vaso sanitário. Em 1847, 69 anos depois, não 
havendo outro meio mais prático para dispor as águas imundas, os ingleses adotaram o transporte 
daquelas águas em canalizações para o afastamento dos dejetos. Criou-se assim o sistema de 
esgotamento com transporte hídrico. Com essa opção a água passou a ter uma dualidade de usos; 
água limpa para o consumo e água suja para o afastamento das imundícies.
Na Europa foi autorizado o lançamento dessas águas servidas nas galerias
de água pluvial, 
criando-se assim o sistema unitário que prevalece ainda em Paris, (os esgotos sanitários e as águas 
pluviais escoam pela mesma canalização).
Em 1879, o engenheiro George Waring Jr. concebeu o primeiro sistema coletor de esgotos 
sanitários do tipo separador, para a cidade de Memphis Tennessee, após a epidemia de cólera que 
assolou aquela cidade. 
PARTES CONSTITUTIVAS DE UM SISTEMA CONVENCIONAL DE 
ESGOTOS.
 Ramal predial – trecho compreendido entre o limite do lote e o coletor público.
 Coletor secundário – canalização de menor diâmetro que recebe os esgotos das 
residências, t ransportando-os para os coletores troncos ou principais.
 Coletores troncos – canalizações do sistema coletor que recebem as contribuições 
dos coletores secundários, t ransportando-as para os interceptores. Os diâmetros 
são usualmente maiores que os dos coletores secundários.
 Interceptores – desenvolvem-se ao longo dos fundos de vale, margeando cursos 
d’água ou canais. Os interceptores são responsáveis pelo transporte dos esgotos de 
sua sub-bacia, evi tando que os mesmos sejam lançados nos corpos de água. Em 
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
19
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
virtude das maiores vazões t ransportadas, os diâmetros são usualmente maiores 
que os dos coletores troncos.
 Emissário – canalização que liga a extremidade final da rede à Estação de 
Tratamento, quando houver, e/ou ao local de lançamento. Os emissários não 
recebem contribuições ao longo de seu percurso.
 Elevatória – quando as profundidades das tubulações se tornam demasiadamente 
elevadas, quer devido à baixa declividade do terreno, quer devido à necessidade de 
se t ranspor uma elevação, torna-se necessário bombear os esgotos para um nível 
mais elevado. A parti r desse ponto, os esgotos podem voltar a f luir por gravidade. 
As unidades que efetuam o bombeamento dos esgotos são denominadas elevatórias, 
e as tubulações que transportam o esgoto bombeado são denominadas l inhas de 
recalque.
 Estação de Tratamento dos Esgotos ( ETE ) – A final idade das estações de 
tratamento de esgotos é a de remover os poluentes dos esgotos, os quais poderiam 
causar uma deterioração da qualidade dos corpos d’água. O tratamento dos esgotos 
tem sido negligenciado em nosso meio, mas deve-se ter em mente que o sistema de 
esgotamento sanitário só pode ser considerado completo se incluir a etapa de 
tratamento.
 Disposição Final – Após o tratamento, os esgotos são lançados em um corpo 
d’água receptor ou, eventualmente apl icados no solo. Em ambos os casos, há que 
se levar em conta os poluentes eventualmente ainda presentes nos esgotos tratados, 
especialmente os organismos patogênicos e metais pesados.
 Poços de visita – os poços de visi ta são estruturas complementares do sistema de 
esgotamento. A sua f inal idade é permit ir a inspeção e l impeza da rede
 LOCALIZAÇÃO DOS COLETORES EM RELAÇÃO AO SISTEMA VIÁRIO.
Os coletores devem ser assentados, de preferência, do lado da rua no qual ficam os 
terrenos mais baixos.
A existência de estruturas ou canalizações de serviços públicos, tais como: galerias de 
águas pluviais, redes de água, adutoras, cabos elétricos, e telefônicos pode, entretanto, determinar 
o deslocamento dos coletores de esgotos para posições mais convenientes.
Para ruas com largura superior a 18,00 m, deverão ser executados dois coletores ( um de 
cada lado ) de modo a viabilizar o atendimento dos domicílios de ambos os lados com 
profundidades convenientes.
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
20
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
F igu r a 5 - Loc a l i z aç ão das r ed e s co l e t or as
  
  




LOCALIZAÇÃO DOS INTERCEPTORES
Os interceptores podem ser localizados:
 em vias sanitárias ou avenidas marginais;
 em fundos de vale tratados.
F igur a 6 - Loc a l i z aç ão d e in te rc ep t or e s e m f un dos de va le c an a l i z ad os
 

 
Vias Sanitárias ou Marginais.
Os esgotos fluem por gravidade. Assim, os interceptores situam-se nos pontos mais baixos, 
ou seja, nos fundos de vale, correndo paralelo aos córregos de cada bacia.
Sua construção tem sido tradicionalmente feita em conjunto com as obras de canalização 
dos cursos d’água e com a implantação das vias sanitárias ou marginais. Apresenta como 
vantagens a possibilidade de se realizar obras conjuntas e a redução nos custos de implantação.
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
21
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
Fundos de Vale Tratados.
A implantação de vias sanitárias não deve ser encarada como a única forma de se executar 
interceptores de esgotos.
Existem soluções ainda mais econômicas para a implantação dos mesmos, que não exigem 
que se executem obras em concreto ou mesmo abertura de vias públicas ao longo dos corpos 
d’água naturais. A preservação das margens do curso d’água com áreas verdes ou matas ciliares é 
uma forma bastante atrativa de tratamento de fundo de vale. 
As principais vantagens são a preservação natural do curso d’água, evitando-se o 
artificialismo do concreto; a independência da canalização, a qual muitas vezes demora a ser 
implantada devido a seu elevado custo; o tratamento dos fundos de vale com criação de áreas 
verdes ao longo dos córregos, introduzindo concepções de maior qualidade estética, paisagística e 
econômica.
F igu r a 7 - Loc a l i z aç ão de in t er ce pt ore s em fu nd os d e va l e t r a t ad os
  
 
  
VAZÕES DE DIMENSIONAMENTO DO SISTEMA COLETOR
A rede coletora é dimensionada considerando a vazão 
1 20,80 ( / )
86400
P q K KQ l s⋅ ⋅ ⋅ ⋅= ; 
Em que 0,80 é o coeficiente de retorno, uma vez que uma parcela da água utilizada não 
retorna sob a forma de esgotos. Os demais parâmetros são idênticos aos utilizados no 
dimensionamento da rede distribuidora de água.
A rede coletora de esgotos transporta também uma parcela de água que passa do subsolo 
para os coletores - vazão de infiltração.
A vazão específica de dimensionamento dos coletores é dada por:
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
22
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
1 20,80 , :
86400esg
P q K Kq em que
L
⋅ ⋅ ⋅ ⋅
= 
⋅
L = o comprimento total da rede;
qesg = expressa em litros/segundo/metro.
qi = é a vazão de infiltração é considerada de 0,0002 a 0,0008 l/s/m.
qesp = ( qesg + q i ) expressa em 1/s/m, em que qesp é a vazão de dimensionamento dos 
coletores.
Os
coletores são dimensionados como condutos livres, funcionando por gravidade e por 
meio das fórmulas de: Darcy, Flamant, Ganguillet – Kutter, ou de Manning.
Os coletores são considerados com vazão a 1/2 seção, os interceptores com vazão a 2/3 de 
seção, e os emissários com vazão a 3/4 de seção.
VELOCIDADE NOS COLETORES
Quanto maior for a velocidade, melhores serão as condições de arrastamento da matéria 
sólida e a não ocorrência de depósitos nas canalizações. Entretanto as velocidades excessivas 
podem provocar desgastes nas paredes das tubulações pelo efeito da abrasão.
A NBR – 9649 indica como limite de velocidade 5,0 m/s.
Tradicionalmente são aceitas as seguintes velocidades máximas:
 ferro fundido 6,0 m/s
 manilhas cerâmicas e PVC 5,0 m/s
 concreto 4,0 m/s;
 fibrocimento 3,0 m/s
A velocidade mínima, de forma a assegurar a auto- limpeza, é considerada 0,60 m/s.
A velocidade crítica é dada por:
1
2
CV = 6 (9,8 RH) , em que:⋅ ⋅ 
VC = velocidade crítica;
RH = raio hidráulico;
9,8 = valor da aceleração devida à gravidade.
DECLIVIDADES DOS COLETORES
As declividades mínimas dos coletores são estabelecidas conforme o diâmetro e são 
mostradas na tabela a seguir.
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
23
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
Tabe la 4 - De c l iv id ad e s m ín im as , c on f orm e os d iâm e tr os :
Diâmetros ( mm ) Declividades 
mínimas m/m
Diâmetros( mm ) Declividades 
mínimas m/m
150 0,0070 500 0,0015
200 0,0050 600 0,0010
250 0,0035 700 0,0008
300 0,0025 800 0,0006
350 0,0023 900 0,00045
400 0,0020 1000 0,00040
450 0,0018 1200 0,00035
1. TRAÇADO DOS COLETORES
O traçado dos coletores é feito de acordo com o traçado urbanístico e a topografia da 
cidade, ou da bacia que está sendo esgotada. Uma bacia de drenagem é caracterizada pela 
existência de um “espigão”, “linha de cumeada” ou “divisor de água” e os respectivos fundos de 
vale para os quais os esgotos convergem. São mostrados, a seguir, diversos tipos de traçados de 
coletores públicos, de acordo com a topografia da cidade.
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
24
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
F igu r a 8 - T ip o 1 d e t r aç ad o de co l e t ore s
  
 


  


  


  



 
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
25
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
F igur a 9 - T ip o 2 d e t raç ad o d e c o le t ore s
  
 


  


  


  



  
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
26
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
F igur a 10 - T ip o 3 d e t raç ad o d e c o le t ore s
  
 


  


  


  



   
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
27
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
F igu r a 11 - P ar t e s c on s t i tu t ivas d o s i s t em a c on ven c ion a l
   


 
 

 


 

 
)




   
 

























NUMERAÇÃO DOS COLETORES.
Os coletores são numerados de forma seqüencial e em ordem crescente, de acordo com o 
sentido do escoamento. Exemplo: 10 – 4 ; em que o primeiro número ( 10 ) corresponde à 
numeração do coletor e o segundo número (4) corresponde ao número do trecho. Pode-se adotar 
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
28
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
ainda a numeração alfa- numérica. Exemplo A- 4 ; em que ( A ) corresponde ao coletor e ( 4 ) ao 
trecho. 
Pode-se, no caso de existirem várias sub-bacias de drenagem, adotar-se o seguinte esquema 
de numeração CP15 – 7; em que: CP = Capim Puba, indicando a sub-bacia de drenagem; 15 é o 
número do coletor e 7 é o número do trecho.
POÇO DE VISITA.
Definição 
Poço de visita é uma câmara visitável através de uma abertura existente na sua parte 
superior, ao nível do terreno, destinado a permitir a reunião de dois ou mais trechos consecutivos 
e a execução dos trabalhos de manutenção nos trechos a ele ligados.
Disposição Construtiva
Um poço de visita convencional possui dois compartimentos distintos que são a chaminé e 
o balão, construídos de tal forma a permitir fácil entrada e saída do operador e espaço suficiente 
para este operador executar as manobras necessárias à operação e manutenção.
O balão é o compartimento principal. Pode ter seção circular, quadrada ou retangular. No 
balão se realizam todas as manobras internas, manuais ou mecânicas, na manutenção de cada 
trecho. No seu piso encontram-se moldadas calhas de concordância entre as canalizações de 
entrada e de saída. 
A chaminé, pescoço ou tubo de descida consiste no conduto de ligação entre o balão e o 
exterior.
Convencionalmente é iniciado num furo excêntrico feito na laje de cobertura do balão e 
termina na superfície do terreno. O movimento de entrada e saída dos operadores é feito com o 
uso de uma escada, de ligas metálicas inoxidáveis, do tipo marinheiro, afixada de degrau em 
degrau nas paredes do poço. Opcionalmente podem ser usadas escadas móveis, o que conduz a 
maior economia.
F igu r a 12 – De t a lh e do f un d o do p oç o
No desenho ao lado, observa-se as calhas 
de fundo do poço; as quais são dispostas 
de forma a orientar o f luxo dos esgotos 
desde a entrada até a saída, evi tando o 
turbi lhonamento e retenção de materiais 
em suspensão. As arestas superiores 
deverão estar niveladas com a geratriz 
superior do trecho de saída.
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
29
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
F igu r a 13 – De t a lh e s d os de gr au s do P .V .
   
  
  
  
  
Tab e la 5 - D im en sõe s M ín im as p ar a C h am iné e Ba lão de Poç o de V i s i t a .
Profundidade do 
Poço de Visita (PV) 
(m)
Diâmetro do Tubo 
de Saída (DO) (m)
Diâmetro da
Chaminé (DC) (m)
Diâmetro do Balão 
(DB) (m)
h ≤ 1,00 qualquer DO DC = 0,60 DB = DC
1,00 < h < 2,50
DO ≤ 0,30 DC = 0,60
e
hc = 0,30
DB = 1,00
0,30< DO <050 DB = 1,50
DO > 0,50 DB = DO + 1,00
h ≥ 2,50
DO ≤ 0,30 DC =060
e
0,30≤ hc ≤ 1,00
DB = 1,00
0,30 < DO ≤ 0,50 DB = 1,50
DO > 0,50 DB = do + 1,00
Quando os coletores são implantados nas ruas o tampão deve ser em ferro fundido, com 
capacidade de 4 toneladas, para não ser danificado pela passagem de veículos pesados. 
Quando a rede coletora é executada no passeio o tampão pode ser feito em concreto 
armado.
Situações em que se empregam os poços de visita. 
Os poços de visita ( PV ) são empregados nas seguintes situações:
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
30
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
 nas cabeceiras das redes, ou ponto de início dos coletores, podendo ser substituídos por 
um Terminal de Limpeza ( TL ), nesta situação; 
 nas mudanças de materiais;
 nas alterações de diâmetros;
 nas mudanças de direção dos coletores;
 nos encontros de coletores;
 nas mudanças de declividades;
 em posições intermediárias de coletores de grande extensão.
A distância entre dois PVs consecutivos não deve exceder:
a) 100 metros para canalizações até 150 mm;
b) 120m para canalizações de 200 a 600 mm;
c) 150m para canalizações > 600 mm.
F igu r a 14 - M od e lo d e t amp ão d e f o f o p ar a p oç o d e v i s i t a





   
 
 
  
  

Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
31
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
Terminal de Limpeza ( TL )
O Terminal de Limpeza é recomendado para ser colocado na cabeceira das redes por serem 
mais baratos que o PV.
F igur a 15 - De t a lh e do t er m in a l de l imp ez a TL
 






 
 
 
 
 
  



  
 
 

Características básicas dos poços de visita
Os poços de visita podem ser feitos com anéis pré-moldados de concreto. São os mais 
comuns, principalmente para tubulações de saída de até 400 mm de diâmetro. São rapidamente 
montados, daí a vantagem de sua utilização. Possuem seção circular. Podem ser feitos, ainda, em 
concreto moldado no local, para canalizações de diâmetro superior a 400 mm.
Normalmente, apenas o balão é moldado no local. A chaminé sempre pode ser feita com o 
uso de tubos pré-moldados. As seções quase sempre são quadradas ou retangulares.
É recomendável a construção de uma chaminé com altura mínima de 0,30m, para facilitar a 
construção e a reposição da pavimentação das ruas.
Poços de alvenaria de tijolos só são feitos, quando não existem condições de se obter ou 
confeccionar peças pré-moldadas no local da obra. As paredes terão espessuras mínimas de uma 
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
32
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
vez, rejuntadas e revestidas com argamassa de cimento e areia no traço 1:3, com adição de 
impermeabilizantes.
F igur a 16 - P oç o d e v i s i t a e m an é i s p ré mo ld ad os
   
 
 











  







  


  
 

  




 
  
   
 





F igu r a 17 – Pe ç a de tr an s i ç ão e m c on cr e t o ar m ad o
    
   



  
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
33
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
Devido à demora para ser executado, retardando a liberação da rua para o trânsito, 
raramente o poço é feito com o emprego de tijolos. 
No caso de um ou mais trechos de coletores chegarem ao poço de visita, acima do nível do 
fundo, são necessários cuidados especiais, nesta ligação, a fim de que haja operacionalidade do 
poço, sem constrangimento do operário que entrar em seu interior. Para desníveis inferiores a 
0,50m admite-se queda livre ( QL ). Para desníveis a partir de 0,50m é necessário a instalação de 
tubos de queda ( TQ ).
F igu r a 18 - D et a lhe d a ch egad a do c o l e t or ao PV
    
 

   


  

   
 


Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
34
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
Os tubos de queda consistem numa derivação constituída de uma junção invertida, 
associada a uma curva de 45o,conectada a um tubo vertical, cuja extremidade inferior é dotada de 
uma curva de 90o que direciona o fluxo para o PV.
Para diâmetros superiores a 350mm, adota-se outro dispositivo denominado poço de queda, 
o qual é constituído de poços geminados, sendo a passagem do primeiro para o segundo poço feita 
através de um orifício ou vertedouro convenientemente dimensionado para comportar a vazão.
PROFUNDIDADE DOS COLETORES.
a) profundidade mínima: está relacionada com a possibilidade de esgotamento de todos os 
compartimentos sanitários existentes na residência, situados a uma certa distância da frente do 
lote e em cota inferior à da via pública. Está também relacionada à proteção da canalização 
contra a ação das cargas externas.
O limite da profundidade mínima é freqüentemente estabelecido em 1,00m.
Quando as condições de traçado ou de topografia impuserem profundidades inferiores ao 
mínimo recomendado, devem ser tomadas precauções especiais, tais como proteção contra a 
ação de cargas acidentais, ou emprego de tubos mais resistentes.
F igur a 19 - Pr o fu nd id ade s m a i s c on ven ie nt e s
 
  
 
     
      
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
35
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
b) profundidade máxima: deve-se ter em conta no projeto, não ultrapassar profundidades acima 
de 4,50m.
c) profundidades mais convenientes: os valores médios deverão estar em torno de 1,50 a 
2,50m.
d) profundidades elevadas:
quando o terreno possui uma baixa declividade, é 
preponderantemente plano ou mesmo possui uma declividade contrária à declividade da 
tubulação, esta tende a se aprofundar com relação ao nível do terreno. Em alguns casos, 
quando estas profundidades se tornam muito elevadas, torna-se necessário a utilização de uma 
estação elevatória de esgotos. 
São os seguintes os inconvenientes das valas profundas:
 maior efeito da carga permanente ( terra de recobrimento da tubulação );
 ligações dos coletores mais onerosas;
 aumento do custo de construção da rede coletora;
 necessidade de escoramento das valas para impedir desmoronamentos e acidentes 
fatais;
DETERMINAÇÃO DA PROFUNDIDADE MÍNIMA DOS COLETORES
A profundidade mínima deve ser estabelecida de modo a viabilizar a ligação de pelo menos 
80% dos domicílios de uma rua.
minH = h + 0,50m + 0,02 L + 0,30m + (D + e), em que:⋅ 
 h (m) = desnível entre o leito da rua e a tampa da caixa de inspeção mais próxima;
 0,50m = profundidade da caixa de inspeção mais próxima;
 0,02 (m/m) = declividade mínima para os ramais prediais;
 L (m) = distância da caixa de inspeção mais próxima ao eixo do coletor;
 0,30m = dimensão das peças de conexão do ramal predial ao coletor de esgoto;
 D(m) = diâmetro do coletor;
 e = espessura da parede do coletor 
F igu r a 20 - P os i ç ão d o co l e t or e m p rf i l
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
36
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
  
  


 
  
  

  
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
37
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
 CAPÍTULO III - CARACTERÍSTICAS DOS ESGOTOS
CONCEITO
Os esgotos costumam ser classificados em dois grupos principais: os esgotos sanitários e 
os esgotos industriais.
Os esgotos sanitários são constituídos de despejos domésticos, uma parcela de água de chuva, água 
de infiltração e eventualmente uma parcela não significativa de esgotos industriais com características bem 
definidas.
Os esgotos industriais, por serem bastante diversificados em suas características, não serão 
considerados neste curso.
Os esgotos domésticos provêm principalmente de residências, edifícios comerciais, 
instituições ou quaisquer edificações que contenham instalações de banheiros, lavanderias, 
cozinhas ou qualquer dispositivo de utilização de água para fins domésticos. Compõe-se 
essencialmente de água de banho, urina, fezes, papel, restos de comida, sabão, detergentes e águas 
de lavagem.
Neste curso devido a grande amplitude de características dos esgotos industriais, somente 
serão consideradas as características dos esgotos tipicamente domésticos, os quais constituem o 
maior formador dos esgotos sanitários.
CARACTERÍSTICAS FÍSICAS
As características físicas do esgoto podem se interpretadas pela obtenção das grandezas 
correspondentes às seguintes determinações:
 matéria sólida;
 temperatura;
 odor;
 cor e
 turbidez.
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
38
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
Matéria Sólida
Das características físicas, o teor de matéria sólida é a de maior importância em termos de 
dimensionamento e controle de operação das unidades de tratamento. A remoção de matéria sólida 
é que vai determinar uma série de operações unitárias de tratamento, ainda que represente apenas 
cerca de 0,08% dos esgotos ( a água compõe os restantes 99,2% ).
Classif icação da Matéria Sólida
A matéria sólida presente nos esgotos pode ser classificada como:
 sólidos totais - matéria que permanece como resíduo após a evaporação dos esgotos;
 sólidos voláteis - se o resíduo que permanece após a evaporação é calcinado a 600ºC, 
as substâncias orgânicas se volatilizam, daí a sua designação;
 sólidos fixos - componentes minerais dos esgotos que permanecem após a calcinação;
 sólidos em suspensão - parcela que é retida ao se filtrar os esgotos em membrana 
filtrante apropriada, usualmente um filtro de fibra de vidro com tamanho de poros de 
1,2mm. Porção que não se sedimenta naquele período no cone;
 sólidos dissolvidos - fração que atravessa o filtro;
 sólidos sedimentáveis - porção que se sedimenta após 2 horas num cone de 
sedimentação, com volume de 1 litro ( cone IMHOFF ).
F igu r a 21 - C omp os i ç ão d os só l id os n os e sgot os
  
  
 
 
 

 
   





 





 
   


Temperatura
A temperatura dos esgotos é, em geral, pouco superior a das águas de abastecimento em 
virtude de se usar água aquecida nas residências em banhos e demais usos.
Em relação aos processos de tratamento sua influência ocorre da seguinte forma:
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
39
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
 nas operações de natureza biológica ( a velocidade de decomposição do esgoto aumenta 
com a temperatura );
 nos processos de transferência de oxigênio ( a solubilidade do oxigênio é menor nas 
temperaturas mais elevadas );
 nas operações de sedimentação ( o aumento de temperatura faz diminuir a viscosidade, 
melhorando as condições de sedimentação ).
 Odor
Há alguns odores bem característicos:
 de mofo, razoavelmente suportável, típico do esgoto novo;
 de ovos podres, típico do esgoto velho ou séptico, devido à formação do gás sulfídrico.
 Cor
 esgoto novo tem cor acinzentada. O esgoto velho tem cor escura.
Turbidez
A turbidez é devida aos sólidos em suspensão nos esgotos.
CARACTERÍSTICAS QUÍMICAS
A origem dos esgotos permite classificar as características químicas em dois grandes 
grupos: da matéria orgânica e da matéria inorgânica.
Já vimos que 70% dos sólidos dos esgotos, ( sólidos voláteis ), são orgânicos. Geralmente 
estes compostos são: uma combinação de carbono, oxigênio, hidrogênio, algumas vezes de 
nitrogênio, compreendendo: compostos de proteínas ( 40 a 60% ); carboidratos ( 25 a 50% ) e 
gorduras ( 10% ).
As proteínas são produtoras de nitrogênio e contêm carbono, hidrogênio, nitrogênio, 
oxigênio, fósforo, enxofre e ferro. As proteínas são os principais constituintes do organismo 
humano e animal, mas ocorre também em plantas. O gás sulfídrico dos esgotos é proveniente do 
enxofre presente nas proteínas.
Os carboidratos contêm carbono, hidrogênio e oxigênio. São as primeiras substâncias a 
serem destruídas pelas bactérias com produção de ácidos orgânicos, ( originando a acidez dos 
esgotos velhos ). Entre os carboidratos temos: açúcares, amidos, farinhas
e glicose.
Quanto às gorduras, nas residências existem “caixas de gordura” para reter parcialmente 
esse material, diminuindo sua presença na rede coletora. As gorduras estão sempre presentes no 
esgoto doméstico proveniente do uso de óleos, manteigas, da carne etc. Produzem odores 
desagradáveis, aderem às paredes da tubulação diminuindo a seção útil, inibem a vida biológica 
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
40
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
das bactérias que decompõem os esgotos. Não deve ser aceita na rede na forma de óleos minerais 
derivados do petróleo ( óleos, lubrificantes, querosene, óleo diesel ).
Demanda Bioquímica de Oxigênio ( DBO )
A quantidade de matéria orgânica presente nos esgotos pode ser identificada indiretamente 
pela determinação em laboratório, da Demanda Bioquímica de Oxigênio, ou seja da quantidade 
de oxigênio necessária para oxidar ou queimar a matéria orgânica dos esgotos.
No Brasil considera-se que cada pessoa contribua com 54 gramas de DBO por dia. 
Normalmente os esgotos apresentam concentração de DBO variando de 180 a 360 mg/litro.
Exemplos:
 contribuição de esgoto = 150 litros /hab./dia 
⇒ 
54g / hab / diaconcentração de DBO = 
150 l / hab / dia
 
 
, o que resulta em 360 mg/litro;
 contribuição de esgotos = 300 litros/hab./dia
⇒ 
54g / hab / diaconcentração de DBO = 
300 l / hab / dia
 
 
, resultando em 180 mg/litro.
CARACTERÍSTICAS BIOLÓGICAS
Os principais organismos encontrados nos esgotos são: as bactérias, os fungos, os 
protozoários e os vírus. As bactérias constituem o elemento mais importante por serem 
responsáveis pela decomposição e estabilização da matéria orgânica, tanto na natureza, quanto nas 
unidades de tratamento. As bactérias coliformes são típicas do intestino do homem e estão sempre 
presentes no excremento humano ( 100 a 400 bilhões de coliformes / pessoa / dia ).
O esgoto bruto contem de 109 a 1010 NMP / 100 ml de coliformes totais e 108 a 109 de 
coliformes fecais. ( NMP = Número Mais Provável ). Um NMP alto significa que o curso d’água 
está recebendo esgotos, ou seja o lançamento de esgotos num curso d’água vai determinar um 
número de expressão para os coliformes que ali estarão presentes em virtude do lançamento.
ESGOTOS INDUSTRIAIS - EQUIVALENTE POPULACIONAL DAS 
INDÚSTRIAS
Os esgotos industriais presentes na rede pública de coleta, geralmente em quantidade não 
significativa, podem ter seu potencial de poluição expressos em população equivalente.
Exemplo: uma fábrica que produz uma DBO de 1000 kg/dia corresponde a uma população 
equivalente = 1000kg/dia ÷ 0,054 kg/hab./dia = 18.518 habitantes. Considerando que cada 
habitante representa uma contribuição de 54 gramas de DBO /dia.
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
41
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
CAPÍTULO IV - PROCESSOS E GRAUS DE TRATAMENTO 
DOS ESGOTOS SANITÁRIOS
INTRODUÇÃO
Um sistema qualquer de esgotos sanitários encaminha seus efluentes, direta ou 
indiretamente, para corpos d’água receptores, formados pelo conjunto de água de superfície ou do 
subsolo. A capacidade receptora destas águas em harmonia com sua utilização, estabelece o grau 
de condicionamento a que deverá ser submetido os esgotos, de modo que o corpo d’água receptor 
não sofra alterações nos parâmetros de qualidade fixados para o trecho do curso d’água afetado 
pelo lançamento. Os condicionamentos aplicados aos esgotos são denominados processos de 
tratamento.
OPERAÇÕES UNITÁRIAS
Os processos de tratamento são formados, em última análise, por uma série de operações 
unitárias. Essas operações são empregadas para a remoção de substâncias indesejáveis, ou para 
transformá-las em outras de forma aceitável.
As mais importantes destas operações unitárias, empregadas nos sistemas de tratamento são:
 trocas de gás - adição de oxigênio ou ar ao esgoto para criar ou manter condições 
aeróbias, adição de gás cloro para eliminação de microrganismos;
 gradeamento - operação pela qual os materiais flutuantes e em suspensão, que forem 
maior em tamanho que as aberturas das grades, são retidos e removidos;
 sedimentação - operação pela qual a capacidade de carreamento dos esgotos é 
diminuída, permitindo que as partículas em suspensão se sedimentem pela ação da 
gravidade. A diminuição da capacidade de carreamento é obtida com a diminuição da 
velocidade dos esgotos. A areia, por exemplo, é removida desta forma;
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
42
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
 flotação - operação pela qual a capacidade de carreamento dos esgotos é diminuída e sua 
capacidade de empuxo é aumentada. Tal operação serve para remover gorduras e óleos dos 
esgotos;
 precipitação química - operação pela qual os produtos químicos apropriados reagem 
com as substâncias químicas dos esgotos precipitando-as;
 filtração - operação pela qual os esgotos atravessam um meio poroso que retém determinadas 
impurezas ( matéria em suspensão ) presentes nos esgotos;
 desinfecção - operação pela qual os organismos infecciosos em potencial são 
exterminados, ( cloração dos esgotos, ação de raios ultravioletas, ozonização );
 oxidação biológica - operação pela qual os microrganismos decompõem a matéria 
orgânica contida nos esgotos, transformando substâncias complexas em produtos finais 
simples.
PROCESSOS DE TRATAMENTO
Os fenômenos atuantes na formação dos esgotos sanitários deverão atuar, de modo inverso, 
nos processos de tratamento. Assim se um esgoto é formado pela ação de agentes físicos, o 
sistema de remoção destes agentes deverá ser um processo físico.
Em função destes fenômenos e da mesma forma que os poluentes contidos nos esgotos são 
de natureza física, química e biológica, os processos de tratamentos podem ser classificados em: 
físicos, químicos e biológicos.
Obviamente estes processos não atuam isoladamente; as transformações provocadas por 
um determinado processo de tratamento influirão nos fenômenos inerentes aos demais processos.
Processos Físicos
São os processos em que predominam os fenômenos físicos. Estes fenômenos 
caracterizam-se principalmente nos processos de remoção de substâncias fisicamente separáveis 
dos líquidos ou que não se encontram dissolvidas. Basicamente têm por finalidade separar as 
substâncias em suspensão no esgoto. Neste caso incluem:
 remoção de sólidos grosseiros;
 remoção de sólidos sedimentáveis;
 remoção de sólidos flutuantes.
Mas qualquer outro processo em que há predominância dos fenômenos físicos constitui um 
processo físico de tratamento, como:
 remoção da umidade do lodo;
 filtração dos esgotos;
 incineração do lodo;
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
43
U nive r s idade Ca tó l i c a de G o iás
E
nge nhar ia C iv i l – Sane am e n to B ás i c o
 diluição dos esgotos;
 homogeneização dos esgotos ou do lodo.
Processos Químicos
São os processos em que há utilização de produtos químicos e são raramente usados em 
esgotos sanitários. O uso de produtos químicos tem sido a principal causa do pouco emprego do 
processo. Via de regra, utiliza-se o tratamento químico quando o emprego de processos físicos e 
biológicos não atendem ou não atuam eficientemente nas características que se deseja reduzir ou 
remover. Os processos comumente adotados são:
 floculação e precipitação química;
 oxidação química;
 cloração;
 neutralização do pH.
Processos Biológicos
São considerados processos biológicos aqueles que dependem da ação de microrganismos 
presentes nos esgotos. Os fenômenos de nutrição são predominantes na transformação de 
componentes complexos em compostos mais simples, tais como: sais minerais, gás carbônico e 
outros.
Os processos biológicos de tratamento procuram reproduzir em dispositivos racionalmente 
projetados, os fenômenos biológicos observados na natureza, condicionando-os em área e tempo 
economicamente justificáveis. Os principais processos biológicos de tratamento são:
 oxidação biológica ( aeróbia, como lodos ativados, filtros biológicos, valos de 
oxidação e anaeróbia como reatores anaeróbios de fluxo ascendente );
 digestão do lodo ( aeróbia, anaeróbia, fossas sépticas ).
CLASSIFICAÇÃO DOS PROCESSOS
Os processos de tratamento podem ser classificados em função dos fenômenos de remoção 
ou transformação e de acordo com o grau de eficiência obtido por um ou mais dispositivos de 
tratamento.
Em Função da Remoção
Remoção ou transformação de sólidos grosseiros em suspensão:
 crivos;
 grades;
 peneiras;
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
44
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
 desintegradores.
 Remoção de sólidos sedimentáveis:
 desarenadores ( caixas de areia );
 centrífugas;
 decantadores.
 Remoção de óleos, gorduras, graxas e substâncias análogas:
 tanques de retenção de óleos ( caixas de gordura );
 tanques de flotação;
 decantadores com removedores de escuma.
 Remoção de material miúdo em suspensão:
 tanques de flotação;
 filtros de areia;
 tanques de precipitação química.
Remoção de substâncias orgânicas dissolvidas, semidissolvidas e finamente 
divididas:
 irrigação de grandes superfícies do solo;
 campos de nitrificação, com ou sem finalidade agrícola;
 filtros biológicos;
 lagoas de estabilização;
 tanques de lodos ativados:
 valos de oxidação, sistemas de aeração prolongada.
Remoção de odores e controle de doenças transmissíveis:
 desinfecção ( cloração, ultravioleta, ozonização );
 reagentes químicos;
 instalações biológicas ( aeróbias )
Em Função da Eficiência das Unidades
É comum classificar as instalações de tratamento em função do grau de redução dos 
sólidos em suspensão e da demanda bioquímica de oxigênio.
Tais indicadores demarcam a eficiência do sistema de tratamento.
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
45
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
4.2.1. Tratamento preliminar:
 remoção de sólidos grosseiros;
 remoção de gorduras e óleos;
 remoção de areia.
4.2.2. Tratamento primário:
 sedimentação;
 flotação;
 digestão do lodo;
 secagem do lodo;
 sistemas compactos ( sedimentação e digestão, Tanque Imhofh );
 sistemas anaeróbios ( lagoa anaeróbia, reator de fluxo ascendente ).
4.2.3. Tratamento secundário:
 filtração biológica;
 lodos ativados;
 lagoas de estabilização ( aeróbias, facultativas, aeradas ).
4.2.4. Tratamento terciário:
 lagoas de maturação;
 desinfecção;
 filtração final;
 processos de remoção de nutrientes.
Grau de Tratamento
O grau e eficiência do tratamento necessário serão sempre função da capacidade de 
recepção e diluição do corpo de água receptor e das características de uso da água a jusante do 
ponto de lançamento, das condições de autodepuração, da legislação ambiental e das 
conseqüências dos lançamentos dos esgotos.
Há sempre interesse em se fazer o estritamente necessário em termos de tratamento, por 
razões de ordem financeira. Na verdade se só o tratamento primário for suficiente do ponto de 
vista do corpo receptor, não há por que se construir, pelo menos, de inicio uma estação com 
tratamento completo. Deve-se ter em mente que os processos mais sofisticados oneram tanto no 
custo da construção como na operação e manutenção.
Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
46
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
F igu r a 22 - Esq ue m a Ger a l de s i s te m a d e ab ast ec im en t o de águ a e t r a t am en t o d e e sgot o
  


   





 
 


  


   

  
 






  










Au tor P ro fe s sor João Bosc o de An drade
Co laboraç ão Ac adê mic a Fe rn an da P osc h R ios
47
U nive r s idade Ca tó l i c a de G o iás
E nge nhar ia C iv i l – Sane am e n to B ás i c o
CAPÍTULO V - REMOÇÃO DE SÓLIDOS GROSSEIROS – 
TRATAMENTO PRELIMINAR
CONCEITO
São considerados grosseiros os resíduos sólidos contidos nos esgotos sanitários e de fácil 
retenção e remoção, através de operações físicas de gradeamento.
Este material é procedente do uso inadequado das instalações prediais, dos coletores 
públicos e demais componentes do sistema de esgotamento sanitário. As conexões irregulares 
nesse sistema, de efluentes pluviais e industriais, também contribuem para o agravamento dos 
problemas nas operações de recalque, transporte, tratamento e disposição final nos corpos d’água 
receptores, razão pela qual os sólidos grosseiros devem ser previamente removidos. A remoção é 
realizada por unidades denominadas grades de barras.
FINALIDADES
A remoção dos sólidos grosseiros contidos nos esgotos tem as seguintes finalidades:
 proteção dos dispositivos de transporte dos esgotos nas suas diferentes fases, líquida e 
sólida ( lodos ), tais como bombas, tubulações, transportadores e peças especiais;
 proteção dos dispositivos de tratamento dos esgotos, tais como raspadores, 
removedores, aeradores, bem como os dispositivos de entrada e de saída;
 proteção dos corpos receptores, tanto no aspectos estético como nos regimes de fluxo e 
de desempenho;
 remoção parcial da carga poluidora, contribuindo para melhorar

Teste o Premium para desbloquear

Aproveite todos os benefícios por 3 dias sem pagar! 😉
Já tem cadastro?

Continue navegando