Buscar

capitulo 01 Revisão e Pré requisitos (1)

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 29 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 29 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 29 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Conteu´do
Introduc¸a˜o ix
Ao Estudante xiii
Agradecimentos xv
1 Revisa˜o e Pre´-requisitos (1) 1
1.1 Os nu´meros que governam o mundo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 A Reta numerada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Relac¸a˜o de ordem; conjuntos e intervalos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Valor absoluto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Distaˆncia entre dois pontos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Expresso˜es alge´bricas - Equac¸o˜es e inequac¸o˜es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Para voceˆ meditar: Onde esta´ o erro? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Problemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Projeto: Nu´meros alge´bricos e transcendentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Revisa˜o e Pre´-Requisitos (2) 15
2.1 Coordenadas no plano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.1 Distaˆncia entre dois pontos do plano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Gra´ficos de equac¸o˜es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Retas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Retas paralelas e perpendiculares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Circunfereˆncias e elipses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Circunfereˆncias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Elipses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Gra´ficos de desigualdades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 Problemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 Atividades de laborato´rio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.9 Para voceˆ meditar: O gra´fico da equac¸a˜o y=mx e´ sempre uma linha reta? . . . . . . . . . . . . . . . . 27
2.10 Projetos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.10.1 Melhor qualidade de gravac¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.10.2 Custo mı´nimo x aproveitamento ma´ximo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3 Alguns Problemas do Ca´lculo 31
3.1 Introduc¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Ca´lculo de a´reas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Da antiguidade ate´ o se´culo XVII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Apo´s o se´culo XVII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Velocidade instantaˆnea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Retas tangentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Determinac¸a˜o de ma´ximos e mı´nimos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Comprimento de arco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Concluso˜es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
i
ii Aprendendo Ca´lculo com Maple
3.8 Atividades de laborato´rio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.9 Para voceˆ meditar: Enigmas, paradoxos e a incompletude dos sistemas matema´ticos . . . . . . . . . . 37
3.9.1 Enigmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.9.2 Paradoxos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.9.3 O Teorema de Go¨del . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4 Func¸o˜es e Gra´ficos 41
4.1 Motivac¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.1 O problema da caixa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Exemplos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 O conceito de func¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Gra´ficos de func¸o˜es: Definic¸a˜o e exemplos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Operando com func¸o˜es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6 Um pouco de histo´ria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7 Atividades de laborato´rio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.8 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.9 Problemas Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.10 Para voceˆ meditar: Circunfereˆncias podem ser quadradas? . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.11 Projetos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.11.1 Melhor escolha (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.11.2 Contas a pagar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.11.3 Melhor escolha (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5 Retas Tangentes 57
5.1 Conceituac¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Declividade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 O problema da tangente a` para´bola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 Uma nota histo´rica: A falha lo´gica no racioc´ınio de Fermat ou o porqueˆ de limites . . . . . . . . . . . 62
5.5 Atividades de laborato´rio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.6 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.7 Problemas propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.8 Para voceˆ meditar: Matema´tica, f´ısica, fo´rmula 1 e saber popular . . . . . . . . . . . . . . . . . . . . . 65
5.9 Projetos . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.9.1 Programando o computador para trac¸ar gra´ficos de func¸o˜es . . . . . . . . . . . . . . . . . . . . 65
5.9.2 O refletor parabo´lico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6 Limite de Func¸o˜es 71
6.1 O conceito de limite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1.1 Ass´ıntotas ao gra´fico de uma func¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.1.2 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Definic¸o˜es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.1 Definic¸a˜o 1: Limite de uma func¸a˜o em um ponto . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.2 Definic¸a˜o 2: Limites laterais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2.3 Definic¸a˜o 3: Limites Infinitos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2.4 Definic¸a˜o 4: Limites no infinito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3 Teoremas e propriedades operato´rias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4 Exemplos de aplicac¸o˜es dos teoremas no ca´lculo de limites . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.5 Atividades de laborato´rio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.6 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.7 Problemas propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.8 Exerc´ıcios adicionais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.9 Um pouco de histo´ria: Cauchy, Weierstrass e a teoria dos limites . . . . . . . . . . . . . . . . . . . . . 92
6.10 Para voceˆ meditar: Do nada a` criac¸a˜o do universo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.11 Projetos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.11.1 O caso do povo contra a Espertobra´s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.11.2 Sequ¨eˆncia de Fibonacci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.11.3 Definindo e estimando o nu´mero pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
W.Bianchini, A.R.Santos iii
7 Polinoˆmios e Func¸o˜es Racionais 99
7.1 Polinoˆmios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Func¸o˜es racionais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2.1 Comportamento no infinito de func¸o˜es racionais - Conclusa˜o . . . . . . . . . . . . . . . . . . . . 104
7.3 Atividades de laborato´rio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.4 Para voceˆ meditar: N-e´sima diferenc¸a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.5 Projetos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.5.1 Ass´ıntotas e outras func¸o˜es limitantes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.5.2 Interpolac¸a˜o de Lagrange e ajuste de curvas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8 Continuidade 111
8.1 Discussa˜o informal e intuitiva sobre continuidade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2 Definic¸a˜o de continuidade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.3 Func¸o˜es racionais e tipos de descontinuidade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.4 Composic¸a˜o de func¸o˜es e continuidade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.4.1 Continuidade da func¸a˜o composta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.5 Propriedades especiais das func¸o˜es cont´ınuas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.5.1 Teorema de Bolzano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.5.2 Propriedade da manutenc¸a˜o do sinal para func¸o˜es cont´ınuas . . . . . . . . . . . . . . . . . . . . 118
8.5.3 Teorema do valor intermedia´rio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.6 Problemas propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.7 Exerc´ıcios adicionais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.8 Para voceˆ meditar: O problema do andarilho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.9 Projetos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.9.1 Encontrando as ra´ızes de uma equac¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.9.2 Generalizando o me´todo dos babiloˆnios para estimar a raiz quadrada de um nu´mero positivo . 123
9 A Derivada de uma Func¸a˜o 125
9.1 Definic¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.2 Calculando derivadas: alguns exemplos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.2.1 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.3 Outras notac¸o˜es para a derivada de uma func¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9.3.1 A notac¸a˜o de Leibniz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9.3.2 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.4 Derivadas laterais e diferenciabilidade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.4.1 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.5 Diferenciabilidade e continuidade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.5.1 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.6 Derivadas de ordem superior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.6.1 Exemplos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.6.2 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.7 Atividades de laborato´rio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.8 Exerc´ıcios adicionais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
9.9 Problemas propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.10 Para voceˆ meditar: Um sofisma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.11 Um pouco de histo´ria: Curvas sem tangentes e Movimento Browniano . . . . . . . . . . . . . . . . . . 141
10 Teoremas e Propriedades Operato´rias 143
10.1 Regras de derivac¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
10.1.1 Derivada de uma func¸a˜o constante. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
10.1.2 Derivada de uma constante vezes uma func¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
10.1.3 Derivada da soma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
10.1.4 Derivada do produto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.1.5 Derivada do quociente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
10.2 Exerc´ıcios adicionais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
10.3 Problemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
10.4 Para voceˆ meditar: Uma “demonstrac¸a˜o” mais simples da regra do quociente - o que esta´ faltando? . . 151
iv Aprendendo Ca´lculo com Maple
11 Velocidade, Acelerac¸a˜o e Outras Taxas de Variac¸a˜o 153
11.1 Introduc¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
11.2 Velocidade me´dia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
11.3 Velocidade instantaˆnea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
11.4 Taxas de variac¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
11.4.1 Exemplos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
11.5 Acelerac¸a˜o e outras taxas de variac¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
11.5.1 Acelerac¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
11.5.2 Densidade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
11.5.3 Crescimento populacional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
11.5.4 Taxa de reac¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
11.5.5 Aplicac¸o˜es a` Economia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
11.6 Atividades de laborato´rio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
11.7 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
11.8 Problemas propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
11.9 Um pouco de histo´ria: Velocidade instantaˆnea, movimento cont´ınuo e o princ´ıpio da incerteza . . . . . 164
11.10Para voceˆ meditar: Calculando velocidades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
12 Func¸o˜es Trigonome´tricas e suas Derivadas 167
12.1 Motivac¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
12.2 Uma pequena revisa˜o de trigonometria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
12.2.1 Razo˜es trigonome´tricas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
12.2.2 O c´ırculo trigonome´trico e a func¸a˜o de Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
12.2.3 As func¸o˜es trigonome´tricas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
12.2.4 Algumas propriedades das func¸o˜es trigonome´tricas . . . . . . . . . . . . . . . . . . . . . . . . . 169
12.3 Derivadas das func¸o˜es trigonome´tricas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
12.3.1 A derivada da func¸a˜o seno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
12.3.2 O limite trigonome´trico fundamental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
12.3.3 A derivada da func¸a˜o cosseno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
12.3.4 As derivadas das demais func¸o˜es trigonome´tricas . . . . . . . . . . . . . . . . . . . . . . . . . . 174
12.4 Porque se usa radianos em Ca´lculo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
12.5 Atividades de laborato´rio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
12.6 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
12.7 Problemas propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
12.8 Um pouco de histo´ria: O problema da navegac¸a˜o e as primeiras noc¸o˜es de trigonometria . . . . . . . . 176
12.8.1 O Problema da navegac¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
12.8.2 As primeiras noc¸o˜es de trigonometria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
12.9 Para voceˆ meditar: Outra forma de definir as func¸o˜es seno e cosseno . . . . . . . . . . . . . . . . . . . 177
13 Regra da Cadeia 179
13.1 Motivac¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
13.2 Derivadas de func¸o˜es compostas: A Regra da Cadeia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
13.3 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
13.4 Problemas propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
14 Derivac¸a˜o Impl´ıcita e Taxas Relacionadas 185
14.1 Introduc¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
14.1.1 Exemplos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
14.2 Derivac¸a˜o impl´ıcita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
14.3 Taxas relacionadas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
14.3.1 Motivac¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
14.4 Atividades de laborato´rio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
14.5 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
14.6 Problemas propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
14.7 Um pouco de histo´ria: Um desafio a Fermat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
14.8 Para voceˆ meditar: Quando as contas na˜o fazem sentido! . . . . . . . . . . . . . . . . . . . . . . . . . . 192
W.Bianchini, A.R.Santos v
15 Ma´ximos e Mı´nimos em Intervalos Fechados 195
15.1 Motivac¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
15.2 Ma´ximos e mı´nimos absolutos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
15.2.1 Ma´ximos e mı´nimos locais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
15.3 Determinac¸a˜o dos pontos de ma´ximo e mı´nimo de uma func¸a˜o . . . . . . . . . . . . . . . . . . . . . . 198
15.4 Exemplos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
15.5 Problemas envolvendo ma´ximos e mı´nimos em intervalos fechados . . . . . . . . . . . . . . . . . . . . . 200
15.6 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 203
15.7 Problemas propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
15.8 Para voceˆ meditar: O feirante de Caruaru . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
16 Trac¸ado de Gra´ficos 207
16.1 Introduc¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
16.2 Discussa˜o geome´trica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
16.3 Derivadas e trac¸ado de gra´ficos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
16.4 Derivada primeira e extremos locais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
16.4.1 Teste da derivada primeira para determinac¸a˜o de extremos locais . . . . . . . . . . . . . . . . . 213
16.5 Derivada segunda e concavidade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
16.5.1 Teste da derivada segunda para a determinac¸a˜o de extremos locais . . . . . . . . . . . . . . . . 216
16.6 Trac¸ado de gra´ficos - Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
16.7 Atividades de laborato´rio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
16.8 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
16.9 Problemas propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
16.10Para voceˆ meditar: Interpretando gra´ficos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
16.11Projetos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
16.11.1Determinando a janela adequada para o trac¸ado de gra´ficos em computador . . . . . . . . . . 223
16.11.2Aproximando os zeros de uma func¸a˜o - Me´todo de Newton . . . . . . . . . . . . . . . . . . . . 224
17 Teorema do Valor Me´dio 229
17.1 Introduc¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
17.1.1 Teorema de Rolle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
17.1.2 Teorema do valor me´dio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
17.1.3 Consequ¨eˆncias do teorema do valor me´dio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
17.2 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
17.3 Problemas propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
17.4 Para voceˆ meditar: O significado de c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
17.5 Projetos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
17.5.1 Estudando a queda dos corpos - Movimento uniformemente acelerado . . . . . . . . . . . . . . 236
18 Problemas de Ma´ximo e Mı´nimos em Intervalos quaisquer 241
18.1 Introduc¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
18.2 Exemplos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
18.3 Problemas propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
18.4 Um pouco de histo´ria: Princ´ıpio do tempo mı´nimo de Fermat . . . . . . . . . . . . . . . . . . . . . . . 246
18.5 Para voceˆ meditar: Como os gregos eram espertos ou uma demonstrac¸a˜o sem palavras . . . . . . . . . 247
18.6 Projetos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
18.6.1 Um problema de otimizac¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
19 Func¸o˜es Inversas e suas Derivadas 249
19.1 Motivac¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
19.2 Func¸o˜es inversas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
19.3 Derivada da func¸a˜o inversa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
19.4 As func¸o˜es trigonome´tricas inversas e suas derivadas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
19.4.1 As func¸o˜es arcsen(x) e arccos(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
19.4.2 As func¸o˜es arctg(x) e arcsec(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
19.5 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
19.6 Problemas propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
19.7 Para voceˆ meditar: Inversas? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
vi Aprendendo Ca´lculo com Maple
20 Acre´scimos, Diferenciais e Aproximac¸a˜o pela Reta Tangente 259
20.1 Introduc¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
20.2 Aproximac¸a˜o pela reta tangente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
20.3 Diferenciais e func¸o˜es diferencia´veis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
20.4 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
20.5 Problemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
20.6 Um pouco de histo´ria: Os mitos leibnizianos e o comec¸o do ca´lculo infinitesimal . . . . . . . . . . . . . 263
20.7 Projetos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
20.7.1 O me´todo de Euler e o pa´ra-quedista . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
20.7.2 Aproximando func¸o˜es por polinoˆmios - O polinoˆmio de Taylor . . . . . . . . . . . . . . . . . . . 267
20.7.3 Polinoˆmios de Taylor - Aplicac¸o˜es a` f´ısica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
20.7.4 Polinoˆmios de Taylor - Um algoritmo para calcular o seno . . . . . . . . . . . . . . . . . . . . . 271
20.7.5 Tangentes, o´rbitas e caos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
20.7.6 Crescimento de populac¸o˜es - Gerenciando um pesque e pague . . . . . . . . . . . . . . . . . . . 274
21 Introduc¸a˜o a` Integral: Ca´lculo de A´reas e Integrais Definidas 277
21.1 Introduc¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
21.2 A notac¸a˜o de somato´rio: uma abreviac¸a˜o para somas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
21.3 O ca´lculo de a´reas como limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
21.4 A Integral Definida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
21.4.1 Definic¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
21.4.2 Interpretac¸a˜o geome´trica da integral definida . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
21.4.3 Propriedades da integral definida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
21.5 Valor me´dio de uma func¸a˜o e o teorema do valor me´dio para integrais definidas . . . . . . . . . . . . . 290
21.5.1O teorema do valor me´dio para integrais definidas . . . . . . . . . . . . . . . . . . . . . . . . . 291
21.6 Atividades de laborato´rio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
21.7 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
21.8 Problemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
21.9 Um pouco de histo´ria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
21.10Projetos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
21.10.1Somas de Riemann aleato´rias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
21.10.2Somas de Riemann e func¸o˜es mono´tonas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
21.10.3O Maple e o princ´ıpio da induc¸a˜o matema´tica . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
22 O Teorema Fundamental do Ca´lculo e Integrais Indefinidas 301
22.1 Introduc¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
22.2 O teorema fundamental do ca´lculo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
22.3 Integrais indefinidas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
22.4 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
22.5 Problemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
22.6 Um pouco de histo´ria: A integral de Lebesgue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
22.7 Para voceˆ meditar: Uma conclusa˜o intuitiva ou um erro teo´rico? . . . . . . . . . . . . . . . . . . . . . 310
22.8 Projetos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
22.8.1 Arquimedes e a quadratura da para´bola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
22.8.2 Separac¸a˜o de varia´veis, velocidade de escape e buracos negros . . . . . . . . . . . . . . . . . . . 312
23 Resolvendo Integrais pelo Me´todo de Substituic¸a˜o 315
23.1 Me´todos da substituic¸a˜o em integrais indefinidas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
23.2 Me´todo da substituic¸a˜o em integrais definidas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
23.3 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
23.4 Problemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
23.5 Para voceˆ meditar: Resolvendo integrais com o aux´ılio do Maple ou por que devo aprender te´cnicas de
integrac¸a˜o? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
W.Bianchini, A.R.Santos vii
24 Aplicac¸o˜es da Integral Definida 321
24.1 Introduc¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
24.2 Distaˆncia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
24.3 A´rea de regio˜es planas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
24.4 A´reas e ca´lculo de probabilidades (opcional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
24.5 Volume de um so´lido de revoluc¸a˜o: Me´todo do disco . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
24.6 Volume de um anel de revoluc¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
24.7 Comprimento de arco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
24.8 A´rea de uma superf´ıcie de revoluc¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
24.9 Trabalho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
24.10Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
24.11Problemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
24.12Um pouco de histo´ria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
24.13Para voceˆ meditar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
24.13.1Regio˜es ilimitadas teˆm, necessariamente, a´reas infinitas? . . . . . . . . . . . . . . . . . . . . . . 340
24.13.2Volumes iguais? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
24.13.3A raiz quadrada de 2 e´ igual a 1? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
24.14Projetos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
24.14.1Calculando a probabilidade de que uma equac¸a˜o
quadra´tica ter ra´ızes reais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
24.14.2Volumes de so´lidos: sec¸o˜es retas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
24.14.3Volumes de so´lidos de revoluc¸a˜o: me´todo das cascas cil´ındricas . . . . . . . . . . . . . . . . . . 342
24.14.4Usando matema´tica para modelar um objeto real . . . . . . . . . . . . . . . . . . . . . . . . . . 343
25 Logaritmo e Exponencial 345
25.1 Introduc¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
25.2 Motivac¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
25.3 Logaritmo natural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
25.4 Exemplos de derivadas e integrais envolvendo logaritmos . . . . . . . . . . . . . . . . . . . . . . . . . . 347
25.5 Func¸a˜o exponencial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
25.6 Func¸a˜o exponencial em uma base qualquer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
25.7 Logaritmo em uma base qualquer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
25.8 Derivadas e Integrais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
25.9 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
25.10Problemas propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
25.11Um pouco de histo´ria: O logaritmo de
Napier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
25.12Para voceˆ meditar: Onde esta´ o erro? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
25.13Projetos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
25.13.1 Juros simples e compostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
25.13.2 O me´todo do carbono 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
25.13.3Com Kepler e o Maple rumo a`s estrelas (ou modelando um problema real) . . . . . . . . . . . . 356
25.13.4 Escalas logar´ıtmicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
25.13.5Func¸o˜es hiperbo´licas . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
25.13.6 As Func¸o˜es logaritmo e exponencial complexas . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
25.14Atividades de laborato´rio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
26 Te´cnicas de Integrac¸a˜o 363
26.1 Integrac¸a˜o por partes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
26.1.1 Substituic¸a˜o por partes usando o Maple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
26.1.2 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
26.2 Integrais trigonome´tricas especiais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
26.3 Substituic¸a˜o trigonome´trica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
26.4 Func¸o˜es racionais e frac¸o˜es parciais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
26.4.1 Usando o Maple para decompor uma func¸a˜o racional em frac¸o˜es parciais . . . . . . . . . . . . . 373
26.5 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
26.6 Para voceˆ meditar: Como usar o Maple no ca´lculo de integrais . . . . . . . . . . . . . . . . . . . . . . 374
26.7 Projetos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
26.7.1 Integrac¸a˜o nume´rica: Regra do trape´zio e me´todo de Simpson . . . . . . . . . . . . . . . . . . . 376
viii Aprendendo Ca´lculo com Maple
27 Regras de L’Hoˆpital 381
27.1 Formas indeterminadas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
27.2 Primeira regra de L’Hoˆpital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
27.3 Segunda regra de L’Hoˆpital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
27.4 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
28 Integrais Impro´prias 387
28.1 Introduc¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
28.2 Exemplos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
28.3 Limites de integrac¸a˜o infinitos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
28.4 Integrandos infinitos em intervalos finitos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
28.5 O Teste da comparac¸a˜o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
28.6 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Apeˆndice 395
A Func¸o˜es Cont´ınuas 395
A.1 Teorema de Bolzano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
A.1.1 Exerc´ıcios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
A.2 Teorema dos valores extremos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
B Respostas 399
I´ndice 411
Introduc¸a˜o
Este livro, que compo˜e uma primeira disciplina de Ca´lculo, e´ o resultado de nossos esforc¸os no sentido de retratar a
nossa visa˜o do que e´ ensinar e aprender matema´tica: uma atividade criativa que na˜o pode e na˜o deve ser baseada
exclusivamente em aulas expositivas ou na resoluc¸a˜o de extensas listas de exerc´ıcios. E´ uma tentativa, tambe´m, de
envolver o aluno no processo de “fazer matema´tica”, transformando-o de paciente em agente do processo educativo.
A eˆnfase esta´ na compreensa˜o dos conceitos e na˜o somente no desenvolvimento de habilidades mecaˆnicas.
Durante o decorrer do texto, procuramos levar o estudante a trilhar o caminho da descoberta e a sentir o prazer
da descoberta e a entender que aprender matema´tica e´ muito mais do que decorar fo´rmulas e obter respostas para
exerc´ıcios-padra˜o. Tentamos apresentar a matema´tica como um assunto vivo em constante construc¸a˜o e, na˜o simples-
mente, descreveˆ-la como um corpo de conhecimento pronto e acabado.
O computador e´ usado como uma ferramenta para alcanc¸ar estes objetivos e as atividades de laborato´rio, projetos
e desafios sa˜o uma forma de implementa´-los na pra´tica.
Embora um enfoque computacional esteja presente em todo o texto e va´rias atividades sejam desenvolvidas com
o uso do computador, o conteu´do e´ o de um curso tradicional de Ca´lculo. As atividades e projetos sa˜o associados a`
apresentac¸a˜o expositiva dos conteu´dos e a` exerc´ıcios e problemas tradicionais. O formalismo tambe´m na˜o foi esquecido:
ao lado de abordagens gra´ficas visuais, enfatiza-se a necessidade do uso de provas e demonstrac¸o˜es rigorosas.
Esta abordagem balanceada cria um texto ao mesmo tempo inovador e tradicional permitindo a sua utilizac¸a˜o
em sala de aula da maneira que melhor se adapte ao estilo do professor, necessidades e objetivos do curso e aos
recursos tecnolo´gicos existentes. Aqueles que desejarem usa´-lo em um curso tradicional, podera˜o dar mais eˆnfase e se
concentrar no conteu´do expositivo, exerc´ıcios e problemas apresentados na sua versa˜o texto; aqueles que desejarem
introduzir o computador como um auxiliar no ensino e dispuserem de recursos para aulas pra´ticas de laborato´rio,
podera˜o desenvolver as atividades sugeridas com este objetivo e fazer uso, em suas aulas expositivas, das animac¸o˜es
e outras abordagens gra´ficas e nume´ricas presentes na versa˜o eletroˆnica, introduzindo, nestas aulas, um componente
explorato´rio estimulando a interac¸a˜o e participac¸a˜o da turma.
Nos u´ltimos cinco anos, temos procurado introduzir aulas de laborato´rio na proporc¸a˜o de 3 para 1 (treˆs aulas de
duas horas cada, em classe e uma em laborato´rio) nas disciplinas de Ca´lculo I, na UFRJ. Nestas aulas utilizamos o
programa MAPLEV R5 mas as atividades sugeridas neste texto podem ser desenvolvidas a partir do uso de qualquer
outro sistema computacional alge´brico, como por exemplo o MATHEMATICA.
Os professores que teˆm feito parte desta experieˆncia ou que ja´ tiveram oportunidade de observar os alunos nestas
aulas, sa˜o testemunhas da mudanc¸a que se opera tanto na atitude dos alunos, em geral passiva nas aulas tradicionais,
quanto na maneira de encarar o aprender e o entender matema´tica.
Nossos objetivos ao escrever este livro foram:
• Desenvolver a habilidade de ler e escrever matema´tica.
• Desenvolver os conceitos de modo que os alunos possam aplica´-los a problemas e situac¸o˜es que nunca tenham
visto antes.
• Desenvolver habilidades na modelagem e resoluc¸a˜o de problemas.
• Transformar o aluno de paciente em agente do processo educativo.
• Mudar a concepc¸a˜o de alunos e professores a respeito do que e´ “fazer matema´tica”.
• Utilizar o computador como ferramenta e assistente na resoluc¸a˜o de problemas e, ao mesmo tempo, liberar alunos
e professores de ca´lculos tediosos e cansativos.
• Usar recursos gra´ficos e de animac¸a˜o na explorac¸a˜o e aprofundamento dos conceitos apresentados.
Para a consecuc¸a˜o destes objetivos, quatro caracter´ısticas ba´sicas nortearam a composic¸a˜o deste texto:
(a) Abordagem dinaˆmica dos conceitos. Aspectos dinaˆmicos surgem quando os alunos sa˜o levados a descrever como
padro˜es de mudanc¸as em uma varia´vel esta˜o relacionados a padro˜es de mudanc¸as em outra varia´vel. Estes aspectos
sa˜o mais facilmente explorados com aux´ılio do computador. Muitos problemas e exerc´ıcios, neste texto, enfocam a
forma de uma famı´lia de curvas dependendo de um paraˆmetro. A conexa˜o entre taxa de variac¸a˜oe o crescimento ou
decrescimento de uma curva, bem como a ide´ia de limite e a´rea sob curvas sa˜o outros exemplos de aspectos dinaˆmicos
explorados com o uso da ma´quina.
ix
x Introduc¸a˜o
(b) Eˆnfase na integrac¸a˜o dos aspectos nume´ricos, gra´ficos e anal´ıticos. Muitos exerc´ıcios e atividades enfocam
esta integrac¸a˜o e enfatizam a importaˆncia da abordagem e racioc´ınio gra´fico-geome´trico, ta˜o abandonado nos cursos
tradicionais. Func¸o˜es sa˜o abordadas quase sempre enfocando-se a relac¸a˜o entre a sua forma gra´fica e a sua expressa˜o
anal´ıtica. Transformac¸o˜es geome´tricas sa˜o usadas para mostrar como gra´ficos de func¸o˜es complicadas podem ser
obtidos a partir de um gra´fico padra˜o simples e conhecido. Estes aspectos sa˜o enfatizados, tambe´m, quando se faz
a correspondeˆncia entre o gra´fico de uma func¸a˜o e o de sua derivada, ou entre o gra´fico de uma func¸a˜o e o de sua
primitiva, descrevendo-os qualitativamente. Ale´m disso, todo o texto e´ ilustrado com centenas de gra´ficos gerados
em computador. Na˜o ha´ figuras maravilhosas: estes gra´ficos procuram explorar o significado geome´trico existente
por detra´s de um ca´lculo ou de uma expressa˜o anal´ıtica. Procuramos tambe´m, sempre que poss´ıvel, apresentar
interpretac¸o˜es geome´tricas para fo´rmulas e demonstrac¸o˜es.
(c) Eˆnfase na resoluc¸a˜o de problemas. Os alunos, em geral, teˆm dificuldade nos problemas que envolvem a mod-
elagem de uma situac¸a˜o ao inve´s da aplicac¸a˜o pura e simples de uma fo´rmula. Procuramos apresentar uma rica
variedade de situac¸o˜es-problema nas quais o aluno possa entender a matema´tica como assunto u´til e de interesse
atual. Por meio de certos problemas e projetos procuramos despertar a curiosidade e a compreensa˜o do mundo e da
realidade que nos cerca desenvolvendo, ao mesmo tempo, a capacidade de modelagem e clarificando a relac¸a˜o ı´ntima
matema´tica-natureza. As soluc¸o˜es de certos exemplos foram escritas de modo a enfatizar o problema da modelagem.
Esta caracter´ıstica e´ especialmente enfatizada nos projetos e no desenvolvimento de to´picos onde a habilidade na
resoluc¸a˜o de problemas e´ essencial (taxas relacionadas e ma´ximos e mı´nimos, por exemplo).
(d) Eˆnfase na aprendizagem colaborativa e no desenvolvimento de projetos e nas atividades de laborato´rio. Por
procurar desenvolver a habilidade de modelagem de situac¸o˜es reais e de tentar fugir do padra˜o usual de problemas
t´ıpicos que aparecem em grande parte dos textos de Ca´lculo, a maioria dos projetos apresentados neste volume, exigem
um n´ıvel alto de deduc¸a˜o, ana´lise e cr´ıtica destinando-se, tambe´m, ao desenvolvimento da habilidade de comunicac¸a˜o
oral e escrita. Por isso foram concebidos para serem estudados em grupo, de forma colaborativa. A especializac¸a˜o
do mundo atual na˜o permite mais o trabalho isolado e equipes interdisciplinares sa˜o cada vez mais necessa´rias no
desenvolvimento de projetos. Neste sentido, a universidade que prepara profissionais para o mercado de trabalho cada
vez mais exigente, deve estimular o trabalho colaborativo e a discussa˜o em grupo. Atividades desenvolvidas em grupo
sa˜o mais motivadoras e compensadoras desenvolvendo a capacidade de comunicac¸a˜o, essencial nos dias de hoje. O aluno
tem a responsabilidade na˜o so´ com o seu aprendizado mas, tambe´m, com o aprendizado do seu parceiro. Experieˆncias
que incorporam o racioc´ınio e a forma de pensar de outra pessoa a sua forma pro´pria de raciocinar e pensar sa˜o
um ingrediente importante e essencial na escola moderna. Ale´m dos projetos, nestes objetivos se encaixam tambe´m,
as atividades de laborato´rio. Dois alunos por computador e´ o nu´mero ideal, em nosso entender. Estas atividades e
projetos procuram desmistificar a crenc¸a que matema´tica se aprende melhor sozinho e, por isso, recomendamos que
as mesmas fac¸am parte da avaliac¸a˜o final do aluno.
Apesar de reviso˜es dos pre´-requisitos necessa´rios ao entendimento dos conceitos abordados estarem presentes em
todos os cap´ıtulos onde se fac¸am necessa´rias, os dois primeiros cap´ıtulos sa˜o destinados exclusivamente, a uma revisa˜o
mais extensa dos pre´-requisitos mais ba´sicos e, por este motivo, a crite´rio do professor e necessidades da turma, o seu
estudo pode ser omitido.
O Cap´ıtulo 3 destina-se a motivar o estudo e fornecer uma visa˜o geral dos problemas que motivaram o desenvolvi-
mento do Ca´lculo Diferencial e Integral a partir do se´culo XVII. Os problemas que aparecem neste cap´ıtulo sa˜o aqueles
que sera˜o estudados (e resolvidos) no decorrer do texto.
Como o conceito de func¸a˜o e´ o ponto central e unificador de toda a ana´lise matema´tica e da sua correta construc¸a˜o
e compreensa˜o depender o sucesso (ou fracasso) nas disciplinas de Ca´lculo que fazem parte da grande maioria dos
curr´ıculos de nossos cursos universita´rios, a revisa˜o deste conceito foi inclu´ıda como parte integrante do corpo do texto,
apo´s os cap´ıtulos de revisa˜o e motivac¸a˜o.
Os cap´ıtulos sa˜o divididos em sec¸o˜es de conteu´do (parte expositiva da mate´ria), exerc´ıcios (aplicac¸o˜es diretas
dos assuntos estudados), problemas (exerc´ıcios cuja resoluc¸a˜o exige um grau mais alto de entendimento), desafios
(opcionais; procuram enriquecer o entendimento, alargar horizontes e enfocar aspectos pouco explorados e ate´ mesmo
esquecidos nos cursos tradicionais), um pouco de histo´ria (visam situar o problema dentro do seu correto contexto
histo´rico e social), projetos e atividades de laborato´rio. A ordem dos cap´ıtulos foi ditada por nossa experieˆncia e pode
ser alterada segundo crite´rios pro´prios de cada professor. Como ja´ enfatizamos, dependendo dos objetivos a serem
alcanc¸ados, do estilo do professor, das necessidades da turma e dos recursos computacionais dispon´ıveis, o estudo
e desenvolvimento de alguns cap´ıtulos e sec¸o˜es (desafios, atividades de laborato´rio e projetos) podem ser omitidos.
Recomendamos, tambe´m, que os exerc´ıcios, problemas e projetos (se for o caso) sejam selecionados pelo professor.
O sucesso do uso das novas tecnologias no ensino, no nosso entender, repousa no discernimento de onde, como e
quando usar os recursos computacionais. Muitos to´picos de Ca´lculo podem ser explorados de maneira mais fa´cil, mais
simples e mais rapidamente, usando-se a tradicional abordagem expositiva. Ja´ outros to´picos, que envolvem o estudo
do movimento e da variac¸a˜o clamam pelo uso da ma´quina. Muito se tem falado do uso do computador no ensino,
em especial no ensino de matema´tica, mas muito pouco se tem feito para introduzi-lo, efetivamente, como ferramenta
W. Bianchini, A.R.Santos xi
auxiliar em sala de aula. Esperamos que este livro possa contribuir de alguma forma, nesta direc¸a˜o.
Usando a versa˜o eletroˆnica
O CD que acompanha este livro conte´m a versa˜o eletroˆnica deste texto. Essa versa˜o e´ um conjunto de hipertextos que
funcionam em conjunto com o programa MAPLE V R4 ou superior, mas pode ser transposta para a utilizac¸a˜o com
qualquer outro sistema computacional alge´brico, como o MATHEMATICA, por exemplo.
Para aqueles que tem acesso ao MAPLE, a versa˜o eletroˆnica permite interac¸a˜o total: e´ poss´ıvel executar e controlar
as animac¸o˜es; modificar os dados e paraˆmetros usados no trac¸ado de gra´ficos e nas soluc¸o˜es de problemas; trac¸ar gra´ficos
de func¸o˜es e conferir a resposta dos exerc´ıcios; desenvolver rotinas computacionais que executem tarefas repetitivas
ou algoritmos iterativos e muito mais de acordo com a sua necessidade, habilidade para lidar com o programa,
conhecimento matema´tico e imaginac¸a˜o.
Para usar a versa˜o eletroˆnica com eficieˆncia, copie todos os arquivos do CD para o disco r´ıgido do seu computador.
Tenha certeza de respeitar a mesma estrutura de direto´rios encontrada no CD. Caso prefira, execute-a diretamente do
drive do CD-ROM. Neste caso, na˜o e´ poss´ıvel salvar as alterac¸o˜es feitas nos arquivos.Por isso recomendamos que os
arquivos de trabalho sejam copiados para o disco r´ıgido e alterados de acordo com o desenrolar do curso e resoluc¸a˜o
dos exerc´ıcios e atividades propostas. O CD enta˜o funcionara´ como um “backup” que sempre salvaguardara´ a forma
original dos arquivos.
Para inicializar o hipertexto abra, dentro do Maple, o arquivo sumario.mws e para acessar cada um dos cap´ıtulos,
simplesmente clique no item desejado.
Importante:
Execute os comandos na ordem em que aparecerem. Os hipertextos funcionam como uma espe´cie de rotina computa-
cional e, por isso, se os comandos forem executados fora da ordem em que aparecem, ao inve´s dos resultados esperados,
mensagens de erro podem aparecer na tela.
Na execuc¸a˜o de algumas tarefas e´ necessa´rio a leitura de um arquivo de dados. Essa leitura e´ feita usando o
comando read(‘D:diretorio/nome do arquivo‘), onde D indica a unidade de leitura (“drive”) do seu CDROM. Por isso,
antes de executar um comando desse tipo, esteja certo de que o CD fornecido com esse texto, se encontra corretamente
inserido na unidade D ou, se for o caso, modifique neste comando, a letra D para fazeˆ-la corresponder a unidade de
leitura correta que voceˆ estiver usando.
O Cap´ıtulo zero desta versa˜o faz um resumo dos principais comandos do MAPLE utilizados nos hipertextos e
ensina, de forma resumida, como este programa funciona, mostrando ao mesmo tempo, alguns dos seus recursos e
potencialidades. Ale´m disso, no decorrer do texto e´ fornecida a sintaxe e a utilidade dos comandos novos que sa˜o
utilizados no texto e atividades de laborato´rio. Caso estas explicac¸o˜es na˜o sejam suficientes, consulte o “HELP” do
programa. O modo de acessar o HELP e´ explicado no cap´ıtulo zero, ja´ citado.
Se voceˆ tiver alguma outra du´vida sobre a utilizac¸a˜o desta versa˜o eletroˆnica que na˜o consiga sanar, bem como
cr´ıticas e sugesto˜es a esta obra, na˜o hesite em usar o enderec¸o eletroˆnico dado abaixo para escrever para no´s. Teremos
prazer em poder ajuda´-lo e em receber sua opinia˜o e/ou contribuic¸a˜o para o aprimoramento de futuras verso˜es.
Angela Rocha dos Santos
angela@im.ufrj.br
Waldecir Bianchini
waldecir@im.ufrj.br
Ao Estudante
O objeto matema´tico mais familiar a` grande maioria das pessoas e´ o nu´mero. Por esta raza˜o, muitas pessoas pensam
que gostar de matema´tica e´ gostar de nu´meros mas, o que a maioria desconhece, e´ que muitos matema´ticos na˜o gostam
de nu´meros muito mais que as outras pessoas. Os matema´ticos gostam de matema´tica porque gostam das coisas que
a matema´tica permite fazer. Se voceˆ e´ um daqueles que na˜o gosta de matema´tica provavelmente e´ porque ainda na˜o
descobriu o que significa fazer matema´tica.
A matema´tica, mais do que qualquer outra cieˆncia, permite reconhecer e deduzir padro˜es e, a partir deles, fazer
abstrac¸o˜es. Ale´m de seu valor intr´ınseco, estas abstrac¸o˜es podem ser usadas para descrever e tirar concluso˜es a respeito
da natureza e do mundo ao nosso redor.
Num certo sentido, qualquer pessoa e´ um matema´tico em potencial pois, qualquer ser humano e´ capaz de reconhecer
padro˜es e lidar com conceitos abstratos. O que nos difere e´ nosso n´ıvel de habilidade (e paixa˜o) ao lidar com estes
conceitos. Apesar disto, todos no´s podemos nos beneficiar em compartilhar ide´ias, du´vidas, problemas e soluc¸o˜es, uns
com os outros.
Os matema´ticos esta˜o menos preocupados em obter as respostas corretas, assim num piscar de olhos, do que em
entender e percorrer (ou redescobrir) o caminho que leva a` soluc¸a˜o de um problema. Em geral, pensar sobre um
problema e´ ta˜o interessante quanto achar a sua soluc¸a˜o e fazer perguntas e´ ta˜o importante quanto respondeˆ-las. Este
livro e´ cheio de perguntas indagac¸o˜es e desafios que nem sempre veˆm acompanhados de respostas e a`s vezes nem
sequer teˆm uma u´nica resposta. Ele foi assim estruturado porque perguntar e´ a questa˜o central ao se tentar entender
matema´tica. Fazer e compreender matema´tica envolve ter du´vidas, fazer perguntas e relaciona´-las umas com as outras.
Quando voceˆ estuda matema´tica e pensa sobre os problemas, muitas du´vidas e questo˜es pro´prias surgem. Talvez
algue´m mais ja´ tenha pensado sobre elas e saiba respondeˆ-las. Talvez voceˆ mesmo seja capaz de encontrar a soluc¸a˜o.
Por isso ler um livro de matema´tica e´ diferente de ler um jornal ou um romance e estudar matema´tica e´ como aprender
a nadar: na˜o basta observar como um campea˜o ol´ımpico atravessa facilmente uma piscina; voceˆ sera´ incapaz de sentir
a dificuldade (e saborear a vito´ria) antes de cair voceˆ pro´prio na piscina!
Na˜o desanime se, no in´ıcio, voceˆ afundar muitas vezes, isto e´, se voceˆ na˜o entender uma passagem ou tiver que leˆ-la
mais de uma vez. Pergunte, pergunte sempre! Estude com papel e la´pis na ma˜o. Eles sera˜o u´teis para fazer ca´lculos,
refazer passagens, esboc¸ar diagramas e anotar suas du´vidas.
Na˜o se limite a tentar fazer os exerc´ıcios recomendados de cada cap´ıtulo. Fac¸a um plano de estudo: leia e tente
compreender cada sec¸a˜o e cap´ıtulo do texto antes de tentar resolver os exerc´ıcios. Esteja certo de compreender as
definic¸o˜es e o correto significado dos termos.
A matema´tica se preocupa em provar as afirmac¸o˜es usando regras de lo´gica e resultados ja´ provados e escrever
estas provas de maneira que todos consigam entender. Um dos objetivos deste texto e´ ajuda´-lo a pensar e a escrever
logicamente. Teoremas e demonstrac¸o˜es, geralmente, sa˜o motivo de medo e desgosto para os alunos de Ca´lculo,
provavelmente porque estas provas esta˜o associadas a uma linguagem densa e quase incompreens´ıvel, cheia de s´ımbolos
estranhos e letras gregas.
Embora seja verdade que os matema´ticos comunicam suas descobertas e resultados numa linguagem, desenvolvida
atrave´s dos se´culos, que usa vocabula´rio e notac¸a˜o pro´prios, e´ importante notar que mais do que da linguagem
apropriadamente empregada, uma prova matema´tica deve ser completa, compreens´ıvel a todos e logicamente deduzida,
sem apresentar “furos” ou racioc´ınios circulares no caminho que conduz a` conclusa˜o.
Em matema´tica, o mais importante e´ perguntar (e saber responder) “como e´ poss´ıvel afirmar isto?” ou “como
posso ter certeza de que esta afirmac¸a˜o e´ verdadeira?” e, enta˜o, ser capaz de comunicar a resposta a estas perguntas
numa linguagem que seja clara e compreens´ıvel, para os seus colegas, professores e ate´ para voceˆ mesmo. Provar na˜o
e´ persuadir nem intimidar. Alguma coisa na˜o esta´ provada em matema´tica simplesmente porque parece razoa´vel ou
aceita´vel: uma afirmac¸a˜o so´ pode ser considerada verdadeira quando e´ deduzida, usando-se as regras da lo´gica, a partir
de postulados ou axiomas e de outras afirmac¸o˜es ja´ provadas e, portanto, verdadeiras.
Este livro procura estimula´-lo a usar recursos computacionais para auxilia´-lo nas suas pro´prias concluso˜es e ajuda´-lo
a entender os conceitos, ide´ias e demonstrac¸o˜es apresentados. Por isso, se tiver acesso a um computador e ao programa
MAPLE V R4 ou superior, use e abuse da versa˜o eletroˆnica deste texto (consulte a sec¸a˜o usando a versa˜o eletroˆnica).
xiii
xiv Ao Estudante
Nesta versa˜o e´ poss´ıvel executar animac¸o˜es, visualizar gra´ficos em escalas pequenas (ou grandes), experimentar mu-
danc¸as de paraˆmetros, observar os resultados destas “experieˆncias matema´ticas” e concluir.
Ajuda´-lo a trilhar o caminho da construc¸a˜o do conhecimento cient´ıfico e´ tambe´m o objetivo das atividades de
laborato´rio que devem complementar e/ou preceder o estudo de cada cap´ıtulo. Estude em grupo e compartilhe suas
deduc¸o˜es e concluso˜es com seus colegas e professores. Voceˆ vera´ que, dessa maneira, o seu estudo rendera´ mais
tornando-se muito mais interessante e proveitoso.
As respostas dos exerc´ıcios e problemas encontram-se no apeˆndice B, no final deste volume. A`s vezese´ poss´ıvel
expressar a resposta de um exerc´ıcio em diferentes formas. Assim, se a sua resposta diferir daquela apresentada por
no´s, na˜o considere, imediatamente, que a sua esta´ errada. Antes, tenha certeza de que na˜o existe alguma identidade
alge´brica e trigonome´trica que torne as duas respostas equivalentes.
Ca´lculo e´ uma mate´ria muito interessante e, desde o se´culo XVII, tem se revelado a principal ferramenta matema´tica
nas aplicac¸o˜es cient´ıficas e tecnolo´gicas. Esperamos que este livro ajude-o a encontrar tanto a sua beleza intr´ınseca
como a sua utilidade.
Agradecimentos
No final da de´cada de 70, um grupo de jovens professores do Departamento de Me´todos Matema´ticos do Instituto
de Matema´tica da Universidade Federal do Rio de Janeiro (IM-UFRJ), cheios de entusiasmos e zelo pela missa˜o que
lhes foi confiada de ensinar ca´lculo para os alunos da maior universidade federal do nosso pa´ıs, e sem saber muito
bem como desempenhar esta missa˜o com sucesso, resolveram conjugar esforc¸os e, com este fim, passaram a se reunir
semanalmente, para discutir, ale´m dos conteu´dos a serem ministrados nas aulas, abordagens inovadoras e me´todos
pedago´gicos adequados para a introduc¸a˜o dos novos conceitos e desenvolvimento das aulas.
A partir destas reunio˜es, foram elaborados os enta˜o chamados “roteiros de Ca´lculo” que, durante muitos anos,
serviram como padra˜o e orientac¸a˜o a alunos e professores que estudavam e ministravam disciplinas de Ca´lculo na
nossa e em outras universidades. Estes roteiros de estudo constitu´ıram a grande experieˆncia dida´tica desenvolvida no
IM-UFRJ e utilizada em nossas aulas por mais de duas de´cadas.
Embora com um novo enfoque computacional, muitos cap´ıtulos deste livro foram inspirados em partes destes
roteiros e segue a sua metodologia, tremendamente inovadora para a e´poca e, atualmente, recomendada pelas comisso˜es
de especialistas do MEC, que elaboraram as novas diretrizes curriculares, baseada na contextualizac¸a˜o dos problemas
e no enfoque multidisciplinar dos conteu´dos programa´ticos.
Neste sentido, gostar´ıamos de dividir a autoria desta obra com os nossos colegas que faziam parte das equipes de
Ca´lculo do final dos anos 70 e in´ıcio dos anos 80. Em particular, gostar´ıamos de citar nominalmente, o professor Rolci
de Almeida Cipolatti, que coordenou a primeira equipe de Ca´lculo I de 1977, a qual deu partida ‘a elaborac¸a˜o dos
roteiros.
Aos professores Ricardo Silva Kubrusly, Eduardo San-Pedro Siqueira, Moˆnica Moulin, Eliane Amiune Camargo,
Ivone Alves Regal, Claudia De Segadas Viana, Bruno Alexandre da Costa,Victor Giraldo, Milton Flores,Elaine
Machtyngier e Jair Salvador do IM-UFRJ que veˆm utilizando este livro nas suas aulas e, consequentemente, ajudando-
nos, durante os u´ltimos treˆs anos a aprimora´-lo por meio de correc¸o˜es, cr´ıticas e sugesto˜es, nosso muito obrigado.
Em particular, gostar´ıamos de agradecer aos professores Elaine Machtyngier e Jair Salvador pela elaborac¸a˜o dos
apeˆndices A e B, respectivamente, deste volume bem como pela cuidadosa revisa˜o.
Estendemos os agradecimentos a todos que direta ou indiretamente, tenham contribu´ıdo de alguma forma para a
realizac¸a˜o deste trabalho e que porventura na˜o tenham sido citados explicitamente. Em particular, aos nossos editores
que tornaram poss´ıvel a execuc¸a˜o desta obra e aos nossos parentes e amigos que suportaram nosso mau humor,
acompanhado de total falta de atenc¸a˜o e de tempo, durante a elaborac¸a˜o deste texto.
Este trabalho faz parte do projeto Novas Tecnologias no Ensino desenvolvido no IM-UFRJ e foi realizado uti-
lizando recursos do laborato´rio de computac¸a˜o do Departamento de Me´todos Matema´ticos do IM-UFRJ, apoiado pela
Fundac¸a˜o Universita´ria Jose´ Bonifa´cio.
xv
Cap´ıtulo 1
Revisa˜o e Pre´-requisitos (1)
1.1 Os nu´meros que governam o mundo
Os nu´meros representam um papel de vital importaˆncia na˜o so´ na matema´tica como na cieˆncia de um modo geral e
na nossa vida dia´ria. Vivemos cercados de nu´meros: hora´rios, tabelas, gra´ficos, prec¸os, juros, impostos, velocidades,
distaˆncias, temperaturas, etc.
A maior parte das quantidades que estudaremos neste curso (a´reas, volumes, taxas de variac¸a˜o, velocidades...) sa˜o
medidas por meio de nu´meros reais, e nesse sentido podemos dizer que o Ca´lculo se baseia no sistema dos nu´meros
reais.
O conjunto de todos os nu´meros reais e´ denotado pelo s´ımbolo R. Presumimos que voceˆ esteja familiarizado com
as suas propriedades fundamentais.
O conjunto dos nu´meros reais conte´m alguns subconjuntos de fundamental importaˆncia, que foram surgindo a partir
das necessidades do homem de resolver problemas pra´ticos. Assim, o conjunto dos nu´meros naturais {1, 2, 3, ...},
representado pelo s´ımbolo N , surgiu da necessidade da contagem, que se realiza por meio da operac¸a˜o de “ fazer
corresponder” .
A ide´ia de “correspondeˆncia” e´ uma das ide´ias ba´sicas de toda a matema´tica. Contar significa estabelecer uma
correspondeˆncia, um para um, entre cada item de uma colec¸a˜o qualquer de objetos e a sucessa˜o de nu´meros naturais.
A criac¸a˜o de um s´ımbolo (0) para representar o nada, ou o nu´mero de elementos de um conjunto vazio, e´ mais
recente (data talvez dos primeiros se´culos da era crista˜) e surgiu devido a`s necessidades da numerac¸a˜o escrita. No
nosso sistema de numerac¸a˜o, onde o valor de cada algarismo depende da posic¸a˜o que este algarismo ocupa (sistema de
numerac¸a˜o posicional), o algarismo zero representa um papel de fundamental importaˆncia para “preencher ou indicar
classes vazias”. O sistema de numerac¸a˜o posicional permite na˜o so´ escrever os nu´meros de maneira muito simples, mas
tambe´m efetuar as operac¸o˜es muito facilmente (tente fazer uma conta bem simples usando o sistema de numerac¸a˜o
romana e sinta a dificuldade!!).
Na sucessa˜o dos nu´meros naturais podemos passar de um nu´mero para o seguinte juntando-lhe uma unidade.
Assim, passamos do 1 para o 2, do 2 para o 3, e, dessa maneira, podemos ir ta˜o longe quanto quisermos, isto e´, dado
um nu´mero n qualquer, por maior que ele seja, podemos sempre obter um nu´mero n+ 1, maior do que ele. Este fato
exprime-se por qualquer dos seguintes enunciados:
(a) a sucessa˜o dos naturais e´ ilimitada (na˜o ha´ um nu´mero natural maior que todos os outros),
(b) dado um nu´mero natural, por maior que ele seja, existe sempre outro maior do que ele,
(c) ha´ uma infinidade de nu´meros naturais.
(Na impossibilidade de listar todos os elementos do conjuntos dos naturais, usamos as reticeˆncias para evidenciar esta
propriedade.)
Uma das deficieˆncias apresentadas pelo conjunto dos nu´meros naturais e´ a impossibilidade da subtrac¸a˜o. Para
entender esta impossibilidade, considere um mo´vel que partindo de um ponto O, atinge um ponto P ao fim de 5
segundos, movendo-se a uma velocidade de 1 m/s. Podemos concluir que o ponto P esta´ a uma distaˆncia de 5m
do ponto O. Suponhamos, agora, que o mo´vel mude o sentido do movimento mas continue com a mesma velocidade
por mais 3 segundos. Ao fim destes 3 segundos ele estara´ a 2m de distaˆncia do ponto O. Poder´ıamos chegar a
esta conclusa˜o a partir dos dois resultados parciais que expressam as duas fases do movimento, isto e´, subtraindo 3
(distaˆncia percorrida pelo mo´vel na segunda fase) de 5 (distaˆncia percorrida na primeira fase). Assim, a posic¸a˜o final
do mo´vel poderia ser obtida por meio da operac¸a˜o 5− 3 = 2.
Esta operac¸a˜o na˜o e´ sempre poss´ıvel no conjunto dos naturais. Vamos exemplificar. Suponhamos que o mo´vel,
partindo de O e movendo-se sempre com uma velocidade de 1 m/s, siga para a direita durante 5 segundos e retroceda,
com a mesma velocidade, durante 8 segundos. Ao fim dos 13 segundos, ele estara´ numa posic¸a˜o a 3 metros a` esquerda
do ponto O. Este resultado e´ imposs´ıvel de se obter, como anteriormente por meio de uma subtrac¸a˜o,no conjunto dos
nu´meros naturais, pois na˜o existe nenhum nu´mero natural que represente o resultado da operac¸a˜o 5− 8.
1
2 Cap. 1. Revisa˜o e Pre´-requisitos (1)
Esta deficieˆncia dos naturais foi sanada ampliando-se esse conjunto e formando-se o conjunto dos nu´meros inteiros
{. . . ,−2,−1, 0, 1, 2, . . .}, denotado pelo s´ımbolo Z (da palavra alema˜ Zahl, que significa nu´mero).
Assim como os nu´meros naturais surgiram da necessidade de contar, os nu´meros racionais, que sa˜o expressos pela
raza˜o entre dois inteiros, surgiram da necessidade de medir.
Medir e´ comparar. Para isso e´ necessa´rio estabelecer um padra˜o de comparac¸a˜o para todas as grandezas da mesma
espe´cie, por exemplo, 1 cm para comprimento, 1 segundo para tempo, etc. Este padra˜o estabelece uma unidade
de medida da grandeza (comprimentos, a´reas, tempo, etc.). Medir, portanto, e´ determinar quantas vezes a unidade
estabelecida cabe, por exemplo, no comprimento que se quer medir. O resultado desta comparac¸a˜o, que e´ a medida
da grandeza em relac¸a˜o a` unidade considerada, deve ser expresso por um nu´mero.
Na figura superior ao lado, se considerarmos o segmento CD
como a unidade de medida, teremos que o segmento AB mede 4
unidades. Tomando-se CE como unidade, a medida deste mesmo
segmento sera´ 8 unidades. So´ em casos muito especiais a grandeza
a ser medida conte´m um nu´mero inteiro de vezes a unidade de me-
dida. O caso mais frequ¨ente e´ o da figura inferior ao lado onde,
tomando-se a medida u do segmento CD como unidade, a medida
de AB e´ maior que 3u e menor que 4u. E´ claro que neste exem-
plo, podemos subdividir a unidade em partes menores para que
cada uma delas caiba um nu´mero inteiro de vezes na grandeza a
medir mas, o que se pode dizer da medida de AB em relac¸a˜o a` de
CD? A dificuldade surge porque, neste caso, a medida m de AB
na˜o e´ divis´ıvel pela medida u de CD. No conjunto dos nu´meros
inteiros existe a impossibilidade da divisa˜o, isto e´, neste conjunto
nem sempre e´ poss´ıvel expressar o resultado de uma medic¸a˜o ou
de uma raza˜o.
E DC
BA
DC
BA
Para resolver este problema criou-se um novo conjunto de nu´meros, chamado conjunto dos nu´meros racionais,
denotado pelo s´ımbolo Q (de quociente). Um nu´mero racional p e´ portanto, aquele que pode ser escrito na forma
p = mn , onde m e n sa˜o inteiros e n 6= 0. (Lembre-se que a divisa˜o por zero na˜o tem sentido pois na˜o existe nenhum
nu´mero que multiplicado por zero seja diferente de 0; portanto, expresso˜es do tipo 30 na˜o esta˜o definidas e expresso˜es
do tipo 00 sa˜o indeterminadas.)
Parece que desta maneira resolvemos todos os nossos problemas de medic¸a˜o. Doce engano! Existem alguns nu´meros
reais, tais como
√
2 e pi, que na˜o podem ser expressos como a raza˜o entre inteiros. Isto quer dizer que em Q na˜o
podemos medir a diagonal de um quadrado de lado 1 ou a a´rea de um c´ırculo de raio 1. Este fato ja´ tinha sido
percebido pelos gregos na e´poca de Pita´goras. Por esta raza˜o, estes nu´meros sa˜o chamados de irracionais. Podemos
mostrar, com va´rios graus de dificuldade (veja projeto Nu´meros Alge´bricos e Transcendentes), que os nu´meros
√
2,√
3,
√
5, 2(
1
3 ), pi, e, sen(10), log10(2) sa˜o todos irracionais.
Todo nu´mero real tem uma representac¸a˜o decimal infinita. Se o nu´mero e´ racional, enta˜o a parte decimal e´ repetida
a partir de um certo ponto. Por exemplo,
2 = 2, 000..., 12 = 0, 5000...,
2
3 = 0, 6666...,
157
495 = 0, 31711717...,
9
7 = 1, 285714285714... .
Se o nu´mero e´ irracional, a parte decimal na˜o segue nenhum padra˜o, isto e´, na˜o se repete nunca. Com o aux´ılio de um
computador, podemos calcular a representac¸a˜o decimal de
√
2 e de pi com muitas casas decimais para nos convencer
deste fato. Veja abaixo os valores destes nu´meros calculados com 9, 50 e 200 casas decimais, com aux´ılio do comando
evalf do Maple.
> evalf(Pi);
3.141592654
> evalf(Pi,50);
3.1415926535897932384626433832795028841971693993751
> evalf(Pi,200);
W.Bianchini, A.R.Santos 3
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534\
21170679821480865132823066470938446095505822317253594081284811174502841027019385211055596\
446229489549303820
> evalf(sqrt(2));
1.414213562
> evalf(sqrt(2),50);
1.4142135623730950488016887242096980785696718753769
> evalf(sqrt(2),200);
1.4142135623730950488016887242096980785696718753769480731766797379907324784621\
0703885038753432764157273501384623091229702492483605585073721264412\
14970999358314132226659275055927557999505011527820605715
Embora estes nu´meros sejam convincentes, eles na˜o bastam como uma prova matema´tica. A demonstrac¸a˜o de
que
√
2 e´ irracional e´ fa´cil e esta´ indicada no projeto Nu´meros Alge´bricos e Transcendentes. Ja´ a prova de que pi e´
irracional e´ muito dif´ıcil e foge ao objetivo deste curso.
Os valores acima, obtidos truncando-se a representac¸a˜o decimal de pi e de
√
2, respectivamente, num determinado
ponto, sa˜o aproximac¸o˜es racionais para estes nu´meros. Neste sentido, todo nu´mero irracional pode ser aproximado
por um nu´mero racional, e a aproximac¸a˜o sera´ tanto melhor quanto mais casas decimais forem consideradas. Esta
propriedade a`s vezes e´ expressa dizendo-se que o conjunto dos nu´meros racionais e´ denso no conjunto dos irracionais,
isto e´, qualquer que seja o nu´mero irracional k, existe uma sequeˆncia de nu´meros racionais r1, r2, r3, ..., rn, ... tal que,
a` medida que n cresce, o erro que cometemos ao aproximarmos k por rn e´ cada vez menor. Por exemplo, os termos
da sequ¨eˆncia de racionais
1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ... ,
se aproximam cada vez mais do nu´mero
√
2 a` medida em que consideramos mais e mais termos na sequ¨eˆncia. Para
exprimir este fato usamos a notac¸a˜o matema´tica lim
n→∞ rn = k. Leˆ-se: o limite de rn quando n tende a infinito (isto
e´, cresce sem limite) e´ k. Podemos generalizar este fato dizendo que qualquer nu´mero real pode ser aproximado por
uma sequ¨eˆncia de racionais, isto e´, os racionais sa˜o densos nos reais.
E´ poss´ıvel associar os nu´meros reais aos pontos de uma reta de tal modo que a cada nu´mero real corresponda um
u´nico ponto P da reta e, reciprocamente, a cada ponto P da reta corresponda um u´nico nu´mero real. Isto sera´ feito
na pro´xima sec¸a˜o.
Em 1872, Ricardo Dedekind usou o fato de os racionais serem densos nos reais para estabelecer a continuidade
dos nu´meros reais, isto e´, para formular de uma maneira matematicamente aceita´vel a ide´ia intuitiva de que a reta
e, consequ¨entemente, o conjunto dos nu´meros reais – pois estes dois conjuntos teˆm o mesmo nu´mero de pontos (veja
pro´xima sec¸a˜o) – na˜o tem “furos” ou “buracos”.
1.2 A Reta numerada
Como foi dito no final da sec¸a˜o anterior, e´ poss´ıvel estabelecer uma correspondeˆncia biun´ıvoca, ou um a um, entre o
conjunto dos nu´meros reais e os pontos de uma reta, isto e´, e´ poss´ıvel associar um u´nico nu´mero real a cada ponto
P de uma reta e, reciprocamente, a cada ponto P de uma reta e´ poss´ıvel associar um u´nico nu´mero real da maneira
descrita a seguir.
Escolhemos um ponto arbitra´rio O da reta e uma conveniente unidade de medida. O ponto O sera´ chamado de
origem. A este ponto associamos o nu´mero real 0 (zero). Cada nu´mero real positivo x e´ representado pelo ponto da
reta que esta´ a x unidades a` direita da origem e cada nu´mero negativo −x e´ representado pelo ponto da reta que
esta´ a x unidades a` esquerda da origem. O nu´mero associado ao ponto P e´ chamado coordenada de P ; a reta e´ enta˜o
chamada reta coordenada, reta real numerada ou simplesmente reta real, e a correspondeˆncia assim estabelecida e´ dita
um sistema de coordenadas na reta.
No exemplo a seguir, a coordenada de P e´ −4, a coordenada de Q e´ −2 e assim por diante.
4 Cap. 1. Revisa˜o e Pre´-requisitos

Outros materiais