Buscar

Aula 06 EvaporacaoEEvapotranspiracao

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 95 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 95 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 95 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

*
*
Hidrologia
Evapotranspiração
Carlos Ruberto Fragoso Jr.
http://www.ctec.ufal.br/professor/crfj/
Marllus Gustavo Ferreira Passos das Neves
http://www.ctec.ufal.br/professor/mgn/
Ctec - Ufal
*
*
Conceito Geral
Fatores que afetam a evapotranspiração
Medição da evaporação
Evaporação em lagos e reservatórios
Estimativa da evapotranspiração
Medição
Cálculo
Evapotranspiração
*
*
Evaporação (E) – Processo pelo qual se transfere água do solo e das massas líquidas para a atmosfera. No caso da água no planeta Terra ela ocorre nos oceanos, lagos, rios e solo.
Transpiração (T) – Processo de evaporação que ocorre através da superfície das plantas. A taxa de transpiração é função dos estômatos, da profundidade radicular e do tipo de vegetação.
Conceito Geral - Evapotranspiração
*
*
Ocorre quando o estado da água é transformado de líquido para gasoso devido à energia solar
Móleculas da água líquida rompem a barreira da superfície (liberando energia)
É necessário que o ar não esteja saturado
Evaporação
Definições
*
*
Definições
quantidade de energia que uma molécula de água líquida precisa para romper a superfície e evaporar
calor latente de evaporação
*
*
Transpiração  desde as raízes até as folhas, pelo sistema condutor, pelo estabelecimento de um gradiente de potencial desde o solo até o ar
Transpiração no Sistema Solo Planta Atmosfera
O gradiente de tensão de vapor de água também favorece o fluxo
Quanto mais seco estiver o ar (menor Umidade Relativa), maior será esse gradiente
*
*
Evapotranspiração (ET)  Processo simultâneo de transferência de água para a atmosfera através da evaporação (E) e da transpiração (T).
Potencial (ETP)
Real (ETR)
Transpiração no Sistema Solo Planta Atmosfera
*
*
Definições
ETP  Quantidade de água transferida para a atmosfera por evaporação e transpiração, em uma unidade de tempo, de uma superfície extensa, completamente coberta de vegetação de porte baixo e bem suprida de água (Penman,1956)
ETR  Quantidade de água transferida para a atmosfera por evaporação e transpiração, nas condições reais (existentes) de fatores atmosféricos e umidade do solo. A ETR é igual ou menor que a evapotranspiração potencial (Gangopadhyaya et al, 1968)
*
*
 Umidade do ar
 Temperatura do ar
 Velocidade do vento
 Radiação solar
 Tipo de solo
 Vegetação (transpiração)
Fatores que afetam
*
 Quanto maior a temperatura, maior a pressão de saturação do vapor de água no ar, isto é, maior a capacidade do ar de receber vapor.
 Para cada 10oC, P0 é duplicada
Temperatura
*
*
Temperatura
*
*
Umidade relativa  medida do conteúdo de vapor de água do ar em relação ao conteúdo de vapor que o ar teria se estivesse saturado
onde UR é a umidade relativa; w é a massa de vapor pela massa de ar e ws é a massa de vapor por massa de ar no ponto de saturação.
Umidade do Ar
Ar com umidade relativa de 100% está saturado de vapor, e ar com umidade relativa de 0% está completamente isento de vapor
*
*
Também pode ser expressa em termos de pressão parcial de vapor.
Lei de Dalton  cada gás que compõe um a mistura exerce uma pressão parcial, independente da pressão dos outros gases, igual à pressão que se fosse o único gás a ocupar o volume
No ponto de saturação a pressão parcial do vapor corresponde à pressão de saturação do vapor no ar, e a equação anterior pode ser reescrita como:
Umidade do Ar
onde UR é a umidade relativa; e é a pressão parcial de vapor no ar e es é pressão de saturação.
*
*
O vento renova o ar em contato com a superfície que está evaporando (superfície da água; superfície do solo; superfície da folha da planta).
Com vento forte a turbulência é maior e a transferência para regiões mais altas da atmosfera é mais rápida, e a umidade próxima à superfície é menor, aumentando a taxa de evaporação
Vento
*
*
A quantidade de energia solar que atinge a Terra no topo da atmosfera está na faixa das ondas curtas. Na atmosfera e na superfície terrestre a radiação solar é refletida e sofre transformações:
Radiação Solar
 parte da energia incidente é refletida pelo ar e pelas
 nuvens (26%)
 parte é absorvida pela poeira, pelo ar e pelas nuvens (19%)
 parte da energia que chega a superfícies é refletida de volta para o espaço ainda sob a forma de ondas curtas (4% do total de energia incidente no topo da atmosfera)
*
*
Radiação Solar
A energia absorvida pela terra e pelos oceanos  aquecimento destas superfícies  depois emitem radiação de ondas longas
Além disso, o aquecimento das superfícies  aquecimento do ar que está em contato  fluxo de calor sensível (ar quente), e o fluxo de calor latente (evaporação)
Finalmente, a energia absorvida pelo ar, pelas nuvens e a energia dos fluxos de calor latente e sensível retorna ao espaço na forma de radiação de onda longa, fechando o balanço de energia
*
*
Radiação Solar
*
*
Solos arenosos úmidos tem evaporação maior do que solos argilosos úmidos
Solo e vegetação
A vegetação:
Controla a transpiração
Pode agir fechando os estômatos
Busca a umidade de camadas profundas do solo
*
*
Solo e vegetação
Umidade do solo  uma das variáveis mais importantes na transpiração
Solo úmido  plantas transpiram livremente  taxa de transpiração controlada pelas variáveis atmosféricas
Solo começa a secar  fluxo de transpiração começa a diminuir
Condições ideais de umidade do solo  ETP
Condições reais de umidade do solo  ETR
*
*
Determinação da evaporação e da ET
*
*
Relação entre a evaporação e a pressão de vapor, com a introdução do efeito do vento
Leva em conta a radiação solar: efetiva de ondas curtas, efetiva de ondas longas, a energia de evaporação, calor sensível por condução, características aerodinâmicas  método de Penman
Ajuste por regressão das variáveis envolvidas
Medida direta  tanque classe A, ...
Baseia-se na equação da continuidade do lago ou reservatório
Evaporação
*
*
Lisímetros e umidade do solo
ETP  Método de thornthwaite, método de Blaney-Criddle. Para determinar ET 
ET = ETP .kc, onde kc  coeficiente de cultura (determinado em lisímetros)
Baseados na variável meteorológica radiação. Equação de Jesen e Haise, ...
Chamada de equação de Penman  adaptar o cálculo da evaporação de superfícies livres para a superfície de interesse  ETP 
Para intervalos de tempo superiores a 1 semana
Evapotranspiração
*
*
Tanque classe A
Evaporímetro de Piché
Evaporímetros  medição direta
*
 O mais usado  forma circular com um diâmetro de 121
 cm e profundidade de 25,5 cm
 Construído em aço ou ferro galvanizado
 Pintado na cor alumínio
 Instalado numa plataforma de madeira a 15 cm da superfície do solo
 permanecer com água variando entre 5,0 e 7,5 cm da borda superior.
Tanque classe A
*
Tanque classe A
Tanque "Classe A" – US Weather Bureau
 O fator que relaciona a evaporação de um reservatório e do tanque classe A oscila entre 0,6 e 0,8, sendo 0,7 o valor mais utilizado
*
Tanque classe A
Fonte : Sabesp
*
Tanque classe A
Tanque classe A
*
Tanque classe A
 manutenção da água entre as profundidades
 recomendadas  evita erros de até 15%
 a água deve ser renovada  turbidez  evita erros de
 até 5%
 as paredes sofrem com a influência da radiação e da
 transferência de calor sensível  superestimação da
 evaporação
 próximos a cultivos de elevada estatura 
 subestimação da evaporação
*
Constituído por um tubo cilíndrico, de vidro, de aproximadamente 30 cm de comprimento e um centímetro de diâmetro, fechado na parte superior e aberto na inferior
A extremidade inferior tapada, depois do tubo estar cheio com água destilada, com um disco de papel de feltro, de 3 cm de diâmetro, que deve ser previamente molhado com água
Este disco é fixo depois com uma mola. A seguir,o tubo é preso por intermédio de uma argola a um gancho situado no interior do abrigo
Evaporímetro de Piché
*
Evaporímetro de Piché
*
*
Piché é pouco confiável
Evaporímetro de Piché
*
*
Medição (mais complicada)
Cálculo
Estimativa da evapotranspiração
*
*
Lisímetro
Depósitos enterrados, abertos na parte superior, preenchidos com solo e vegetação característica
Controle das variáveis:
Peso
Medir chuva
Coletar água percolada
Coletar água escoada
Superfície homogênea
Lisímetros  medição direta
*
*
Lisímetros  medição direta
Precipitação no solo  drenagem para o fundo do aparelho  água é coletada e medida
O depósito é pesado diariamente, assim como a chuva e os volumes escoados de forma superficial e que saem por orifícios no fundo 
ET calculada por balanço hídrico entre 2 dias subseqüentes
ET = P - Qs – Qb – ΔV
E  evapotranspiração
P  chuva (medida num pluviômetro)
Qs  escoamento superficial (medido)
Qb  é o escoamento subterrâneo (medido no fundo do tanque)
ΔV  variação de volume de água (medida pelo peso)
*
*
Lisímetros  medição direta
*
*
Lisímetros  medição direta
*
*
Lisímetros  medição direta
*
*
Lisímetros  medição direta
http://jararaca.ufsm.br/websites/matasul-ufsm/1ca53f95af2a6c15feea202899377cc9.htm
*
*
Cálculo da ETP  baseado na temperatura
Thornthwaite: empírica, caracterizada por um único fator, a temperatura média. Foi desenvolvida para climas temperados (inverno úmido e verão seco). 
E = c Ta
t = temperatura de cada mês ºC
T = temperatura média ºC
Blaney-Criddle: também utiliza a temperatura média e horas do dia com insolação, para regiões semi-áridas
ETP=(0,457 T + 8,13) p
ET = ETP . Kc
p = % luz diária
kc = é o coeficiente de cultura.
*
*
Cálculo da ETP  baseado na temperatura
*
Para estimar evapotranspiração potencial mensal
T = temperatura média do mês (oC)
a = parâmetro que depende da região
I = índice de temperatura
Thornthwaite
j  cada um dos 12 meses do ano
Tj  temperatura média de cada um dos 12 meses
*
*
Exemplo
Calcule a evapotranspiração potencial mensal para o mês de Agosto de 2006 em Porto Alegre onde as temperaturas médias mensais são dadas na figura abaixo.
Suponha que a temperatura média de agosto de 2006 tenha sido de 15,3°C
*
Exemplo
O primeiro é o cálculo do coeficiente I a partir das temperaturas médias obtidas da tabela. O valor de I é 96. A partir de I é possível obter a= 2,1. Com estes coeficientes, a evapotranspiração potencial é:
Portanto, a evapotranspiração potencial estimada para o mês de agosto de 2006 é de 53,1 mm/mês.
*
*
Usando a temperatura e a umidade do ar
Usando a temperatura e a radiação solar
Equações de Penmann (insolação, temperatura, umidade relativa, velocidade do vento)
Mais Equações de cálculo da ET
*
*
Jensen Haise
Turc
Grassi
Stephens – Stewart
Makkink
Métodos baseados na 
temperatura e radiação
*
*
Métodos baseados na temperatura
 do ar e na umidade
Blaney-Morin
Hamon
Hargreaves
Papadakis
*
Equações combinadas
Penman  evaporação
Christiansen
Van Bavel
Penman - Monteith  ampliação de
 Penman para
 ETR de uma
 superfície
 vegetada
*
Combina 
poder evaporante do ar
temperatura, umidade, velocidade do vento
poder evaporante da radiação
Penman
*
*
Penman
Em que se baseia a equação de Penman?
 Radiação efetiva de ondas
 curtas
 Radiação atmosférica de
 ondas longas
 Radiação atmosférica de ondas
 longas
 Fluxo de calor por condução
 Fluxo de calor por perda por
 evaporação
VC
 Energia de
 entrada
 Energia de
 saída
W.m-2
*
*
Penman
Em que se baseia a equação de Penman?
W.m-2
 Radiação no topo da atmosfera
 (Stop) 
 Radiação incidente de onda
 curta (Ssup)
 Radiação efetiva de ondas curtas
  Radiação líquida na superfície
 (RL)
Stop
Ssup
RL
a.Ssup
ondas curtas
*
*
Penman
Em que se baseia a equação de Penman?
 Radiação no topo da atmosfera (Stop)  função da latitude, distância sol-terra e época do ano
ondas curtas
*
*
Penman
Em que se baseia a equação de Penman?
ondas longas
 Ln  radiação líquida de ondas longas que deixa a superfície terrestre
W.m-2
para a 
superfície
f  fator de correção devido à cobertura de nuvens
T [ºC]  temperatura média do ar a 2 m do solo
  emissividade da superfícies
s  constante (σ = 4,903.10-9 MJ.m-2.ºK-4.dia-1)
*
*
Penman - Monteith
Penman + introdução de um fator de resistência que leva em consideração o stress de umidade da vegetação e do solo
*
*
Penman - Monteith
*
*
Penman - Monteith
*
*
Penman - Monteith
Massa específica do ar 
PA é a pressão atmosférica em kPa
T é a temperatura do ar a 2m da superfície em ºC
Massa específica do água
TW é a temperatura da água em ºC
*
*
Penman - Monteith
Pressão de saturação do vapor (es)
T é a temperatura do ar a 2m da superfície em ºC
Pressão real de vapor de água no ar (ed)
UR é a umidade relativa do ar em %
*
*
Penman - Monteith
Calor latente de vaporização (λ)
l em MJ.kg-1
T é a temperatura do ar a 2m da superfície em ºC
Constante psicrométrica (γ)
taxa de variação da pressão de saturação do vapor com a temperatura do ar (Δ)
T é a temperatura do ar a 2m da superfície em ºC
*
*
Penman - Monteith
Resistência aerodinâmica (ra)
 um,10 é a velocidade do vento a 10 m de altura em m/s
 h é a altura da vegetação em m
 z0 é a rugosidade da superfície (z0 = h/10)
*
*
Penman - Monteith
Resistência aerodinâmica (ra)
*
*
Penman - Monteith
Resistência aerodinâmica (ra)
Representa a dificuldade com que a umidade, que deixa a superfície das folhas e do solo, é dispersada pelo meio
Na proximidade da vegetação o ar tende a ficar mais úmido, dificultando o fluxo de evaporação
A velocidade do vento e a turbulência contribuem para reduzir a resistência aerodinâmica, trocando o ar úmido próximo à superfície que está fornecendo vapor, como as folhas das plantas ou as superfícies líquidas, pelo ar seco de níveis mais elevados da atmosfera.
*
*
Penman - Monteith
Resistência aerodinâmica (ra)
Inversamente proporcional à altura dos obstáculos
enfrentados pelo vento, porque são estes que geram a turbulência
*
*
Penman - Monteith
Velocidade do vento a 10 m de altura
 um,2 é a velocidade do vento a 2 m de altura em m/s
 z0 é a rugosidade da superfície (z0 = h/10)
Estações climatológicas normalmente dispõe de dados de velocidade do vento medidas a 2 m de altura. Para converter estes dado a uma altura de referência de 10
m é utilizada a equação ao lado
*
*
Penman - Monteith
Resistência superficial da vegetação (rs)
Valores de referência (boas condições de umidade)
Grama: rs = 69 s/m (ETP)
Florestas superficiais: rs = 100 s/m
*
*
Penman - Monteith
Fluxo de energia para o solo (G)
Por simplicidade, G pode ser considerado nulo
 Td é a temperatura do solo no dia que se deseja calcular a ET
 T3d é a temperatura do solo 3 dias antes
Radiação líquida na superfície (RL)
 SSUP é a radiação de atinge a superfície (MJ.m-2.s-1) – valor
 medido 
 α é o albedo, parcela da radiação incidente que é refletida (depende do uso e da cobertura vegetal - tabelado)
*
*
Penman - Monteith
*
*
Penman - Monteith
Nem sempre estações meteorológicas medem a radiação que atinge a superfície (SSUP);
Quando existem apenas dados de horas de insolação ou da fração de cobertura de nuvens, estima-se a radiação que atinge a superfície através de equações empíricas
*
*
Penman – Monteith  analogia com circuito elétrico
Fluxo evaporativo  corrente elétrica
Déficit de pressãode vapor no ar (pressão de saturação do vapor menos pressão parcial real: es-ed)  Diferença de potencial (Voltagem)
Resistência: combinação de resistência superficial e resistência aerodinâmica  Resistência elétrica
*
*
Penman - Monteith
Resistência superficial  combinação, para o conjunto da vegetação, da resistência estomática das folhas
Representa a resistência ao fluxo de umidade do solo, através das plantas, até a atmosfera
É diferente para os diversos tipos de plantas e depende de variáveis ambientais (umidade do solo, temperatura do ar e radiação recebida pela planta) 
A maior parte das plantas exerce um certo controle sobre a resistência dos estômatos  podem controlar a rs
*
*
Penman - Monteith
Resistência estomática das folhas  depende da disponibilidade de água no solo
Em condições favoráveis  valores de resistência estomática e, em conseqüência, os de resistência superficial são mínimos
*
*
ETR
ETP
Umidade do solo
Smx
ETR = evapotranspiração depende da umidade do solo
Relações
*
*
Relações
Períodos de estiagem mais longos  ET retira umidade do solo  ET diminui
A redução da ET não ocorre imediatamente
Para valores de umidade do solo entre a capacidade
de campo e um limite  ET não é afetada pela
umidade do solo
A partir deste limite  ET diminuída  mínimo
(normalmente zero)  no ponto de murcha permanente
Neste ponto  rS atinge valores altíssimos
*
*
Penman – Monteith  passos
Obter o dia Juliano (J) para a data que se deseja calcular a ET
Obter a latitude (f), em graus, do local que se deseja calcular a ET
Calcular a declinação solar em radianos
Calcular a distância relativa da terra ao sol (dr)
*
*
5. Calcular o ângulo ao nascer do sol em radianos (ωs)
f é a latitude do local em radianos 
d é declinação solar em radianos
Penman – Monteith  passos
6. Calcular a insolação máxima (N) para a localização desejada
*
*
7. Calcular a radiação solar que atinge o topo da atmosfera (STOP), em MJ.m-2.dia-1
f é a latitude do local em radianos 
d é declinação solar em radianos
ωs é o ângulo do sol ao nascer em radianos
Penman – Monteith  passos
*
*
8. Calcular a radiação solar que atinge o topo da superfície (SSUP), em MJ.m-2.dia-1 
N  insolação máxima possível em horas
n  isolação medida em horas 
a  fração de atinge a superfície em dias encobertos (quando n=0)
b  fração de atinge a superfície em dias sem nuvens (quando n = N)
Penman – Monteith  passos
*
*
Quando não existem dados locais medidos que permitam estimativas mais precisas, são recomendados os valores de 0,25 e 0,50, respectivamente, para os parâmetros as e bs;
Quando a estação meteorológica dispõe de dados de insolação, a equação acima é utilizada com n medido e N estimado pela equação. Quando a estação dispõe de dados de fração de cobertura, utiliza-se o valor de n/N diretamente
Penman – Monteith  passos
9. Calcular a radiação solar líquida na superfície (RL)
*
*
 Estime a evapotranspiração média, em mm/dia, através da equação de Penman-Monteith para a cidade de Maceió (posto Inmet Ufal), no sábado, dia 23/04/2011
Exercício
Abrir planilha  Acessar http://www.inmet.gov.br/  observações  estações automáticas ou convencionais  localizar a estação da Ufal no mapa  colocar a latitude na planilha  clicar em dados  escolher data e baixar os dados  podem ser colocados no Excel
*
*
*
*
Exercício
*
*
Dados meteorológicos
http://meteo.infospace.ru/main.htm
*
*
Dados meteorológicos
*
*
Baseados na temperatura : Thorntwaite- muito limitado e tende a subestimar a evapotranspiração;
 Blaney-Criddle: utilizado para irrigação e considera o tipo de cultura
Radiação ou combinado: Método Penman: utiliza dados climáticos como temperatura, radiação solar, insolação, umidade do solo e velocidade do vento
Comentários sobre os métodos
 de estimativa
*
*
Evapotranspiração potencial : é a evaporação do solo e a transpiração das plantas máxima que pode ser transferida para atmosfera. Com base nas condições climáticas e características das plantas é possível estimar a ETP
Evapotranspiração real: é a o total transferido para a atmosfera de acordo com a disponibilidade hídrica existente (umidade do solo) e a resistência das plantas. 
Evapotranspiração
*
*
Método de estimativa simples com base nos dados precipitação e vazão de uma bacia. 
A equação da continuidade
S(t+1)=S(t) + (P –E - Q)dt
Desprezando a diferença entre S(t+1) – S(t) 
Q= P- E
Simplificação aceita para dt longos como o um ano ou seqüência de anos
Balanço hídrico
*
*
Exemplo: 
Uma bacia (Rio Passo Fundo) com Precipitação média
1.941 mm e Vazão de 803 mm (valores médios de 10
anos). 
A evaporação real é E= 1941 – 803 = 1137 mm
O coeficiente de escoamento é a relação entre Q/P
C = 803/1941 = 0,41 
ou 41% da precipitação gera escoamento. 
Balanço hídrico
*
*
mm/ano
m3/s
A = Área da bacia
Q = vazão
Conversão de unidades
*
*
Reservatórios são criados para regularizar a vazão dos rios, aumentando a disponibilidade de água e de energia nos períodos de escassez
A criação de um reservatório, entretanto, cria uma vasta superfície líquida que disponibiliza água para evaporação, o que pode ser considerado uma perda de água e de energia 
Evaporação em reservatórios
*
*
A evaporação da água em reservatórios  estimada a partir de medições de Tanques de Classe A
Entretanto é necessário aplicar um coeficiente de redução em relação às medições de tanque  a água do reservatório normalmente está mais fria do que a água do tanque, que tem um volume pequeno e está completamente exposta à radiação solar
Evaporação em reservatórios
*
*
Assim, para estimar a evaporação em reservatórios e lagos costuma-se considerar que esta tem um valor de aproximadamente 60 a 80% da evaporação medida em Tanque Classe A na mesma região, isto é:
	Onde Ft tem valores entre 0,6 e 0,8.
Evaporação em reservatórios
*
Evaporação em lagos
 e reservatórios
Reservatório de Sobradinho
constituindo-se no maior lago artificial do mundo, está numa das regiões mais secas do Brasil
área superficial de 4.214 km2
Evaporação direta deste reservatório é estimada em 200 m3.s-1  10% da vazão regularizada do rio São Francisco  Esta perda é superior à vazão prevista para o projeto de transpiração do rio São Francisco
*
*
 Um rio cuja vazão média é de 34 m3/s foi represado por uma barragem para geração de energia elétrica. A área superficial do lago criado é de 5.000 hectares.
Medições de evaporação de um tanque classe A correspondem a 1.500 mm por ano.
Qual é a nova vazão média a jusante da barragem após a formação do lago?
Exercício
*
*
	E = 1.500 x 0,7 mm/ano
	E = 1,66 m3/s
	Q = 34 – 1,66 = 32,34 m3/s
		Redução de 4,9 % da vazão
Solução
*
*
 Deseja-se construir um reservatório em um rio, cuja bacia possui uma área de 50 km2. A área de inundação do reservatório é de 10 km2. Estime qual deve ser a redução de vazão média disponível na bacia. Considere que a evaporação potencial da superfície da água é de 1.400 mm por ano. A evaporação estimada por balanço hídrico antes da construção do reservatório foi de 1.137 mm por ano. Nestas mesmas condições, a vazão média era de 1,41 m3/s e a precipitação de 1.941 mm por ano.
Exercício
*
*
 ET após a construção
ET = (0,7.1.400.10 + 1.137.40)/50 = 1.105,6 mm/ano 
 Q após a construção
Q = 1.941 - 1.105,6 = 835,4 mm/ano
 Redução de Q
Qantes = 1,41 m3/s
Qdepois = 835,4 mm/ano = 1,325 m3/s
Redução de 6,45%
Exercício
Capítulo 06b
*
*
*
Capítulo 06b
*
Capítulo 06b
*
Capítulo 06b
*
Capítulo 06b
*
*
*

Outros materiais