Buscar

Guia de Aplicação de Soft Starters

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 188 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 188 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 188 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Continue navegando


Prévia do material em texto

Motors | Energy | Automation | Coatings
Soft-Starter
Arrancador Suave
Soft-Starter
SSW
User's Guide
Guia del Usuario
Guia do Usuário
GUIA DE APLICAÇÃO DE SOFT-STARTERS
Série: SoftStarter
Idioma: Português
N º do Documento: XXXXXXXX
Modelos: XXX
Data da Publicação: 03/2009
Anexo 3 - Check-List para detalhamento da aplicação
2 | Guia de Aplicação Soft-Starter
11
AUTORIA
“Este ‘Guia de Soft-Starter’ foi escrito pelo Tecnólogo Rogério Ferraz, a quem coube a coordenação do trabalho 
e a criação dos capítulos 1, 4, 5, 6, 7, 8 e anexo II, e pelo Engº. Enivaldo C. do Nascimento que atuou na criação 
do capítulo 4.
Os capítulos 2 e 3 e os anexos I e III foram revisados pelos autores a partir do Guia do Inversores de Freqüência 
da WEG.”
Indice
0ÍNDICE
INTRODUÇÃO
1.1 MÉTODOS DE PARTIDA DE MOTORES .............................................................................................1-1
1.2 MÉTODOS TRADICIONAIS DE PARTIDA DE MOTORES .................................................................1-2
1.2.1 Partida de motores com embreagens ......................................................................................1-2
1.2.2 Transmissão hidráulica ..............................................................................................................1-2
1.2.3 Acoplamento Hidráulico ............................................................................................................1-2
1.2.4 Motor de Anéis ........................................................................................................................... 1-3
1.2.5 Inversor de Freqüência como um Método de Partida ........................................................... 1-5
COMO FUNCIONA UM MOTOR DE INDUÇÃO?
2.1 PRINCÍPIOS BÁSICOS DE FUNCIONAMENTO .................................................................................2-1
2.3.1 Torque x Velocidade .................................................................................................................. 2-6
2.3.2 Corrente x Velocidade ............................................................................................................... 2-6
2.4 POTÊNCIA E PERDAS ........................................................................................................................ 2-6
2.5 CARACTERÍSTICAS DE TEMPERATURA – CLASSES DE ISOLAMENTO TÉRMICO ....................2-7
2.6 TEMPO DE ROTOR BLOQUEADO ......................................................................................................2-7
MÉTODOS DE COMANDO DE UM MOTOR DE INDUÇÃO
3.1 CATEGORIAS DE PARTIDA ................................................................................................................ 3-1
3.2 FORMAS DE PARTIDAS ..................................................................................................................... 3-2
3.3.1 Frenagem por contra-corrente ................................................................................................ 3-8
3.3.2 Frenagem por injeção de corrente contínua (CC) ................................................................. 3-9
3.4 VANTAGENS E DESVANTAGENS DOS MÉTODOS DE PARTIDA...................................................3-10
3.5 NBR-5410 REFERENTE A PARTIDA COM CORRENTE REDUZIDA ..............................................3-11
6.5.3 Motores ......................................................................................................................................3-12
6.5.3.1 Generalidades ........................................................................................................................3-12
6.5.3.2 Limitação das perturbações devidas à partida de motores ...........................................3-12
SOFT-STARTER
4.1 INTRODUÇÃO ...................................................................................................................................... 4-1
4.1.1 Semicondutores e componentes eletrônicos ......................................................................... 4-1
4.1.2 A característica mais marcante dos tiristores ....................................................................... 4-1
4.1.3 Introdução às válvulas de descarga a gás .............................................................................. 4-1
4.1.4 Thyratron ..................................................................................................................................... 4-2
4.1.5 SCR (Silicon Controlled Rectifier) ............................................................................................ 4-3
4.1.6 Entendendo o disparo do SCR ................................................................................................. 4-4
4.3.1 Principais funções ....................................................................................................................4-12
4.3.2 Proteções ...................................................................................................................................4-16
4.3.3 Acionamentos típicos...............................................................................................................4-16
PARÂMETROS DA SOFT-STARTER
5.2 PARÂMETROS DE REGULAÇÃO ....................................................................................................... 5-3
5.3 PARÂMETROS DE CONFIGURAÇÃO ................................................................................................ 5-8
5.4 PARÂMETROS DO MOTOR ...............................................................................................................5-14
5.5 ERROS E POSSÍVEIS CAUSAS .........................................................................................................5-16
DIMENSIONAMENTO DO CONJUNTO MOTOR + SOFT-STARTER
6.1 INTRODUÇÃO ...................................................................................................................................... 6-1
6.1.1 Definições .................................................................................................................................... 6-1
6.1.2 Relações básicas ....................................................................................................................... 6-1
6.2 INTERAÇÃO ENTRE PROCESSO, MÁQUINA, MOTOR E ACIONAMENTO ................................... 6-3
6.2.1 A importância do processo/máquina ...................................................................................... 6-3
6.2.2 Aplicação de acionamentos elétricos - Problemas típicos.................................................. 6-5
6.3 O QUE A CARGA REQUER ................................................................................................................. 6-6
6.3.1 Tipos de cargas .......................................................................................................................... 6-6
6.3.2 O pico da carga .......................................................................................................................... 6-7
Indice
0
6.3.3 ESTIMANDO CARGAS ..................................................................................................................... 6-7
6.4.1 Categorias AC53a e AC53b ....................................................................................................... 6-8
6.4.2 Capacidade térmica da Soft-Starter ....................................................................................... 6-9
6.4.3 Corrente RMS num ciclo (IRMS) .................................................................................................6-10
6.4.4 Casos especiais ........................................................................................................................6-12
6.4.5 Tempo de rotor bloqueado do motor .....................................................................................6-13
6.4.6 Tempo de aceleração...............................................................................................................6-14
6.5 AFUNDAMENTO DE TENSÃO OU QUEDA DE TENSÃO MOMENTÂNEA (VOLTAGE SAG / VOLTAGE 
DIP) ............................................................................................................................................................6-19
6.5.1 Conseqüências de uma queda de tensão momentânea ..................................................... 6-22
6.5.2 Comentários sobre soluções contra queda de tensão momentânea ............................... 6-22
6.5.3 Capacidade relativa da rede de alimentação ....................................................................... 6-23
6.5.4 Comentários sobre a queda de tensão e a influência na partida do motor ..................... 6-29
6.6 APLICAÇÕES TÍPICAS ...................................................................................................................... 6-31
6.6.1 Máquinas com partidas leves ................................................................................................. 6-31
6.6.2 Máquinas com partidas severas ............................................................................................ 6-34
6.7 REGRAS PRÁTICAS DE DIMENSIONAMENTO .............................................................................. 6-40
INSTALAÇÃO DA SOFT-STARTER
7.1 INTRODUÇÃO .......................................................................................................................................7-1
7.2 LIGAÇÃO PADRÃO, ENTRE A REDE E O MOTOR (“FORA” DA LIGAÇÃO DELTA DO MOTOR) ...7-2
7.2.1 Chave seccionadora ...................................................................................................................7-2
7.2.2 Fusíveis ou disjuntor ...................................................................................................................7-2
7.2.3 Contator .......................................................................................................................................7-2
7.2.4 Fiações de controle e interface Homem-Máquina (IHM) .......................................................7-3
7.2.5 Correção de Fator de Potência .................................................................................................7-3
7.2.6 Aterramento .................................................................................................................................7-3
7.3 LIGAÇÃO DENTRO DO DELTA DO MOTOR ...................................................................................... 7-4
7.3.1 Introdução ................................................................................................................................... 7-4
7.3.2 Exemplo de ligação com SSW-03 Plus dentro da ligação delta do motor ..........................7-5
7.3.3 Ligação de terminais de motores com tensões múltiplas .....................................................7-7
7.3.4 Possibilidades de ligação da SSW-03 Plus em função do fechamento do motor ..............7-9
7.4 SSW-05 (MICRO SOFT-STARTER) ....................................................................................................7-10
7.5 LIGAÇÃO DA SMV-01 (SOFT-STARTER PARA MÉDIA TENSÃO) ..................................................7-13
LINHA DE SOFT-STARTER WEG .....................................................................................8-1
ANEXO 1 - CÁLCULO DO MOMENTO DE INÉRCIA DE MASSA
1. MOMENTO DE INÉRCIA DE FORMAS SIMPLES ............................................................................... 9-1
2. TEOREMA DOS EIXOS PARALELOS ................................................................................................... 9-3
3. MOMENTO DE INÉRCIA DE FORMAS COMPOSTAS ........................................................................ 9-3
4. MOMENTO DE INÉRCIA DE CORPOS QUE SE MOVEM LINEARMENTE ....................................... 9-4
5. TRANSMISSÃO MECÂNICA ................................................................................................................. 9-4
6. EXEMPLOS DE CÁLCULOS DE MOMENTO DE INÉRCIA DE MASSA ............................................. 9-4
ANEXO 2 - SOFTWARE DE DIMENSIONAMENTO WEG - SDW
1. INTRODUÇÃO .......................................................................................................................................10-1
2. COMO ACESSAR .................................................................................................................................10-1
3. COMO USAR ........................................................................................................................................ 10-2
4. LIMITE DE RESPONSABILIDADE PELO USO DO SOFTWARE SDW ............................................10-16
ANEXO 3 - FOLHA DE DADOS PARA DIMENSIONAMENTO - 
SOFT-STARTER
REFERÊNCIAS BIBLIOGRÁFICAS
Guia de Aplicação Soft-Starter | 1-1 
Introdução
1
INTRODUÇÃO
É recorrente no desenvolvimento de nossa sociedade a necessidade de acelerar, manter em movimento e parar 
máquinas.
Seja através de tração animal, sejam monjolos, moinhos de vento ou vapor, foram várias as soluções de que 
nossos precursores lançaram mão para obter maior conforto, maior segurança. e para atingir melhores resultados 
em suas atividades.
Figura 1.1: Moinho de Vento
O atual estado de desenvolvimento dos acionamentos elétricos concentra o resultado de um longo período de 
tentativas e descobertas, em diversas áreas do conhecimento, para movimentar nossas máquinas cada vez mais 
sofisticadas e exigentes.
A Soft-Starter hoje já é uma alternativa plenamente consolidada para partidas e paradas de motores trifásicos de 
indução. A evolução dos processos e máquinas criou um ambiente propício ao acionamento suave, controlado 
e com múltiplos recursos disponibilizados pelo controle digital.
Indo além, há uma maior consciência de que nossos recursos exigem conservação cuidadosa, o que faz da 
Soft-Starter um equipamento em sintonia com o cenário energético atual, colaborando para o uso racional de 
nossas instalações.
Temos a satisfação de reconhecer que o Brasil está muito bem representado nesta área por uma empresa nacional 
cujo nome já é sinônimo de qualidade nos cinco continentes, a Weg.
Estamos certos de que este guia será de grande valia para os técnicos, engenheiros e empreendedores que, 
conosco, trabalham para construir um futuro à altura das potencialidades do nosso país. Já é possível ver este 
futuro.
1.1 MÉTODOS DE PARTIDA DE MOTORES
Conforme veremos no capítulo 2 (Funcionamento do motor de indução), picos de corrente e torque são 
intrínsecos à partida com plena tensão do motor trifásico.
Na prática, muitas vezes deseja-se limitar o valor da corrente que será drenada da rede de alimentação a fim de 
evitar:
1) distúrbios na rede ou 
2) aumento da demanda de energia elétrica. 
No caso dos distúrbios na rede, o objetivo é reduzir a queda de tensão (ou mesmo a sua interrupção). No caso 
do aumento da demanda, deseja-se atender limites definidos junto às concessionárias de energia elétrica, uma 
vez que o não atendimento destes limites é punido com a cobrança tarifas elevadas.
Embora, invariavelmente a redução da corrente seja acompanhada de uma redução do torque no motor, nem 
sempre esta redução de torque é tida como prejudicial. Na verdade este é um dos aspectos que precisam ser 
cuidadosamente ponderados a fim de obter-se o melhor dimensionamento do conjunto motor + sistema de 
partida.
1-2 | Guia de Aplicação Soft-Starter
Introdução
1
1.2 MÉTODOS TRADICIONAIS DE PARTIDA DE MOTORES
Podemos agrupar os métodos de partida de motores trifásicos conforme segue:
1) Aqueles em que a tensão aplicada ao motor é a tensão plena da rede (partida direta)
2) Aqueles em que a tensão aplicada ao motor é a tensão plena, entretanto a ligação das bobinas do motorleva 
a uma tensão menor em cada bobina (chaves estrela- triângulo e série- paralela)
3) Aqueles em que a tensão aplicada ao motor é efetivamente reduzida (chaves compensadoras e Soft-
Starter)
Os itens acima são abordados em maior profundidade nos capítulos seguintes.
1.2.1 Partida de motores com embreagens
O objetivo básico que leva a utilização de embreagens é permitir que durante a aceleração de motores assíncronos 
a partida se dê praticamente a vazio e a corrente de partida tenha uma duração mínima, com vantagens para a 
rede de alimentação e para o motor.
Por outro lado o motor poderá atingir seu conjugado máximo em processo momentâneo de desaceleração 
(durante o acoplamento da embreagem), enquanto nos outros métodos este conjugado máximo será atingido 
em plena aceleração. 
A necessidade de manutenção e maior complexidade de montagem do conjunto mecânico são algumas das 
restrições do uso de embreagens.
1.2.2 Transmissão hidráulica
Em um sistema de transmissão hidráulica, a energia é transferida empregando-se um fluído para controlar um 
movimento linear ou um eixo de saída.
Há dois tipos principais de transmissão hidráulica: 
1) hidrocinéticos (como acoplamentos hidráulicos), que utilizam a energia cinética de um fluído
2) hidrostáticos, que utilizam a energia de pressão do fluído.
1.2.3 Acoplamento Hidráulico
O princípio de funcionamento do acoplamento hidráulico pode ser explicado por analogia com um sistema 
de bombeamento. Neste sistema uma bomba centrífuga de óleo (“parte motora”) é acionada por um motor 
elétrico. Uma turbina (“parte movida”), cujo eixo aciona a máquina, é acionada através do óleo movimentado 
pela bomba.
Tanto a “parte motora” quanto a “parte movida” compartilham um mesmo invólucro, sem conexão mecânica entre 
elas. A energia é transmitida pelo fluído (óleo) entre as partes.
Desde o início do movimento do motor há uma tendência de movimento da “parte movida“ (eixo que aciona a 
máquina). Quando o conjugado transmitido ao eixo que aciona a máquina se igualar ao conjugado resistente 
inicia-se a aceleração da máquina.
Este é um método de partida historicamente associado a partida de cargas com inércia elevada, como moinhos 
ou transportadores. 
O gráfico a seguir ilustra a evolução do torque no eixo de saída do acoplamento. 
Guia de Aplicação Soft-Starter | 1-3 
Introdução
1
Figura 1.2: O acoplamento hidráulico segue o princípio das máquinas centrífugas: o torque transmitido ao eixo de saída é proporcional 
ao quadrado da velocidade
Fisicamente, instala-se o acoplamento hidráulico entre o motor e a máquina
Figura 1.3: Exemplo de acoplamento hidráulico com montagem por polias
O acoplamento hidráulico necessita de manutenção para checagem do nível e carga de óleo, o que pode se 
tornar um procedimento mais ou menos difícil em função da montagem (com polias, axial ao eixo do motor, com 
redutores, etc).
Manutenção inadequada ou vazamento do óleo podem causar danos no sistema.
1.2.4 Motor de Anéis
Os motores de anéis caracterizam-se pela capacidade de alteração das curvas de conjugado e corrente através 
da inserção de resistências externas ao circuito rotórico do motor.
1-4 | Guia de Aplicação Soft-Starter
Introdução
1
Figura 1.4: Exemplo de circuito de força de motor de anéis
Esta alteração das curvas do motor tornaram o uso do motor de anéis bastante conveniente para aceleração de 
máquinas com alto conjugado resistente em baixas rotações, como pode-se observar na figura abaixo.
Guia de Aplicação Soft-Starter | 1-5 
Introdução
1
Figura 1.5: Partida com motor de anéis. A inserção dos devidos resistores no circuito rotórico leva o torque máximo do motor ao instante 
inicial de partida.
O motor de anéis também encontrou aplicação em máquinas que necessitam de alguma variação de velocidade 
e redução na corrente de partida.
Entretanto, o uso de Inversores de Freqüência tem levado os motores de anéis a fazer parte apenas de situações 
muito específicas.
Vale lembrar que o uso de Inversores para partidas de cargas com alto conjugado de partida merece cuidado 
particular de dimensionamento. Deve-se levar em conta o ciclo de operação e a corrente solicitada com Inversor 
no dimensionamento “térmico” do conjunto motor + inversor.
1.2.5 Inversor de Freqüência como um Método de Partida
Embora a principal função do Inversor de Freqüência seja a variação de velocidade, não é possível deixar de lado 
suas virtudes no que tange à aceleração e parada de máquinas.
Em todos os métodos de partida, o que se procura são maneiras de lidar com os “transitórios” de partida 
(elétricos e mecânicos), e, assim, alcançar com sucesso, e com o mínimo de distúrbio, o funcionamento estável 
do sistema. 
Figura 1.6: Curva torque versus rotação de um motor trifásico acionado por Inversor Vetorial. Desde que provido de meio de ventilação 
adequada, o motor trifásico acionado por Inversor de Freqüência pode aplicar seu torque nominal mesmo em velocidades baixas 
durante quanto tempo for necessário
Com o Inversor de Freqüência estes transitórios são praticamente eliminados, ou, pelo menos, são bastante 
reduzidos. 
1-6 | Guia de Aplicação Soft-Starter
Introdução
1
Por exemplo, em cargas com alta inércia, o torque e a rampa de aceleração podem ser ajustados da maneira que 
se consiga a aceleração mais suave possível. Isto porque o Inversor de Freqüência “toma as rédeas” do sistema 
desde os primeiros instantes da aceleração. 
Quando se necessita de controle na desaceleração, com ou sem frenagem, também através do Inversor 
encontramos o maior número de alternativas: tanto pode-se conseguir a parada e desaceleração suaves de uma 
bomba, quanto torque de frenagem para a descida de uma carga (ponte rolante, guindaste).
Figura 1.7: Fundamental de uma fase na saída do inversor de freqüência durante um processo de aceleração seguido de desaceleração. 
Com uma taxa de aumento de velocidade (rampa de aceleração) adequada, aliada a novas tecnologias de controle vetorial como o 
Vectrue, pode-se praticamente eliminar os transitórios de partida em algumas aplicações.
Entretanto, convém frisar que cada máquina requer seus devidos cuidados no dimensionamento do Inversor e 
eventuais acessórios (resistor de frenagem, tipo de retificador, etc).
Figura 1.8: Inversores de Freqüência série CFW-09. A baixa exigência de manutenção é um dos principais diferenciais dos Inversores de 
Freqüência, assim como as Soft-Starters
Como Funciona um Motor de Indução?
2
Guia de Aplicação Soft-Starter | 2-1 
COMO FUNCIONA UM MOTOR DE INDUÇÃO?
Para compreender o funcionamento da Soft-Starter e de um Inversor de Freqüência é de fundamental importância 
entender primeiro como funciona um motor de indução. Para começar enunciaremos os princípios físicos básicos 
da conversão de energia elétrica em energia mecânica.
2.1 PRINCÍPIOS BÁSICOS DE FUNCIONAMENTO
1. Uma corrente circulando por um condutor produz um campo magnético, representado na figura 2.1 pelas 
linhas circulares chamadas de linhas de indução magnética. No centro da figura se encontra o condutor e as 
linhas circulares em volta são uma representação gráfica do campo magnético gerado pela corrente.
Figura 2.1
2. Se um condutor é movimentado dentro de um campo magnético, aparecerá uma tensão induzida entre os 
terminais do condutor, proporcional ao número de linhas de indução cortadas por segundo (figura 2.2). Se o 
dito condutor forma um circuito fechado, circulará por ele uma corrente elétrica.
Figura 2.2
Como Funciona um Motor de Indução?
2
2-2 | Guia de Aplicação Soft-Starter
3. Dois condutores adjacentes (a e b) pelos quais está circulando uma corrente elétrica (ia e ib) produzem cada 
um deles um campo magnético (Item 1). A interação entre estes dois campos magnéticos produzirá uma força 
(F) de atraçãoou repulsão entre os condutores (figura 2.3), proporcional à corrente que circula por ambos 
condutores e à distância (d) entre eles.
Figura. 2.3
4. Um bobinado polifásico, igual ao mostrado na figura 2.4, alimentado por um sistema de tensões trifásico (figura 
2.5) produzirá um campo magnético girante (figura 2.6). Este princípio é similar ao visto na figura 2.1, com a 
diferença que neste o campo magnético é estático.
Figura 2.4
Figura 2.5
Como Funciona um Motor de Indução?
2
Guia de Aplicação Soft-Starter | 2-3 
Na figura 2.6, os pontos identificados com os números ... correspondem aos momentos em que a tensão 
de uma das três fases é igual a zero. Desta maneira é mais fácil fazer a composição dos vetores de indução 
magnética para cada instante. Na figura pode-se ver que a resultante destes vetores está girando (campo girante) 
com uma velocidade proporcional a freqüência e ao número de pólos do motor.
Figura 2.6
5. A velocidade do campo girante descrito anteriormente, chamada de velocidade síncrona, é proporcional à 
freqüência do sistema de tensões trifásico e ao número de pólos do bobinado. 
 Velocidade do campo girante [rpm]= (freqüência [1/s] x 120 ) / n° de pólos
6. Conjugado: O conjugado (também chamado de torque, momento ou binário) é a medida do esforço necessário 
para girar um eixo. É sabido, pela experiência prática, que para levantar um peso por um processo semelhante ao 
usado em poços de água – ver figura 2.7 – a força F que é preciso aplicar à manivela depende do comprimento 
da manivela. 
 Quanto maior a manivela, menor será a força necessária.
 Se dobrarmos o tamanho da manivela, a força F necessária será diminuída a metade. No exemplo da figura 
2.7, se o balde pesa 20kgf e o diâmetro do tambor é 20 cm, a corda transmitirá uma força de 20 kgf na 
superfície do tambor, isto é, a 0,1m (10cm) do centro do eixo.
 Para contrabalançar esta força, precisamos de 10 kgf na manivela, se o comprimento “a” for 0,2 m (20cm). 
 Se “a” for o dobro, isto é 0,4 m, a força F será a metade, ou seja, 5kgf.
 Como se vê, para medir o “esforço” necessário para fazer girar o eixo não basta definir a força empregada: é 
preciso também dizer a que distância do eixo a força é aplicada. O “esforço” é medido pelo conjugado, que 
é o produto F x a , da “força” pela “distância”.
 No exemplo citado, o conjugado vale:
 C = 20 kgf x 0,1 m = 10 kgf x 0,2 m = 5 kgf x 0,4 = 2mkgf
Como Funciona um Motor de Indução?
2
2-4 | Guia de Aplicação Soft-Starter
Figura 2.7
Os motores de indução mais utilizados na indústria são os chamados motores de gaiola trifásicos (figura 2.8 - 
rotor e estator).
1
23
4
5
6
7
8
9
10
11
12
NÚCLEO DE
CHAPAS
BARRAS DE
ANÉIS DE
CURTO-CIRCUITO
NÚCLEO DE
CHAPAS
VENTILADOR
PROTEÇÃO 
DO
VENTILADOR
CAIXA DE
LIGAÇÃO
TERMINAIS
EIXO
TAMPAS
CARCAÇA
ENTROLAMENTO
TRIFÁSICO
ROLAMENTOS
Figura 2.8
Estator: Carcaça (1), Núcleo de Chapas (2), Enrolamento trifásico (8)
Rotor: Eixo (7), Núcleo de chapas (3), Barras e anéis de curto-circuito (12)
Outras partes: Tampas (4), Ventilador (5), Proteção do ventilador (6), Caixa de ligação (9), Terminais (10), 
Rolamentos (11).
Nestes motores o rotor é fabricado com espiras em curto-circuito formando uma verdadeira gaiola. O estator é 
formado por três bobinas (bobinado trifásico), com pares de pólos em cada fase.
Como Funciona um Motor de Indução?
2
Guia de Aplicação Soft-Starter | 2-5 
2.2 ANÁLISE DE FUNCIONAMENTO
Para análise de funcionamento pode-se considerar o motor de indução como um transformador, onde o 
enrolamento primário deste transformador é formado pelo estator e o enrolamento secundário pelo rotor. O 
próprio nome “motor de indução” se deve ao fato de que toda a energia requerida pelo rotor para a geração de 
torque é “induzida” pelo primário do transformador (estator) no secundário (rotor).
Como existem dois campos magnéticos, um no estator e outro no rotor, e como descrito no item 3, aparecerá 
uma força entre o rotor e o estator que fará com que o rotor gire, já que é o único que pode se movimentar pois 
está montado sobre rolamentos, disponibilizando assim energia mecânica (torque) no seu eixo. 
Para facilitar o entendimento do funcionamento do motor de indução dividiremos o estudo em três casos 
hipotéticos:
Caso 1
Primeiramente consideraremos um motor de dois pólos com o “rotor bloqueado”, isto significa que através de 
algum dispositivo mecânico impediremos que o eixo do motor (rotor) gire. Nesta condição, se aplicarmos tensão 
trifásica com freqüência de 60Hz nos terminais do bobinado do estator, este produzirá um campo magnético 
girante com velocidade de 3600 rpm (item 5). As linhas de indução deste campo magnético “cortarão” as espiras 
do rotor com velocidade máxima induzindo assim a máxima tensão nas espiras do rotor, e como estas estão 
em curto-circuito, circulará também a máxima corrente por elas. Como toda a energia produzida no rotor tem 
de ser “induzida” pelo estator, circulará no bobinado do estator uma corrente elevada (6 a 8 vezes maior que a 
corrente nominal do motor). 
Se esta condição for mantida por mais que alguns segundos os fios do bobinado do estator irão esquentar 
de forma indevida, podendo até danificar (queimar) o bobinado, pois não foram projetados para suportar esta 
corrente por um período de tempo grande.
Caso 2
Agora vamos para o outro extremo. Vamos supor que o rotor do motor possa girar exatamente à velocidade de 
3600 rpm. Neste caso as linhas de indução do campo magnético girante produzido pelo estator “não cortarão” 
as espiras do rotor pois os dois estão girando com mesma velocidade. Sendo assim não haverá tensão induzida, 
nem corrente, nem geração de campo magnético. 
Para a produção de energia mecânica (torque) no motor é necessária a existência de dois campos magnéticos, 
sendo assim, não haverá torque no eixo do motor.
Caso 3
Vamos supor agora que, nas mesmas condições do Caso 2, baixamos a velocidade do rotor do motor para 3550 
rpm. O campo magnético girante tem uma velocidade de 3600 rpm, é assim que as linhas de indução do campo 
magnético girante do estator “cortarão” as espiras do rotor com uma velocidade de 50 rpm (3600 rpm – 3550 rpm 
= 50 rpm), produzindo uma tensão e uma corrente induzida no rotor. A interação entre os dois campos magnéticos, 
o do estator e o do rotor, produzirão uma força, que pela sua vez produzirá torque no eixo do motor.
A diferença entre a velocidade síncrona (3600 rpm) e a velocidade do rotor é conhecida como 
“escorregamento”.
Escorregamento = velocidade síncrona – velocidade do rotor
 (Ns – N)
S = 
 Ns
Descritas estas três condições, podemos agora imaginar o que acontece na prática com nosso motor de 
indução.
Na partida acontece algo similar ao descrito no caso 1, mas na prática a diferença do rotor bloqueado do caso 
1 nosso motor pode girar livremente. Sendo assim circulará no bobinado do estator uma corrente elevada (6 a 8 
vezes maior que a corrente nominal do motor) que diminuirá a medida que a velocidade do motor aumenta. 
Quando a velocidade do rotor se aproxima da velocidade síncrona (caso 2) o torque produzido diminuirá, fazendo 
diminuir também a velocidade do rotor. Existirá então um ponto de equilíbrio entre a carga do motor e a velocidade 
do rotor (caso 3).
Se a carga no eixo do motor aumenta, a velocidade do rotor tenderá a diminuir, e o escorregamento aumentará. 
Se o escorregamento aumenta a velocidade com que as linhas de indução do campo magnético do rotor 
“cortam” o estator aumentará, aumentando também a tensão e corrente induzida no rotor. Se a corrente é 
maior, o campo magnético gerado por esta também será maior, aumentando assim o torque disponível no eixo 
do motor, chegando novamente numa condição de equilíbrio. Se o torque requerido pelacarga é maior que o 
Como Funciona um Motor de Indução?
2
2-6 | Guia de Aplicação Soft-Starter
nominal do motor, e se esta condição é mantida por muito tempo, a corrente do motor será maior que a nominal 
e o motor será danificado. 
2.3 CURVAS CARACTERÍSTICAS DO MOTOR DE INDUÇÃO
2.3.1 Torque x Velocidade
É a curva que mostra a relação entre o torque desenvolvido pelo motor e a sua rotação. Na partida, quando o 
motor é ligado diretamente à rede, o torque (torque de partida) será de aproximadamente 2 a 2,5 vezes o torque 
nominal, diminuindo a medida que a velocidade aumenta até atingir um valor de 1,5 a 1,7 do torque nominal a 
aproximadamente 30% da velocidade nominal. A medida que a velocidade aumenta o torque aumenta novamente 
até atingir o seu valor máximo (80% da velocidade nominal) chegando a seu valor nominal na velocidade nominal. 
Como mostra a curva (linha cheia) da figura 2.9.
2.3.2 Corrente x Velocidade
É a curva (linha tracejada da figura 2.9) que mostra a relação entre a corrente consumida pelo motor em função 
da sua velocidade. A figura mostra que na partida, quando o motor é ligado diretamente à rede, a corrente que 
circula por ele será 5 a 6 vezes maior que a corrente nominal, diminuindo a medida que a velocidade aumenta 
até atingir um valor estacionário determinado pela carga acoplada ao motor. Se a carga for a nominal a corrente 
será também a corrente nominal.
Figura 2.9: Curva Torque x Velocidade e Corrente x Velocidade para motores de indução de rotor em gaiola alimentados com tensão e 
freqüência constantes
2.4 POTÊNCIA E PERDAS
Na placa de identificação do motor existe um parâmetro chamado de rendimento e identificado pela letra grega η. 
Este parâmetro é uma medida da quantidade de potência elétrica transformada pelo motor em potência mecânica. 
A potência transmitida à carga pelo eixo do motor é menor que a potência elétrica absorvida da rede, devido às 
perdas no motor. Essas perdas podem ser classificadas em:
 „ perdas no enrolamento estatórico (perdas no cobre);
 „ perdas no rotor;
 „ perdas por atrito e ventilação;
 „ perdas magnéticas no núcleo (perdas no ferro);
Como Funciona um Motor de Indução?
2
Guia de Aplicação Soft-Starter | 2-7 
2.5 CARACTERÍSTICAS DE TEMPERATURA – CLASSES DE ISOLAMENTO TÉRMICO
Sendo o motor de indução uma máquina robusta e de construção simples, a sua vida útil depende quase 
exclusivamente da vida útil da isolação do bobinado e da vida mecânica dos rolamentos. Vida útil da isolação 
refere-se ao envelhecimento gradual do isolante, não suportando mais a tensão aplicada e produzindo curto-
circuito entre as espiras do bobinado.
Para fins de normalização, os materiais isolantes e os sistemas de isolamento (cada um formado pela combinação 
de vários materiais) são agrupados em CLASSES DE ISOLAMENTO, cada qual definida pelo respectivo limite de 
temperatura, ou seja, pela maior temperatura que o material pode suportar continuamente sem que seja afetada 
sua vida útil. As classes de isolamento utilizadas em máquinas elétricas e os respectivos limites de temperatura 
conforme norma NBR-7094, são mostradas na tabela a seguir:
Tabela 2.1: Classes de isolamento
CLASSE TEMPERATURA (°C)
A 105
E 120
B 130
F 155
H 180
As classes B e F são as freqüentemente utilizadas.
O sistema de isolamento convencional dos motores, que tem sido utilizado com sucesso em todos os casos 
de alimentação com fontes senoidais tradicionais (50/60Hz) pode não atender os requisitos necessários se 
os mesmos forem alimentados por outro tipo de fonte. É o caso dos motores alimentados por inversores de 
freqüência. Atualmente, com a utilização generalizada destes equipamentos, o problema do rompimento da isolação 
provocado pelos altos picos de tensão decorrentes da rapidez de crescimento dos pulsos gerados pelo inversor, 
bem como a alta freqüência com que estes são produzidos, obrigou a implementar melhorias no isolamento dos 
fios e no sistema de impregnação, afim de garantir a vida dos motores. Estes motores com isolamento especial 
são chamados de ”Inverter Duty Motors”.
2.6 TEMPO DE ROTOR BLOQUEADO
Tempo de rotor bloqueado é o tempo necessário para que o enrolamento da máquina, quando percorrido pela 
sua corrente de partida, atinja a sua temperatura limite, partindo da temperatura em condições nominais de 
serviço e considerando a temperatura ambiente no seu valor máximo.
Este tempo é um parâmetro que depende do projeto da máquina. Encontra-se normalmente no catálogo ou na 
folha de dados do fabricante. A tabela abaixo mostra os valores limites da temperatura de rotor bloqueado, de 
acordo com as normas NEMA e IEC.
Tabela 2.2: Temperatura limite de rotor bloqueado
CLASSE DE 
ISOLAMENTO
TEMPERATURA MÁXIMA (°C)
∆Tmáx(°C)
NEMA MG1.12.53 IEC 79.7
B 175 185 80
F 200 210 100
H 225 235 125
Para partidas com tensão reduzida o tempo de rotor bloqueado pode ser redefinido como segue:
trb = tb x ( Un / Ur )
2 
Onde:
trb = Tempo de rotor bloqueado com tensão reduzida 
tb = Tempo de rotor bloqueado à tensão nominal
Un = Tensão nominal
Ur = Tensão reduzida
Como Funciona um Motor de Indução?
2
2-8 | Guia de Aplicação Soft-Starter
Outra forma de se redefinir o tempo de rotor bloqueado é através da utilização da corrente aplicada ao motor, 
como segue:
 Ipntrb = tb . ( )
2
 Ipc
Onde:
trb = Tempo de rotor bloqueado com corrente reduzida
tb = Tempo de rotor bloqueado à corrente nominal
Ipn = Corrente de partida direta do motor 
Ipc = Corrente de partida do motor com corrente reduzida
Geralmente, Ipn é obtido de catálogos e possui o valor em torno de 6 a 8 vezes a corrente nominal do motor, e 
Ipc depende do método de partida do motor. Se por exemplo esta partida for do tipo estrela-triângulo o valor da 
corrente será de aproximadamente 1/3 da corrente de partida.
Métodos de Comando de um Motor de Indução
3
Guia de Aplicação Soft-Starter | 3-1 
MÉTODOS DE COMANDO DE UM MOTOR DE INDUÇÃO
Os métodos de comando de um motor de indução, são implementados com equipamentos eletromecânicos, 
elétricos e eletrônicos. Estes equipamentos permitem acelerar (partir) e desacelerar (frenar) o motor de acordo 
com requisitos impostos pela carga, segurança, concessionárias de energia elétrica, etc.
3.1 CATEGORIAS DE PARTIDA
Conforme as suas características de torque em relação à velocidade e corrente de partida, os motores de indução 
trifásicos com rotor de gaiola, são classificados em categorias, cada uma adequada a um tipo de carga. Estas 
categorias são definidas em norma (NBR 7094), e são as seguintes:
a) Categoria N
Constituem a maioria dos motores encontrados no mercado e prestam-se ao acionamento de cargas normais, 
como bombas, máquinas operatrizes, e ventiladores.
b) Categoria H
Usados para cargas que exigem maior torque na partida, como peneiras, transportadores carregadores, cargas 
de alta inércia, britadores, etc.
c) Categoria D
Usados em prensas excêntricas e máquinas semelhantes, onde a carga apresenta picos periódicos. Usados 
também em elevadores e cargas que necessitam de torques de partida muito altos e corrente de partida 
limitada.
Tabela 3.1: Características das categorias de partida direta
Categorias de 
partida
Torque de partida
Corrente de 
partida
Escorregamento
N Normal Normal Baixo
H Alto Normal Baixo
D Alto Normal Alto
As curvas torque x velocidade das diferentes categorias estão mostradas na figura 3.1.
Figura 3.1: Curvas características de torque em função da categoria do motor (partida direta)
Métodos de Comando de um Motor de Indução
3
3-2 | Guia de Aplicação Soft-Starter
3.2 FORMAS DE PARTIDAS
 „ Partida Direta
A maneira mais simples de partir um motor de indução é a chamada partida direta, aqui o motor é ligado à 
rede diretamente através de um contator (ver figura3.2). Porém, deve-se observar que para este tipo de partida 
existem restrições de utilização. Como já foi visto anteriormente, a corrente de partida de um motor de indução 
quando ligado diretamente à tensão da rede é 5 a 8 vezes maior que a corrente nominal. Por este motivo, e 
fundamentalmente para motores de grande porte, a partida direta não é utilizada.
Figura 3.2: Partida direta
Métodos de Comando de um Motor de Indução
3
Guia de Aplicação Soft-Starter | 3-3 
 „ Partida Estrela-Triângulo (Y- ∆)
Este tipo de partida só pode ser utilizado em motores que possuam ligação em dupla tensão (por exemplo 3 x 
380 V e 3 x 220 V). A menor tensão deverá ser igual à tensão de rede e a outra 1,73 vezes maior. (Ex.: 220/380V, 
380/660V). Esta partida é implementada com dois contatores como mostra a figura 3.3. Na partida o motor é 
ligado na conexão de maior tensão, isto possibilita uma redução de até 1/3 da corrente de partida do motor, 
como mostra a figura 3.4.
A partida estrela-triângulo poderá ser usada quando a curva de torque do motor for suficientemente elevada para 
que possa garantir a aceleração da máquina com a corrente reduzida, ou seja, o torque resistente da carga não 
deverá ser superior ao torque do motor quando o motor estiver em estrela. 
Figura 3.3: Partida estrela-triângulo
Figura 3.4: Curva característica de torque e corrente, motor com partida estrela-triângulo
Métodos de Comando de um Motor de Indução
3
3-4 | Guia de Aplicação Soft-Starter
 „ Partida Eletrônica (Soft-Starter)
Será abordada em profundidade no capítulo a seguir.
Figura 3.5: Curva característica de torque e corrente, motor com partida suave (soft-starter)
Além da vantagem do controle da corrente durante a partida, a chave eletrônica apresenta, também, a vantagem 
de não possuir partes móveis.
Ainda, como um recurso adicional, a soft-starter apresenta a possibilidade de efetuar a desaceleração suave 
das cargas de baixa inércia.
 „ Partida SÉRIE-PARALELO
Este tipo de partida só pode ser utilizado em motores que possibilitam a ligação em dupla tensão. 
A menor das duas tensões deve ser igual a tensão da rede e a outra deve ser o dobro.
Por exemplo: 220V- 440V e 380V-760V (mais comuns), ou outros valores de tensão de rede, seguindo a mesma 
regra: 230V-460V, etc. 
Para tanto, o motor deve dispor de 9 ou 12 terminais de ligação, para permitir as ligações triângulo série-paralelo 
(figuras 3.6 e 3.7) ou estrela série-paralelo (figuras 3.8 e 3.9).
Métodos de Comando de um Motor de Indução
3
Guia de Aplicação Soft-Starter | 3-5 
Figura 3.6: Ligação triângulo série: apta a receber ligação superior, entretanto aplica-se tensão reduzida: este é o princípio de 
funcionamento da “série-paralelo”
Figura 3.7: Ligação triângulo paralelo: apta a receber tensão reduzida, e efetivamente aplicando-se tensão reduzida: o motor desenvolve 
suas características nominais
Figura 3.8: Ligação estrela série: apta a receber ligação superior, entretanto aplica-se tensão reduzida, conforme o princípio de 
funcionamento da “série paralelo”
Figura 3.9: Ligação estrela paralelo: apta a receber tensão reduzida, e efetivamente aplicando-se tensão reduzida: o motor desenvolve 
suas características nominais
Métodos de Comando de um Motor de Indução
3
3-6 | Guia de Aplicação Soft-Starter
No momento da partida a corrente fica reduzida para 25 a 33% da corrente de partida direta, entretanto o mesmo 
ocorre com o torque, restringindo o uso desta chave para partidas em vazio.
Figura 3.10: Chave série paralelo, usando nove cabos do motor
 „ Partida compensadora
Esta chave de partida alimenta o motor com tensão reduzida em suas bobinas, na partida.
A redução de tensão nas bobinas (apenas durante a partida) é feita através da ligação de um autotransformador 
em série com as mesmas.
Após o motor ter acelerado as bobinas passam a receber tensão nominal.
A redução de corrente depende do TAP em que o autotransformador estiver ligado.
TAP 65%: Redução para 42% do seu valor de partida direta
TAP 80%: Redução para 64% do seu valor de partida direta
A chave de partida compensadora pode ser usada para motores que partem com alguma carga. O conjugado 
resistente deve ser inferior ao conjugado disponibilizado pelo motor durante a partida com tensão reduzida pela 
compensadora.
Os motores podem ter tensão única e, apenas, três cabos disponíveis.
Métodos de Comando de um Motor de Indução
3
Guia de Aplicação Soft-Starter | 3-7 
Figura 3.11: Curvas características do motor trifásico partindo com chave compensadora, TAP 85%
Figura 3.12: Partida compensadora
Métodos de Comando de um Motor de Indução
3
3-8 | Guia de Aplicação Soft-Starter
3.3 FRENAGEM
Os motores de indução possibilitam várias formas de frenagem, isto é, onde se tem s < 0 e o motor opera com 
características de gerador. A seguir apresentaremos dois métodos de frenagem elétrica.
3.3.1 Frenagem por contra-corrente
Obtém-se a frenagem por contra-corrente através da inversão de duas fases da tensão de alimentação do 
enrolamento estatórico (ver figura 3.14), para reverter a direção de rotação do campo girante do motor com o 
mesmo girando ainda na direção inicial. Dessa forma, a rotação do rotor fica agora contrária a um torque que 
atua em direção oposta (ver figura 3.13) e começa a desacelerar (frenar). Quando a velocidade cai a zero o motor 
deve ser desenergizado, caso contrário, passará a funcionar em sentido oposto. Para este tipo de frenagem, as 
correntes induzidas nos enrolamentos rotóricos são de freqüências altas (duas vezes a freqüência estatórica) e de 
elevada intensidade, pois o torque desenvolvido pelo motor é elevado, onde há a absorção de potência elétrica 
da rede com corrente maior que a nominal, acarretando em um sobreaquecimento do motor.
Figura 3.13: Curva de torque x rotação na frenagem por contra-corrente
Figura 3.14: Frenagem por contra-corrente
Métodos de Comando de um Motor de Indução
3
Guia de Aplicação Soft-Starter | 3-9 
3.3.2 Frenagem por injeção de corrente contínua (CC)
É obtida através da desconexão do estator da rede de alimentação e da posterior conexão a uma fonte de 
corrente contínua (ver figura 3.16). A corrente contínua enviada ao enrolamento estatórico estabelece um fluxo 
magnético estacionário cuja curva de distribuição tem uma fundamental de forma senoidal. A rotação do rotor em 
seu campo produz um fluxo de corrente alternada no mesmo, o qual também estabelece um campo magnético 
estacionário com respeito ao estator. Devido à interação do campo magnético resultante e da corrente rotórica, 
o motor desenvolve um torque de frenagem (ver figura 3.15) cuja magnitude depende da intensidade do campo, 
da resistência do circuito rotórico e da velocidade do rotor.
Figura 3.15: Curva de torque x rotação durante a frenagem CC
Na prática, a frenagem CC tem sua aplicação limitada devido ao fato de que toda a energia de frenagem é dissipada 
no próprio motor, podendo causar sobreaquecimento excessivo no mesmo. Assim, para não comprometer a 
vida útil do motor, utiliza-se a frenagem CC com tensões contínuas limitadas a aproximadamente 20% da tensão 
nominal CA do motor.
Figura 3.16: Frenagem por injeção de CC
Métodos de Comando de um Motor de Indução
3
3-10 | Guia de Aplicação Soft-Starter
3.4 VANTAGENS E DESVANTAGENS DOS MÉTODOS DE PARTIDA
 „ Partida Direta
Vantagens
 „ Menor custo de todas
 „ Muito simples de implementar
 „ Alto torque de partida
Desvantagens
 „ Alta corrente de partida, provocando queda de tensão na rede de alimentação. Em função disto pode provocar 
interferência em equipamentos ligados na mesma instalação
 „ É necessário sobredimensionar cabos e contatores
 „ Limitação do número de manobras/hora
 „ Picos de torque
 „ Estrela-Triângulo
Vantagens
 „ Custo reduzido
 „ A correntede partida é reduzida a 1/3 quando comparada com a partida direta
 „ Não existe limitação do número de manobras/hora 
Desvantagens
 „ Redução do torque de partida a aproximadamente 1/3 do nominal
 „ São necessários motores com seis bornes 
 „ Caso o motor não atingir pelo menos 90% da velocidade nominal, o pico de corrente na comutação de estrela 
para triângulo é equivalente ao da partida direta
 „ Em casos de grande distância entre motor e chave de partida, o custo é levado devido a necessidade de 
seis cabos.
 „ Soft-Starter
Terá suas vantagens e desvantagens abordadas em profundidade no capítulo a seguir.
 „ PARTIDA SÉRIE-PARALELO
Vantagens
 „ Custo reduzido
 „ A corrente de partida é reduzida a ¼ quando comparada com a partida direta
Desvantagens
 „ Redução do torque de partida a aproximadamente ¼ do torque de partida nominal
 „ São necessários motores com pelos menos nove bornes (ou seja, capacidade de fechamento das bobinas 
para tensão igual à duas vezes a tensão da rede)
 „ Caso o motor não atingir pelo menos 90% da velocidade nominal, o pico de corrente na comutação da ligação 
é equivalente ao da partida direta
 „ Em casos de grande distância entre motor e chave de partida, o custo é elevado devido a necessidade de 
nove cabos.
 „ Partida compensadora
Vantagens
 „ Capacidade de partir com alguma carga
 „ Possibilidade de algum ajuste de tensão de partida, selecionando (conectando) o TAP no transformador
 „ Necessário apenas três terminais disponíveis no motor
 „ Na passagem da tensão reduzida para a tensão da rede, o motor não é desligado e o segundo pico é bem 
reduzido
Métodos de Comando de um Motor de Indução
3
Guia de Aplicação Soft-Starter | 3-11 
Desvantagens
 „ Tamanho e peso do autotransformador
 „ Número de partidas por hora limitado
 „ Custo adicional do autotransformador
3.5 NBR-5410 REFERENTE A PARTIDA COM CORRENTE REDUZIDA
A NBR 5410 de novembro de 1997, no item referente a motores elétricos, orienta sobre a corrente de partida de 
motores e a necessidade de se reduzir a corrente de partida dos motores elétricos a fim de se evitar perturbações 
na rede.
Figura 3.17: NBR-5410 (reprodução de fotocópia)
Métodos de Comando de um Motor de Indução
3
3-12 | Guia de Aplicação Soft-Starter
Abaixo segue transcrição do texto da NBR 5410, item 6.5.3
6.5.3 Motores
6.5.3.1 Generalidades
As cargas constituídas por motores elétricos apresentam peculiaridades que as destinguem das demais.
a) A corrente absorvida durante a partida é muito maior que a de funcionamento normal em carga;
b) A potência absorvida em funcionamento é determinada pela potência mecânica no eixo solicitada pela 
carga acionada, o que pode resultar em sobrecarga na rede de alimentação se o motor não for protegido 
adequadamente.
Em razão destas peculiaridades, a instalação de motores, além das demais prescrições desta Norma, deve 
atender às prescrições seguintes.
6.5.3.2 Limitação das perturbações devidas à partida de motores 
Para evitar perturbações inaceitáveis na rede de distribuição na própria instalação e nas demais cargas ligadas 
a instalação de motores deve-se:
a) Observar as limitações impostas pela concessionária local referentes a partida de motores;
 NOTA: Para partida direta de motores com potência acima de 3,7kW (5CV), em instalações alimentadas por 
rede de distribuição pública em baixa tensão, deve ser consultada a concessionária local.
b) Limitar a queda de tensão nos demais pontos de utilização, durante a partida do motor, aos valores 
estipulados em 6.2.6.1.
 Para obter conformidade às limitações descritas nas alíneas a) e b) anteriores, pode ser necessário 
o uso de dispositivos de partida que limitem a corrente absorvida durante a partida.
NOTA!
Em instalações contendo muitos motores, pode ser levado em conta a probabilidade de partida 
simultânea de vários motores.
Como pode ser observado no texto acima, a redução da corrente de partida de motores é uma necessidade 
prevista em norma.
Dentre as diversas formas de redução da corrente de partida, trataremos nos capítulos seguintes da forma mais 
eficaz, e com excelente relação custo/benefício para a maioria das aplicações: a partida de motores através da 
SOFT-STARTER.
Soft-Starter
4
Guia de Aplicação Soft-Starter | 4-1 
SOFT-STARTER
4.1 INTRODUÇÃO
Entender o funcionamento da Soft-Starter é importante para construir uma base sólida de conhecimentos, a partir 
da qual o usuário do equipamento poderá desenvolver sua capacidade de aplicação do produto.
Vamos abordar com especial atenção o principal componente de força da Soft-Starter: o SCR – Silicon Controlled 
Rectifier. Entender o funcionamento do SCR é boa parte do entendimento do funcionamento da Soft-Starter.
Adotaremos a seguir uma seqüência de raciocínio baseada em analogias com outros fenômenos, e com outros 
componentes, permitindo assim o entendimento do funcionamento do SCR.
4.1.1 Semicondutores e componentes eletrônicos
Um material semicondutor, como o silício, é um elemento com capacidade intermediária de condução de corrente, 
ou seja, sua capacidade natural de permitir fluxo de corrente elétrica é intermediária entre aquela de um condutor 
propriamente dito e aquela de um material isolante. 
A maneira como um semicondutor lidará com cargas elétricas depende de como foram adicionadas impurezas 
a sua composição, processo este chamado de dopagem. Existem dois tipos de dopagem: P e N, e cada uma 
delas têm comportamento complementar no que diz respeito à condução de cargas elétricas. 
Exemplificando: o diodo, é um componente eletrônico que possui duas diferentes partes de semicondutor, 
formando um junção P-N. As propriedades de condução são tais que fazem o diodo permitir o fluxo de corrente 
elétrica somente em um sentido, situação esta definida como diretamente polarizado. O mesmo diodo, porém 
polarizado inversamente tem o comportamento de um isolante.
As condições que desencadeiam o comportamento elétrico de um componente eletrônico variam com o nível de 
tensão ou corrente, a presença de um sinal elétrico de estimulo externo ou até mesmo por luz visível, infravermelho, 
etc.
4.1.2 A característica mais marcante dos tiristores
Tiristores são componentes que exibem uma propriedade marcante: de maneira geral, ele não retorna ao seu 
estado original depois que a causa da sua mudança de estado tenha desaparecido. 
Uma analogia simples é a ação mecânica de um interruptor de luz: quando o interruptor é pressionado, ele muda 
de posição e permanece assim mesmo depois do estímulo do movimento ter desaparecido (ou seja, mesmo 
depois de tirar a mão do interruptor). 
Em contraste, um botão de campainha volta a sua posição original após cessar o estímulo externo.
Transistores bipolares e IGBTs, também não “travam” em um determinado estado após terem sido estimulados 
por um sinal de corrente ou tensão: para qualquer sinal de entrada o transistor exibirá um comportamento previsível 
conforme sua curva característica.
Voltando aos Tiristores: eles são componentes semicondutores que tendem a permanecer ligados, uma vez 
ligados, e tendem a permanecer desligados, uma vez que tenham sido desligados. Um evento momentâneo é 
capaz de ligá-los ou desligá-los, e assim eles permanecerão por conta própria, mesmo que a causa de mudança 
de estado tenha sido eliminada.
Antes de analisar o tiristor propriamente dito, é interessante analisarmos seu precursor histórico: as válvulas 
de descarga a gás. 
4.1.3 Introdução às válvulas de descarga a gás
Uma tempestade é uma oportunidade de presenciar fenômenos elétricos interessantes.
A ação do vento e da chuva acumula cargas elétricas estáticas entre as nuvens e a terra, e entre as próprias 
nuvens. A diferença de carga manifesta-se como altas tensões, e quando a resistência elétrica do ar não pode 
mais suportar esta alta tensão,ocorrem surtos de corrente entre pólos de carga elétrica oposta, o que chamamos 
de relâmpagos, raios ou descargas atmosféricas.
Soft-Starter
4
4-2 | Guia de Aplicação Soft-Starter
Figura 4.1: Descarga atmosférica
Sob condições normais o ar tem uma tremenda resistência elétrica. Genericamente sua resistência é tratada 
como infinita. Sob presença de água e/ou poeira sua resistência diminui, mas permanece um bom isolante para a 
maioria das situações. Quando um nível suficientemente alto de tensão é aplicado através de uma distância de ar, 
entretanto, suas propriedades elétricas são alteradas: elétrons são arrancados de suas posições normais em torno 
do núcleo de seus átomos, e são liberados para constituir corrente elétrica. O ar nesta situação é considerado 
ionizado, recebe a denominação de plasma, e tem resistência elétrica bem menor que o ar.
Conforme a corrente elétrica se movimenta pelo ar, energia é dissipada na forma de calor, o que mantém o ar em 
estado de plasma, cuja baixa resistência favorece a manutenção do raio mesmo após alguma redução da tensão. 
O relâmpago persiste até que a tensão caia abaixo de um nível insuficiente para manter corrente suficiente para 
dissipar calor. Finalmente, não há calor para manter o ar em estado de plasma, que volta ao normal, deixa de 
conduzir corrente e permite que a tensão aumente novamente.
Observe como o ar se comporta neste ciclo: quando não está conduzindo, ele permanece um isolante até que a 
tensão ultrapasse um nível crítico. Então, uma vez que ele muda de estado, ele tende a permanecer um condutor 
até que a tensão caia abaixo de um nível mínimo. Este comportamento, combinado com a ação do vento e chuva, 
explica a existência dos raios como breve descargas elétricas.
4.1.4 Thyratron
Nas válvulas thyratron pode-se observar comportamentos semelhantes à do ar durante a ocorrência de um 
relâmpago, com a diferença de que a válvula pode ser disparada por um pequeno sinal.
O thyratron é essencialmente uma válvula preenchida com gás, que pode conduzir corrente com uma pequena 
tensão de controle aplicada entre o grid e o cátodo, e desligado reduzindo-se a tensão plate-catodo.
“grid”
“plate”
“cátodo”
Figura 4.2: Circuito de controle simplificado do thyratron
No circuito visto acima a válvula thyratron permite corrente através da carga em uma direção (note a polaridade 
através da carga resistiva) quando disparado pela pequena tensão DC de controle conectada entre grid e 
cátodo.
Soft-Starter
4
Guia de Aplicação Soft-Starter | 4-3 
O “pontinho” dentro do circulo do símbolo esquemático indica preenchimento com gás, em oposição ao vácuo 
verificado em outras válvulas.
Observe que a fonte de alimentação da carga é alternada, o que dá uma dica de como o thyratron desliga após 
ter sido disparado: uma vez que a tensão AC periodicamente passa por zero volt a cada meio ciclo, a corrente 
será interrompida periodicamente.
Esta breve interrupção permite à válvula resfriar e retornar a seu estado “desligado”. Condução de corrente pode 
prosseguir apenas se há tensão suficiente aplicada pela fonte AC e se a tensão DC de controle permitir.
Um osciloscópio indicaria a tensão na carga conforme figura 4.3:
Figura 4.3
Enquanto a fonte de tensão sobe, a tensão na carga permanece zero, até que o valor de threshold voltage seja 
atingido.
Neste ponto a válvula começa a conduzir, seguindo a tensão da fonte até a próxima fase do ciclo. A válvula 
permanece em seu estado “ligado”, mesmo após a tensão reduzir-se abaixo do valor de disparo (threshold 
voltage). Como os thyratron são one-way, não há condução no ciclo negativo. Em circuitos práticos, poder-se-ia 
arranjar vários thyratron para formar um retificador de onda completa.
Thyratrons tornaram-se obsoletos com o surgimento dos tiristores, exceto para algumas aplicações muito especiais, 
devido a possibilidade de thyratrons lidar com valores altíssimos de tensão e corrente.
4.1.5 SCR (Silicon Controlled Rectifier)
Partiremos da representação do SCR para iniciar nossa explanação:
Figura 4.4
Representado da maneira acima o SCR assemelha-se a dois transistores bipolares interligados, um PNP e outro 
NPN.
Há três maneiras de “dispará-lo”:
 „ com uma variação brusca de tensão
 „ ultrapassando-se um limite de tensão
 „ aplicando-se a tensão entre gate e cátodo.
Soft-Starter
4
4-4 | Guia de Aplicação Soft-Starter
A última maneira é, na prática, a única desejada. Os SCRs normalmente são escolhidos com valor de tensão de 
breakover bem superior a tensão esperada no circuito.
O circuito de teste de um SCR é excelente para entender sua operação.
Figura 4.5: Circuito de teste do SCR
Uma fonte DC é usada para energizar o circuito, e dois botões com retorno são usados para “disparar” e para 
“desenergizar” o SCR.
Pressionado o botão “liga” conecta-se o gate ao ânodo, permitindo corrente de um terminal da bateria através 
da junção PN do cátodo- gate, através do contato do botão, da carga resistiva e de volta ao outro terminal da 
bateria.
Esta corrente de gate deve ser suficiente para o SCR “selar” na posição ligado. Mesmo soltando o botão, o SCR 
deve permanecer conduzindo.
Pressionar o botão desliga (normalmente fechado) corta a corrente e força o SCR desligar.
Se neste teste o SCR não “selar” o problema pode ser o valor ôhmico da carga. O SCR necessita de um valor 
mínimo de corrente de carga para permanecer conduzindo.
A maioria das aplicações para o SCR são controle em AC, apesar dos SCR serem inerentemente DC 
(unidirecionais).
Se é necessário um circuito bidirecional, vários SCR podem ser usados (um ou mais em cada direção) para lidar 
com a corrente de ambas fases do ciclo, positiva e negativa.
O principal motivo do uso do SCR em circuitos de força AC é a sua resposta à onda AC: trata-se deu um 
componente que permanece conduzindo (como o thyratron, seu precursor) uma vez estimulado e até que a 
corrente da carga passe por zero.
4.1.6 Entendendo o disparo do SCR
Conectando-se o devido circuito de controle ao gate do SCR nós podemos cortar a senóide em qualquer ponto 
para conseguir controlar a energia entregue à carga.
Tomemos o seguinte circuito como exemplo.
Figura 4.6: Fonte AC, SCR e carga resistiva ligados em série
Aqui o SCR é inserido em um circuito para controlar energia de uma fonte AC fornecida à carga. Sendo unidirecional, 
no máximo poderemos entregar meia onda à carga, entretanto, para demonstrar o conceito básico de controle, 
este circuito é mais fácil do que um para controle de toda a senóide, que exigiria dois SCR.
Soft-Starter
4
Guia de Aplicação Soft-Starter | 4-5 
Sem disparar o gate, e com fonte AC abaixo do valor de breakover, o SCR nunca começará a conduzir.
Conectar o gate ao ânodo através de um diodo normal, disparará o SCR quase imediatamente no início de 
qualquer fase positiva do ciclo.
Figura 4.7: Gate conectado ao ânodo através de diodo
Pode-se, entretanto, atrasar-se o disparo inserindo-se alguma resistência no circuito de disparo do gate, 
incrementando assim a quantidade de tensão necessária para provocar o disparo. Em outras palavras, se 
dificultarmos para os elétrons transitarem através do gate, a tensão AC terá de alcançar um valor mais alto até 
que haja corrente para ligar o SCR. 
Resultado:
Figura 4.8: Resistência inserida ao circuito de gate
Com a meia onda cortada em um nível mais elevado pelo disparo “atrasado” do SCR, a carga recebe menos 
energia, uma vez que a carga fica conectada à fonte por um tempo menor.
Tornando variável o resistor do gate, pode-se fazer ajustes à energia fornecida:
Soft-Starter
4
4-6 | Guia de Aplicação Soft-Starter
Figura 4.9: Variando a resistência, variamos o ponto de disparo do SCR (quanto maior a resistência maior é o ponto, ou ângulo, de 
disparo)
Infelizmente este esquema de controle tem uma limitaçãosignificativa. Usando a fonte AC para disparar o SCR, 
limita-se o controle à metade da fase positiva do ciclo, em outras palavras, não há como atrasar o disparo para 
depois do pico. Isto limitaria o nível mínimo de energia àquele conseguido com o disparo do SCR no pico da 
onda (a 90 graus). Elevando-se a resistência a um valor maior, faria o circuito não disparar nunca.
Uma solução é a adição de um capacitor defasador ao circuito:
Figura 4.10: A forma de onda com menor amplitude é a tensão no capacitor.
A título de ilustração, vamos supor que a resistência de controle é alta, ou seja, o SCR não está disparando sem 
este capacitor e não há corrente através da carga, exceto a pequena quantia de corrente através do capacitor 
e resistor.
A tensão do capacitor pode ser defasada de 0 a 90 º em relação à fonte AC. Quando esta tensão defasada atingir 
um valor alto o suficiente, o SCR será disparado.
Supondo que há periodicamente tensão suficiente nos terminais do capacitor para disparar o SCR, o a forma de 
onda de corrente resultante será como segue:
Soft-Starter
4
Guia de Aplicação Soft-Starter | 4-7 
Figura 4.11: O disparo do tiristor se dá após o pico máximo, devido à escolha conveniente do capacitor.
Uma vez que a forma de onda do capacitor ainda está subindo após o pico da senoide de tensão de alimentação, 
é possível dispará-lo depois do pico, cortando a onda de corrente de modo a liberar um valor de energia mais 
baixo à carga.
Os SCR também podem ser disparados por circuitos mais complexos. 
Transformadores de pulsos são usados para acoplar o circuito de disparo ao gate/ cátodo do SCR para prover 
isolação elétrica entre os circuitos de disparo e de força:
Figura 4.12: Disparo com transformador defasador
Quando múltiplos SCR são utilizados para controle de força, os cátodos não são eletricamente comuns, tornando 
difícil o uso de um único circuito de disparo para todos SCR.
Um exemplo é a ponte retificadora controlada:
Figura 4.13: Ponte controlada
Soft-Starter
4
4-8 | Guia de Aplicação Soft-Starter
Como em qualquer retificador, os elementos opostos devem conduzir simultaneamente. SCR 1 e 3, e SCR 2 e 
4.
Como eles não compartilham a conexão de cátodo, faz-se necessário lançar mão de transformadores de pulso, 
conforme mostra a figura 4.14:
Figura 4.14: Uso de transformadores de pulso (circuito simplificado para dois tiristores para facilitar o entendimento)
No circuito acima foi omitido o transformador de pulso do SCR 1 e 3 a fim de tornar o desenho mais claro.
Naturalmente, os circuitos de controle não são limitados à circuitos monofásico. Assim como na Soft-Starter, o 
circuito de controle pode ser trifásico. Um retificador trifásico com os circuitos de disparo omitidos parece com 
o seguinte:
Figura 4.15: Retificador trifásico (circuito de disparo omitido)
Soft-Starter
4
Guia de Aplicação Soft-Starter | 4-9 
4.2 PRINCÍPIO DE FUNCIONAMENTO DA SOFT-STARTER
O funcionamento das Soft-Starters está baseado na utilização de uma ponte tiristorizada (SCR’s) na configuração 
anti-paralelo, que é comandada através de uma placa eletrônica de controle, a fim de ajustar a tensão de saída, 
conforme programação feita anteriormente pelo usuário. Esta estrutura é apresentada na figura 4.16.
Figura 4.16: Blocodiagrama simplificado
Como podemos ver, a Soft-Starter controla a tensão da rede através do circuito de potência, constituído por 
seis SCRs, onde variando o ângulo de disparo dos mesmos, variamos o valor eficaz de tensão aplicada ao 
motor. A seguir faremos uma análise mais atenciosa de cada uma das partes individuais desta estrutura, já que 
notamos nitidamente que podemos dividir a estrutura acima em duas partes: o circuito de potência e o circuito 
de controle.
CIRCUITO DE POTÊNCIA 
Como já sabemos, a etapa de potência da Soft-Starter tem como principais componentes os tiristores SCR 
(Silicon Controlled Rectifier). 
Controlando o ângulo de disparo do SCR, podemos controlar a tensão média aplicada à carga, controlando 
assim sua corrente e potência.
Numa soft-starter, o controle da tensão tem que ser feito nos dois sentidos da corrente, devendo ser utilizada a 
configuração anti-paralela de dois SCR por fase, conforme indicado na figura abaixo.
Soft-Starter
4
4-10 | Guia de Aplicação Soft-Starter
Figura 4.17: Dois tiristores em anti-paralelo
Neste caso, tem-se o controle da tensão nas duas metades do ciclo, mediante os disparos nos Gates provenientes 
do circuito de controle. 
Na figura 4.18 temos um diagrama simplificado do circuito de potência de uma soft-starter, onde notamos o uso 
dos pares de tiristores (SCR) em anti-paralelo em cada fase do circuito. 
Mediante um circuito de controle para os disparos dos tiristores, a tensão a ser aplicada no motor pode ir crescendo 
linearmente, tendo com isso um controle da corrente de partida do motor.
Ao final da partida do motor, o motor terá sobre seus terminais praticamente toda a tensão da rede.
Figura 4.18: SCRs no circuito de força do motor (ligação “fora” do delta do motor)
A seguir temos a ilustração da forma de onda da tensão em uma das fases do motor em quatro instantes. Nota-
se que ao reduzir o ângulo de disparo dos SCR, a tensão a ser aplicada no motor aumenta, aumentando com 
isso a corrente no mesmo.
Soft-Starter
4
Guia de Aplicação Soft-Starter | 4-11 
Figura 4.19 b: Disparo a 90ºFigura 4.19 a: Disparo a 150
Figura 4.19 d: Disparo a 45º Figura 4.19 d: Disparo a 15
Para evitar disparos acidentais dos SCR, instala-se em paralelo com os mesmos um capacitor e um resistor 
conforme indicado na figura 4.20. Este circuito auxiliar é denominado de Snubber e tem como finalidade evitar o 
disparo por dV/dT (variação abrupta da tensão num pequeno intervalo de tempo).
Figura 4.20: Snubber
Para se fazer a monitoração da corrente na saída da Soft-Starter, instala-se transformadores de corrente, 
permitindo com isso que o controle eletrônico efetue a proteção e manutenção do valor de corrente em níveis 
pré-definidos (função limitação de corrente ativada)
CIRCUITO DE CONTROLE 
Onde estão contidos os circuitos responsáveis pelo comando, monitoração e proteção dos componentes do 
circuito de potência, bem como os circuitos utilizados para comando, sinalização e interface homem-máquina 
que serão configurados pelo usuário em função da aplicação.
Soft-Starter
4
4-12 | Guia de Aplicação Soft-Starter
4.3 PRINCIPAIS CARACTERÍSTICAS
Embora o CAPÍTULO 5 deste guia seja dedicado a descrição detalhada das funções (parâmetros) da Soft-Starter, 
consideramos conveniente apresentar neste ponto uma abordagem diferenciada para as principais funções da 
Soft-Starter.
Aqui não entraremos em detalhes de faixas de valores, mas daremos ênfase em aspectos práticos, como, se 
uma função é mais adequada para uma carga com alta inércia ou não, etc. 
4.3.1 Principais funções
 „ Rampa de tensão na aceleração
As chaves Soft-Starters tem uma função muito simples, que é através do controle da variação do ângulo de 
disparo da ponte de tiristores, gerar na saída da mesma, uma tensão eficaz gradual e continuamente crescente 
até que seja atingida a tensão nominal da rede. Graficamente podemos observar isto através da figura 4.21.
Figura 4.21: Rampa de tensão aplicada ao motor na aceleração
Atentem ao fato de que quando ajustamos um valor de tempo de rampa, e de tensão de partida (pedestal), isto 
não significa que o motor irá acelerar de zero até a sua rotação nominal no tempo definido por ta. Isto, na realidade 
dependerá das características dinâmicas do sistema motor/carga, como por exemplo: sistema de acoplamento, 
momento de inércia da carga refletida ao eixo do motor, atuação da função de limitação de corrente, etc.
Tanto o valor do pedestal de tensão, quanto o de tempo de rampa são valores ajustáveis dentro de uma faixa 
que podevariar de fabricante para fabricante.
Não existe uma regra prática que possa ser aplicada para definir qual deve ser o valor de tempo a ser ajustado, 
e qual o melhor valor de tensão de pedestal para que o motor possa garantir a aceleração da carga. A melhor 
aproximação poderá ser alcançada através do cálculo do tempo de aceleração do motor, o qual será mostrado 
posteriormente.
 „ Rampa de tensão na desaceleração
Existem duas possibilidades para que seja executada a parada do motor, por inércia ou controlada, respectivamente. 
Na parada por inércia, a Soft-Starter leva a tensão de saída instantaneamente a zero, implicando que o motor não 
produza nenhum conjugado na carga, que por sua vez, irá perdendo velocidade, até que toda energia cinética 
seja dissipada. A equação (1) mostra matematicamente como podemos expressar esta forma de energia.
 1
K = J . ω2
 2 (1)
onde,
K = energia cinética (Joules)
J = momento de inércia total (Kg.m2)
ω = velocidade angular (rad/s)
Soft-Starter
4
Guia de Aplicação Soft-Starter | 4-13 
Na parada controlada a Soft-Starter vai gradualmente reduzindo a tensão de saída até um valor mínimo em um 
tempo pré-definido. Graficamente podemos observar a figura 4.22.
Figura 4.22: Perfil de tensão na desaceleração
O que ocorre neste caso pode ser explicado da seguinte maneira: Reduzindo-se a tensão aplicada ao motor, este 
irá perder conjugado; a perda de conjugado reflete no aumento do escorregamento; o aumento do escorregamento 
faz com que o motor perca velocidade. Se o motor perde velocidade a carga acionada também perderá. Este tipo 
de recurso é muito importante para aplicações que devem ter uma parada suave do ponto de vista mecânico. 
Podemos citar como exemplo bombas centrífugas, transportadores, etc.
No caso particular das bombas centrífugas este recurso minimiza o efeito do “golpe de ariete”, que pode provocar 
sérios danos a todo o sistema hidráulico, comprometendo componentes como válvulas e tubulações, além da 
própria bomba.
Golpe de Ariete:
O “Golpe de Ariete” é um “pico de pressão” resultado de uma rápida redução na velocidade de um líquido, que 
pode ocorrer quando um sistema de bombeamento sofre uma parada brusca. No contexto da aplicação de Soft-
Starter, a ocorrência do Golpe de Ariete está relacionada à rápida parada do motor da bomba, embora o golpe 
de ariete possa ser provocado por outros eventos, como o fechamento rápido de uma válvula.
O “pico” de pressão nestas condições pode ser várias vezes maior que o esperado para o sistema, provocando 
danos que podem se extender até a bomba.
Quando a Soft-Starter está habilitada a fazer uma parada suave do motor (“Pump Control”), a chance de ocorrência 
do golpe de ariete na parada do motor é reduzida.
 „ Kick Start
Existem cargas que no momento da partida exigem um esforço extra do acionamento em função do alto conjugado 
resistente. Nestes casos, normalmente a Soft-Starter precisa aplicar no motor uma tensão maior que aquela 
ajustada na rampa de tensão na aceleração, isto é possível utilizando uma função chamada “Kick Start”. Como 
podemos ver na figura 4.23, esta função faz com que seja aplicado no motor um pulso de tensão com amplitude 
e duração programáveis para que o motor possa desenvolver um conjugado de partida, suficiente para vencer o 
atrito, e assim acelerar a carga. Deve-se ter muito cuidado com esta função, pois ela somente deverá ser usada 
nos casos onde ela seja estritamente necessária.
Soft-Starter
4
4-14 | Guia de Aplicação Soft-Starter
Figura 4.23: Representação gráfica da função “Kick Start”
Devemos observar alguns aspectos importantes relacionados com esta função, já que ela poderá ser mal 
interpretada e, desta forma, comprometer a definição com relação ao seu uso, inclusive o do próprio sistema 
de acionamento.
Como a tensão de partida poderá ser ajustada próximo da tensão nominal, mesmo que por um pequeno intervalo 
de tempo, a corrente de partida irá atingir valores muito próximos daqueles registrados no catálogo ou folha de 
dados do motor.
Isto é claramente indesejável, pois a utilização da Soft-Starter nestes casos advém da necessidade de garantir-
se uma partida suave, seja eletricamente, seja mecanicamente. Desta forma podemos considerar este recurso 
como sendo aquele que deverá ser usado em última instância, ou quando realmente ficar óbvia a condição 
severa de partida.
 „ Limitação de corrente
Na maioria dos casos onde a carga apresenta uma inércia elevada, é utilizada uma função denominada de 
limitação de corrente. Esta função faz com que o sistema rede/Soft-Starter forneça ao motor somente a corrente 
necessária para que seja executada a aceleração da carga. Na figura 4.24 podemos observar graficamente como 
esta função é executada.
Figura 4.24: Limitação de corrente
Este recurso é sempre muito útil pois garante um acionamento realmente suave e, melhor ainda, viabiliza a partida 
de motores em locais onde a rede encontra-se no limite de sua capacidade. Normalmente nestes casos a condição 
de corrente na partida faz com o sistema de proteção da instalação atue, impedindo assim o funcionamento 
normal de toda a instalação. Ocorre então a necessidade de se impor um valor limite de corrente de partida de 
forma a permitir o acionamento do equipamento bem como de toda a indústria. 
Soft-Starter
4
Guia de Aplicação Soft-Starter | 4-15 
A limitação de corrente também é muito utilizada na partida de motores cuja carga apresenta um valor mais elevado 
de momento de inércia. Em termos práticos, podemos dizer que esta função é a que deverá ser utilizada após 
não obter-se sucesso com a rampa de tensão simples, ou mesmo quando para que o motor acelere a carga, 
seja necessário ajustar uma rampa de tensão de tal forma que a tensão de partida (pedestal) próximo aos níveis 
de outros sistemas de partida como, por exemplo, as chaves compensadoras, não sendo isto de forma alguma 
um fator proibitivo na escolha do sistema de partida.
 „ Pump control
Esta função é utilizada especialmente para a aplicação de Soft-Starter em sistemas de bombeamento. Trata-se 
na realidade de uma configuração específica
(pré-definida) para atender este tipo de aplicação, onde normalmente é necessário estabelecer uma rampa de 
tensão na aceleração, uma rampa de tensão na desaceleração e a habilitação de proteções. A rampa de tensão 
na desaceleração é ativada para minimizar o golpe de ariete, prejudicial ao sistema como um todo. São habilitadas 
também as proteções de seqüência de fase e subcorrente imediata (para evitar a cavitação).
A cavitação é a formação de “bolhas” através no interior da bomba. Com bombas centrífugas, a cavitação pode 
ocorrer quando o valor de sucção se torna alto o suficiente no interior da bomba. Quando estas bolhas passam 
pela bomba, uma grande quantidade de energia é liberada, provacando danos.
Quando a Soft-Starter está devidamente habilitada a fazer proteção de subcorrente (“Pump Control”), a bomba 
fica protegida de ocorrência de cavitação prolongada.
 „ Economia de energia
Uma Soft-Starter que inclua características de otimização de energia simplesmente altera o ponto de operação 
do motor. Esta função, quando ativada, reduz a tensão aplicada aos terminais do motor de modo que a energia 
necessária para suprir o campo seja proporcional à demanda da carga.
Quando a tensão no motor está em seu valor nominal e a carga exige o máximo conjugado para o qual o motor 
foi especificado, o ponto de operação será definido pelo ponto A, conforme a figura 4.25. Se a carga diminui e 
o motor for alimentado por uma tensão constante, a velocidade (rotação) aumentará ligeiramente, a demanda 
de corrente reduzirá e o ponto de operação se moverá junto à curva para o ponto B. Por ser um motor onde 
o conjugado desenvolvido é proporcional ao quadrado da tensão aplicada, haverá uma