Buscar

Apostila- Hidráulica Geral

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 41 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 41 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 41 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Prof°. Ademar Cordero, Dr. 
 
Engenheiro Civil - UCPEL 
Mestre em Recursos Hídricos e Saneamento – UFRGS/IPH 
Doutor em Engenharia Hidráulica – Politécnico de Milão/Itália 
 
 
 
 
 
 
 
 
CAMPUS II - FURB 
Blumenau, 2013. 
 
Universidade Regional de Blumenau -FURB 
Centro de Ciências Tecnológicas -CCT 
Departamento de Engenharia Civil 
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
2
 
SUMÁRIO 
 
1 PROPRIEDADES DOS FLUÍDOS .............................................................................................................................. 3 
1.1 INTRODUÇÃO E APLICAÇÕES ...................................................................................................................................................................... 3 
1.2 DEFINIÇÃO DE FLUIDO ................................................................................................................................................................................... 3 
1.3 VISCOSIDADE ................................................................................................................................................................................................... 3 
1.3.1 Viscosidade absoluta ou dinâmica (µ) ............................................................................................................... 4 
1.3.2 Coeficiente de viscosidade cinemática (ν) ........................................................................................................ 6 
1.4 MASSA ESPECIFICA OU DENSIDADE ABSOLUTA (ρ)............................................................................................................................... 7 
1.5 PESO ESPECIFICO (γ) ........................................................................................................................................................................................ 7 
1.6 DENSIDADE (D) ................................................................................................................................................................................................. 7 
1.7 FLUIDO IDEAL E FLUIDO REAL ..................................................................................................................................................................... 7 
1.8 FLUÍDO IMCOMPRESSIVEL E COMPRESSIBILIDADE ................................................................................................................................ 8 
1.9 EQUAÇÃO DE ESTADO DOS GASES .............................................................................................................................................................. 8 
1.10 SISTEMA DE UNIDADES: ANÁLISE DIMENSIONAL E SIMILARIDADES ............................................................................................... 9 
1.10.1. Sistema MKS de unidades .............................................................................................................................. 9 
1.10.2. Sistema CGS de unidades............................................................................................................................. 10 
1.10.3. Sistema Internacional de Unidades (SI) ...................................................................................................... 11 
2. ESTATICA DOS FLUIDOS ...................................................................................................................................... 13 
2.1 CONCEITOS DE PRESSÃO E EMPUXO ......................................................................................................................................................... 13 
2.2 LEI DE PASCAL ............................................................................................................................................................................................... 13 
2.3 LEI DE STEVIN: PRESSÃO DEVIDA A UMA COLUNA LÍQUIDA .............................................................................................................. 14 
2.4 INFLUÊNCIA DA PRESSÃO ATMOSFÉRICA ............................................................................................................................................... 14 
2.5 MEDIDAS DE PRESSÃO ................................................................................................................................................................................. 15 
2.6 FORÇA NUMA SUPERFÍCIE PLANA SUBMERSA ....................................................................................................................................... 17 
2.7 FORÇA SOBRE SUPERFÍCIES CURVAS ....................................................................................................................................................... 18 
2.8 EMPUXO ........................................................................................................................................................................................................... 19 
2.9 FLUTUADOR - NOMENCLATURA ................................................................................................................................................................ 19 
2.10 ESTABILIDADE ............................................................................................................................................................................................. 20 
2.11 ESTABILIDADE VERTICAL ......................................................................................................................................................................... 20 
2.11.1 Corpo totalmente submerso em equilíbrio ..................................................................................................... 20 
2.11.2 Corpo parcialmente submerso em equilíbrio ................................................................................................. 20 
2.12 ESTABILIDADE À ROTAÇÃO ...................................................................................................................................................................... 20 
2.12.1 Corpo totalmente submerso, em equilíbrio .................................................................................................... 20 
2.12.1 Corpo parcialmente submerso, em equilíbrio ................................................................................................ 21 
3. CINEMÁTICA DOS FLUIDOS ................................................................................................................................ 22 
3.1 REGIMES OU MOVIMENTOS VARIADO E PERMANENTE ..................................................................................................................... 22 
3.2 ESCOAMENTOS LAMINAR E TURBULENTO ........................................................................................................................................... 22 
3.3 TRAJETÓRIAS E LINHAS DE CORRENTE ................................................................................................................................................. 23 
3.4 ESCOAMENTO UNIDIMENSIONAL OU UNIFORME NA SEÇÃO ........................................................................................................... 23 
3.5 VAZÃO – VELOCIDADE MÉDIA NA SEÇÃO ............................................................................................................................................. 24 
3.6 EQUAÇÃO DA CONTINUIDADE PARA REGIME PERMANENTE ........................................................................................................... 25 
3.7 VELOCIDADE E ACELERAÇÃO NOS ESCOAMENTOS DE FLUIDOS ...................................................................................................26 
4. EQUAÇÃO DA ENERGIA PARA REGIME PERMANENTE ............................................................................. 27 
4.1 INTRODUÇÃO ................................................................................................................................................................................................ 27 
4.2 TIPOS DE ENERGIAS MECÂNICAS ASSOCIADAS A UM FLUIDO ......................................................................................................... 27 
4.2.1 Energia Potencial (Ep) ..................................................................................................................................... 27 
4.2.2 Energia Cinética (Ec) ....................................................................................................................................... 27 
4.2.3 Energia de Pressão (Epr) .................................................................................................................................. 27 
4.2.4 Energia mecânica total do fluido (E) ............................................................................................................... 27 
4.3 EQUAÇÃO DE BERNOULLI .......................................................................................................................................................................... 28 
4.4 EQUAÇÃO DA ENERGIA E PRESENÇA DE UMA MÁQUINA .................................................................................................................. 29 
4.5 POTÊNCIA DA MÁQUINA E NOÇÃO DE RENDIMENTO .......................................................................................................................... 29 
ANEXOS .......................................................................................................................................................................... 30 
LISTA DE EXERCÍCIOS .............................................................................................................................................. 32 
 
 
 
 
 
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
3
CAPÍTULO 1 
 
1 PROPRIEDADES DOS FLUÍDOS 
 
1.1 INTRODUÇÃO E APLICAÇÕES 
 
A Hidráulica Geral que iremos estudar é a parte denominada Mecânica dos Fluidos. 
 
Mecânica dos fluidos é a ciência que tem por objetivo o estudo do comportamento físico dos 
fluidos e das leis que regem este comportamento. 
 
Aplicações: 
 Ação de fluidos sobre superfícies submersas. Ex.: Reservatórios, barragens. 
 Ação de fluidos sobre veículos, aviões (Aerodinâmica). 
 Ação do vento sobre construções civis. 
 Cálculo de instalações hidráulicas. Ex.: instalação de recalque. 
 Cálculo de máquinas hidráulicas. Ex.: bombas e turbinas. 
 Equilíbrio de corpos flutuantes. Ex.: embarcações. 
 
1.2 DEFINIÇÃO DE FLUIDO 
 
Fluido é uma substância que não tem forma própria, e que, se estiver em repouso, não resiste 
a tensões de cisalhamento. 
 
 
 
 
 
 
 
Líquidos possuem uma interação intermolecular forte e por isso eles tomam a forma do 
recipiente, porém restringindo-se a um volume finito. 
 
Gases possuem interação molecular fraca e por isso, além de tomarem a forma do recipiente, 
o preenchem completamente. 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.3 VISCOSIDADE 
 
Quando um fluído escoa, verifica-se um movimento entre as suas partículas, resultando um 
atrito entre as mesmas; atrito interno ou viscosidade é a propriedade dos fluídos responsáveis pela 
 
Pressão 
A
Fp n=
 
 
 
Tensão de Cisalhamento 
A
Ft
=τ
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
4
sua resistência à deformação. Os fluidos são substâncias viscosas, e isso significa que suas 
moléculas aderem às paredes das tubulações, produzindo assim atrito e perda de carga. 
 
1.3.1 Viscosidade absoluta ou dinâmica (µµµµ) 
 
Princípio da aderência: Análise entre duas placas - tensões de cisalhamento 
 
As partículas do fluido junto ás superfícies sólidas adquirem as velocidades dos pontos das 
superfícies com as quais estão em contato. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Junto à placa superior as partículas do fluido têm velocidade diferente de zero. 
Junto à placa inferior as partículas têm velocidade nula. 
 
 Entre as partículas e cima e as de baixo existirá atrito, que por ser uma força tangencial 
formará tensões de cisalhamento, com sentido contrário ao do movimento, como a força de 
atrito. 
 As tensões de cisalhamento agirão em todas as camadas fluidas e evidentemente naquela 
junto à placa superior dando origem a uma força oposta ao movimento da placa superior. 
 
Quando Ft = F, a placa superior adquirirá movimento uniforme, com velocidade constante vo. 
 
 
Lei de Newton: 
 
A tensão de cisalhamento ô é proporcional ao gradiente de velocidade dv/dy. 
O coeficiente de proporcionalidade µ: viscosidade absoluta ou dinâmica. 
 
Fluidos Newtonianos: os que seguem a Lei de Newton. 
 
 
 
 
 
 
 
 
 
 
A
Ft
=τ
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
5
 
dy
dvµτ =
 
 
Fluidos não newtonianos – são aqueles que não obedecem a lei de Newton da viscosidade 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Designação de 
comportamento Equação Reológica Exemplos de Fluidos e Misturas 
Plástico ou de 
Bingham � � �� � �� ���	 
• Lamas de esgoto 
• Misturas concentradas de 
minérios em água 
• Pó de carvão em água 
Pseudoplástico � � 
 ����	�
 
• Polpa de papel em água 
• Tintas e Vernizes 
• Pó de cimento em água 
• Sangue 
Pseudoplástico com 
cedência � � ��
 ����	�
 
• Suspensão de argila em água 
• Solução de polímeros 
Newtoniano � � � ���	 
• Água 
• Ar 
• Óleos 
 
 
Simplificação Prática 
 
Como ε é muito pequeno, na prática admite-se distribuição linear de velocidades, segundo a 
normal às placas. 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
6
 ∆���~∆��� 
 ��
�	 �
��� 
Portanto: 
.
0 cte
V
y
V
dy
dv
==
∆
∆
==
ε
µµµτ
 
 
A viscosidade ( μ ) fica 
 
A
Ft
=τ
 
ε
µ 0V
A
Ft
=
 
0VA
Ft εµ =
 2
..
m
skgf
=µ
 
 
 A viscosidade depende da natureza do fluído e sua variação é função da temperatura. 
 
 
Para a água o valor de µ pode ser calculada pela seguinte expressão: 
 
22
.
.000221,0.0337,01
000181,0
m
skgf
tt ++
=µ
 sendo, t a temperatura em graus centígrados. 
 
1.3.2 Coeficiente de viscosidade cinemática (νννν) 
 
É a razão entre o coeficiente de viscosidade dinâmica pela massa específica do fluído 
 
ρ
µ
ν =
 (m2/s) 
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
7
Onde: ν é a viscosidade cinemática – propriedade física do fluidocomparada com uma força de 
resistência ao escoamento, e μ é a viscosidade absoluta. Para a água, ν é da ordem de 1x10-6 m2/s 
ou 0,000001 m2/s. 
 
1.4 MASSA ESPECIFICA OU DENSIDADE ABSOLUTA (ρρρρ) 
 
A massa específica ou densidade absoluta (ρρρρ = RÔ) de um corpo é caracterizada através de 
uma relação da sua massa com o seu volume. Ou seja, um corpo pode ter um grande volume e 
possuir pouca massa, como é o caso dos isolantes térmicos. Já há substâncias que têm pequeno 
volume, mas possuem elevada massa. Estas substâncias têm então uma densidade elevada. Como 
exemplo, lembramos que a relação entre a massa e o volume de um navio é inferior à da água e por 
isso flutuam sobre a mesma, como uma rolha de cortiça é capaz de fazê-lo num copo d’água. 
 
ρ = m
V H O kg m2 1000
3ρ = / (massa especifica da água) 
 
Tabela 3- Massas específicas aproximadas (temperatura ambiente) 
Material Massa específica [kg/m3] 
Aço 7600 
Óleos 800 
Alumínio 2700 
Mercúrio 13600 
Água no estado líquido 1000 
 
1.5 PESO ESPECIFICO (γγγγ) 
 
Peso específico de um líquido é o peso da unidade de volume desse liquido. 
 
γ ρ= = =P
V
m g
V
g
.
.
 
g.ργ =
 
 
Peso específico da água destilada a 4°C= 1000 kgf/m3 
Peso específico do mercúrio = 13600 kgf/m3 
 
1.6 DENSIDADE (D) 
 
Densidade ou peso especifico relativo de um líquido é a comparação que se faz entre o peso 
deste liquido e o peso de igual volume de água destilada a 4°C. 
 
Densidade do mercúrio 
OH
Hg
Hgd
2
γ
γ
= = 
13600
1000
 = 13,6 (adimensional) 
 
Isto significa que um certo volume de mercúrio é 13,6 vezes mais pesado que igual volume de 
água destilada a 4°C. 
 
1.7 FLUIDO IDEAL E FLUIDO REAL 
 
Fluido Ideal é aquele cuja viscosidade é nula. Portanto escoa sem perdas de energia. Esta 
hipótese é utilizada por questões didáticas ou a viscosidade tem um efeito secundário no fenômeno. 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
8
Fluido real é aquele que existe viscosidade. Portanto são os existentes, tal como, a água, a 
gasolina, o ar, etc. 
 
1.8 FLUÍDO IMCOMPRESSIVEL E COMPRESSIBILIDADE 
 
Compressibilidade é a propriedade que têm os corpos de reduzir seus volumes, sob ação de 
pressões externas. Os líquidos variam muito pouco com a pressão por isto eles podem ser chamados 
de incompressíveis, já os aeriformes (gases e vapores) variam muito com a pressão e com a 
temperatura, portanto são denominados compressíveis.. 
 
1.9 EQUAÇÃO DE ESTADO DOS GASES 
 
Quando o fluido não puder ser considerado incompressível e ao mesmo tempo houver efeitos 
térmicos, haverá necessidade de determinar as variações da massa especifica ρ em função da 
pressão e da temperatura. De uma maneira geral, estas variações obdecem, para os gases, a lei do 
tipo f(ρ, p, T) = 0, denominadas equações de estado. 
 
Para as finalidades deste desenvolvimento, sempre que for necessário, o gás envolvido, será 
suposto como gás perfeito, obedecendo a equação de estado. 
 
RT
p
=
ρ ou RT
p
=ρ
 
 
onde: p = pressão absoluta 
R = Constante cujo valor depende do gás (para o ar R=287 m2/s2 K) 
T = temperatura absoluta em escala Kelvin (K= 0C+273) 
 
Na mudança do estado de um gás. 
 
2
1
2
1
2
1
T
T
p
p
=
ρ
ρ
 
 
O processo é isotérmico quando a transformação não há variação de temperatura. 
 
cnte
pp
==
2
1
2
1
ρρ 
 
O processo é isobárico quando na transformação não há variação de pressão. 
 
cnteTT == 2211 ρρ 
 
O processo é isócrono ou isométrico quando na transformação não há variação de volume. 
 
 
cnte
T
p
T
p
==
2
1
2
1
 
 
O processo é adiabático quando na transformação não há troca de calor. 
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
9
 
cnte
pp
kk ==
22
1
1
1
ρρ k é a constante adiabática que depende do gás. Para o ar k =1,4. 
 
 
 
1.10 SISTEMA DE UNIDADES: ANÁLISE DIMENSIONAL E SIMILARIDADES 
 
A análise dimensional permite resolver problemas cujas soluções não são encontradas pelos 
processos usuais de cálculo. Quantidades podem ser adicionadas ou subtraídas somente quando 
possuírem a mesma dimensão. 
As grandezas físicas fundamentais são aquelas a partir das quais todas as outras grandezas 
físicas são definidas. As grandezas derivadas são combinações das grandezas fundamentais. O valor 
de qualquer medida física é expresso como a combinação de dois fatores: a unidade e o número 
dessa unidade. Tempo e comprimento são tidos como grandezas fundamentais. Velocidade: m/s é 
unidade derivada da razão entre as unidades fundamentais metro e segundo. 
Para o estabelecimento de um sistema de unidades é necessário uma terceira grandeza 
fundamental, que pode ser a massa ou força. Aqueles sistemas que apresentam a massa como a 
terceira grandeza fundamental são conhecidos como sistemas de unidade absoluta, enquanto aqueles 
que têm a força como unidade fundamental são chamados sistemas de unidade técnicos. Existem 
também sistemas unitários usados na engenharia que consideram comprimento, tempo, massa e 
força como grandezas fundamentais. 
 
Enquanto haja tendência de unificação internacional por meio do Sistema Internacional (SI) 
de Unidades, o Sistema MKS, o Sistema CGS de unidades e outros ainda são bastante usados em 
várias áreas e há algumas razões de ordem lógica, outras de fundo histórico, outras ainda de 
respaldo tradicional 
 
Os três sistemas de unidade: o C.G.S. (CGS), o Giorgi (MKS) e o Sistema Internacional (SI) 
é apresentado nas tabelas 10.1 e 10.2. 
 
Tabela 10.1 - Sistema de Unidade Absoluto (MLT) 
Grandeza CGS MKS SI 
Comprimento (L) 1 centímetro (cm) 1 metro (m) 1 metro (m) 
Massa (M) 1grama (g) 1 quilograma (kg) 1 quilograma (kg) 
Tempo (T) 1 segundo (s) 1 segundo (s) 1 segundo (s) 
 
Tabela 10.2 - Sistema de Unidade Absoluto (MFT) 
Grandeza CGS MKS (Técnico) SI 
Comprimento (L) 1 centímetro (cm) 1 metro (m) 1 metro (m) 
Força (F) 1grama força (gf) 1 quilograma força (kgf) 1 Newton (N) 
Tempo (T) 1 segundo (s) 1 segundo (s) 1 segundo (s) 
 
 
1.10.1. Sistema MKS de unidades 
 
Sistema MKS de unidades é um sistema de unidades de medidas físicas, ou sistema 
dimensional, de tipologia LMT (comprimento, massa tempo), cujas unidades-base são o metro para 
o comprimento, o quilograma para a massa e o segundo para o tempo. MKS é, assim, um acrônimo 
maiúsculo para metro–kg (quilograma)–segundo. É o sistema de unidades físicas essencial que 
originou o Sistema Internacional de Unidades (SI), por este sendo substituído. O SI baseou-se, em 
essência, no Sistema MKS de unidades, algumas vezes dito (embora impropriamente) "sistema 
métrico de unidades". 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
10
 
Tabela 10.3 - Sistema MKS de unidades 
Grandeza Unidade Simbolo Abreviação 
comprimento metro m 
massa quilograma kg 
tempo segundo s 
força quilograma força kgf 
energia Joule J = 1 kg.m²/s² 
potência Watt W = 1 kg.m²/s³ 
pressão Pascal Pa = 10−5 bar 
 
1.10.2. Sistema CGS de unidades 
 
CGS é, assim, um acrônimo maiúsculo para centímetro–grama–segundo. Conquanto haja 
tendência de unificação internacional por meio do Sistema Internacional deUnidades, o Sistema 
CGS ainda é bastante usado em várias áreas e há algumas razões de ordem lógica, outras de fundo 
histórico, outras ainda de respaldo tradicional. Eis algumas dessas razões: muitas fórmulas do 
eletromagnetismo são mais simples em unidades CGS; em alguns contextos, elas ainda parecem ser 
mais convenientes; boa parte da antiga literatura de física ainda usa essas unidades; as unidades 
CGS ainda são largamente empregadas em astronomia. Assim como no Sistema internacional, 
algumas unidades derivadas recebem nomes especiais: 
 
Dina (para força); 
Erg (para energia, trabalho, calor, etc.); 
Poise (para viscosidade dinâmica em fluidos); 
Stokes (para viscosidade cinemática); 
Dina por centímetro cúbico (para peso específico). 
 
Tabela 10.4 - Múltiplos / subdivisões 
Quilômetros (km) Quilograma (kg) Quilolitro (kl) 
Hectômetro (hm) Hectograma (hg) Hectolitro (hl) 
Decâmetro (dam) Decagrama (dag) Decalitro (dal) 
Metro (m) Grama (g) Litro (l) 
Decímetro (dm) Decigrama (dg) Decilitro (dl) 
Centímetro (cm) Centigrama (cg) Centilitro (cl) 
Milímetro (mm) Miligrama (mg) Mililitro (ml) 
 
 
Tabela 10.5 - Unidades mecânicas CGS 
Grandeza Unidade Simbolo - Abreviação Equivale (SI) 
comprimento centímetro cm = 10–2 m 
massa grama g = 10–3 kg 
tempo segundo s s 
força dina dyn = 1 g.cm/s² = 10–5 N 
energia erg erg = 1 g.cm²/s² = 10–7 J 
potência erg por segundo 1 erg/s = 1 g.cm²/s³ = 10–7 W 
pressão bar 1 bar = 105 Pa 
viscosidade dinâmica Poise 1 P = 1 g/(cm.s) = 0,10 Pa.s 
 
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
11
1.10.3. Sistema Internacional de Unidades (SI) 
 
Foi muito conveniente se unificar o uso dos sistemas de unidades quando os países Anglo-
Saxões incorporaram o sistema métrico decimal. Com este propósito, o MKS foi adotado como o 
sistema internacional e denominado como SI. Embora a obrigatoriedade do sistema seja 
reconhecida, outros sistemas ainda são utilizados, atualmente muitos periódicos de engenharia e 
livros são editados somente em SI, tornando este sistema o mais recomendável. A Tabela 6 
apresenta as unidades fundamentais deste sistema com algumas unidades suplementares e 
derivadas. 
Tabela 10.6 - Sistema Internacional de Unidades 
Grandeza Unidade Abreviação Dimensão analítica Dimensão 
Comprimento metro m m L 
Massa quilograma kg kg M 
Tempo segundo s s T 
Força newton N Kg.m/s2 MLT
2
 
Energia joule J kg·m²/s²=N·m ML2T-2 
Potência watt W kg·m²/s³=J/s ML2T-3 
Pressão pascal Pa (kg.m/s²)/m²= N/m² ML-1T-2 
Frequência hertz Hz 1/s T-1 
 
Unidades aceitas pelo SI 
O SI aceita várias unidades que não pertencem ao sistema. A primeiras unidades deste tipo 
são unidades muito utilizadas no cotidiano: 
 
Tabela 10.7 - Tabela com as unidades aceitas pelo sistema SI 
Grandeza Unidade Símbolo Relação com o SI 
Tempo minuto min 1 min = 60 s 
Tempo hora h 1 h = 60 min = 3600 s 
Tempo dia d 1 d = 24 h = 86 400 s 
Ângulo 
plano grau ° 1° = π/180 rad 
Ângulo 
plano minuto ' 1' = (1/60)° = π/10 800 rad 
Ângulo 
plano segundo " 1" = (1/60)' = π/648 000 rad 
Volume litro l ou L 1 l = 0,001 m³ 
Massa tonelada t 1 t = 1000 kg 
 
 Tabela 10.8 - Fatores de conversão úteis 
Comprimentos Superfície Volume e Capacidade 
1 cm 0,3937 pol. 1 cm² 0,155 pol² 1 m³ 1000 litros 
1 m 39,37 pol. 1 m² 10000 cm² 1 m³ 1000000 cm³ 
1 pol. 2,54 cm 1 m² 10,76 pés² 1 Km³ 1000000000 m³ 
1 pé 30,48 cm 1 Km² 1000000 m² 1 barril de óleo 158,98 litros 
1 pé 12 pol. 1 há 10.000 m² 
1 légua 6600 m 1 acre 4047 m² 
 
Pressão Atmosférica ao Nível do Mar Trabalho , potência, calor 
1 atm 10,33 ≅ 10 mca 1 cv 736 W 
1 atm 1,033 ≅1,0 Kgf/cm² 1 cv 0,736 kW 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
12
1 atm 10330,0 ≅ 1x104 Kgf/m² 1 CV 0,986 HP 
1 atm 9,81x104 ≅ 105 N/m² 1 HP 1,014 CV 
1 atm 100.000 ou 105 Pa 1 HP 745 W 
1 atm 100 kPa 1 HP 0,745 kW 
1 atm 0,1 MPa 1 cal 4,1868 J 
1 atm 760 mm de Hg 1 BTU 1060,4 J 
1 Kgf/m² 10 Pa 
N/m² Pascal = Pa 
 
Tabela 10.9 - Múltiplos e submúltiplos 
Prefixo Fator de 
multiplicação 
Símbolo SI 
tera 10
12
 
T 
giga 10
9
 
G 
mega 10
6
 
M 
quilo 10
3
 
k 
hecto 10
2
 
h 
deca 10
1
 
da 
deci 10
-1
 
d 
centi 10
-2
 
c 
mili 10
-3
 
m 
micro 10
-6
 
μ 
nano 10
-9
 
n 
 
 
 
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
13
CAPÍTULO 2 
 
2. ESTATICA DOS FLUIDOS 
 
2.1 CONCEITOS DE PRESSÃO E EMPUXO 
 
A pressão é a relação entre a força, de módulo constante, e a unidade de área sobre a qual ela 
atua. 
 Figura 2.1 (a) 
Considere, no interior de certa massa líquida, uma porção de volume V limitada pela 
superfície A. Se dA representar um elemento de área e dF a força que nela atua, a pressão será 
dA
dFp = (2.1) 
Considerando toda a área, o efeito da pressão produzirá uma força resultante que se chama 
empuxo, chamada também de pressão total. Essa força é dada por: 
dApE A .∫= (2.2) 
Se a pressão for a mesma em toda a área, o empuxo será 
ApE .= (2.3) 
Pressão em torno de um ponto de um fluido em repouso: “Em qualquer ponto no interior de 
um líquido em repouso, a pressão é a mesma em todas as direções”. 
 
 
 
 
 
Figura 2.1 (b) – Pressão em torno de um ponto de um fluido em repouso. 
 
2.2 LEI DE PASCAL 
 
 A pressão aplicada a um ponto de um fluido incompressível, em repouso, transmite-se 
integralmente a todos os demais pontos do fluido. 
 
 
 
 
Figura 2.2 – Lei de Pascal 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
14
 
2.3 LEI DE STEVIN: PRESSÃO DEVIDA A UMA COLUNA LÍQUIDA 
 
Imagina, no interior de um líquido em repouso, um prisma ideal. 
Figura 2.3 – Lei de Stevin 
O somatório de todas as forças que atuam neste prisma segundo a vertical e igual a zero, ou 
 
0=Σ yF (2.4) 
Dessa forma 
021 =−+ AphAAp γ (2.5) 
obtendo-se 
hpp .12 γ=− (2.6) 
 
Lei de Stevin: “A diferença de pressão entre dois pontos da massa de um líquido em 
equilíbrio é igual à diferença de profundidade multiplicada pelo peso específico do líquido”. 
 
2.4 INFLUÊNCIA DA PRESSÃO ATMOSFÉRICA 
 
Escalas de pressão 
a) Escala efetiva (relativa): É aquela que toma como referência (zero) a pressão atmosférica. 
As pressões nessa escala dizem-se efetivas (relativas). 
b) Escala absoluta: é aquela que toma como referência (zero) o vácuo absoluto. As pressões 
nessa escala são chamadas absolutas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
15
A pressão na superfície de um líquido é exercida pelosgases que se encontram acima, geralmente à 
pressão atmosférica. 
 
 
 
 
 
 
 
 Figura 2.4 
 Levando-se em conta a pressão atmosférica, ou não tem-se: 
p1 = pa + γ.h (absoluta) p1 = γ.h (relativa) (2.7) 
p2 = p1 + γ.h´ = pa + γ.(h + h´) (absoluta) p2 = γ.(h + h´) (relativa) (2.8) 
 A pressão atmosférica varia com a altitude: 
 - 10,33 m de coluna d´água ao nível do mar; 
 - mercúrio → 13,6 menor ou 0,76 m. 
 Em muitos problemas referentes às pressões nos líquidos, interessa conhecer somente a 
diferença de pressões. Portanto, a pressão atmosférica é considerada igual a zero. 
2.5 MEDIDAS DE PRESSÃO 
 
O dispositivo mais simples para medidas de pressão é o tubo piezométrico ou piezômetro, que 
consiste em inserir um tubo transparente na canalização ou recipiente onde se quer medir a pressão. 
 O líquido subirá no tubo a uma altura h (Figura 2.5), correspondente à pressão interna. 
 Outro dispositivo é o tubo de U aplicado para medir pressões muito pequenas ou 
demasiadamente grandes para os piezômetros. 
 
 Figura 2.5 (a) Figura 2.5 (b) 
 Pressão em A = pa 
 em B = pa + γ´.h 
 em C = pa + γ´.h 
 em D = pa + γ´.h - γ.z 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
16
2.5.1 Manômetro diferencial: Diferença de pressão entre dois pontos 
 
 
 
 
 
 
 
 
 
�� � ���ℎ� − ℎ� � �!ℎ� � �" � �"�ℎ# − ℎ$ � �!ℎ$ 
 
Regra: 
Começando do lado esquerdo, soma-se a pressão pA a pressão das colunas descendentes e subtrai-se 
aquela das colunas ascendentes. Notar que as cotas são sempre dadas até a superfície de separação 
de dois fluidos do manômetro. Tem-se, portanto: 
 
 
 
 
 
 
 
 
 
 
 
 
 �� � ��ℎ� � ��ℎ� − �$ℎ$ � �#ℎ# − �%ℎ% − �&ℎ& � �" 
 
Unidades utilizadas para pressão 
 A pressão pode ser expressa em diferentes unidades: 
- Pascal (Pa = N/m2) no sistema SI; 
- kgf/m2 no sistema MKS*; gf/cm2 (sistema CGS); 
- mmHg; 
- metros de coluna d´água (m.c.a.); 
- atmosfera ou atmosfera técnica; 
- bar. 
Relação entre as unidades: 
 760 mmHg = 10,33 m.c.a. = 1 atmosfera 
 1 atmosfera técnica = 10 m.c.a. = 1 kgf/cm2 = 104 kgf/m2 = 9,8 x 104 Pa 
 1 bar = 105 Pa 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
17
2.6 FORÇA NUMA SUPERFÍCIE PLANA SUBMERSA 
 
O conceito de empuxo é aplicado nos projetos de comportas, registros, barragens, tanques, 
canalizações, etc. 
 
Grandeza e direção do empuxo 
 O empuxo exercido sobre uma superfície plana imersa é uma grandeza tensorial 
perpendicular à superfície e é igual ao produto da área pela pressão relativa ao centro de gravidade 
da área. Matematicamente, tem-se: 
AhF ⋅⋅= γ
 (2.9) 
onde: γ - peso específico do líquido; 
 h - profundidade do C.G. da superfície; 
 A - área da superfície plana. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 A resultante das pressões não está aplicada no centro de gravidade da figura, porém um 
pouco abaixo, num ponto que se denomina centro de pressão. 
Figura 2.7 
 
2.6.1 Determinação do centro de pressão 
 
A posição do centro de pressão pode ser determinada aplicando-se o teorema dos momentos. 
A equação resultante é: 
yA
I
yyP
⋅
+= 0
 (2.10) 
onde: 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
18
yp é a distância entre a superfície livre do líquido e o centro de pressão da área, na 
direção da placa AB 
Io é o momento de inércia em relação ao eixo-intersecção; 
 
y é a distância entre a superfície livre do líquido e o CG da área, na direção da placa 
AB. 
Quando um dos lados da placa está na superfície: 
 
 	� � �$ 	 (2.11) yp 
 F 
 y 
 
 
A força do empuxo pode ser ainda determinada calculando-se o volume do diagrama 
de pressões. 
 
 
 
 
Figura 2.8 
 
F = volume do diagrama das pressões = Ahh ⋅




 +
⋅
2
21γ
 
2.7 FORÇA SOBRE SUPERFÍCIES CURVAS 
 
É conveniente separar em componentes horizontal e vertical. 
Ex.: barragem com paramento curvo 
Figura 2.9 
Força horizontal: calcula-se como se fosse superfície plana, aplicando a fórmula 
 
AhF ..γ=
 
onde A é a área do plano que passa pelos pontos ab (normal à folha). 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
19
Força vertical: é numericamente igual ao peso do líquido no volume abc, ou W = γ.Vabc, 
determina-se a resultante r pela equação: 22 WFR += 
 
2.8 EMPUXO 
Princípio de Arquimedes: “num corpo total ou parcialmente imerso num fluido, age 
uma força vertical de baixo para cima, chamada empuxo, cuja intensidade é igual ao peso do 
volume de fluido deslocado”. 
' � ��()*+��,(� 
onde: E é o empuxo; 
 V é o volume deslocado pelo corpo; 
 γ é o peso especifico do corpo . 
 
 
 
 
Suponha-se um corpo totalmente submerso. Ele flutuará se seu peso G for menor que o 
empuxo. 
 E ≥ G 
No caso da igualdade, o corpo estará em equilíbrio em qualquer posição. Imaginando o 
corpo totalmente submerso: 
���-.� � �()*+��,(� 
Logo: �/+01(��()*+��,(� ≥ ���-.����-.� 
O corpo flutuará se: �/+01(� ≥ ���-.� 
2.9 FLUTUADOR - NOMENCLATURA 
 
Corpo flutuante ou flutuador é qualquer corpo que permanece em equilíbrio quando 
estiver parcial ou totalmente imerso num liquido. 
Plano de flutuação é o plano horizontal da superfície livre do fluido. 
Linha de flutuação é a intersecção do plano de flutuação com a superfície do flutuador. 
Seção de flutuação é a seção plana cujo contorno é a linha de flutuação. 
Volume de carena é o volume de fluido deslocado pela parte imersa do flutuador. O 
volume de carena é igual a intensidade do empuxo. 
Centro de carena é o ponto de aplicação de empuxo. Se o fluido for homogêneo, o 
centro de carena coincidirá com o centro de gravidade do volume de carena. 
 
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
20
2.10 ESTABILIDADE 
 
As forças que agem num corpototal ou parcialmente submerso em repouso são o seu 
peso (G), cujo ponto de aplicação é o centro de gravidade do corpo, e o empuxo (E), cujo 
ponto de aplicação é o centro de carena. 
Para que um flutuador esteja em equilíbrio, é necessário que essas duas forças tenham 
a mesma intensidade, a mesma direção e sentidos opostos. 
Em um corpo em equilíbrio aplica-se uma pequena força durante um intervalo de 
tempo muito pequeno, esta força fará com que o corpo se desloque em relação a posição 
inicial. Retirando essa força: 
● Equilíbrio estável. O corpo retorna a posição de equilíbrio inicial: diz-se que o 
equilíbrio é estável; 
● Equilíbrio instável. O corpo, mesmo retirando a força, afasta-se cada vez mais da 
posição inicial: diz-se que o equilíbrio é instável; 
● Equilíbrio indiferente. O corpo permanece na nova posição, sem retornar, mas 
sem se afastar mais da posição inicial: diz-se que o equilíbrio é indiferente. 
 
2.11 ESTABILIDADE VERTICAL 
 
2.11.1 Corpo totalmente submerso em equilíbrio 
Se o corpo estiver totalmente submerso em equilíbrio, o volume deslocado é sempre o 
mesmo. 
 
2.11.2 Corpo parcialmente submerso em equilíbrio 
Ao deslocar o corpo para baixo, o volume de carena e o empuxo aumentam 
E > G 
Retirando a força que causou o deslocamento, o flutuador sobe até que haja uma 
diminuição no volume de carena até: E = G. 
Se o corpo for deslocado para cima, o volume de carena diminuirá: E < G; 
Ao retirar a força aplicada, o corpo desce até que E = G. 
 
2.12 ESTABILIDADE À ROTAÇÃO 
 
Um flutuador obrigado a abandonar a sua posição de equilíbrio, por uma pequena 
força que o faça girar de um pequeno ângulo em torno de um eixo de rotação. 
 
2.12.1 Corpo totalmente submerso, em equilíbrio 
 
Em um corpo totalmente submerso em equilíbrio, para que haja estabilidade a rotação, 
o centro de gravidade (CG) deverá estar abaixo do centro de carena (CC). 
Quando o CG está abaixo do CC e o corpo girar de um pequeno ângulo, este tenderá a 
girar no sentido contrario da rotação, para voltar a sua posição inicial, que será, portanto de 
equilíbrio estável. 
 
 
 
 
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
21
 
 
 
 
 
 
 
 
 
 
E quando o CG estiver acima do CC, após uma pequena rotação, o corpo tenderá a 
girar ainda mais, pode-se dizer que neste caso o equilíbrio é instável. 
 
 
 
 
 
 
 
 
 
2.12.1 Corpo parcialmente submerso, em equilíbrio 
 
As vezes, quando a rotação do corpo causa uma variação no formato do volume de 
carena, o que cria um deslocamento no centro de carena, em relação ao corpo, tal que o 
equilíbrio pode ser estável mesmo que este esteja abaixo do centro de gravidade. 
 
 
 
 
 
 
 
 
Estando o corpo parcialmente submerso, com a rotação em torno do eixo O, o volume 
de carena que era ABCD, passa a ser LICB, com consequente deslocamento do centro de 
carena para a esquerda em CC`. 
Então analisando a posição do ponto M que é o chamado metacentro, que é a 
intersecção do eixo e simetria do flutuador com a direção do empuxo. 
Se o ponto M estiver acima do CG, o conjugado será contrario a rotação e o equilíbrio, 
estável. 
Se o ponto M estiver abaixo do CG, o conjugado será a favor da rotação e o equilíbrio, 
instável. 
Se o ponto M estiver em CG, o equilíbrio será indiferente. 
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
22
 
CAPÍTULO 3 
 
3. CINEMÁTICA DOS FLUIDOS 
 
 
3.1 REGIMES OU MOVIMENTOS VARIADO E PERMANENTE 
 
Regime permanente é aquele em que as propriedades do fluido são invariáveis em cada ponto 
com o passar do tempo. Isto significa que, apesar de um certo fluido estar em movimento, a 
configuração de suas propriedades em qualquer instante permanece a mesma. 
 
 
 
 
 
 
 
 
Regime variado é aquele em que as condições do fluido em alguns pontos ou regiões de 
pontos variam com o passar do tempo. 
 
 
 
 
 
 
3.2 ESCOAMENTOS LAMINAR E TURBULENTO 
 Para definir esses dois tipos de escoamentos, recorre-se a experiência de Reynolds (1883). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 No escoamento laminar as partículas viajam sem agitações transversais mantendo-se em lâminas 
concêntricas, entre as quais não há troca macroscópica de partículas. 
 No escoamento turbulento as partículas apresentam velocidades transversais importantes, já 
que o filete desaparece pela diluição de suas partículas no volume de água. 
 
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
23
 Equação de Reynolds: 
 
34 � 5v67 �
v6
8 
 
 
 Re < 2000 Escoamento laminar 
2000 < Re < 4000 Escoamento de transição 
 Re > 4000 Escoamento turbulento 
 
3.3 TRAJETÓRIAS E LINHAS DE CORRENTE 
 A trajetória é o lugar geométrico dos pontos ocupados por uma partícula em instantes 
sucessivos. 
 
 
 
 
 
 A linha de corrente é a linha tangente aos vetores da velocidade de diferentes partículas no mesmo 
instante. 
 
 
 
 
 
 
Tubo de corrente é a superfície de forma tubular formada pelas linhas de corrente que se apóiam 
numa linha geométrica fechada qualquer. 
 
 
 
 
 
 
 
 Propriedades dos tubos de corrente: 
a) Os tubos de corrente são fixos quando o regime é permanente. 
b) Os tubos de corrente são impermeáveis a passagem de massa, isto é, não existe passagem 
de partículas de fluido através do tubo de corrente. 
3.4 ESCOAMENTO UNIDIMENSIONAL OU UNIFORME NA SEÇÃO 
 O escoamento é unidimensional quando a única coordenada é suficiente para descrever as 
propriedades o fluido. 
 
 
 
 
 
 
 
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
24
 Pela figura, observa-se que em cada seção a velocidade é a mesma, em qualquer ponto, 
sendo suficiente seu valor em função da coordenada x. 
 
 No escoamento bidimensional, a variação da velocidade é em função das duas coordenadas x 
e y. 
 
 
 
 
 
 
 
 
 
 E também o escoamento pode ser tridimensional. 
 
 
 
 
 
 
 
 
 
 
3.5 VAZÃO – VELOCIDADE MÉDIA NA SEÇÃO 
 A vazão em volume Q é definida como o volume de fluido que atravessa uma certa seção do 
escoamento por unidade de tempo. 
9 � :; (m³/s; L/s; m³/h; L/min) 
 
 
 
 
 
 
 
 
 
 O volume de fluido que atravessa a seção de área A no intervalo de tempo t é V = A.S, logo a 
vazão será: 
 
 
 
 
 
 
 
 
 
 
 
)(..)( velocidadeVm
t
S
mas
t
AS
t
volumeVQ ===
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
25
 
 
 
 
 
logo 
Q é a vazão em volume, m³/s ou L/s 
Vm(velocidade) é a velocidade média na seção, m/s 
A é a área, m²A vazão também pode ser definida em massa (9<) e em peso (9� . 9< � <; � >v<� 9� � �; � �v<� 
 
Onde: 9< é a vazão em massa, em kg/s, utm/s, kg/h; 
m é a massa de fluido, em kg; 
ρ é a massa especifica, em kg/m³; 9� é a vazão em peso, em kgf/s, N/s, kgf/h 
P é o peso de fluido, N ou kgf; 
γ é o peso especifico, em kgf/m³; vm é a velocidade média na seção, m/s; 
A é a área da seção, m². 
 
 A velocidade média na seção define-se como uma velocidade uniforme que, substituída no 
lugar da velocidade real, reproduziria a mesma vazão na seção. 
9 � A v dA � v< �� → v< �
1
� A v dA� 
 
 
 
 
 
 
 
3.6 EQUAÇÃO DA CONTINUIDADE PARA REGIME PERMANENTE 
 
 
 
 
 
 9<� � 9<� FG >�9� � >�9� FG >�v��� � >�v��� 
 
 Esta é a equação da continuidade para um fluido qualquer em regime permanente. 
 Se o fluido for incompressível, então a massa especifica na entrada e na saída do volume V 
deverá ser a mesma. Desta forma: >9� � >9� FG 9� � 9� FG v��� � v��� 
AvelocidadeVmQ ).(=
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
26
 
 
3.7 VELOCIDADE E ACELERAÇÃO NOS ESCOAMENTOS DE FLUIDOS 
 
Sendo vHI � vJKIJ � vLKIL � vMKIM → �KNFOP�Q�K RGS TPTUKSQ OQVUKTPQRF 
 
Se o regime for permanente, nem a velocidade nem suas componentes serão função do ponto, 
sendo somente funções do ponto. 
 
Logo: vJ � vJ�x, y, z vL � vL�x, y, z vM � vM�x, y, z 
 
Mas 
 QI � (vHI(; 
 
Então para regime permanente: 
QI × KIJ � QJ � vJ \vJ\x � vL
\vJ\	 � vM
\vJ\] 
QI × KIL � QL � vJ \vL\x � vL
\vL\	 � vM
\vL\] 
QI × KIM � QM � vJ \vM\x � vL
\vM\	 � vM
\vM\] 
Para o regime variado, deve-se considerar a variação com o tempo: 
 
QJ � �vJ \vJ\x � vL
\vJ\	 � vM
\vX\] � �
\vJ\U 
QL � _vJ \vL\x � vL
\vL\	 � vM
\vL\] ` �
\vL\U 
QM � �vJ \vM\x � vL
\vM\	 � vM
\vM\] � �
\vM\U 
 
 
Esta é a equação da continuidade para um fluido qualquer em regime permanente. 
 
 
 
 
 
 
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
27
CAPÍTULO 4 
 
4 EQUAÇÃO DA ENERGIA PARA REGIME PERMANENTE 
 
4.1 INTRODUÇÃO 
Na equação da continuidade conclui-se que, para que a hipótese de regime 
permanente seja verdadeira, a massa de fluido que flui por uma seção de um tubo de 
corrente deve ser idêntica aquela que o abandona por outra seção qualquer. Baseado no 
fato de que a energia não pode ser criada nem destruída, mas apenas transformada, é 
possível construir uma equação que permitirá fazer o balanço das energias. 
 
4.2 TIPOS DE ENERGIAS MECÂNICAS ASSOCIADAS A UM FLUIDO 
 
4.2.1 Energia Potencial (Ep) 
É o estado de energia do sistema devido a sua posição no campo da gravidade em 
relação a um plano horizontal de referencia (PHR). '� � Sa] 
 
 
 
 
 
4.2.2 Energia Cinética (Ec) 
É o estado de energia determinado pelo movimento do fluido. referencia (PHR). 
 
 
 
 
 
 
4.2.3 Energia de Pressão (Epr) 
Essa energia corresponde ao trabalho potencial das forças de pressão que atuam no 
escoamento do fluido. 
'pr � d pdVv 
 
 
 
 
 
 
 
4.2.4 Energia mecânica total do fluido (E) 
 ' � '� � '� � 'pr 
' � Sa] � Sv�2 � A pdVv
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
28
4.3 EQUAÇÃO DE BERNOULLI 
 
Se entre duas seções de escoamento, o fluido for incompressível, sem atritos, e o 
regime permanente, se não houver máquina nem trocas de calor, então as cargas totais se 
mantêm constantes em qualquer seção, não havendo nem ganhos nem perdas de carga. 
 
 
 
 
 
 
 
 
 
Deixando passar um intervalo de tempo dt, na seção(1): 
d'�� dS�g]�� dm1v1
2
2 � p1dV1 
Na seção (2): 
d'�� dS�g]�� dm�v�
2
2 � p�dV� 
Sabemos que: dE1 = dE2 ou 
dS�g]�� dm1v1
2
2 � p1dV1� dS�g]��
dm�v�22 � p�dV� 
 
Como ρ = (<(: e portanto dV = 
(<
h , tem-se: 
 
dS�g]�� dm1v1
2
2 �
i�>� dm1� dS�g]��
dm�v�22 �
i�>� dm� 
Como o fluido é incompressível, ρ1 = ρ2 e, como o regime é permanente, dm1 = dm2, 
portanto: 
g]�� v1
2
2 �
i�> � g]��
v�22 �
i�> 
Dividindo a equação por g e lembrando que γ = ρg, tem-se: 
 
]�� v1
2
2g �
i�� � ]��
v�22g �
i�� → 'jGQçãF �K �KVRFGNNP 
 
m � ]� v22g �
i
� FR�K m é Q KRKVaPQ UFUQN 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
29
 
 
 
 
 
 
 
 
 
 
 
 
 
4.4 EQUAÇÃO DA ENERGIA E PRESENÇA DE UMA MÁQUINA 
 
Máquina será qualquer dispositivo introduzido no escoamento, o qual forneça ou 
retire energia dele, na forma de trabalho. 
Para facilidade de linguagem, será denominada ´bomba` qualquer máquina que 
forneça energia ao fluido e ´turbina` qualquer máquina que retire energia dele. 
 
 
 
 
 
 
 
Se a máquina for uma bomba, o fluido receberá um acréscimo de energia tal que 
H2>H1. Para restabelecer a igualdade, deverá ser somada ao primeiro membro a energia 
recebida pela unidade de peso do fluido na máquina. Logo: 
H1 + HB = H2 
HB é a carga ou altura manométrica da bomba e representa a energia fornecida a 
unidade de peso do fluido que passa pela bomba. 
Se a máquina for uma turbina, H1>H2, pois, a turbina retira energia do fluido. Para 
restabelecer a igualdade tem-se: 
H1 – HT = H2 
HT é a carga ou altura monométrica da turbina ou energia retirada da unidade de peso 
do fluido pela turbina. 
 
 m� � m! � m� → 'jGQçãF oKVQN 
Sendo: HM = HB se a máquina for uma bomba; 
 HM = -HT se a máquina for uma turbina. 
ou: 
Plano de Referência 
 Z1 
 Linha Energética (L.E.)= Plano de Carga Dinâmica (P.C.D.) 
 
 p2/γ 
 Z2 
Linha Piezométrica 
 p1/γ 
 
H 
(1) 
 (2) 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
30
 . 
h 
b 
 x 
y 
 . 
 D 
 x 
 y 
 D 
 . 
R 
 x 
y 
]�� v1
2
2g �
i�� �m!� ]��
v�22g �
i�� 
 
 
 
ANEXOS 
Centróides de área 
 Triângulo 
 
 
 X 
3
hY = 
2
hbA ⋅= 
 Triângulo Isósceles/Eqüilátero 
 
 
 
 0=X 
3
hY = 
2
hbA ⋅= 
 Triângulo Retângulo 
 
 
 
 
3
bX = 
3
hY = 
2
hbA ⋅= 
 Círculo 
 
 
 
2
DX = 
2
DY = 2RA pi= 
 Semicírculo 
 
 
 0=X 
pi3
4 RY ⋅= 
2
2RA pi= 
. 
h 
b/2 b/2 
b 
h 
 . 
y 
 x 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
31
 . b 
 x 
y 
a 
 . 
R 
 x 
y 
 . 
 xy 
 b 
a 
 . 
 h 
 x 
y 
 a 
 . 
h 
a 
y 
x 
y 
 . 
Y=kx² 
h 
a 
x 
 
Quarto de Círculo 
 
 
 
pi3
4 RX ⋅= 
pi3
4 RY ⋅= 
4
2RA pi= 
 
 Semi-elipse 
 
 
0=X 
pi3
4 bY ⋅= 
2
abA ⋅= pi 
 Quarto de elipse 
 
 
pi3
4 aX ⋅= 
pi3
4 bY ⋅= 
4
abA ⋅= pi 
 Parábola 
 
 
 0=X 
5
3hY = 
3
4 ahA ⋅= 
 Semiparábola 
 
 
8
3aX = 
5
3hY = 
3
2 ahA ⋅= 
 Arco de Parábola do 2º grau 
 
 
 
4
3aX = 
10
3hY = 
3
ahA = 
 Arco de Parábola do grau n 
 
 
a
n
nX ⋅
+
+
=
2
1
 h
n
nY ⋅
+
+
=
24
1
 
1+
=
n
ahA 
y 
 . 
Y=kxn 
h 
a 
x 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
32
 Setor Circular 
 
 
α
α
3
sen2rX = 0=Y 2rA ⋅= α 
 
LISTA DE EXERCÍCIOS 
 
Pressões 
 
01. a)Determinar a pressão relativa e absoluta no ponto 1 e 2. b) Traçar o diagrama de pressões nas paredes e no fundo 
do reservatório. 
 
02. Sabendo-se que 800 gramas de um líquido enchem um cubo de 0,08 m de aresta, obter a massa específica desse 
fluido em g/cm³. 
R: ρ=1,562 g/cm³ 
 
03. Dado ρ=1030 Kg/m³ a massa específica da cerveja. Achar sua densidade relativa. R: d=1,03 
 
04. Enche-se um frasco (até o afloramento) com 3,06 g de ácido sulfúrico. Repete-se a experiência, substituindo o ácido 
por 1,66 g de água. Obter a densidade relativa do ácido sulfúrico. 
R: d=1,843 
 
05. Um fluído pesa 25 N/m³ em um local onde a gravidade é de 9,806 m/s². Determinar no sistema MKS: 
a) a massa específica do fluído no referido local; 
b) o peso específico do mesmo fluído em outro local, onde g=9,810 m/s². 
R: a) ρ=2,55 Kg/m³ 
 b ) γ=25,05 Kg*m²*s². 
 
06. Um frasco de densidade pesa 12g quando vazio e 28 quando cheio de água. Em seguida, retira-se a água, enche-se o 
frasco com um ácido e obtém-se o peso total de 37,6g (Frasco e ácido). Calcular a densidade relativa do ácido. 
R: d=1,6 
 
07. Determinar e traçar o diagrama de pressão nas paredes de fundo e laterais dos seguintes reservatórios: 
 
 
8. No topo do reservatório da fig. abaixo o manômetro registra a pressão de 0,122 Kgf/cm². Os líquidos de densidade 
D1 e D2 não são miscíveis com a água . Obter: 
 a) as cotas nas colunas piezométricas A,B,C. 
 b) deflexão hm do mercúrio. 
y 
α 
α 
x 
r 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
33
 
09. No recipiente fechado da fig., há água, óleo (γo= 895 Kgf/m³) e ar. Para os pontos B, C, D obter as respectivas 
pressões (em m.c.a.). 
 
10. Para um ponto E, indicado na figura, calcular a pressão efetiva. Adotar para o mercúrio o peso específico γ =13600 
Kgf/m³. ( R: PE = 15.420kgf/m2) 
 
11. Um óleo γ=880 Kgf/m³ passa pelo conduto da fig. Um manômetro de mercúrio, ligado ao conduto, apresenta a 
deflexão indicada. A pressão efetiva em M é de 2Kgf/cm². Obter hm. (R: hm = 1,62 m ) 
 
12. Um óleo de peso específico γγγγ 1=980 Kgf/m³ é transportado, verticalmente de B para C. Calcular a diferença de 
pressão entre os pontos B e C 
 
 
 
 
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
34
 
 
 
 
 
 
 
 
 
 
Forças em Áreas Planas 
 
1. A comporta retangular da figura abaixo tem 3 m de largura. A força P necessária para segurar a comporta na 
posição mostrada é aproximadamente: 
a) 24,5 kN 
b) 98 kN 
c) 33,3 kN 
d) 147 kN 
 
 
 
 
2. Uma comporta retangular, vertical, com 6 ft de largura e 10 ft de altura , tem seu topo 6 ft abaixo do nível da 
água. Ela está articulada na sua extremidade inferior. Que força, agindo na borda superior, é necessária para segurar a 
comporta fechada? 
 
3. Determine a força P necessária para segurar uma comporta de 4 m de largura na posição mostrada na figura. 
 
 
 
 
 
 
 
 
 
 
4. Calcule a força P necessária para segurar uma comporta de 4 m de largura na posição mostrada na figura, se: 
a) H = 6m 
b) H = 10 m 
c) H = 8 m 
 
 
 
 
 
 
 
 
 
 
5. Use a equação 2.10 da apostila e mostre que a força F, na figura abaixo, age um terço para cima na área 
vertical retangular e também numa área retangular inclinada. Assuma que a comporta inclinada faz um ângulo α com a 
horizontal. 
 
 
 
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
35
 
 
 
 
6. Encontre a força P para segurar uma comporta retangular com 3 m de largura como mostra a figura se: 
a) l = 2 m 
b) l = 4 m 
c) l = 5 m 
 
 
7. Um canal trapezoidal, com área transversal mostrada na figura abaixo, tem uma comporta em uma das 
extremidades. Qual é a força mínima P necessária para segurar a comporta vertical fechada, se esta é articulada no 
fundo? A comporta tem as mesmas dimensões do canal e a força P age na superfície da água. 
 
 
 
 
 
 
 
8. Uma comporta rígida, articulada em um ponto central como mostra a figura, abre-se quando H = 5m. Qual a 
distância da articulação acima do fundo da água? 
 
 
 
 
 
 
 
 
 
 
 
 
9. Para a comporta mostrada na figura abaixo, calcule a altura H que resultará na abertura automática da comporta 
(desprezar o peso da comporta) se: 
a) l = 2m 
b) l = 1m 
c) l = 6ft 
d) l = 3ft 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
36
 
 
Forças sobre Superfícies Curvas 
 
 
1- Calcule a força P necessária para segurar uma comporta de 4m de largura na posição mostrada na figura 
abaixo. Despreze o peso da comporta. 
 
 
 
 
 
 
 
 
 
 
 
 
 
2- No exercício acima assuma que a água está acima da comporta, em vez de abaixo dela. A água acima da 
comporta produzirá a mesma distribuição de pressão sobre a comporta e, portanto as mesmas forças (com a 
exceção de que terão direções opostas). Conseqüentemente a força P será numericamente igual (agirá para a 
esquerda). Com a água acima da comporta, desenhe um diagrama de corpo livre e calcule P. 
 
3- Encontre a força P necessária para segurar o objeto cilíndrico com 10m de comprimento na posição mostrada 
na figura. 
 
 
 
 
 
 
 
 
 
 
4- Encontre a Força P necessária apenas para abrir a comporta mostrada na figura abaixo se: 
(a) H = 6m, R = 2m e a comporta tem 4m de largura. 
(b) H = 20ft, R = 6ft e a comporta tem 12ft de largura. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5- A força P = 300 kN é necessária apenas para abrir a comporta da figura do exercício 4, com R = 1,2m e H = 
4m. Qual a largura da comporta?Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
37
 
6- Que força P é necessária para manter a comporta de 4m de largura mostrada na figura abaixo, fechada? 
 
 
 
 
 
 
 
 
 
7- Encontre a força P necessária para segurar a comporta na posição mostrada na figura abaixo. A comporta tem 
5m de largura. 
 
 
 
 
 
 
 
 
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
38
 
Vazão 
 
1- No escoamento laminar de um fluido em condutos circulares, o diagrama de velocidades é 
representado pela equação v = vmáx.[1- (r/R)2], onde vmáx é a velocidade no eixo do conduto, R é o 
raio do conduto e r é o raio genérico para o qual a velocidade v é genérica. Verificar que vm/vmáx=0,5, 
onde vm = velocidade média na seção. 
 
2- No escoamento turbulento de um fluido em condutos circulares, o diagrama de velocidades é dado 
pela equação v = vmáx.(1- r/R)1/7, onde todas as grandezas tem o mesmo significado do exercício 1. 
Verificar que vm/vmáx = 49/60. 
 
3- Um gás (γ = 5 N/m3) escoa em regime permanente com uma vazão de 5 kg/s pela seção A de um 
conduto retangular de seção constante de 0,5m por 1m. Numa seção B, o peso específico do gás é 10 
N/m3.Qual será a velocidade média do escoamento nas seções A e B? (g = 10m/s2). 
Resp: VA = 20 m/s; VB = 10 m/s 
 
 
4- Uma torneira enche de água um tanque, cuja capacidade é 6000 L, em 1h40min. Determinar a vazão 
em volume, em massa e em peso em unidade do SI se ρH20=1000 kg/m3 e g = 10 m/s2. 
Resp: Q = 10-3 m3/s; Qm = 1 kg/s; QG = 10 N/s 
 
 
5- No tubo da figura, determinar a vazão em volume, em massa, em peso e a velocidade média na 
seção(2), sabendo que o fluido é água e que A1 = 10cm2 e A2 = 5cm2. (ρH20=1000 kg/m3 e g = 10 
m/s2). 
 
 
 
 
 
Resp: Q = 1 L/s; Qm = 1 kg/s; QG = 10 N/s; V2 = 2 m/s 
 
6- O ar escoa num tubo convergente. A área da maior seção do tubo é 20cm2 e a da menor é 10cm2. A 
massa específica do ar na seção(1) é 1,2 kg/m3, enquanto na seção(2) é 0,9 kg/m3. Sendo a 
velocidade na seção(1) 10 m/s, determinar as vazões em massa, volume, em peso e a velocidade 
média na seção(2). 
 
 
 
 
 
 Resp: V2 = 26,7 m/s; Qm = 2,4x10-2 kg/s; Q1= 0,02 m3/s; Q2=0,0261 m3/s; QG= 0,24N/s 
 
7- Um tubo admite água (ρ=1000 kg/m3) num reservatório com uma vazão de 20 L/s. No mesmo 
reservatório é trazido óleo (ρ=800 kg/m3) por outro tubo com uma vazão de 10 L/s. A mistura 
homogênea formada é descarregada por um tubo cuja seção tem uma área de 30cm². Determinar a 
massa específica da mistura no tubo de descarga e a velocidade da mesma. 
Resp: ρ3 = 933 kg/m³; V3 = 10 m/s 
 
 
 
 
 
 
 
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
39
8- Água é descarregada de um tanque cúbico de 5m de aresta por um tubo de 5cm de diâmetro. A vazão 
no tubo é 10 L/s. Determinar a velocidade de descida da superfície livre da água do tanque e, 
supondo desprezível a variação da vazão, determinar quanto tempo o nível da água levará para 
descer 20cm. 
V=4x10-4 m/s; t = 500s 
 
9- Os reservatórios da figura são cúbicos. São preenchidos pelos tubos, respectivamente, em 100s e 
500s. Determinar a velocidade da água na seção(A). Sabendo que o diâmetro do conduto nessa seção 
é 1m. 
 
 
 
 
 
 
Resp: VA = 4,13 m/s 
 
 
 
10- A água escoa por um conduto que possui dois ramais em derivação. O diâmetro do conduto 
principal é 15 cm e os das derivações 2,5cm em 5 cm, respectivamente. O perfil das velocidades no 
conduto principal é dado por: 
 v = vmáx1.[1- (r/R1)2], e nas derivações por: v = vmáx2,3.(1- r/R2,3)1/7. 
 Se vmáx1 = 0,02 m/s e vmáx2 = 0,13 m/s, determinar a velocidade média no tubo de 5 cm de 
diâmetro. (Ri = raio da seção Ai). 
Resp: V3 = 0,064 m/s 
 
 
 
 
 
 
 
 
 
11- O tanque maior da figura abaixo permanece em nível constante. O escoamento na calha tem uma 
seção transversal quadrada e é bidimensional, obedecendo a equação v = 3y². Sabendo que o 
tanque(B) tem 1m³ e é totalmente preenchido em 5 segundos e que o conduto circular tem 30 cm de 
diâmetro,determinar: 
a) Qual é a velocidade média na calha quadrada? 
Resp: 1m/s 
b) Qual é a vazão no conduto circular de 30cm de diâmetro? 
Resp: 0,8 m³/s 
c) Qual é a velocidade máxima na seção do conduto circular de 30cm de diâmetro? 
Resp: 13,86 m/s 
 
 
 
 
 
 
 
 
 
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
40
Equação de Bernoulli 
 
1- Determinar a velocidade do jato do liquido no orifício do tanque de grandes dimensões da figura. 
Considerar fluido ideal. 
 
 
 
 
 
 
 
2- A pressão no ponto S do sifão da figura não deve cair abaixo de 25 kPa. Desprezando as perdas, 
determinar: 
a) Qual é a velocidade do fluido? 
b) Qual é a máxima altura do ponto S em relação ao ponto (A)? 
Dados: Patm = 100 kPa; γ = 104 N/m3 
 
 
 
 
 
 
 
 
 
 
 
 
3- Um tubo de Pitot é preso num barco que se desloca com 45km/h. Qual será a altura h alcançada pela 
água no ramo vertical? 
 
 
 
 
 
 
 
4- Quais são as vazões de óleo em massa e em peso no tubo convergente da figura, para elevar uma 
coluna de 20 cm de óleo no ponto (0): 
Dados: desprezar as perdas: γóleo = 8000 N/m³; g = 10 m/s². 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apostila de Hidráulica Geral - Curso de Engenharia Civil – Universidade Regional de Blumenau – SC 
Prof. Ademar Cordero, Doutor em Engenharia Hidráulica pelo Politécnico de Milão - IT 
41
5- Dado o dispositivo da figura, calcular a vazão do escoamento da água no conduto. 
Dados: γH2O = 104 N/m³; γm = 6 x 104 N/m³; p2 = 20 kPa; A = 10-2 m²; g = 10 m/s². Desprezar as 
perdas e considerar o diagrama de velocidades uniforme. 
 
 
 
 
 
 
6- Na extremidade de uma tubulação de diâmetro D, acha-se instalado um bocal que lança um jato de 
água na atmosfera com diâmetro de 2 cm. O manômetro metálico registra uma pressão de 20 kPa e a 
água sobe no tubo de Pitot até a altura de 2,5 m. Nessas condições, determinar: 
a) A vazão em peso do escoamento; 
b) O diâmetro D do tubo admitindo escoamento permanente e sem atrito. γH2O = 10 N/L. 
 
 
 
 
 
 
7- No conduto da figura, o fluido é considerado ideal. Dados: H1= 16 m; p1=52 kPa; γ = 104 N/m³; 
D1=D3=10cm. Determinar: 
a) A vazão em peso; 
b) A altura h1 no manômetro; 
c) O diâmetro da seção (2).

Outros materiais