Buscar

Conversores_CC_CA

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

JANILSON, CARLOS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conversores CC-CA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Osasco, 2009 
 
 
1 
JANILSON MENDES, CARLOS GALLANTE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONVERSORES CC-CA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Trabalho da disciplina de Eletrônica de 
 Potência da FAC-FITO – Faculdade da 
Fundação Instituto Tecnológico de Osasco 
 
 
 
 
 
 
 
 
 
 
Osasco – 2009 
 
 
2 
Sumário 
 
1. Introdução ..................................................................................... 3 
2. Conversor monofásico .................................................................. 4 
2.1 Inversores de fonte de tensão (VSIs) ............................................ 6 
2.1.2 VSI em meia-ponte ........................................................................ 7 
2.1.3 VSI em ponte completa ................................................................. 8 
3. Produção de uma onda senoidal ................................................. 11 
3.1 Controle da tensão de entrada CC .............................................. 11 
3.2 Controle da tensão de saída CA .................................................. 12 
3.3 Controle da tensão no inversor .................................................... 12 
4. PWM ........................................................................................... 12 
5. Conversores CC-CA trifásicos ..................................................... 13 
6. Conclusão ................................................................................... 15 
7. Bibliografia .................................................................................. 15 
 
 
 
 
 
 
 
3 
1. Introdução 
 
 
A obtenção de uma tensão alternada (senoidal ou não) a partir de uma fonte 
CC ou mesmo de uma fonte CA de freqüência diferente é muitas vezes necessária 
para o acionamento de diversas cargas ou alimentação de sistemas. 
 
Os conversores que realizam a transformação CC-CA são chamados 
inversores, enquanto a conversão CA-CA para distintas freqüências é feita pelos 
cicloconversores. Como exemplos de aplicações pode-se citar: 
 
• Controle de velocidade de motores de corrente alternada, 
• Fontes de alimentação ininterrupta (no-break), 
• Sistemas de alimentação embarcados (navios, aviões, etc). 
 
Geralmente os sistemas de alimentação operam a freqüência fixa, gerando a 
tensão alternada a partir de fontes CC, utilizando, portanto, inversores. Por exemplo, 
o sistema de distribuição de energia em aviões comerciais opera a 400Hz. 
 
Os conversores CC-CA que fornecem em sua saída tensões com freqüência 
fixa, para determinada aplicação são conhecidos como fonte de tensão, isto é, 
fontes de alimentação ininterrupta chamadas de “no-break” ou “UPS - Uninterruptible 
Power Supplies”,em inglês). 
 
Qualquer sistema no qual o fornecimento da energia elétrica não pode ser 
interrompido deve prever uma fonte de emergência para supri-lo. Quando a potência 
instalada é muito grande tem-se, em geral, um sistema de acionamento imediato, 
alimentado a partir de baterias, e um sistema motor-gerador que, por necessitar de 
alguns minutos para estar em condições ideais de operação, não pode ser usado de 
imediato. Tal arranjo é usado, por exemplo, em centrais telefônicas, hospitais, etc. 
 
Quando as cargas críticas são distribuídas, como no caso de 
microcomputadores, podem se usar UPSs modulares, de acionamento imediato, que 
são capazes de manter a operação do equipamento por um tempo suficiente para 
 
 
4 
que não sejam perdidas operações que estavam em curso (tipicamente os tempos 
são da ordem de dezenas de minutos). Além disso, os sistemas mais modernos 
devem ter a capacidade de trocar informações com os computadores, de forma a 
otimizar seu funcionamento. 
 
Os conversores são circuitos estáticos (isto é, não tem partes móveis) que 
convertem potência CC em potência CA com frequência e tensão ou corrente de 
saída controlada. 
 
A tensão de saída tem uma forma de onda periódica que, embora não-
senoidal, pode, com uma boa aproximação, chegar a ser considerada como tal. Há 
muitos tipos de inversores, classificados de acordo com o número de fases, com a 
utilização de dispositivos semicondutores de potência, com os princípios de 
comutação e com as formas de onda de saída. 
 
Analisaremos primeiro o inversor monofásico. Depois os inversores de fonte 
de tensão (voltage source inverters – VSI) e de fonte ideal de corrente (current 
source inverters – CSI). Estes dipositivos são usados em muitas aplicações 
industriais, incluindo controles de velocidade para motores síncronos e de indução, 
aquecimento por indução, fontes de alimentação para aeronaves, fontes de 
alimentação de funcionamento contínuo (uninterruptible power supplier – UPS) e 
transmissão em alta tensão CC. 
 
2. Conversor monofásico 
 
O circuito básico para gerar uma tensão alternada monofásica, a partir de 
uma alimentação de pontência CC, é mostrado na figura 2.1. Esse circuito é também 
conhecido como inversor em H-ponte (meia-ponte) porque usa duas chaves 
semicondutoras. As chaves S1 e S2 ligam e desligam a fonte CC à carga de modo 
alternado, o que produz uma forma de onda retangular de tensão CA. 
 
 
5 
Vs/2 
S 
1 
Carga 
S 
2 
Vs/2 
 
 
 
Uma vez que cada chave tem terminais positivo e negativo, a combinação da 
duas chaves fornece os quatro estados mostrados na tabela 2.1. 
 
Estado S1 S2 Tensão de Entrada 
1 + - + E 
2 - - 0 
3 - + - E 
4 + + 0 
Tabela 2.1. 
 
Quando os estados 1 e 3 são repetidos de maneira alternada, uma tensão de 
onda quadrada é gerada na carga, como mostra a figura 10.2.a. Se os estados 2 e 4 
que fazem a tensão na carga ficar em zero, são usados, obtém-se uma onda em 
degrau ou uma forma de onda quase quadrada, como pode ser observado na figura 
10.2.b. 
 
Vs/2 
Vs/2 
T/2 
 
T 
 
on 
 
on 
 t 
 
t 
 
S 1 
S 2 
D 
 2 
 
D 
 1 
S 
 1 
S 
 2 
chaves em condução 
 
i o 
v o 
Figura 2.1 
Figura 2.1.a. 
Figura 2.1.b. 
 
 
6 
A frequência de tesão que se alterna é determinada pela taxa de variação do 
chaveamento. Se o período de chaveamento for de T segundos, a frequência f será: 
 
T
f
1

 [Hz] 
 
A tensão de saída CA retangular do inversor serve para algumas aplicações, 
entretanto, a tensão de saída senoidal é a forma de onda ideal para muitas 
aplicações. 
 
Dois métodos podem ser usados para tornar a saída o mais próximo possível 
de uma senóide. Um deles consiste em empregar um circuito filtro no lado da saída 
do inversor. Esse filtro deve ser capaz de deixar pasar a grande potência de saída 
do dispositivo, o que significa ter um tamanho adequado. Isso aumenta o custo e o 
peso do inversor. Mas ainda, a eficiência ficará reduzida por causa das perdas 
adicionais de potência no filtro. 
 
O segundo método, modulação por largura de pulso (pulse width modulation – 
PWM), usa um esquema de chaveamento no inversor para modificar a forma de 
onda da tensão de saída. 
 
2.1 Inversores de fonte de tensão (VSIs) 
 
 
O inversor de fonte de tensão (VSI) é o mais usado. Nele, a tensão da fonte 
de entrada CC é essencialmente constantee independente da corrente puxada pela 
carga. A tensão de entrada CC pode vir de uma fonte independente, como uma 
bateria, ou pode ser a saída de um retificador controlado. Um capacitor de valor 
grande é colocado em paralelo com a entrada da linha CC para o inversor. O 
capacitor garante que os enventos de chaveamento não alterem de modo significa- 
tivo a tensão CC. Ele carrega e descarrega, de acordo com a necessidade de 
fornecimento de uma saída estável. O inversor converte a tensão de entrada CC em 
uma onda quadrada CA na saída da fonte. 
 
 
7 
2.1.2 VSI em meia-ponte 
 
O inversor em meia-ponte, usado para aplicações de baixa potência, é o 
alicerce básico dos circuitos inversores. A figura 2.1.2a. mostra uma configuração de 
VSI monofásico em meia-ponte que utiliza duas chaves (S1 e S2) e duas fontes de 
alimentação CC. 
 
 
 
 
 
 
 
O dispositivo de chaveamento pode ser um transistor de potência um BJT 
(bipolar junction transistor – transistor bipolar de junção) ou um MOSFET (metal-
oxide semiconductor field-effect transistor – transistor de efeito de campo metal-
óxido-semicondutor), um tiristor GTO (Gate-turnnoff thyristor – tiristor de 
desligamento por porta) ou um SCR (silicon controlled rectifier – retificador 
controlado de silício), com seu circuito de comutação. Os diodos D1 e D2 são de 
retorno. 
 
A figura 2.1.2.b. mostra a forma de onda da tensão de saída com carga 
resistiva. As chaves passam para o estado ligado e desligado alternadamente: uma 
estará ligada enquanto a outra estiver desligada. No período de 0 a T/2, a chave S1 
se mantém fechada, o que faz com que Vo = +E. Em T/2, S1 fica aberta e S2, 
fechada. Durante T/2 a T, a tensão de saída Vo = -E. Portanto, essa tensão tem uma 
forma de onda retangular com frequência f = 1/T. Ao controlar T, podemos dominar a 
frequência das tensões de saída do inversor. Entretanto, deve-se tomar cuidado 
para não passar ambas as chaves ao estado ligado, pois nesse caso elas 
produziriam um curto na fonte CC. 
 
Figura 2.1.2.a. 
 
 
8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.1.3 VSI em ponte completa 
 
Um VSI em ponte completa pode ser montado com dois VSIs em meia ponte. 
Podemos ver na figura 2.1.3.a. o circuito básico para um inversor monofásico de 
fonte de tensão em ponte completa. São necessárias quatro chaves e quatro diodos 
de retorno. A amplitude da tensão de saída, e portanto, a potência de saída é o 
dobro do modelo meia-ponte. As chaves são passadas para os estados ligados e 
desligados por pares em diagonal. Assim, ou as chaves S1 e S4 ou as S2 e S3 vão 
para o estado ligado em um semiciclo (T/2). Portanto, a fonte CC fica ligada de 
Figura 2.1.2.b. 
 
 
9 
maneira alternada à carga, em direções opostas. A frequência de saída é controlada 
pela taxa de velocidade, segundo a qual as chaves se e se fecham. Se os pares de 
chaves passarem para o estado ligado em intervalos iguai, a forma de onda da 
tensão de saída será uma onda quadrada com um pico de amplitude E. 
 
 
 
 
 
 
 
 
 
Na tabela abaixo mostramos a sequência de chaveamento através da tabela 
Tabela 2.1.3.a. 
 
Estado S1 S2 S3 S4 Tensão de Saída 
1 Ligada Desligada Desligada Ligada +E 
2 Desligada Ligada Ligada Desligada -E 
3 Ligada Desligada Desligada Ligada +E 
4 Desligada Ligada Ligada Desligada -E 
Tabela 2.1.3.a. 
 
Quando o estado do chaveamento muda, enquanto se estiver passando de 
um estado para outro, ambos os pares de chaves devem estar desligados por um 
curto período de tempo. Impedindo que ocorra algum curto na fonte CC no estado 
transitório, em que as duas chaves pode estar se fechando ao mesmo tempo. 
Portanto, o chaveamento do estado ligado para o desligado deve ser feito o mais 
rápido possível, enquanto o do desligado para o ligado deve contar com um atraso 
apropriado, o que o faz levar um tempo definido. 
 
Podemos controlar a tensão CA ao usar um terceiro estado da chave, durante 
o qual a tensão de saída é zero. A forma de onda da saída é a onda em degrau 
mostrada na figura 2.1.3.b. 
Figura 2.1.3.a. 
 
 
10 
 
T/2 T 
on 
on 
Vs/2 
-Vs/2 t 
S 1 
S 2 
o 
v Ao 
T/2 T 
on 
on 
Vs/2 
-Vs/2 t 
S 4 
S 3 
t 
o 
D 1 
D 4 
S 1 
S 4 
D 2 
D 3 
S 2 
S 3 
is 
i 
v 
AB 
t 
t 
on S 4 
on S 1 
VBo 
-v 
s 
v 
s 
AB 
 
S 
 3 
S 
 4 
V
s 
 
D 
 3 
D 
 4 
S 
 1 
S 
 2 
D 
 1 
D 
 2 
L R A 
B 
 
 
 
 
i s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A forma de onda mostrada na figura 2.1.3.b (acima) é obtida por meio de um 
inversor de fonte de tensão em ponte que usa uma carga RL. A tensão de saída é 
uma forma de onda retangular, com um ciclo de trabalho de 50%. A forma de onda 
da corrente na saída tem forma exponencial. Quando a tensão de saída for positiva, 
a corrente crescerá exponencialmente. Durante o ciclo seguinte, quando a tensão de 
saída for negativa, a corrente cairá exponencialmente. 
Abaixo na figura 2.1.3.c. mostramos o circuito com a carga RL citada no bloco 
do texto anterior. 
 
 
 
 
 
 
 
 
 
Figura 2.1.3.b. 
Figura 2.1.3.c. 
 
 
11 
A função dos diodos de retorno é fornecer um caminho de volta para a 
corrente de carga, quando as chaves estiverem desligadas. Logo após S2 e S3 
passarem para o estado desligado em t = 0, por exemplo, os diodos D1 e D4 irão 
ligar. 
A corrente de carga começará em um valor negativo e crescerá 
exponencialmente a uma taxa dada pela constante de tempo da carga ( = L/R). A 
fonte de corrente CC, nesse período, é invertida e flui de fato para a fonte CC. 
Quando a corrente na saída chega a zero, D1 e D4 passam para o estado desligado 
e S1 e S4, para o ligado. A tensão e a corrente na saída são positivas e produzem 
uma potência positiva. A corrente continua a crescer e alcança o valor máximo em 
t= T/2, quando S1 e S4 passam para o estado desligado. A tensão de saída se 
inverte, mas a corrente na saída continua a fluir na mesma direção. A corrente na 
saída somente pode fluir através dos diodos D2 e D3, que ligam a fonte CC à carga, 
o que gera tensão inversa. A energia armazenada no indutor retorna à fonte CC e a 
corrente alcança seu valor máximo negativo em t = T e o ciclo se repete. 
 
3. Produção de uma onda senoidal 
 
A maioria das aplicações de inversores requer algum tipo de controle da 
tensão de saída CA. Vários métodos são usados para isso e podem ser classificados 
em três grande categorias: 
 
 Controle da tensão de entrada CC fornecida para o inversor 
 Controle da tensão de saída CA do inversor 
 Controle da tensão no inversor 
 
3.1 Controle da tensão de entrada CC 
 
Para um dado padrão de chaveamento, a tensão de saída do inversor é 
diretamente proporcional à tensão de entrada. Portanto, a variação da tensão de 
entrada CC fornecida é a maneira mais simples de controlar a tensão de saída. Se a 
fonte de potêncai for CC, então o uso de um chopper (circuito conversor usado para 
 
 
12 
se obter uma tensão CC variável a partir de uma fonte de tensão CC constante), 
será o método principal para a obtenção de uma tensão CC variável. Entretanto, 
quando a tensão CC advém da tensão CA, o controle é mais fácil. Basta usar 
retificadores controlados ou não, para conseguir uma tensão de saída CC variável. 
 
3.2 Controle da tensão de saída CA 
 
Para usar essetipo de controle é introduzido um regulador CA entre o 
inversor e a carga, assim podemos controlar a tensão CA e, dessa maneira também 
a tensão de saída do inversor. 
 
3.3 Controle da tensão no inversor 
 
A modulação por largura de pulso (PWM) é o método mais comum para 
controlar a tensão num conversor. Nela, a tensão de saída é uma onda modulada 
por largura de pulso, controlada pela variação da duração dos pulsos, ou SPWM 
(Modulação por largura de puplso de senoidal). 
 
 
4. PWM 
 
A modulação por largura de pulso varia a razão cíclica aplicada aos 
interruptores em uma alta freqüência de comutação com o intuito de suprir uma 
determinada tensão ou corrente na saída em baixa freqüência, ou seja, tem-se como 
objetivo criar uma seqüência de pulsos que devem ter o mesmo valor fundamental 
de uma referência desejada. Todavia, nesta seqüência de pulsos existem 
componentes harmônicos indesejados que devem ser minimizados. 
 
Na SPWM, a largura dos pulsos enviados para os interruptores depende da 
amplitude da referência senoidal de tensão, fazendo com que a tensão Vab tenha 
uma componente fundamental na mesma freqüência da tensão de referência e os 
harmônicos deslocados em torno da freqüência da portadora Vtri. Esta modulação 
 
 
13 
apresenta a característica de possuir um único comando para cada dois 
interruptores, como por exemplo, S1 e S4. Nos outros dois interruptores pode-se 
usar, idealmente, um comando complementar. 
 
Entre os pontos positivos da vasta utilização da SPWM na indústria 
destacam-se a operação em freqüência fixa e o conteúdo harmônico deslocado para 
altas freqüências utilizando-se uma portadora. O emprego de freqüência fixa 
aperfeiçoa o projeto dos componentes magnéticos, tendo em vista que em 
aplicações onde a freqüência é variável os componentes magnéticos devem ser 
projetados para toda a faixa de freqüência utilizada. Quando o conteúdo harmônico 
se concentra nas altas freqüências tem-se uma diminuição de dimensão, peso e 
custo dos componentes do filtro. 
 
5. Conversores CC-CA trifásicos 
 
A estrutura do inversor trifásico pode ser obtida pela inserção de mais uma 
“perna” ao bloco do inversor monofásico em ponte, e os sinais para acionamento das 
chaves superiores devem estar defasados de 120º um do outro e as chaves na 
mesma “perna” devem estar alternadamente ligadas por 180º uma da outra, abaixo 
na figura 5.a. podemos ver o esquemático de inversor trifásico. 
 
 
 
 
 
 
 
 
 
A operação do inversor de seis passos é essencialmente a mesma de um 
inversor monofásico em ponte, como no monofásico cada chave é ligada e desligada 
durante intervalos de 180º e cada terminal de saída é conectado alternadamente por 
meio período aos pólos positivos e negativos da fonte de tensão contínua. A tensão 
Figura 5.a. 
 
 
14 
 
S 1 
S 6 
S 1 
S 6 
S 1 
S 4 
S 3 
S 4 
S 3 
S 4 
S 3 
S 2 
S 5 
S 2 
S 5 
S 2 
v 
AO 
v 
BO 
v 
CO 
v 
AB 
v 
BC 
v 
CA 
v 
AN 
v 
BN 
wt 
wt 
wt 
wt 
wt 
wt 
wt 
wt 
(c) 
(b) 
(a) 
trifásica é obtida conservando um defasamento mútuo de 120º entre as sequencias 
de chaveamento nas três “pernas” do conversor. Esse defasamento entre as fases 
resulta numa sequencia que é mostrada na figura 5.b. logo abaixo, fazendo uma 
referencia para a figura 5.a. da página anterior. 
 
 
 
 
 
 
 
 
 
 
Abaixo na figura 5.c. vemos a forma de onda de um conversor trifásico de seis 
passos. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 5.b. 
Figura 5.b. 
 
 
15 
 
6. Conclusão 
 
A finalidade desse trabalho foi apresentar as principais caracteristicas de um 
conversor CC-CA com suas principais variações de circuitos, formas de onda de 
saída, técnicas de modulação para a obtenção de uma senoide e seu funcionamento 
para o sitema trifásico. 
 
 
7. Bibliografia 
 
AHMED, Ashfaq. Eletrônica de Potência. São Paulo, Pearson Prentice Hall, 
2008. 
ANTUNES, Fernando. Inversores. 
 http://www.dee.ufc.br/~fantunes/inversores.ppt. Acesso em: 17/05/2009. 
BARBI, Ivo. Projetos de Fontes Chaveadas. Florianópolis, Edição do autor, 
2001.

Continue navegando