Buscar

TURBINAS EÓLICASfinal

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 30 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 30 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 30 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

UNIVERCIDADE ESTÁCIO DE SÁ – UNESA 
CURSO DE ENGENHARIA ELÉTRICA 
 
 
 
 
 
 
 
 
 
 
 
TURBINAS EÓLICAS 
 
 
 
 
 
 
 
ALUNO:.EDSON SILVA 
MAT:. 201407042114 
 
 
 
 
 
 
 
RIO DE JANEIRO 
OUTUBRO DE 2018
 
 
 
 
 
 
UNIVERSIDADE ESTACIO DE SÁ – UNESA 
CURSO DE ENGENHARIA ELÉTRICA 
 
 
 
 
 
 
 
TURBINAS EÓLICAS 
 
 
 
 
 
 
TRABALHO APRESENTADO NA DISCIPLINA DE TÓPICOS 
DE ENERGIAS RENOVÁVEIS 
 
 
 
 
EDSON SILVA 
 
 
 
 
 
 
 
 
 
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SUMÁRIO 
1. INTRODUÇÃO ....................................................................................................................... 7 
1.1. PIONEIROS DA ENERGIA EÓLICA .................................................................................................... 7 
1.1.1. Charles F. Brush (1849-1929) ................................................................................................. 7 
1.1.2. Poul la Cour (1846-1908) ........................................................................................................ 9 
1.1.3. Albert Betz (1885-1968) .......................................................................................................10 
1.1.4. Palmer Cosslet Putnam (1910-1986) ....................................................................................11 
1.1.5. Ulrich W. Hüttner (1910-1990) ............................................................................................11 
1.1.6. Johannes Juul (1887-1969) ...................................................................................................11 
1.2. ENERGIA EÓLICA NO CENÁRIO MUNDIAL ....................................................................................12 
1.3. ENERGIA EÓLICA NO CENÁRIO BRASILEIRO .................................................................................14 
2. TURBINAS EÓLICAS .......................................................................................................... 17 
2.1 TIPOS DE TURBINAS......................................................................................................................17 
2.1.1. Turbinas axiais de eixo horizontal ........................................................................................17 
2.1.2. Turbinas axiais de eixo vertical.............................................................................................18 
2.2. COMPONENTES DE UMA TURBINA ..............................................................................................20 
2.3. DIMENSIONAMENTO DE UMA TURBINA .....................................................................................22 
2.3.1. Dimensionamento preliminar ..............................................................................................22 
2.3.2. Dimensionamento real .........................................................................................................23 
2.4. ANÁLISE CRÍTICA DA UTILIZAÇÃO DE TURBINAS EÓLICAS ...........................................................25 
3. CONSIDERAÇÕES FINAIS ................................................................................................. 26 
ANEXOS ....................................................................................................................................... 28 
INOVAÇÕES TECNOLÓGICAS E CURIOSIDADES ........................................................................................28 
Fazenda de energia eólica vai armazenar vento em rochas ................................................................28 
Energia do vento vai evitar emissão de 1,5 bi de toneladas de CO2 ...................................................28 
Super turbina eólica utiliza levitação magnética para produzir até 1 GW ...........................................29 
 
 
 
 
 
RESUMO 
 
Este trabalho visa informar em detalhes as características dos equipamentos destinados à 
captura da energia proveniente dos ventos e à sua transformação em energia mecânica, 
normalmente na forma de rotação de eixo. Estes equipamentos são conhecidos como 
Aerogeradores ou Turbinas Eólicas e são, atualmente, uma promessa de energia renovável limpa, 
segura e de baixo custo. 
As turbinas eólicas atuais utilizam modernos conceitos de aerodinâmica e o que há de 
mais recente em inovação tecnológica, de modo a torná-las cada vez mais eficientes. 
 
 
 
Palavras Chave: Turbinas; Turbinas Eólicas; Aerogeradores; Energia Eólica.
 
 
 
 
 
 
LISTA DE FIGURAS 
 
Figura 1.1 Primeiro Modelo de Turbina Eólica Registrado ............................................................ 7 
Figura 1.2 Charles F. Brush ............................................................................................................. 8 
Figura 1.3 A turbina eólica de Brush. Primeira turbina usada para geração de energia elétrica ..... 8 
Figura 1.4 Poul La Cour .................................................................................................................. 9 
Figura 1.5 Turbina eólica de Poul La Cour ................................................................................... 10 
Figura 1.5 Albert Betz ................................................................................................................... 10 
Figura 1.6 Turbina Smith-Putnan .................................................................................................. 11 
Figura 1.7 Turbinas desenvolvidas por Johannes Juul .................................................................. 12 
Figura 1.8 Gráfico do Crescimento do uso mundial de energia eólica.......................................... 13 
Figura 2.1 Turbinas eólicas de eixo vertical (esq.) e de eixo horizontal (dir.) .............................. 17 
Figura 2.2 Evolução da potência das turbinas com relação ao seu tamanho ao longo dos anos ... 18 
Figura 2.3 Turbina do tipo Savonius ............................................................................................. 18 
Figura 2.4 Turbina do tipo Darrieus .............................................................................................. 19 
Figura 2.5 Componentes de uma Turbina eólica de eixo horizontal ............................................. 20 
Figura 2.5 Volume de controle para uma turbina eólica de horizontal ......................................... 23 
 
 
 
 
 
 
LISTA DE TABELAS 
 
Tabela 1.1 Quantidade de potência produzida por país ................................................................. 13 
Tabela 1.2 As 46 usinas eólicas brasileiras ................................................................................... 14 
Tabela 1.3 Origem e quantidade de eletricidade produzida no Brasil ........................................... 16 
 
7 
 
 
1. INTRODUÇÃO 
 
Utilizar os ventos como forma de prover potência para a realização de tarefas diversas não 
é algo novo. Foi uma das primeiras fontes de energia natural utilizada, sendo que o principal 
dispositivo utilizado no passado, além da vela, foi o moinho de vento. 
Moinhos de vento de eixo vertical, que giravam lentamente, eram utilizados para bombear 
água de poços e para girar rodas de pedras que moíam grãos, daí o nome “moinho de vento”. 
Existem indícios da existência desses moinhos na China e na Babilônia por volta de 2000 a.C. 
 O primeiro uso documentado oficialmente da energia do vento é também creditado aos 
Persas. Um moinho de eixo vertical (figura 1.1) utilizando o conceito das velas de embarcações 
era feito de junco e madeira. Tambémhá relatos oficiais de uso de moinhos de vento de eixo 
vertical na China, no ano de 1219. 
 
 
Figura 1.1 Primeiro Modelo de Turbina Eólica Registrado 
Fonte: http://www.telosnet.com 
 
 Turbinas eólicas só foram utilizadas para geração de energia elétrica pela primeira vez em 
1888 (figura 1.3) e a primeira turbina comercial instalada na rede elétrica pública foi em 1976, na 
Dinamarca. Atualmente existem próximo de 40 mil turbinas eólicas em operação no mundo. 
 
 
1.1. PIONEIROS DA ENERGIA EÓLICA 
 
1.1.1. Charles F. Brush (1849-1929) 
 
8 
 
 
 
Figura 1.2 Charles F. Brush 
Fonte: http://www.lafavre.us. 
 
Um dos fundadores da indústria elétrica norte-americana. No Inverno de 1887-88, Brush 
construiu, em Cleveland1, uma máquina automatizada para produção de eletricidade. Devido aos 
recursos da época, as dimensões eram enormes. O diâmetro do rotor era 17 m, 144 pás de rotor 
feitas de madeira de cedro, que apesar dessas dimensões, gerava apenas 12 kW. A turbina 
funcionou durante 20 anos e alimentava no porão da casa de Brush. Foi o primeiro equipamento 
do tipo a utilizar caixa de redução (com relação de transmissão de 50:1) que fazia um gerador de 
corrente contínua girar a 500 rpm 
 
Figura 1.3 A turbina eólica de Brush. Primeira turbina usada para geração de energia elétrica. 
Fonte: http://www.telosnet.com 
 
 
 
 
 
 
1 Ohio, Estados Unidos. 
9 
 
 
1.1.2. Poul la Cour (1846-1908) 
 
 
 
Figura 1.1.2.4 Poul La Cour 
Fonte: www.windsofchange.dk 
 
Esse meteorologista Dinamarquês foi considerado o pai da indústria eólica moderna e 
serviu de referência para muitos estudiosos e foi um dos responsáveis pelo grande avanço da 
indústria eólica dinamarquesa. A sua primeira turbina eólica comercializável foi instalada após a 
Primeira Guerra Mundial, durante um período de escassez generalizada de combustível, e foi a 
primeira turbina a utilizar conceitos definidos de aerodinâmica. Fundou o primeiro centro de 
investigação de energia eólica em Jütland2, onde ministrou os primeiros cursos a engenheiros 
eólicos. Juntamente com as suas primeiras experiências na técnica dos túneis de vento publicou a 
primeira revista mundial sobre energia eólica. 
 
 
2 Região central da Dinamarca. 
10 
 
 
 
Figura 1.1.2.5 Turbina eólica de Poul La Cour 
Fonte: http://www.hawkge.com 
 
 
 
 
1.1.3. Albert Betz (1885-1968) 
 
 
Figura 1.1.2.5 Albert Betz 
Fonte: http://www.ipme.ru 
 
Físico alemão que foi diretor do Instituto de Aerodinâmica em Göttingen3, formulou a lei 
Betz, demonstrando que o ponto otimizado físico da utilização da energia cinética dos ventos é 
 
3 Cidade situada na região central da Alemanha, distante 125 km de Hannover. 
11 
 
 
59,3%. A sua teoria sobre o design das pás ainda hoje serve como referência para a construção 
dos equipamentos. 
 
1.1.4. Palmer Cosslet Putnam (1910-1986) 
 
Engenheiro norte-americano que desenvolveu a turbina eólica 1,25 MW Smith Putnam, 
em 1941, que funcionou com interregnos até 1945 e foi encerrada devido a danos nos materiais 
de construção, causados por materiais de construção inapropriados. 
 
 
Figura 1.1.2.6 Turbina Smith-Putnan 
Fonte: http://www.enotes.com 
 
1.1.5. Ulrich W. Hüttner (1910-1990) 
 
Engenheiro alemão que desenvolveu a turbina 100 kW StGW-34, que foi instalada em 
1957 num campo experimental nos Alpes Suábios4, é considerada um dos marcos da tecnologia 
de energia eólica moderna. 
 
1.1.6. Johannes Juul (1887-1969) 
 
 
4 Cadeia de Montanhas do sul da Alemanha. 
12 
 
 
Foi aluno de Poul la Cour e construiu a primeira turbina eólica do mundo utilizada para 
produção de corrente alternada na Dinamarca em Vester Egesborg5, em 1957. Esta turbina foi um 
esboço das turbinas eólicas modernas e gerava 200 kW. 
 
Figura 1.1.2.7 Turbinas desenvolvidas por Johannes Juul 
Fonte: http://guidedtour.windpower.org 
 
1.2. ENERGIA EÓLICA NO CENÁRIO MUNDIAL 
 
 O grande responsável pelo crescimento da energia eólica no cenário mundial é a 
Dinamarca, que investiu mais, nestes últimos anos, do que qualquer outro país europeu. A 
Dinamarca possui alguns fabricantes que chegaram a suprir mais de 60% da demanda mundial de 
turbinas eólicas e teve como maiores clientes, a Alemanha, a Espanha e a Inglaterra. 
 
 
5 Cidade situada na região central/sul da Dinamarca, distante 88 km de Copenhague. 
13 
 
 
 
Figura 1.1.2.8 Gráfico do Crescimento do uso mundial de energia eólica. 
Fonte: Global Wind Energy Council. 
 
 Apesar da significativa contribuição da Dinamarca e de alguns outros países europeus 
para disseminar o uso das turbinas eólicas, o maior produtor de energia elétrica de origem eólica 
atualmente não é europeu. Devido a uma crise energética e crise de petróleo, ocorridas na década 
de 70, os Estados Unidos, com grande participação da NASA6, investiram fortemente em 
desenvolvimento e implantação de fontes de energias alternativas. Atualmente o país ocupa o 
primeiro lugar na produção de energia, seguido de perto pela Alemanha. 
 
Tabela 1.1 Quantidade de potência produzida por país. 
País Potência Instalada (MW) % da produção mundial 
Estados Unidos 25000 20.8 
Alemanha 24000 19.8 
Espanha 17000 13.9 
China 12500 10.1 
Índia 9500 8.0 
Itália 4300 3.1 
França 4000 2.8 
Inglaterra 3700 2.7 
Dinamarca 3000 2.6 
Portugal 2600 2.0 
Brasil 835.3 0.7 
Fonte: Global Wind Energy Council. 
 
6 National aeronautics and space administration. 
14 
 
 
 
Devido às diversas conferências relacionadas ao meio ambiente e ao aquecimento solar, a 
maioria dos países do primeiro mundo está concentrando esforços no aumento do uso da energia 
eólica, bem como no uso de outros tipos de energias renováveis. Os Estados Unidos têm como 
meta para 2020 que 6% da eletricidade sejam provenientes de geração eólica enquanto que a 
união européia tem 12% como meta para o mesmo ano. 
 
1.3. ENERGIA EÓLICA NO CENÁRIO BRASILEIRO 
 
Diversos estudos e levantamentos, que já foram ou que vem sendo realizados, dão suporte 
a exploração da energia eólica no Brasil. Com base nesses estudos o país segue a tendência 
mundial de utilização cada vez maior da energia eólica, já que através deles pode-se comprovar 
que temos um dos maiores potenciais eólicos em todo o mundo. Esse potencial é comprovado 
pelo constante crescimento na quantidade de usinas eólicas em território brasileiro, que passou de 
7 usinas, no final de 2001, para 46, atualmente. A tabela 1.1 mostra as usinas brasileiras em 
ordem de capacidade de produção de energia. 
 
Tabela 1.2 As 46 usinas eólicas brasileiras. 
Usina Potência (kW) Município 
Praia Formosa 104.400 Camocim - CE 
Canoa Quebrada 57.000 Aracati - CE 
Eólica Icaraizinho 54.600 Amontada - CE 
Parque Eólico de Osório 50.000 Osório - RS 
Parque Eólico Sangradouro 50.000 Osório - RS 
Parque Eólico dos Índios 50.000 Osório - RS 
Bons Ventos 50.000 Aracati - CE 
RN 15 - Rio do Fogo 49.300 Rio do Fogo - RN 
Volta do Rio 42.000 Acaraú - CE 
Parque Eólico Enacel 31.500 Aracati - CE 
Eólica Praias de Parajuru 28.804 Beberibe - CE 
Praia do Morgado 28.800 Acaraú - CE 
Parque Eólico de Beberibe 25.600 Beberibe - CE 
Foz do Rio Choró 25.200 Beberibe - CE 
Eólica Paracuru 23.400 Paracuru - CEPedra do Sal 18.000 Parnaíba - PI 
Taíba Albatroz 16.500 São Gonçalo do Amarante - CE 
15 
 
 
Eólica Canoa Quebrada 10.500 Aracati - CE 
Millennium 10.200 Mataraca - PB 
Eólica de Prainha 10.000 Aquiraz - CE 
Eólica Água Doce 9.000 Água Doce - SC 
Eólica de Taíba 5.000 São Gonçalo do Amarante - CE 
Pirauá 4.950 Macaparana - PE 
Xavante 4.950 Pombos - PE 
Mandacaru 4.950 Gravatá - PE 
Santa Maria 4.950 Gravatá - PE 
Gravatá Fruitrade 4.950 Gravatá - PE 
Parque Eólico do Horizonte 4.800 Água Doce - SC 
Presidente 4.500 Mataraca - PB 
Camurim 4.500 Mataraca - PB 
Albatroz 4.500 Mataraca - PB 
Coelhos I 4.500 Mataraca - PB 
Coelhos III 4.500 Mataraca - PB 
Atlântica 4.500 Mataraca - PB 
Caravela 4.500 Mataraca - PB 
Coelhos II 4.500 Mataraca - PB 
Coelhos IV 4.500 Mataraca - PB 
Mataraca 4.500 Mataraca - PB 
Lagoa do Mato 3.230 Aracati - CE 
Eólio - Elétrica de Palmas 2.500 Palmas - PR 
Mucuripe 2.400 Fortaleza - CE 
Macau 1.800 Macau - RN 
Eólica de Bom Jardim 600 Bom Jardim da Serra - SC 
Eólica de Fernando de Noronha 225 Fernando de Noronha - PE 
Eólica Olinda 225 Olinda - PE 
IMT 2,2 Curitiba - PR 
Fonte: www.aneel.gov.br 
 
O fato de os períodos de menor capacidade dos reservatórios das hidrelétricas, 
coincidirem com os períodos de maiores ventos (portanto de maior geração) de energia nas usinas 
eólicas aumenta confiabilidade e estabilidade do sistema elétrico brasileiro. Além disso, o fator 
de capacidade das usinas eólicas em regiões de ventos médios anuais (superiores a 8m/s) chega a 
atingir 40% e, em algumas localidades do litoral nordeste do Brasil, em alguns meses pode atingir 
60%. Mesmo com esse potencial alto, a produção de energia eólica no Brasil ainda é muito 
pequena, ocupando menos de 1% da produção de energia elétrica no país, como mostra a tabela 
 
16 
 
 
 1.2. Tabela 1.3 Origem e quantidade de eletricidade produzida no Brasil. 
Tipo 
Capacidade 
Instalada 
% 
Total 
% 
N.° de 
Usinas 
(kW) 
N.° de 
Usinas 
(kW) 
 Hidro 870 80.031.457 67 870 80.031.457 67,2 
 Gás 
Natural 93 11.050.530 9,3 
128 12.341.813 10,4 
Processo 35 1.291.283 1,1 
 Petróleo 
Óleo Diesel 824 3.992.543 3,4 
853 6.516.346 5,47 
Óleo 
Residual 
29 2.523.803 2,1 
 Biomassa 
Bagaço de 
Cana 
312 5.956.646 5 
382 7.605.201 6,39 
Licor Negro 14 1.240.798 1 
Madeira 40 327.827 0,3 
Biogás 9 48.522 0 
Casca de 
Arroz 
7 31.408 0 
 Nuclear 2 2.007.000 1,7 2 2.007.000 1,68 
 Carvão 
Mineral 
Carvão 
Mineral 
9 1.594.054 1,3 9 1.594.054 1,34 
 Eólica 46 835.336 0,7 46 835.336 0,7 
Importação 
Paraguai 5.650.000 5,5 
 8.170.000 6,86 
Argentina 2.250.000 2,2 
Venezuela 200.000 0,2 
Uruguai 70.000 0,1 
Total 2.290 119.101.207 100 2.290 119.101.207 100 
Fonte: www.aneel.gov.br 
 
 
 
 
 
 
 
 
 
 
17 
 
 
2. TURBINAS EÓLICAS 
 
2.1 TIPOS DE TURBINAS 
 
Existem diversos tipos de turbinas eólicas atualmente, devido à variedade de modificações 
que podem ser feitas na construção das mesmas e também da possibilidade de serem instaladas na 
terra ou no mar e estar isolados ou agrupados em parques. 
As turbinas eólicas se dividem, usualmente, em dois tipos principais, que são: Turbinas 
axiais de eixo horizontal (TEEH) e turbinas axiais de eixo vertical (TEEV). Essa diferenciação é 
feita normalmente em função da aplicação. 
 
Figura 2.1 Turbinas eólicas de eixo vertical (esq.) e de eixo horizontal (dir.) 
Fonte: http://www.eole.org 
 
2.1.1. Turbinas axiais de eixo horizontal 
 
 São as mais comuns, sendo aplicadas, normalmente, nos parques eólicos de produção de 
energia elétrica. Na maioria dos casos, a turbina é constituída por três pás, existindo também 
turbinas com uma ou duas pás. As turbinas de rotor de duas ou três pás apresentam uma relação 
entre potência extraída e a área de atuação do rotor superior às turbinas de rotor múltiplas, além 
disso, seu rendimento é o melhor entre todos os tipos e pode ser otimizado quando combinado 
com velocidades de vento mais elevadas. A turbina horizontal necessita de um mecanismo que 
permita o posicionamento do eixo da turbina em relação à direção do vento, de modo a 
proporcionar um melhor aproveitamento dos ventos, principalmente em zonas onde a direção 
destes mude com freqüência. 
A potência de uma turbina eólica está diretamente relacionada com o diâmetro do rotor, 
sendo mais elevada quanto maior for este diâmetro. A figura 4.2 apresenta a evolução da potência 
das turbinas eólicas na Alemanha entre 1980 e 2005. 
18 
 
 
 
Figura 2.2 Evolução da potência das turbinas com relação ao seu tamanho ao longo dos anos 
Fonte: http://www.windpower.org 
 
2.1.2. Turbinas axiais de eixo vertical 
 
São as menos comuns, normalmente utilizadas em sistemas de bombeamento de água, 
onde o custo final, devido à simplicidade do sistema de transmissão e construção, pode 
compensar o seu baixo rendimento. Devido à baixa demanda, atualmente, poucas empresas 
fabricam turbinas eólicas de eixo vertical. 
Os principais tipos de turbinas de eixo vertical são as turbinas de Savonius (figura 1.7) e 
as de Darrieus (figura 1.8). 
 
 
Figura 2.3 Turbina do tipo Savonius 
Fonte: http://www.reuk.co.uk 
19 
 
 
 
As turbinas do tipo Savonius operam com um elevado torque e podem apresentar uma 
curva de rendimento em relação à velocidade bastante próxima da curva de rendimento das 
turbinas de eixo horizontal de múltiplas pás. 
 
 
Figura 2.4 Turbina do tipo Darrieus 
Fonte: http://www.reuk.co.uk 
 
As turbinas do tipo Darrieus são movidas por forças de sustentação e constituídas por 
lâminas curvas de perfil aerodinâmico, ligadas pelas extremidades ao eixo vertical. 
As grandes vantagens deste tipo de turbina são o fato de não necessitarem de mecanismos 
de acompanhamento para variações da direção do vento, o que reduz a complexidade do projeto e 
os esforços devido às forças de Coriolis7. Os rotores de eixo vertical também podem ser movidos 
por forças de sustentação e por forças de arrasto e de poderem estar diretamente implantadas no 
solo, eliminando a necessidade da instalação de uma torre. Como desvantagem, além da limitação 
no rendimento da turbina, as turbinas verticais tendem a causar vibrações acentuadas em toda a 
sua estrutura. 
 
 
 
 
7 Gustave-Gaspard Coriolis, engenheiro francês que desenvolveu a teoria das forças perpendiculares à direção do 
movimento. 
20 
 
 
2.2. COMPONENTES DE UMA TURBINA 
 
Neste tópico, iremos enfatizar somente turbinas eólicas de eixo horizontal, que são as 
mais difundidas no mercado. 
Os aerogeradores possuem três componentes básicos: o rotor com as pás, a nacele (ou 
gôndola) e a torre. Na nacele estão os principais componentes tais como o gerador elétrico, caixa 
multiplicadora de velocidades, eixos, mancais, sistema de freios sistema de controle e 
mecanismos de giro da turbina. O rotor apresenta geralmente, um conjunto de três pás, podendo 
ter controle passivo ou ativo das mesmas para operar numa determinada rotação. Na maioria das 
máquinas o eixo que transmite o torque das pás apresenta uma velocidade de rotação baixa sendo 
necessário aumentar a rotação utilizando um multiplicador de velocidades de engrenagens. Após 
o multiplicador é conectado ao gerador elétrico que transforma a energia mecânica em elétrica. 
O gerador elétrico pode ser assíncrono (indução) apropriado para trabalharcom rotação 
constante ou gerador síncrono utilizado em sistemas com rotação variável. Existem também 
turbinas eólicas de grande porte que utilizam geradores síncronos de imas permanentes que 
operam com baixa rotação dispensando a caixa multiplicadora. 
 
 
Figura 2.5 Componentes de uma Turbina eólica de eixo horizontal 
Fonte: http://www.howstuffworks.com.br 
 
Como o nome indica, o eixo da TEEH é montado horizontalmente, paralelo ao solo e, 
para funcionar continuamente, este tipo de turbina precisa se alinhar constantemente com o vento, 
21 
 
 
usando um mecanismo de ajuste. O sistema de ajuste padrão consiste de motores elétricos e 
caixas de engrenagens que movem todo o rotor para a esquerda ou direita em pequenos 
incrementos. O controlador eletrônico da turbina lê a posição da turbina (mecânico ou eletrônico) 
e ajusta a posição do rotor para capturar o máximo de energia eólica disponível. As TEEHs usam 
uma torre para elevar os componentes da turbina a uma altura ideal para a velocidade do vento (e 
para que as pás possam ficar longe do solo) e ocupam muito pouco espaço no solo, já que todos 
os componentes podem estar a até 80 metros de altura. 
Os principais componentes de uma TEEH e suas funções são: 
 Pás do rotor: capturam a energia do vento e a convertem em energia rotacional no eixo; 
 Eixo: transfere a energia rotacional para o gerador; 
 Nacele: é a carcaça, similar às de turbinas de avião, que abriga a caixa de engrenagens, o 
gerador, a unidade de controle eletrônico, o controlador e os freios: 
 Caixa de engrenagens: aumenta a velocidade do eixo entre o cubo do rotor e o gerador; 
 Gerador: usa a energia rotacional do eixo para gerar eletricidade usando 
eletromagnetismo; 
 Unidade de controle eletrônico (não mostrada): monitora o sistema, desliga a turbina em 
caso de mau funcionamento e controla o mecanismo de ajuste para alinhamento da turbina 
com o vento; 
 Controlador (não mostrado): move o rotor para alinhá-lo com a direção do vento; 
 Freios: detêm a rotação do eixo em caso de sobrecarga de energia ou falha no sistema. 
 Torre: sustenta o rotor e a nacele, além de erguer todo o conjunto a uma altura onde as pás 
possam girar com segurança e distantes do solo; 
 Equipamentos elétricos: transmitem a eletricidade do gerador através da torre e controlam 
os diversos elementos de segurança da turbina. 
 
 
 
 
 
 
22 
 
 
2.3. DIMENSIONAMENTO DE UMA TURBINA 
 
2.3.1. Dimensionamento preliminar 
 
Podemos calcular a potência teórica gerada por uma turbina eólica com o objetivo de 
analisar a viabilidade da instalação da mesma, dadas as informações sobre as condições dos 
ventos. Esta análise é apenas teórica, já que não considera perdas durante o processo. 
Potência é igual ao trabalho (Energia) dividido pelo tempo: 
 (2.1) 
O trabalho realizado pelo ar, neste caso, é igual a sua energia cinética, logo: 
 (2.2) 
Substituído na equação (x), então: 
 (2.3) 
Analisando a relação de massa da massa do ar com a variação do tempo: 
 (2.4) 
Por fim obtemos a equação da potência teórica de uma turbina: 
 (2.5) 
Onde W é o trabalho, Δt é a variação do tempo, Ec é a energia cinética, P é potência, ṁ é 
a vazão em massa, Q é a vazão em volume, ρ é a densidade do ar, V é a velocidade do ar e A é a 
área varrida pelas hélices do rotor. Recomenda-se utilizar um fator de multiplicação de 0.5 
(η=50%) para o valor da potência, que é o rendimento considerado satisfatório para uma turbina 
eólica normal. 
Com base na equação (2.5) podemos determinar se as dimensões selecionadas são as mais 
recomendadas e o quando a variação da velocidade do ar influencia no cálculo da potência. Por 
exemplo, se um ar aumenta sua velocidade de 10 km/h para 11 km/h (aumento de 10% ) a 
23 
 
 
potência se eleva em 33%. Outro exemplo é sobre a área varrida pelo rotor. Com um diâmetro de 
pás de 3 m e uma velocidade do ar de 32 km/h, obtemos uma potência de 3050 W. Se o diâmetro 
da hélice aumenta para 6 m sem alteração na velocidade do ar, a potência aumenta para 12200 W. 
 
2.3.2. Dimensionamento real 
 
A análise de uma turbina eólica pode se feita com base em uma hélice operando 
reversamente. Então, aplica-se o modelo idealizado de Rankine8 ao escoamento unidimensional 
através da turbina. 
 
Figura 2.5 Volume de controle para uma turbina eólica de horizontal 
Fonte: FOX, 2006 
Na figura 2.5, que representa o volume de controle aplicado a uma turbina eólica de eixo 
horizontal, observam-se três velocidades: a velocidade do vento afastado da turbina, denotada por 
V, a velocidade da corrente de ar no disco da turbina, V(1-a), e a velocidade do vento após passar 
pela turbina, V(1-2a). O fator a presente nas duas últimas velocidades representa a desaceleração 
do ar através da turbina eólica e é chamado de fator de interferência, adimensional, que varia de 0 
a 0,5. Dessa forma, uma corrente de ar chega às pás da turbina com determinada velocidade e é 
desacelerada, movendo-se a jusante com velocidade menor. 
Segundo Fox (2006, p.564) “A aplicação direta da equação da quantidade de movimento 
linear a um VC prevê o empuxo axial numa turbina de raio R como sendo: 
 
 FT=2πR2ρV2a(1-a) (2.6) 
 
 
8 William John Macquorn Rankine, engenheiro e físico escocês. 
24 
 
 
Onde R é o raio da pá da turbina, em m, ρ a massa específica do ar passando através da 
turbina, em kg/m3, V a velocidade da corrente de ar a montante da turbina, em m/s, e a o fator de 
interferência, adimensional. 
Sendo a potência o produto de uma força por uma velocidade, tem-se, para a turbina 
eólica, o produto da força de empuxo axial (fórmula 1) pela velocidade da corrente de ar no disco 
da turbina, V(1-a), donde resulta: 
 
 Pot=2πR2ρV3a(1-a)2 (2.7) 
 
Onde Pot é a potência retirada da corrente de vento, em W. Segundo Fox (2006) o 
coeficiente de potência ou a eficiência é dada por: 
 
 η=4a(1-a)2 (2.8) 
 
Dessa forma, a eficiência teórica máxima ocorre quando a é igual a 1/3 sendo, para esta 
situação, η=0,593. Essa eficiência é baixa quando comparada a de turbinas hidráulicas. Isso 
porque, caso o rotor extraísse toda a energia do vento, a velocidade do mesmo após atingir as pás 
passaria a ser zero. “A Enercon9, da Alemanha, projetou uma pá de rotor para turbina eólica que 
atingiu uma eficiência de 56%, aproximando-se do limite teórico de Betz, de 59,3%.” 
(HINRICHS, 2010, p.463) 
Deve-se ressaltar que a eficiência de 59,3% é um limite teórico. Isso porque, o modelo de 
Rankine, inclui certas hipóteses que limitam seu uso: admite-se que a turbina afeta apenas o ar 
contido no volume de controle da figura 2.5, gradientes radiais de pressão são desprezados bem 
como a energia cinética de redemoinho atrás da turbina. 
 
 
 
 
 
 
9 Enercon GmbH. Maior empresa alemã de fabricação de turbinas eólicas. 
25 
 
 
2.4. ANÁLISE CRÍTICA DA UTILIZAÇÃO DE TURBINAS EÓLICAS 
 
Quando se deseja utilizar turbinas eólicas, devemser analisados diversos fatores que 
influenciam diretamente na viabilidade do uso, principalmente quando se trata de um número 
grande de turbinas a serem instaladas em um mesmo local. 
O local escolhido para a instalação das turbinas deve ser cuidadosamente vistoriado a fim 
de avaliar a disponibilidade e a freqüência dos recursos eólicos. Essa vistoria normalmente é feita 
através de coleta de dados meteorológicos e medições que podem durar vários meses. 
Existe a necessidade de uma avaliação ambiental, verificando as condições do solo e 
analisando se o local não faz parte da rota de aves migratórias e até mesmo se não é reduto de 
animais ou aves em extinção. 
Após o detalhamento preliminar do parque eólico, quando é definida a quantidade de 
material para a construção, podem ser calculados os custos da instalação das turbinas e também 
os custos de transporte, que podem tornar-se demasiadamente elevados, dependendo do acesso ao 
local de instalação. A necessidade de contratação de mão e obra terceirizada também deve ser 
incluída nos custos do projeto. 
As vantagens de uma turbina eólica são: 
 É uma fonte de energia segura e renovável; 
 Não polui o ambiente; 
 Suas instalações são móveis, e quando retirada, pode-se refazer toda a área utilizada; 
 Tempo rápido de construção (menos de 6 meses); 
 Recurso autônomo e econômico; 
 Poupança devido à menor aquisição de direitos de emissão de CO2 por cumprir o 
protocolo de Quioto e diretivas comunitárias e menores penalizações por não cumprir; 
 Possível contribuição de cota de geração de energia elétrica para outros setores da 
actividade econômica; 
 É uma das fontes mais baratas de energia podendo competir em termos de rentabilidade 
com as fontes de energia tradicionais. 
 Os parque eólicos são compatíveis com outros usos e utilizações do terreno como a 
agricultura e a criação de gado; 
26 
 
 
 Geração de investimento em zonas desfavorecidas; 
 Benefícios financeiros para os proprietários do local de instalação. 
 
Entre as desvantagens, citamos: 
 
 Impacto visual: sua instalação gera uma grande modificação da paisagem; 
 Influência sobre as aves e insetos do local; principalmente pelo choque delas nas pás; 
 Impacto sonoro: o som do vento bate nas pás produzindo um ruído constante de 
aproximadamente 43 dB(A), devido a isso, as turbinas eólicas devem ser instaladas a uma 
distância mínima de 200m das residências do local. 
 Baixo rendimento de potência quando comparadas, principalmente, às turbinas 
hidráulicas; 
 Em alguns casos, podem causar interferências eletromagnéticas nas ondas de rádio e 
telecomunicação; 
 
 
3. CONSIDERAÇÕES FINAIS 
 
As turbinas eólicas, como parte integrante de um sistema de produção de energia de fonte 
renovável, tendem a tornar-se cada vez mais presentes nas nossas vides. São grandes os estudos 
de matérias primas e tecnologias que possam viabilizar cada vez mais a utilização destes 
equipamentos, seja por redução de custos ou por melhoria no funcionamento e rendimento. 
Estes equipamentos que outrora dependiam de produção manual, de tecidos, metais e 
tinham funcionamento restrito, hoje estão entre os mais visados quando o assunto é inovação 
tecnológica. A indústria de fabricação em série, indústria eletrônica, materiais compósitos, 
aerodinâmica e meteorologia, são os principais responsáveis pela evolução observada na geração 
de energia eólica. Nos apêndices destacamos algumas inovações recentes na área de energia 
eólica. 
27 
 
 
REFERÊNCIAS 
 
FOX, Robert W.; McDONALD, Alan T.; PRITCHARD, Philip J. Mecânica dos Fluidos. 6 ed. 
Rio de Janeiro: LTC, 2006. 
 
HINRICHS, Roger A.; KLEINBACH, Merlin; REIS, Lineu Bélico dos. Energia e meio 
ambiente. Tradução Lineu Bélico dos Reis, Flávio Maron Vichi, Leonardo Freire de Mello. 4 ed. 
São Paulo: Cengage Learning, 2010. 
 
BRAN, Richard; DE SOUZA, Zulci. Máquinas de Fluxo: turbinas, bombas, ventiladores. Rio de 
Janeiro: Ao Livro Técnico, 1969. 
 
GASCH, R; TWELE. J. Wind Power Plants: fundamentals, design, construction and operation. 
Berlin: Solarpraxis, 2002. 
 
BURTON, Tony. Wind energy: handbook. Chichester: John Wiley & Sons, 2006. 
 
JOHNSON, Richard W. The handbook of fluid dynamics. Boca Raton: CRC PRESS, 1998 
 
ANEEL - AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. Atlas de Energia Elétrica do 
Brasil: 3ª. Ed. Brasília: 2008. 
 
PONTES, Beatriz Maria Soares. Atlas das potencialidades brasileiras: Brasil grande e forte. 
São Paulo: Melhoramentos, 1974. 
 
 
SITES 
http://www.eolica.com.br, acessado em 06 de Outubro de 2010 
http://www.aneel.com.br, acessado em 19 de Outubro de 2010 
http://www.howstuffworks.com, acessado em 06 de Outubro de 2010 
http://www.fuhrlaender.de/, acessado em 14 de Outubro de 2010 
28 
 
 
http://www.flodesign.org, acessado em 11 de Outubro de 2010 
http://www.eole.org, acessado em 18 de Outubro de 2010 
http://www.telosnet.com, acessado em 13 de Outubro de 2010; 
http://en.wikipedia.org/wiki/Windmill, acessado em 16 de Outubro de 2010; 
 
SOFTWARES 
MathCad 20000. 
 
ANEXOS 
ANEXO A 
INOVAÇÕES TECNOLÓGICAS E CURIOSIDADES 
 
Fazenda de energia eólica vai armazenar vento em rochas10. 
 
A maioria das fazendas de geração de energia eólica passa por períodos nos quais o vento 
é mais forte do que o necessário, principalmente à noite. Essa energia extra será utilizada para 
alimentar enormes compressores de ar, que enviarão o ar comprimido por meio de um túnel para 
uma camada de arenito localizada a cerca de 1.000 metros de profundidade. 
O arenito é uma rocha extremamente porosa e, a essa profundidade, fica encharcado de 
água. O ar sob pressão ficará armazenado nesses poros, expulsando a água. O arenito fica 
localizado entre camadas de argila, que funcionam como um lacre que não deixa o ar escapar. 
Nos momentos de pico de demanda, quando mais energia é necessária, o ar comprimido nessas 
rochas profundas será então redirecionado para a superfície, sendo utilizado para gerar 
eletricidade. 
A usina não é inteiramente movida pela energia do vento. Ela é na verdade uma usina 
híbrida, que utiliza energia eólica e uma turbina movida a gás natural. O ar-comprimido consegue 
elevar o rendimento da turbina em até 60%. A usina deverá entrar em operação em 2011. 
 
Energia do vento vai evitar emissão de 1,5 bi de toneladas de CO211. 
 
10 Notícia publicada em www.inovacaotecnologica.com.br em 8 de Outubro de 2007. 
29 
 
 
 
Estudo divulgado pelo Conselho Mundial de Energia Eólica estima que a energia gerada a partir 
dos ventos atenderá 12% da demanda elétrica mundial em 2020 e até 22% em 2030. O trabalho, 
em conjunto com o Greenpeace International, prevê que o mundo terá 1.000 GW em operação 
daqui a dez anos, evitando a emissão de 1,5 billhão de toneladas anuais de dióxido de carbono 
(CO2), o principal gás de efeito estufa. 
Além dos benefícios para o meio ambiente, a energia eólica já oferece 600 mil empregos diretos e 
indiretos. Até 2030, a projeção é de que supere 3 milhões de vagas em todo o mundo. 
Este ano, um aerogerador é colocado em operação a cada 30 minutos. Uma em cada três turbinas 
está sendo instalada na China, informou Sven Teske, especialista de energias do Greenpeace 
Internacional. A China é o maior mercado mundial de energia eólica e tem a maior indústria de 
aerogeradores. 
 
Super turbina eólica utiliza levitação magnética para produzir até 1 GW 12 
 
A empresa MagLev apresentou na China aquela que poderá ser a solução tecnológica que 
faltava para a viabilização econômicada energia eólica. Com um design totalmente diferente dos 
tradicionais cataventos, a turbina MagLev utiliza levitação magnética para oferecer um 
desempenho muito superior em relação às turbinas tradicionais. 
As pás verticais da turbina de vento são suspensas no ar acima da base do equipamento. 
Ao invés se sustentarem e de girarem sobre rolamentos, essas pás ficam suspensas, sem contato 
com outras partes mecânicas - e, portanto, podem girar sem atrito, o que aumenta 
exponencialmente seu rendimento. 
A turbina utiliza ímãs permanentes, e não eletroímãs, que poderiam diminuir seu 
rendimento líquido, já que uma parte da energia gerada seria gasta para manter esses eletroímãs 
em funcionamento. 
Segundo a empresa, a turbina MagLev consegue gerar energia a partir de brisas de apenas 
1,5 metros por segundo e consegue suportar até vendavais de até 40 metros por segundo - o 
equivalente a 144 km/h. 
 
11 Notícia publicada em www.correiodoestado.com.br em 18 de Outubro de 2010 
12 Notícia publicada em www.inovacaotecnologica.com.br em 30 de Novembro de 2007 
30 
 
 
Segundo a empresa, a nova turbina gera 20% a mais de energia em relação à turbinas 
convencionais e tem um custo de manutenção 50% menor. Ainda segundo as estimativas do seu 
fabricante, uma super-turbina eólica que utiliza levitação magnética poderá funcionar 
continuamente por... 500 anos.