Prévia do material em texto
A Teoria dos conjuntos é a teoria matemática dedicada ao estudo da associação entre objetos com uma mesma propriedade, elaborada por volta do ano de 1872. Sua origem pode ser encontrada nos trabalhos do matemático russo Georg Cantor (1845-1918), os quais buscavam a mais primitiva e sintética definição de conjunto. Tal teoria ficou conhecida também como "teoria ingênua" ou "teoria intuitiva" por causa da descoberta de várias antinomias (ou paradoxos) associados à ideia central da própria teoria. Tais antinomias levaram a uma axiomatização das teorias matemáticas futuras, influenciando de modo indelével as ciências da matemática e da lógica. Mais tarde, a teoria original receberia complementos e aperfeiçoamentos no início do século XX por outros matemáticos. O conhecimento prévio de tal teoria serve como base para o desenvolvimento de outros temas na matemática, como relações, funções, análise combinatória, probabilidade, etc. Como definição intuitiva de conjuntos, dadas por Cantor, surgiam em sua teoria exemplos como: um conjunto unitário possui um único elemento dois conjuntos são iguais se possuem exatamente os mesmos elementos conjunto vazio é o conjunto que não possui nenhum elemento Os conjuntos podem ser finitos ou infinitos. Um conjunto finito pode ser definido reunindo todos os seus elementos separados por vírgulas. Já um conjunto infinito pode ser definido por uma propriedade que deve ser satisfeita por todos os seus membros. A ideia de conjunto era um conceito primitivo e auto explicativo de acordo com a teoria; não necessitaria de definição. Esta forma de representar um conjunto, pela enumeração de seus elementos é denominada "forma de listagem". Poderia-se representar o mesmo conjunto por uma determinada propriedade de seus elementos, sendo x, por exemplo, um número qualquer do conjunto Z representado abaixo: Z = {1,3,5,7,9,11, ... } teríamos, concluindo: Z = { x | x é ímpar e positivo } = { 1,3,5, ... }. Merece destaque outras relações básicas, que independem de um cálculo matemático mais complexo, utilizando-se lógica básica e pura. São exemplos desta afirmação as relações a seguir: 1 - Pertinência, que estabelece se um elemento pertence ou não pertence a um conjunto pré-estabelecido: - dado um número x, caso ele pertença ao conjunto, escrevemos x ∈ A, ou "x" pertence ao conjunto A - caso "x" não pertença ao conjunto, registra-se x ∉ A - um conjunto sem elementos é um conjunto vazio, representado pela letra grega φ (phi) 2 - Subconjunto: Caso todo o elemento do conjunto A pertença também ao conjunto B, sem que todos os elementos deste segundo grupo pertençam todos a B, diremos que "A é subconjunto de B": A ⊂ B 3 - Conjuntos numéricos fundamentais: Trata-se de qualquer conjunto cujos elementos são números, entre eles, o conjunto de números naturais N = {0,1,2,3,4,5,6...}; o conjunto de números inteiros Z = {..., -4,-3,-2,-1,0,1,2,3,... } (sendo que N ⊂ Z); conjunto de números racionais Q = { 2/3, -3/7, 0,001, 0,75, 3, etc.) (sendo que N ⊂ Z ⊂ Q); conjunto de números irracionais, etc. 4 - União Ocorre união quando o conjunto união contempla todos os elementos de dado conjunto A ou de dado conjunto B. Exemplo: {0,1,3} ∪ { 3,4,5 } = { 0,1,3,4,5} Assim, através de suas numerosas combinações, que fornecem poderosa ferramenta para a construção da matemática de base axiomática, apesar de seu conteúdo predominantemente dedutivo, logo surgiu o "Paradoxo de Russel", que é a contradição mais famosa da teoria dos conjuntos. Conjunto é uma reunião de elementos, podemos dizer que essa definição é bem primitiva, mas a partir dessa ideia podemos relacionar outras situações. O conjunto universo e o conjunto vazio são tipos especiais de conjuntos. Vazio: não possui elementos e pode ser representado por { } ou Ø. Universo: possui todos os elementos de acordo com o que estamos trabalhando, pode ser representado pela letra maiúscula U. Representando conjuntos A representação de um conjunto depende de determinadas condições: Exemplo 1 Condição: O conjunto dos números pares maiores que zero e menores que quinze. Representação através de seus elementos. A = {2, 4, 6, 8, 10, 12, 14} Representação pela propriedade de seus elementos. A = {x / x é par e 0 < x < 15}, o símbolo da barra (/) significa “tal que”. x tal que x é par e x maior que zero e x menor que 15. Exemplo 2 Condição: O conjunto dos números Naturais ímpares menores que vinte. Elementos A = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19} Propriedade dos elementos A = {x Є N / x é impar e x < 20} x pertence aos naturais tal que x é impar menor que 20. Outra forma de representação de conjuntos de elementos é a utilização de diagramas. Observe os conjuntos A e B. A = {x / 2 < x ≤ 12} e B = {x / 4 < x < 8} União do conjunto A com o conjunto B. (A U B) Os conjuntos servem para representar qualquer situação envolvendo ou não elementos. Na Matemática, uma importante aplicação dos conjuntos é na representação de conjuntos numéricos. Conjunto dos números Naturais Conjunto dos números Inteiros Conjunto dos números Racionais Conjunto dos números Irracionais Conjunto dos números Reais Conjunto dos números Complexos Conjunto dos números Algébricos Conjunto dos números Transcendentais Conjunto dos números Imaginários Os estudos básicos sobre conjuntos deram origem aos estudos relacionados às Teorias dos Conjuntos, que faz uma análise sobre as suas propriedades. Esses estudos se originaram nos trabalhos do matemático russo Georg Cantor. Na teoria dos conjuntos, os elementos podem ser: pessoas, números, outros conjuntos, dados estatísticos e etc. Quando falamos de operação lembramos logo de adição, subtração, divisão, multiplicação entre números. É possível também operar conjuntos. Essas operações recebem nomes diferentes, como: União de conjuntos, Intersecção de conjuntos, Diferença de conjunto, Conjunto complementar. Todas essas operações são representadas por símbolos diferentes. Veja a representação de cada uma delas: ► União de conjuntos Dados dois conjuntos A = {1, 2, 3, 4, 5} e B = {6, 7}, a união deles seria pegar todos os elementos de A e de B e unir em apenas um conjunto (sem repetir os elementos comuns). O conjunto que irá representar essa união ficará assim: {1, 2, 3, 4, 5, 6, 7}. A representação da união de conjuntos é feita pelo símbolo U. Então, A U B = {1, 2, 3, 4, 5, 6, 7}. ►Intersecção de conjuntos Quando queremos a intersecção de dois conjuntos é o mesmo que dizer que queremos os elementos que eles têm em comum. Dados dois conjuntos A = {1, 2, 3, 4, 5, 6} e B = {5, 6, 7}, a intersecção é representada pelo símbolo ∩, então A ∩ B = {5, 6}, pois 5 e 6 são os elementos que pertencem aos dois conjuntos. Se dois conjuntos não têm nenhum elemento comum, a intersecção deles será um conjunto vazio. Dentro da intersecção de conjuntos há algumas propriedades: 1) A intersecção de um conjunto por ele mesmo é o próprio conjunto: A ∩ A = A 2) A propriedade comutatividade na intersecção de dois conjuntos é: A ∩ B = B ∩ A. 3) A propriedade associativa na intersecção de conjuntos é: A ∩ (B ∩ C) = (A ∩ B) ∩ C ► Diferença entre conjunto Dados o conjunto A = {0, 1, 2, 3, 4, 5} e o conjunto B = {5, 6, 7}, a diferença desses conjuntos é representada por outro conjunto, chamado de conjunto diferença. Então os elementos de A – B serão os elementos do conjunto A menos os elementos que pertencerem ao conjunto B. Portanto A – B = {0, 1, 2, 3, 4}. ►Conjunto complementar Conjunto complementar está relacionado com a diferença de conjunto. Achamos um conjunto complementar quando, por exemplo, dado um conjunto A e B e o conjunto B e A, então B é complementar em relação a A. A = {2, 3, 5, 6, 8} B = {6,8} B A, então o conjunto complementar será CAB = A – B = {2, 3, 5}. Os conjuntos são representados por letras maiúsculas e os elementos representados entre chaves por letras minúsculas. Exemplos: – O conjunto das letras do nosso alfabeto; L={a, b, c, d,…, z}. – O conjunto dos dias da semana; S= {segunda, terça,… domingo} – A representação de conjuntos pode ser feita de três maneiras: 1 – Por extensão: Quando o número de elementos são finitos pequeno suficiente para representá-los explicitamente. Exemplos: – Conjunto dos meses do ano; A = {Janeiro, Fevereiro, Março, Abril,…, Novembro, Dezembro} – Conjunto das vogais; V = {a, e, i, o, u} – Conjunto dos números pares positivos; P = {2, 4, 6, 8, 10, 12,…} 2 – Por compreensão: Um conjunto é representado por compreensão quando: é enunciada uma propriedade característica dos seus elementos. Isto é, uma propriedade que os seus e só os seus elementos possuam. Exemplos: B = {meses do ano} D = {os meus CDs de música} P = {p ∊ N: p = 2q para algum q ∊ N} Q= {x ∊ N: x é primo} R = {x: x é um número natural par e positivo} S = {x ∊ Z: 2≤x<5} 3 – Por Diagrama Consiste em representar os elementos de um conjunto internamente a um retângulo (geralmente) e os elementos dos subconjuntos, limitados por uma linha fechada e não entrelaçada. Exemplo: A é o conjunto das vogais do nosso alfabeto Conjunto unitário É o conjunto que possui um único elemento. Exemplo: A= { fevereiro}, B = { número primo que é par}. Conjunto vazio É o conjunto que não possui elementos. É representado por: { } ou Ø. Exemplo: Assim teríamos: A= { } ou A = Ø Relação de pertinência Quando um elemento está em um conjunto, dizemos que ele pertence a esse conjunto. Exemplos: F = {0, 2, 4, 6, 8,…} 2 ∈ F → lê-se: 2 pertence a F. 3 ∉ F→ lê-se: 3 não pertence a F. Relação de Inclusão Usamos os símbolos de inclusão de conjunto na relação entre dois conjuntos. ⊂ → está contido ⊄ → não está contido ⊃ → contém ⊅ → não contém ⊆ → está contido ou é subconjunto ou é uma parte A ⊆ B ⇔ ∀x(x ∈ A → x ∈ B) Exemplos: 1) Dados os conjuntos abaixo, E = {-2, -1, 0}, F = {0, 2, 4, 6, 8, …} e G = {0, 1, 2, 3, 4, 5, 6, 7, …}. Podemos afirmar que F ⊂ G, G ⊃ F, E ⊅ F, F ⊄ E 2) A ⊂ B ou B ⊃ A Subconjuntos Se cada elemento de um conjunto A pertence a um outro conjunto B, dizemos que A é subconjunto de B. Assim: A ⊂ B, que se lê: A está contido em B. Simbolicamente escrevemos: A ⊂ B ⇔ (∀x) (x ∈ A ⇒ x ∈ B) O conjunto A = {2, 3, 4, 5} é um subconjunto de B = {1, 2, 3, 4, 5, 6} , pois cada um dos elementos de A se acha em B (note que a recíproca não é verdadeira). Quando dois conjuntos C e D têm todos os elementos em comum (C = D), implica em: C ⊂ D e D ⊂ C. Por exemplo o conjunto C ={3, 6, 9} está contido em D = {9, 3, 6} e vice-versa. Caso exista pelo menos um elemento de A que não pertença a B, dizemos que A não está contido em B, ou que A não é subconjunto de B. Simbolicamente escrevemos: ∃x / (x ∈ A e x ∉ B) ⇒ A ⊄ B Conjunto das Partes Em geral, para qualquer conjunto A, pode-se construir um novo conjunto, cujos elementos sejam todos os subconjuntos possíveis de A. A esse novo conjunto chamamos de: Conjunto das partes de A, que é representado por P (A). P(A) = {x/x ⊂ A} Exemplo: Sendo o conjunto A={2, 3, 5}, podemos escrever seus subconjuntos como segue: Com zero elemento – { } Com um elemento – {2}, {3}, {5} Com dois elementos – {2,3}, {2, 5}, {3, 5} Com três elementos – {2,3, 5} Assim, temos:P(A) = { { }, {2}, {3}, {5}, {2,3}, {2, 5}, {3, 5}, {2,3, 5} } Pode-se demonstrar que, se n(P(A)) = k então, o número de elementos que formam o conjunto das partes de A, é dado por (P(A))=2k. Operações com conjuntos 1 – União A união entre dois conjuntos A e B consiste num outro conjunto C de todos os elementos que pertencem a A ou a B ou a ambos. Simbolicamente, temos: C = A ∪ B, lê-se: C é igual a A união B. De uma maneira mais concisa a definição dada acima pode ser escrita simbolicamente por: A ∪ B = {x/x ∈ A ou x ∈ B} Exemplo: Fazendo a união dos conjuntos A = {2, 4, 7} e, B = {1, 3, 4}, temos: A ∪ B = {1, 2, 3, 4, 7} Também podemos representar a união usando diagramas: 2 – Intersecção Chamamos de intersecção de um conjunto A com outro conjunto B, ao conjunto constituído pelos elementos x que pertencem tanto a A como a B, simultaneamente. A esse conjunto indicamos: A ∩ B, lê-se: “A intersecção B“, ou por simplicidade “A inter B“. Esquematicamente temos: A ∩ B = {x/x ∈ A e x ∈ B} Exemplo: Sejam L = {c, a, r, l, o, s} e V = {a, e, i, o, u}, temos: L ∩ V = {a, o} . Em diagramas: 3 – Diferença Denominamos diferença A – B (lê-se: A menos B), o conjunto formado pelos elementos pertencentes a A e não a B, seja: Sejam L = {c, a, r, l, o, s} e V = {a, e, i, o, u}, temos:, temos que a diferença L – V = {c, r, l, s} . Em diagramas: A – B = {x/x ∈ A e x ∉ B} 4 – Número de elementos da união de dois conjuntos Consideremos dois conjuntos A e B, iremos determinar os elementos de A por n(A), os elementos de B por n(B), a união de A com B por n(A U B) e a intersecção de A com B por n(A ∩ B). A relação utilizando o diagrama: n(A U B) = n(A) + n(B) – n(A ∩B) 5- Número de elementos da união de três conjuntos Considerando os conjuntos A, B e C teremos a seguinte relação na determinação do número de elementos: n(A U B U C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(A ∩ C) – n(B ∩ C) + n(A U B U C) Quando falamos de operação lembramos logo de adição, subtração, divisão, multiplicação entre números. É possível também operar conjuntos. Essas operações recebem nomes diferentes, como: União de conjuntos, Intersecção de conjuntos, Diferença de conjunto, Conjunto complementar. Todas essas operações são representadas por símbolos diferentes. Veja a representação de cada uma delas: ► União de conjuntos Dados dois conjuntos A = {1, 2, 3, 4, 5} e B = {6, 7}, a união deles seria pegar todos os elementos de A e de B e unir em apenas um conjunto (sem repetir os elementos comuns). O conjunto que irá representar essa união ficará assim: {1, 2, 3, 4, 5, 6, 7}. A representação da união de conjuntos é feita pelo símbolo U. Então, A U B = {1, 2, 3, 4, 5, 6, 7}. ►Intersecção de conjuntos Quando queremos a intersecção de dois conjuntos é o mesmo que dizer que queremos os elementos que eles têm em comum. Dados dois conjuntos A = {1, 2, 3, 4, 5, 6} e B = {5, 6, 7}, a intersecção é representada pelo símbolo ∩, então A ∩ B = {5, 6}, pois 5 e 6 são os elementos que pertencem aos dois conjuntos. Se dois conjuntos não têm nenhum elemento comum, a intersecção deles será um conjunto vazio. Dentro da intersecção de conjuntos há algumas propriedades: 1) A intersecção de um conjunto por ele mesmo é o próprio conjunto: A ∩ A = A 2) A propriedade comutatividade na intersecção de dois conjuntos é: A ∩ B = B ∩ A. 3) A propriedade associativa na intersecção de conjuntos é: A ∩ (B ∩ C) = (A ∩ B) ∩ C ► Diferença entre conjunto Dados o conjunto A = {0, 1, 2, 3, 4, 5} e o conjunto B = {5, 6, 7}, a diferença desses conjuntos é representada por outro conjunto, chamado de conjunto diferença. Então os elementos de A – B serão os elementos do conjunto A menos os elementos que pertencerem ao conjunto B. Portanto A – B = {0, 1, 2, 3, 4}. ►Conjunto complementar Conjunto complementar está relacionado com a diferença de conjunto. Achamos um conjunto complementar quando, por exemplo, dado um conjunto A e B e o conjunto B e A, então B é complementar em relação a A. A = {2, 3, 5, 6, 8} B = {6,8} B A, então o conjunto complementar será CAB = A – B = {2, 3, 5}. O estudo sobre a teoria dos conjuntos é atribuído ao russo George Ferdinand Ludwig Philipp Cantor (1845 – 1918). Filósofo, Físico e Matemático, Cantor se interessou pelo infinito, assunto que era muito discutido na época. Através de estudos mais aprofundados envolvendo os conjuntos numéricos, verificou que o conjunto dos números reais possuía mais elementos que o dos números racionais. Assim, ele estabeleceu uma hierarquia entre os conjuntos numéricos infinitos, estabelecendo um novo ramo de estudos na Matemática, denominado teoria dos conjuntos. Essenovo ramo de estudos provocou uma reação contrária por parte de algumas pessoas ligadas à Matemática. Foi chamado por alguns de “charlatão da ciência”, mas foi apoiado por outros, que defendiam suas ideias. Cantor imaginou pontos espalhados em uma reta, dessa forma, se distribuíssemos os números naturais (positivos) e os números inteiros (positivos e negativos) entre eles, encontraríamos os números racionais (fracionários) e os irracionais. A união de todos esses números forma o conjunto dos números reais. A ideia do infinito parte do estudo dos números dentro do seu próprio conjunto. O conjunto dos números Naturais é formado pelos algarismos, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ... , a sequência é considerada infinita, pois nunca atingirá o último número no infinito. Dessa forma, Cantor avaliou que cada número é apenas um passo para o processo de infinito. Os números racionais podem ser analisados da seguinte maneira, a fração 1/3 possui como representação decimal o número 0,33333333... , considerando que esse número é uma dízima periódica infinita, e que após um infinito número de passos chega ao seu limite, os racionais podem ser vistos como um limite do processo infinito. Os irracionais são aqueles números que não possuem representação fracionária, por exemplo, o número √2 é considerado uma dízima não periódica infinita e cada número representativo da raiz do número 2 é um passo do processo de infinito. O resultado da √2 possui infinitas formas de representação, observe: 1,4... 1,41... 1,414... 1,4142... 1,414214... 1,4142136... 1,41421356... 1,414213562... 1,4142135624... 1,41421356237... 1,414213562373... 1,4142135623731... A maneira de abordar o infinito através da teoria dos conjuntos estabelecida por Cantor resolveu antigos problemas da Matemática, como o infinitésimo, sucessões que possuem como limite o zero (ao invés do infinito), pois a sucessão decresce por quantidades cada vez menores, em vez de crescer. Nos dois casos, no entanto, as sequências convergem dentro de limites. Entendemos por conjunto o agrupamento de elementos que possuem características semelhantes, coleção de objetos. O conjunto pode ser considerado especial no caso de termos um conjunto vazio (não possui elementos) ou conjunto universo (possui todos os elementos do estudo em questão). A Teoria dos Conjuntos foi criada e desenvolvida pelo Matemático russo George Cantor (1845-1918), trata-se do estudo das propriedades dos conjuntos, relações entre conjuntos e relações entre os elementos e o próprio conjunto. Ao trabalharmos com conjuntos usamos símbolos matemáticos capazes de demonstrar determinadas situações entre conjuntos e elementos. Se temos um elemento p pertencente ao conjunto P podemos dizer que p pertence a P, ou p Є P. Caso o elemento não pertença ao conjunto, podemos utilizar a seguinte notação: (p não pertence a P). Um conjunto pode possuir subconjuntos, se todos os elementos do conjunto A pertencem ao conjunto B podemos dizer que A é subconjunto de B. Qualquer conjunto possui como subconjunto um conjunto vazio representado por { } ou Ø. A união de dois ou mais conjuntos constitui um novo conjunto com todos os elementos dos outros dois. A intersecção entre dois ou mais conjuntos constitui um conjunto que contém simultaneamente os elementos de dois ou mais conjuntos. A diferença entre dois conjuntos A e B tem como resultado um conjunto com os elementos de A que não pertencem a B. Dados dois conjuntos A e B, a relação existente entre os elementos do conjunto A com os elementos do conjunto B receberá o nome de função. Notação f: A→B. Observe: Note que para cada elemento do conjunto A existe um elemento no conjunto B, essa relação pode ser definida pela seguinte lei de formação f(x) = x2. A B x f(x) = x2 1 f(1) = 12 = 1 2 f(2) = 22 = 4 3 f(3) = 32 = 9 4 f(4) = 42 = 16 A noção de conjunto numérico é bastante simples e fundamental na Matemática. A partir dos conceitos sobre conjuntos podemos expressar todos os conceitos matemáticos. Um conjunto nada mais é do que uma coleção qualquer de objetos. Por exemplo: conjunto das estações do ano: E = {Primavera, Verão, Outono, Inverno} conjunto dos números primos: B = {2, 3, 5, 7, 11, 13, ...} Cada item dentro de um conjunto é um elemento desse conjunto. A ideia dos conjuntos numéricos segue uma ordem de acordo com a história da Matemática. Ou seja, à medida que a matemática avançou, foi necessário a criação de novos conceitos e, com isso, foram surgindo vários conjuntos de números. Conjunto dos números naturais (N) N={0,1,2,3,4,5,6,...} O número zero é o primeiro elemento desse conjunto. O sucessor de cada número nesse conjunto é igual à soma dele mesmo com uma unidade, ou seja, o sucessor de 3 será 4 pois 3 + 1 = 4. Para representar o conjunto dos números naturais não-nulos (ou seja, diferentes de zero), deve-se colocar um * ao lado do símbolo: N∗={1,2,3,4,5,6,...} Conjunto dos números inteiros (Z) Em determinada época da história, se fez necessário a criação de números que representassem “perdas”, ou “dívidas”. Surgiram, assim, os números negativos. Esses números negativos, junto com os números naturais, formam o conjunto dos números inteiros: Z={...,−3,−2,−1,0,1,2,3,...} Nesse conjunto, para cada número há o seu oposto, ou seu simétrico, por exemplo, 3 e -3 são opostos ou simétricos. Veja que todo número natural é inteiro, mas nem todo número inteiro é natural. Dizemos que o conjunto dos números naturais está contido no conjunto dos números inteiros. Conjunto dos números racionais (Q) Com a necessidade de descrever partes de algo inteiro, surgiram as frações. Quando adicionamos as frações aos números inteiros, obtemos os números racionais. São exemplos números racionais: Q={−1,−25,43,5,...} Formalmente, um número racional é todo aquele que pode ser escrito na forma de uma fração. Assim, Q={x/x=ab,a∈Z,b∈Z,b≠0} Observe que todo número inteiro é racional, mas nem todo número racional é inteiro. Por exemplo, -1 é inteiro e é racional, mas 43 é racional e não é inteiro. Assim, o conjunto dos números inteiros está contido no conjunto dos números racionais: Conjunto dos números irracionais (IR) O conjunto dos números irracionais é composto por todos os números que não são possíveis de se descrever como uma fração. É o caso das raízes não exatas, como 2–√, 3–√, 5–√, e do número π, do logaritmo neperiano, o número de ouro ϕ (fi), por exemplo. Este conjunto não está contido em nenhum dos outros três, ou seja, nenhum número irracional é racional, inteiro ou natural e nenhum número natural, inteiro ou racional é irracional. Conjunto dos números reais (R) Da reunião do conjunto dos números racionais com os números irracionais obtemos o conjunto dos números reais. Podemos dizer que o conjunto dos números reais é formado por todos os números que podem ser localizados em uma reta numérica. Assim, todo número que é irracional é real, assim como os naturais, inteiros e racionais. Existem ainda conjuntos maiores, que englobam todos vistos até aqui. Um exemplo é o conjunto dos números complexos. São números que possuem uma parte real e uma arte imaginária, chamada de “i”. São números da forma a+bi, onde a é a parte real e b é a parte imaginária. Conjuntos Numéricos Os conjuntos numéricos reúnem diversos conjuntos cujos elementos são números. Eles são formados pelos números naturais, inteiros, racionais, irracionais e reais. Confira abaixo as características de cada um deles tais como conceito, símbolo e subconjuntos. Conjunto dos Números Naturais (N) Os números naturais são representados por N. Eles reúnem os números inteiros (incluindo o zero) e são infinitos. Subconjuntos dos Números Naturais N* = {1, 2, 3, 4, 5..., n, ...} ou N* = N – {0}: conjuntos dos números naturais não-nulos, ou seja, sem o zero. Np = {0, 2, 4, 6, 8..., 2n, ...}, em que n ∈ N: conjunto dos números naturais pares. Ni = {1, 3, 5, 7, 9..., 2n+1,...}, em que n ∈ N: conjunto dos números naturais ímpares. P = {2, 3, 5, 7, 11, 13, ...}: conjunto dos números naturais primos. Conjunto dos Números Inteiros (Z) Os números inteiros são representados por Z. Reúnem todos os elementos dos números naturais (N) e seus opostos. Assim, conclui-se que N é um subconjunto de Z (N ⊂ Z): Subconjuntos dos Números Inteiros Z* = {..., –4, –3, –2, –1, 1, 2, 3, 4, ...} ou Z* = Z – {0}: conjuntos dos números naturais não-nulos, ou seja, sem o zero. Z+ = {0, 1, 2, 3, 4, 5, ...}: conjunto dos números inteiros e não-negativos. Note que Z+ = N. Z*+ = {1, 2, 3, 4, 5, ...}: conjunto dos números inteiros positivos e sem o zero. Z – = {..., –5, –4, –3, –2, –1, 0}: conjunto dos números inteiros não-positivos. Z*– = {..., –5, –4, –3, –2, –1}: conjunto dos números inteiros negativos e sem o zero. Conjunto dos Números Racionais (Q) Os números racionais são representados por Q. Reúnem os números fracionários representados pelo conjunto das frações p/q sendo p e q números inteiros e q≠0. Q = {0, ±1, ±1/2, ±1/3, ..., ±2, ±2/3, ±2/5, ..., ±3, ±3/2, ±3/4, ...} Note que todo número inteiro é também número racional. Assim, Z é um subconjunto de Q. Subconjuntos dos Números Racionais Q* = subconjunto dos números racionais não-nulos, formado pelos números racionais sem o zero. Q+ = subconjunto dos números racionais não-negativos, formado pelos números racionais positivos e o zero. Q*+ = subconjunto dos números racionais positivos, formado pelos números racionais positivos, sem o zero. Q– = subconjunto dos números racionais não-positivos, formado pelos números racionais negativos e o zero. Q*– = subconjunto dos números racionais negativos, formado números racionais negativos, sem o zero. Conjunto dos Números Irracionais (I) Os números irracionais são representados por I. Reúnem os números decimais não exatos com uma representação infinita e não periódica, por exemplo: 3,141592 ou 1,203040. Importante ressaltar que as dízimas periódicas são números racionais e não irracionais. Elas são números decimais e que se repetem após a vírgula, por exemplo: 1,3333333. Conjunto dos Números Reais (R) Os números reais são representados por R. Esse conjunto é formado pelos números racionais (R) e irracionais (I). Assim, temos que R = Q ∪ I. Além disso, N, Z, Q e I são subconjuntos de R. Mas, observe que se um número real é racional, ele não pode ser também irracional. Da mesma maneira, se ele é irracional, não é racional. Subconjuntos dos Números Reais R*= {x ∈ R│x ≠ 0}: conjunto dos números reais não-nulos. R+ = {x ∈ R│x ≥ 0}: conjunto dos números reais não-negativos. R*+ = {x ∈ R│x > 0}: conjunto dos números reais positivos. R– = {x ∈ R│x ≤ 0}: conjunto dos números reais não-positivos. R*– = {x ∈ R│x < 0}: conjunto dos números reais negativos. Intervalos Numéricos Há ainda um subconjunto relacionado com os números reais que são chamados de intervalos. Sejam a e b números reais e a < b, temos os seguintes intervalos reais: Intervalo aberto de extremos: ]a,b[ = {x ∈ R│a < x < b} Intervalo fechado de extremos: [a,b] = {x ∈ R│a ≤ x ≤ b} Intervalo aberto à direta (ou fechado à esquerda) de extremos: [a,b[ = {x ∈ R│a ≤ x < b} Intervalo aberto à esquerda (ou fechado à direita) de extremos: ]a,b] = {x ∈ R│a < x ≤ b} Propriedades dos Conjuntos Numéricos Diagrama dos conjuntos numéricos Para facilitar os estudos sobre os conjuntos numéricos, segue abaixo algumas de suas propriedades: O conjunto dos números naturais (N) é um subconjunto dos números inteiros: Z (N ⊂ Z). O conjunto dos números inteiros (Z) é um subconjunto dos números racionais: (Z ⊂ Q). O conjunto dos números racionais (Q) é um subconjunto dos números reais (R). Os conjuntos dos números naturais (N), inteiros (Z), racionais (Q) e irracionais (I) são subconjuntos dos números reais (R). Conjuntos numéricos são coleções de números que possuem características semelhantes. Eles nasceram como resultado das necessidades da humanidade em determinado período histórico. Veja quais são eles! Conjunto dos Números Naturais O conjunto dos Números Naturais foi o primeiro de que se teve notícia. Nasceu da simples necessidade de se fazer contagens, por isso, seus elementos são apenas os números inteiros e positivos. Representado por N, o conjunto dos números naturais possui os seguintes elementos: N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, …} Conjunto dos Números Inteiros O conjunto dos números inteiros é uma ampliação do conjunto dos números naturais. Ele é formado pela união do conjunto dos números naturais com os números negativos e o zero. Em outras palavras, o conjunto dos números inteiros, representado por Z, possui os seguintes elementos: Z = {…, – 4, – 3, – 2, – 1, 0, 1, 2, 3, 4, …} Conjunto dos Números Racionais O conjunto dos números racionais nasceu da necessidade de dividir quantidades. Portanto, esse é o conjunto dos números que podem ser escritos na forma de fração. Representado por Q, o conjunto dos números racionais possui os seguintes elementos: Q = {x ∈ Q: x = a/b, a ∈ Z e b ∈ N} A definição acima é lida da seguinte maneira: x pertence aos racionais, tal que x é igual a a dividido por b, com a pertencente aos inteiros e b pertencente aos naturais. Em outras palavras, se é fração ou um número que pode ser escrito na forma de fração, então é um número racional. Os números que podem ser escritos na forma de fração são: 1 – Todos os números inteiros; 2 – Decimais finitos; 3 – Dízimas periódicas. Os decimais finitos são aqueles que possuem um número finito de casas decimais. Observe: 1,1 2,32 4,45 Dízimas periódicas são decimais infinitos, mas que repetem a sequência final de suas casas decimais. Observe: 2,333333.... 4,45454545.... 6,758975897589.... Conjunto dos Números Irracionais A definição de números irracionais depende da definição de números racionais. Portanto, pertencem ao conjunto dos números irracionais todos os números que não pertencem ao conjunto dos racionais. Dessa forma, ou um número é racional ou ele é irracional. Não existe possibilidade de um número pertencer a esses dois conjuntos simultaneamente. Dessa maneira, o conjunto dos números irracionais é complementar ao conjunto dos números racionais dentro do universo dos números reais. Outra maneira de definir o conjunto dos números irracionais é a seguinte: Os números irracionais são aqueles que não podem ser escritos na forma de fração. São eles: 1 – Decimais infinitos 2 – Raízes não exatas Os decimais infinitos são números que possuem infinitas casas decimais e que não são dizimas periódicas. Por exemplo: 0,12345678910111213... π √2 Conjunto dos Números Reais O conjunto dos números reais é formado por todos os números citados anteriormente. Sua definição é dada pela união entre o conjunto dos números racionais e o conjunto dos números irracionais. Representado por R, esse conjunto pode ser escrito matematicamente da seguinte maneira: R = Q U I = {Q + I} I é o conjunto dos números irracionais. Dessa maneira, todos os números citados anteriormente são também números reais. Conjunto dos Números Complexos O conjunto dos números complexos nasceu da necessidade de se encontrar raízes não reais de equações de grau maior ou igual a 2. Ao tentar resolver a equação x2 + 2x + 10 = 0, por exemplo, por meio da fórmula de Bhaskara, teremos: x2 + 2x + 10 = 0 a = 1, b = 2 e c = 10 ∆ = 22 – 4·1·10 ∆ = 4 – 40 ∆ = – 36 Equações do segundo grau que possuem ∆ < 0 não apresentam raízes reais. Para encontrar suas raízes, o conjunto dos números complexos foi criado, de modo que √– 36 = √36·(– 1) = 6·√– 1 = 6i. Os elementos do conjunto dos números complexos, representado por C, são definidos da seguinte maneira: z é um número complexo se z = a + bi, em que a e b são números reais e i = √– 1. Relação entre conjuntos numéricos Alguns conjuntos numéricos são subconjuntos de outros. Algumas dessas relações foram evidenciadas no decorrer do texto, contudo, todas elas serão expostas a seguir: 1 – O conjuntodos números naturais é subconjunto do conjunto dos números inteiros; 2 – O conjunto dos números inteiros é subconjunto do conjunto dos números racionais; 3 – O conjunto dos números racionais é subconjunto do conjunto dos números reais; 4 – O conjunto dos números irracionais é subconjunto do conjunto dos números reais; 5 – O conjunto dos números irracionais e o conjunto dos números racionais não possuem nenhum elemento em comum; 6 – O conjunto dos números reais é subconjunto do conjunto dos números complexos. Indiretamente, é possível estabelecer outras relações. É possível dizer, por exemplo, que o conjunto dos números naturais é subconjunto do conjunto dos números complexos. Também é possível fazer a leitura contrária das relações citadas anteriormente e das relações indiretas que podem ser construídas. Para tanto, basta dizer, por exemplo, que o conjunto dos números inteiros contém o conjunto dos números naturais. Utilizando simbologia de teoria de conjuntos, essas relações podem ser escritas da seguinte maneira: Um conjunto é uma reunião de elementos que compartilham as mesmas características. Quando esses elementos são números, esse agrupamento passa a ser conhecido como conjunto numérico. Existem infinitos conjuntos numéricos, entretanto, alguns deles são notáveis por causa da frequência com que aparecem nas soluções e nas demonstrações matemáticas e, principalmente, pela história de como os números foram criados. São eles: naturais, inteiros, racionais, irracionais, reais e complexos. A seguir, daremos uma breve explicação a respeito de cada um desses conjuntos, para que seja fácil reconhecer seus elementos. Conjunto dos números naturais O conjunto dos números naturais é formado por todos os números inteiros e positivos. Além deles, o zero também faz parte desse conjunto. Utilizando a representação por chaves, os elementos do conjunto dos números naturais são: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, …} Observe que esse conjunto possui um primeiro elemento, o zero, mas não possui um último elemento. Portanto, esse conjunto é infinito, embora seja limitado inferiormente. Note também que a sequência dos números naturais é usada para contar, pois o sucessor de um número natural sempre é uma unidade maior do que ele. Conjunto dos números inteiros Esse conjunto é formado por todos os números inteiros, sejam eles positivos, negativos ou o número nulo (o zero). Assim, usando a representação por chaves, o conjunto dos números inteiros possui os seguintes elementos: Z = {…, – 3, – 2, – 1, 0, 1, 2, 3, …} Observe que esse conjunto é formado pelo conjunto dos números naturais, pelos inversos aditivos de todos os números naturais e pelo zero. Esse conjunto também é infinito, mas não é limitado. Conjunto dos números racionais Esse conjunto é formado por todos os números que podem ser escritos na forma de fração a/b, em que a e b são números inteiros e b é sempre diferente de zero. Os elementos desse conjunto são: Números inteiros Decimais finitos Dízimas periódicas Números inteiros podem ser compreendidos como a divisão do próprio número inteiro por 1. Quando o resultado da divisão entre dois números inteiros não é um decimal finito, é uma dízima periódica. Conjunto dos números irracionais Esse conjunto é formado por todos os números que não são racionais, ou seja, por todos os números que não podem ser escritos como razão entre dois números inteiros. Os elementos que pertencem a esse conjunto são os decimais infinitos e não periódicos. Alguns deles podem ser representados de outra maneira, como por exemplo π, √2, √3 etc. Conjunto dos números reais Esse conjunto é formado pela união entre os conjuntos dos números irracionais e dos números racionais. Assim, qualquer número racional ou irracional é um elemento do conjunto dos números reais. Entre esse conjunto e a reta existe uma relação biunívoca, ou seja, existe uma “função” que relaciona cada número real a um único ponto de uma reta, e essa “função” é bijetora. Em outras palavras, não existe um ponto da reta que não seja representado por um único número real e não existe número real que não represente um único ponto da reta. Conjunto dos números complexos É o conjunto formado por todos os números z, tais que: z = a + bi Em que a e b são números reais e i = √(– 1). Esse conjunto foi criado para tentar descobrir soluções de equações de grau 2 ou superior que não possuem solução dentro do conjunto dos números reais. Observe que esse conjunto contém o conjunto dos números reais. Se b = 0, teremos z = a. Fazendo isso com todos os “a” possíveis, obteremos todo o conjunto dos números reais. Podemos caracterizar um conjunto como sendo uma reunião de elementos que possuem características semelhantes. Caso esses elementos sejam números, temos então a representação dos conjuntos numéricos. Quando esse conjunto é representado por extenso, escrevemos os números entre chaves { }, se o conjunto for infinito irá possuir incontáveis números. Para representar essa situação devemos utilizar reticências, ou seja, três pontinhos. Existem cinco conjuntos numéricos que são considerados fundamentais, por serem os mais utilizados em problemas e questões relacionados à matemática. Acompanhem a seguir a representação desses conjuntos: Conjunto dos Números Naturais Esse conjunto é representado pela letra maiúscula N, sendo formado por todos os números inteiros positivos incluindo o zero. A seguir acompanhe a notação da representação simbólica e um exemplo numérico. Representação simbólica: N = {x є N/ x > 0} Exemplo: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, …} Caso esse conjunto não possua o elemento zero, será chamado de conjunto dos números naturais não nulos, sendo representado por N*. Veja a sua representação simbólica e um exemplo numérico: Representação simbólica: N* = {x є N/ x ≠ 0} Exemplo: N* = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, …} Conjunto dos Números Inteiros Representamos esse conjunto com a letra maiúscula Z, ele é formado pelos números inteiros negativos, positivos e o zero. Logo a seguir temos um exemplo numérico. Exemplo: Z = {… -4, -3, -2, -1, 0, 1, 2, 3, 4, …} O conjunto dos números Inteiros possui alguns subconjuntos, os quais estão listados a seguir: Inteiros não negativos: Representado por Z+, pertencem a esse subconjunto todos os números inteiros que não são negativos, podemos considera-lo como sendo igual ao conjunto dos números naturais. Exemplo: Z+ ={0, 1, 2, 3, 4, 5, 6, 7, ,8, …} Inteiros não positivos: Esse subconjunto é representado por Z-, sendo composto por números inteiros negativos. Exemplo: Z- ={…, – 4, – 3, – 2, – 1, 0} Inteiros não negativos e não nulos: Representado por Z*+, todos os elementos desse subconjunto são números positivos. À exclusão do número zero é representada pelo asterisco, com isso o zero não faz parte do subconjunto. Exemplo: Z*+= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 …} Inteiros não positivos e não nulos: Esse conjunto é representado pela notação Z*- , sendo formado pelos número inteiros negativos, possuindo a exclusão do zero. Exemplo: Z*–= {… – 5,- 4, – 3, – 2, – 1} Conjunto dos Números Racionais Esse conjunto é representado pela letra maiúscula Q, sendo formado pela reunião dos conjuntos referentes aos números naturais e inteiros, portanto o conjunto N (naturais) e o Z (inteiros) estão inclusos no conjunto Q (racionais). Os termos numéricos que compõem o conjunto dos números racionais são: os números inteiros positivos e negativos, números decimais, números fracionários e dízima periódica. Acompanhe a seguir a representação simbólica desse conjunto e um exemplo numérico. Representação simbólica: Q = {x = , com a є Z e b є z*} Descrição: A representação simbólica indica que todo o número racional é obtido de uma divisão com números inteiros, em que o denominador no caso b deve ser diferente de zero. Exemplo: Q = {… – 2; – 1; 0; + ; + 1; +2, 14; + 4; + 4,555…} Classificando os elementos do conjunto Q: {+ 1, + 4} à Números naturais. {- 2, -1, 0, + 1, + 4}à Números inteiros. {+ } à Fração. {+ 2,14) à Número decimal. {+ 4,555…} à Dízima periódica. O conjunto dos números racionais também possuem subconjuntos, são eles: Racionais não negativos: Representado por Q +, esse conjunto possui o número zero e todos os termos numéricos racionais positivos. Exemplo: Q += { 0, + , + 1, +2, 14, + 4, 3, 4,555…} Racionais não negativos não nulos: Esse conjunto é representado por Q *+. É formado por todos os números racionais positivos, sendo que o zero não pertence ao conjunto. Exemplo: Q *+. = { + , + 1, +2, 14, + 4, 3, 4,555…} Racionais não positivos: Representamos esse conjunto pelo símbolo Q -, pertencem a esse conjunto todos os números racionais negativos e o zero. Exemplo: Q – = {…- 2, – 1, 0} Racionais não positivos não nulo: Para representar esse conjunto utilizamos a notação Z*– . Esse conjunto é composto por todos os números racionais negativos, sendo que o zero não pertence ao conjunto. Exemplo: Q – = {…- 2, – 1} Conjunto dos Números Irracionais Esse conjunto é representado pela letra maiúscula I, é formado pelos números decimais infinitos não periódicos, ou seja, números que possui muitas casas decimais, mas que não tem um período. Entenda período como sendo a repetição de uma mesma sequencia de números infinitamente. Exemplos: O número PI que é igual a 3,14159265…, Raízes não exatas como: = 1,4142135… Conjunto dos Números Reais Representado pela letra maiúscula R, compõem esse conjunto os números: naturais, inteiros, racionais e irracionais. Acompanhe o exemplo numérico a seguir: Exemplo: R = {… – 3,5679…; – 2; – 1; 0; + + 1; +2, 14; + 4; 4,555…; + 5; 6,12398…} Classificando os elementos do conjunto Q: {0, + 1, + 4} à números naturais. {- 2, -1, 0, + 1, + 4, + 5} à Números inteiros. {+ } à fração. {+ 2,14) à número decimal. {+ 4,555…} à dízima periódica. {– 3,5679…; 6,12398…} à números irracionais. O conjunto dos números reais pode ser representado por diagramas, nele fica claro a relação de inclusão em relação aos conjuntos dos números: naturais, inteiros, racionais e irracionais. Acompanhe a seguir a representação do diagrama de inclusão dos números reais. Conjunto dos Números Naturais (N) Um subconjunto importante de Ν é o conjunto Ν*: Ν*={1, 2, 3, 4, 5,…} ► o zero foi excluído do conjunto Ν. Podemos considerar o conjunto dos números naturais ordenados sobre uma reta, como mostra o gráfico abaixo: Conjunto dos números inteiros (Z) O conjunto Ν é subconjunto de Z. Temos também outros subconjuntos de Z: Z* = Z-{0} Z+ = conjunto dos inteiros não negativos = {0,1,2,3,4,5,…} Z_ = conjunto dos inteiros não positivos = {0,-1,-2,-3,-4,-5,…} Observe que Z+ = Ν. Podemos considerar os números inteiros ordenados sobre uma reta, conforme mostra o gráfico abaixo: Conjunto dos números racionais (Q) Os números racionais são todos aqueles que podem ser colocados na forma de fração (com o numerador e denominador Z). Ou seja, o conjunto dos números racionais é a união do conjunto dos números inteiros com as frações positivas e negativas. Então: por exemplo, são números racionais. Exemplos práticos: Assim, podemos escrever: É interessante considerar a representação decimal de um número racional , que se obtém dividindo a por b. Exemplos referentes às decimais exatas ou finitas. Exemplos referentes às decimais periódicas ou infinitas: Toda decimal exata ou periódica pode ser representada na forma de número racional. Conjunto dos números irracionais Os números irracionais são decimais infinitas não periódicas, ou seja, os números que não podem ser escrito na forma de fração (divisão de dois inteiros). Como exemplo de números irracionais, temos a raiz quadrada de 2 e a raiz quadrada de 3: Um número irracional bastante conhecido é o número pi =3,1415926535… Conjunto dos números reais (IR) Dados os conjuntos dos números racionais (Q) e dos irracionais, definimos o conjunto dos números reais como: O diagrama abaixo mostra a relação entre os conjuntos numéricos: Portanto, os números naturais, inteiros, racionais e irracionais são todos números reais. Como subconjuntos importantes de IR temos: IR* = IR-{0} IR+ = conjunto dos números reais não negativo IR_ = conjunto dos números reais não positivos Obs: entre dois números inteiros existem infinitos números reais. Por exemplo: Entre os números 1 e 2 existem infinitos números reais: 1,01 ; 1,001 ; 1,0001 ; 1,1 ; 1,2 ; 1,5 ; 1,99 ; 1,999 ; 1,9999 … Entre os números 5 e 6 existem infinitos números reais: 5,01 ; 5,02 ; 5,05 ; 5,1 ; 5,2 ; 5,5 ; 5,99 ; 5,999 ; 5,9999 … Um número é considerado divisível por outro quando o resto da divisão entre eles é igual a zero. Para que a divisão entre os números resulte em partes inteiramente iguais, necessitamos ter conhecimento sobre algumas regras de divisibilidade. Regras de Divisibilidade Divisibilidade por 1 Todo número é divisível por 1. Divisibilidade por 2 Todo número par é divisível por 2, isto é, todos os números terminados em 0, 2, 4, 6 e 8. 12:2 = 6 18:2 = 9 102:2 = 51 1024:2 = 512 10256:2 = 5128 Divisibilidade por 3 Um número é divisível por 3 quando a soma de seus algarismos constitui um número divisível por 3. Exemplo: 66 : 3 = 22, pois 6 + 6 = 12 60 : 3 = 20, pois 6 + 0 = 6 81 : 3 = 27, pois 8 + 1 = 9 558 : 3 = 186, pois 5 + 5 + 8 = 18 Divisibilidade por 4 Se os dois últimos algarismos de um número forem divisíveis por 4, então o número é divisível por 4. Para ver se os dois últimos algarismos formam um número divisível por 4, basta verificar se o número é par e sua metade continua par. Os números que possuem zero nas suas últimas duas casas também são divisíveis por 4. 288 : 4 = 72, 88 é par e a sua metade será par. 144 : 4 = 36, 44 é par e sua metade será par. 100 : 4 = 25, pois possui na última e penúltima casa o algarismo 0. Divisibilidade por 5 Todo número terminado em 0 ou 5 é divisível por 5. 10:5 = 2 25:5 = 5 75:5 = 15 200:5 = 40 Divisibilidade por 6 Constitui todos os números divisíveis por 2 e 3 no mesmo instante. 42 : 6 = 7, pois 42 : 2 = 21 e 42 : 3 = 14 54 : 6 = 9, pois 54 : 2 = 27 e 54 : 3 = 18 132 : 6 = 22, pois 132 : 2 = 66 e 132 : 3 = 44 570: 6 = 95, pois 570 : 2 = 285 e 570 : 3 = 190 Divisibilidade por 7 Duplicar o algarismo das unidades e subtrair do resto do número. Se o resultado for divisível por 7, o número é divisível por 7. Exemplo: 203 : 7 = 29, pois 2*3 = 6 e 20 – 6 = 14 294 : 7 = 42, pois 2*4 = 8 e 29 – 8 = 21 840 : 7 = 120, pois 2*0 = 0 e 84 – 0 = 84 Divisibilidade por 8 Todo número será divisível por 8 quando terminar em 000, ou os últimos três números forem divisíveis por 8. Exemplo: 1000 : 8 = 125, pois termina em 000 1208 : 8 = 151, pois os três últimos são divisíveis por 8 Divisibilidade por 9 É todo número em que a soma de seus algarismos constitui um número múltiplo de 9. Exemplo: 90 : 9 = 10, pois 9 + 0 = 9 1125 : 9 = 125, pois 1 + 1 + 2 + 5 = 9 4788 : 9 = 532, pois 4 + 7 + 8 + 8 = 27 Divisibilidade por 10 Todo número terminado em 0 será divisível por 10 100:10 = 10 50:10 = 5 10:10 = 1 2000:10 = 200 Divisibilidade por 11 Um número é divisível por 11 nas situações em que a diferença entre o último algarismo e o número formado pelos demais algarismos, de forma sucessiva até que reste um número com 2 algarismos, resultar em um múltiplo de 11. Como regra mais imediata, todas as dezenas duplas (11, 22, 33, 5555, etc.) são múltiplas de 11. 1342 : 11 = 122, pois 134 – 2 = 132 → 13 – 2 = 11 2783 : 11 = 253, pois 278 – 3 = 275 → 27 – 5 = 22 7150: 11 = 650, pois 715 – 0 = 715 → 71 – 5 = 66 Divisibilidade por 12 São os números divisíveis por 3 e 4. 276:12 = 23, pois 276:3 = 92 e 276:4 = 69 672 : 12 = 56, pois 672 : 3 = 224 e 672 : 4 = 168 Dentre as propriedades operatórias existentes na Matemática, podemos ressaltar a divisão, que consiste em representar o número em partes menores e iguais. Para que o processo da divisão ocorranormalmente, sem que o resultado seja um número não inteiro, precisamos estabelecer situações envolvendo algumas regras de divisibilidade. Lembrando que um número é considerado divisível por outro quando o resto da divisão entre eles é igual a zero. Regras de divisibilidade Divisibilidade por 1 Todo número é divisível por 1. Divisibilidade por 2 Todo número par é divisível por 2, para isto basta terminar em 0, 2, 4, 6 ou 8. Exemplo: 24 : 2 = 12 132 : 2 = 66 108 : 2 = 54 1024 : 2 = 512 Divisibilidade por 3 Um número é divisível por 3 quando a soma de seus algarismos constitui um número múltiplo de 3. Exemplo: 33 : 3 = 11, pois 3 + 3 = 6 45 : 3 = 15, pois 4 + 5 = 9 156 : 3 = 52, pois 1 + 5 + 6 = 12 558 : 3 = 186, pois 5 + 5 + 8 = 18 Divisibilidade por 4 Um número é divisível por 4 quando for par e a metade do último algarismo adicionado ao penúltimo for um número par ou terminar com zero nas duas últimas casas. Exemplo: 48 : 4 = 12, pois 8/2 + 4 = 8 288 : 4 = 72, pois 8/2 + 8 = 12 144 : 4 = 36, pois 4/2 + 4 = 6 100 : 4 = 25, pois possui na última e antepenúltima casa o algarismo 0. Divisibilidade por 5 É todo número terminado em 0 ou 5. 25 : 5 = 5 100 : 5 = 20 555 : 5 = 111 75 : 5 = 15 Divisibilidade por 6 São todos os números divisíveis por 2 e 3 no mesmo instante. 24 : 6 = 4, pois 24 : 2 = 12 e 24 : 3 = 8 36 : 6 = 6, pois 36 : 2 = 18 e 36 : 3 = 12 132 : 6 = 22, pois 132 : 2 = 66 e 132 : 3 = 44 564: 6 = 94, pois 564 : 2 = 282 e 546 : 3 = 188 Divisibilidade por 7 Um número é divisível por 7 quando estabelecida a diferença entre o dobro do último e os demais algarismos, constituindo um número divisível por 7. Exemplo: 161 : 7 = 23, pois 16 – 2*1 = 16 – 2 = 14 203 : 7 = 29, pois 20 – 2*3 = 20 – 6 = 14 294 : 7 = 42, pois 29 – 2*4 = 29 – 8 = 21 840 : 7 = 120, pois 84 – 2*0 = 84 Divisibilidade por 8 Um número é divisível por 8 quando termina em 000 ou os últimos três números são divisíveis por 8. Exemplo: 1000 : 8 = 125, pois termina em 000 208 : 8 = 26, pois os três últimos são divisíveis por 8 Divisibilidade por 9 Será divisível por 9 todo número em que a soma de seus algarismos constitui um número múltiplo de 9. Exemplo: 81 : 9 = 9, pois 8 + 1 = 9 1107 : 9 = 123, pois 1 + 1 + 0 + 7 = 9 4788 : 9 = 532, pois 4 + 7 + 8 + 8 = 27 Divisibilidade por 10 Todo número terminado em 0 é divisível por 10. 100 : 10 = 10 500 : 10 = 50 500 000 : 10 = 50 000 2000 : 10 = 200 Divisibilidade por 11 Um número é divisível por 11 nas situações em que a diferença entre o último algarismo e o número formado pelos demais algarismos, de forma sucessiva até que reste um número com 2 algarismos, resultar em um múltiplo de 11. Como regra mais imediata, todas as dezenas duplas (11, 22, 33, 5555, etc.) são múltiplas de 11. 1342 : 11 = 122, pois 134 – 2 = 132 → 132 – 2 = 11 2783 : 11 = 253, pois 278 – 3 = 275 → 27 – 5 = 22 7150: 11 = 650, pois 715 – 0 = 715 → 71 – 5 = 66 Divisibilidade por 12 Se um número é divisível por 3 e 4, também será divisível por 12. 192 : 12 = 16, pois 192 : 3 = 64 e 192 : 4 = 48 672 : 12 = 56, pois 672 : 3 = 224 e 672 : 4 = 168 Divisibilidade por 15 Todo número divisível por 3 e 5 também é divisível por 15. 1470 é divisível por 15, pois 1470:3 = 490 e 1470:5 = 294. 1800 é divisível por 15, pois 1800:3 = 600 e 1800:5 = 360. Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios de divisibilidade. Divisibilidade por 2 Um número natural é divisível por 2 quando ele termina em 0, ou 2, ou 4, ou 6, ou 8, ou seja, quando ele é par. Exemplos: 1) 5040 é divisível por 2, pois termina em 0. 2) 237 não é divisível por 2, pois não é um número par. Divisibilidade por 3 Um número é divisível por 3 quando a soma dos valores absolutos dos seus algarismos for divisível por 3. Exemplo: 234 é divisível por 3, pois a soma de seus algarismos é igual a 2+3+4=9, e como 9 é divisível por 3, então 234 é divisível por 3. Divisibilidade por 4 Um número é divisível por 4 quando termina em 00 ou quando o número formado pelos dois últimos algarismos da direita for divisível por 4. Exemplo: 1800 é divisível por 4, pois termina em 00. 4116 é divisível por 4, pois 16 é divisível por 4. 1324 é divisível por 4, pois 24 é divisível por 4. 3850 não é divisível por 4, pois não termina em 00 e 50 não é divisível por 4. Divisibilidade por 5 Um número natural é divisível por 5 quando ele termina em 0 ou 5. Exemplos: 1) 55 é divisível por 5, pois termina em 5. 2) 90 é divisível por 5, pois termina em 0. 3) 87 não é divisível por 5, pois não termina em 0 nem em 5. Divisibilidade por 6 Um número é divisível por 6 quando é divisível por 2 e por 3. Exemplos: 1) 312 é divisível por 6, porque é divisível por 2 (par) e por 3 (soma: 6). 2) 5214 é divisível por 6, porque é divisível por 2 (par) e por 3 (soma: 12). 3) 716 não é divisível por 6, (é divisível por 2, mas não é divisível por 3). 4) 3405 não é divisível por 6 (é divisível por 3, mas não é divisível por 2). Divisibilidade por 8 Um número é divisível por 8 quando termina em 000, ou quando o número formado pelos três últimos algarismos da direita for divisível por 8. Exemplos: 1) 7000 é divisível por 8, pois termina em 000. 2) 56104 é divisível por 8, pois 104 é divisível por 8. 3) 61112 é divisível por 8, pois 112 é divisível por 8. 4) 78164 não é divisível por 8, pois 164 não é divisível por 8. Divisibilidade por 9 Um número é divisível por 9 quando a soma dos valores absolutos dos seus algarismos for divisível por 9. Exemplo: 2871 é divisível por 9, pois a soma de seus algarismos é igual a 2+8+7+1=18, e como 18 é divisível por 9, então 2871 é divisível por 9. Divisibilidade por 10 Um número natural é divisível por 10 quando ele termina em 0. Exemplos: 1) 4150 é divisível por 10, pois termina em 0. 2) 2106 não é divisível por 10, pois não termina em 0. Continua após a publicidade Divisibilidade por 11 Um número é divisível por 11 quando a diferença entre as somas dos valores absolutos dos algarismos de ordem ímpar e a dos de ordem par é divisível por 11. O algarismo das unidades é de 1ª ordem, o das dezenas de 2ª ordem, o das centenas de 3ª ordem, e assim sucessivamente. Exemplos: 1) 87549 Si (soma das ordens ímpares) = 9+5+8 = 22 Sp (soma das ordens pares) = 4+7 = 11 Si-Sp = 22-11 = 11 Como 11 é divisível por 11, então o número 87549 é divisível por 11. 2) 439087 Si (soma das ordens ímpares) = 7+0+3 = 10 Sp (soma das ordens pares) = 8+9+4 = 21 Si-Sp = 10-21 Como a subtração não pode ser realizada, acrescenta-se o menor múltiplo de 11 (diferente de zero) ao minuendo, para que a subtração possa ser realizada: 10+11 = 21. Então temos a subtração 21-21 = 0. Como zero é divisível por 11, o número 439087 é divisível por 11. Divisibilidade por 12 Um número é divisível por 12 quando é divisível por 3 e por 4. Exemplos: 1) 720 é divisível por 12, porque é divisível por 3 (soma=9) e por 4 (dois últimos algarismos, 20). 2) 870 não é divisível por 12 (é divisível por 3, mas não é divisível por 4). 3) 340 não é divisível por 12 (é divisível por 4, mas não é divisível por 3). Divisibilidade por 15 Um número é divisível por 15 quando é divisível por 3 e por 5. Exemplos: 1) 105 é divisível por 15, porque é divisível por 3 (soma=6) e por 5 (termina em 5). 2) 324 não é divisível por 15 (é divisível por 3, mas não é divisível por 5). 3) 530 não é divisível por 15 (é divisível por 5, mas não é divisível por 3). Divisibilidade por 25 Um número é divisível por 25 quando os dois algarismos finais forem 00, 25, 50 ou 75. Exemplos: 200, 525, 850 e 975 são divisíveis por 25. Números primos Números primos são os números naturais que têm apenas dois divisores diferentes: o 1 e ele mesmo. Exemplos: 1) 2 tem apenas os divisores1 e 2, portanto 2 é um número primo. 2) 17 tem apenas os divisores 1 e 17, portanto 17 é um número primo. 3) 10 tem os divisores 1, 2, 5 e 10, portanto 10 não é um número primo. Observações: 1 não é um número primo, porque ele tem apenas um divisor que é ele mesmo. 2 é o único número primo que é par. Os números que têm mais de dois divisores são chamados números compostos. Exemplo: 15 tem mais de dois divisores => 15 é um número composto. Reconhecimento de um número primo Para saber se um número é primo, dividimos esse número pelos números primos 2, 3, 5, 7, 11, etc, até que tenhamos: - ou uma divisão com resto zero (e neste caso o número não é primo), - ou uma divisão com quociente menor que o divisor e o resto diferente de zero. Neste caso o número é primo. Exemplos: 1) O número 161: não é par, portanto não é divisível por 2; 1+6+1 = 8, portanto não é divisível por 3; não termina em 0 nem em 5, portanto não é divisível por 5; por 7: 161 / 7 = 23, com resto zero, logo 161 é divisível por 7, e portanto não é um número primo. 2) O número 113: não é par, portanto não é divisível por 2; 1+1+3 = 5, portanto não é divisível por 3; não termina em 0 nem em 5, portanto não é divisível por 5; por 7: 113 / 7 = 16, com resto 1. O quociente (16) ainda é maior que o divisor (7). por 11: 113 / 11 = 10, com resto 3. O quociente (10) é menor que o divisor (11), e além disso o resto é diferente de zero (o resto vale 3), portanto 113 é um número primo. Decomposição em fatores primos Todo número natural, maior que 1, pode ser decomposto em um produto de dois ou mais fatores. Decomposição do número 24 em um produto: 24 = 4 x 6 24 = 2 x 2 x 6 24 = 2 x 2 x 2 x 3 = 23 x 3 No produto 2 x 2 x 2 x 3, todos os fatores são primos. Chamamos de fatoração de 24 a decomposição de 24 em um produto de fatores primos. Então a fatoração de 24 é 23 x 3. De um modo geral, chamamos de fatoração de um número natural, maior que 1, a sua decomposição em um produto de fatores primos. Regra prática para a fatoração Existe um dispositivo prático para fatorar um número. Acompanhe, no exemplo, os passos para montar esse dispositivo: 1º) Dividimos o número pelo seu menor divisor primo; 2º) a seguir, dividimos o quociente obtido pelo menor divisor primo desse quociente e assim sucessivamente até obter o quociente 1. A figura mostra a fatoração do número 630. Então 630 = 2 x 3 x 3 x 5 x 7. 630 = 2 x 32 x 5 x 7. Determinação dos divisores de um número Na prática, determinamos todos os divisores de um número utilizando os seus fatores primos. Vamos determinar, por exemplo, os divisores de 90: 1º) decompomos o número em fatores primos; 2º) traçamos uma linha e escrevemos o 1 no alto, porque ele é divisor de qualquer número; 3º) multiplicamos sucessivamente cada fator primo pelos divisores já obtidos e escrevemos esses produtos ao lado de cada fator primo; 4º) os divisores já obtidos não precisam ser repetidos. Portanto os divisores de 90 são 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90. Máximo divisor comum (M.D.C.) Dois números naturais sempre têm divisores comuns. Por exemplo: os divisores comuns de 12 e 18 são 1,2,3 e 6. Dentre eles, 6 é o maior. Então chamamos o 6 de máximo divisor comum de 12 e 18 e indicamos m.d.c.(12,18) = 6. O maior divisor comum de dois ou mais números é chamado de máximo divisor comum desses números. Usamos a abreviação m.d.c. Alguns exemplos: mdc (6,12) = 6 mdc (12,20) = 4 mdc (20,24) = 4 mdc (12,20,24) = 4 mdc (6,12,15) = 3 Cálculo do M.D.C. Um modo de calcular o m.d.c. de dois ou mais números é utilizar a decomposição desses números em fatores primos. 1) decompomos os números em fatores primos; 2) o m.d.c. é o produto dos fatores primos comuns. Acompanhe o cálculo do m.d.c. entre 36 e 90: 36 = 2 x 2 x 3 x 3 90 = 2 x 3 x 3 x 5 O m.d.c. é o produto dos fatores primos comuns => m.d.c.(36,90) = 2 x 3 x 3 Portanto m.d.c.(36,90) = 18. Escrevendo a fatoração do número na forma de potência temos: 36 = 22 x 32 90 = 2 x 32 x5 Portanto m.d.c.(36,90) = 2 x 32 = 18. O m.d.c. de dois ou mais números, quando fatorados, é o produto dos fatores comuns a eles, cada um elevado ao menor expoente. Cálculo do M.D.C. pelo processo das divisões sucessivas Nesse processo efetuamos várias divisões até chegar a uma divisão exata. O divisor desta divisão é o m.d.c. Acompanhe o cálculo do m.d.c.(48,30). Regra prática: 1º) dividimos o número maior pelo número menor; 48 / 30 = 1 (com resto 18) 2º) dividimos o divisor 30, que é divisor da divisão anterior, por 18, que é o resto da divisão anterior, e assim sucessivamente; 30 / 18 = 1 (com resto 12) 18 / 12 = 1 (com resto 6) 12 / 6 = 2 (com resto zero - divisão exata) 3º) O divisor da divisão exata é 6. Então m.d.c.(48,30) = 6. Números primos entre si Dois ou mais números são primos entre si quando o máximo divisor comum desses números é 1. Exemplos: Os números 35 e 24 são números primos entre si, pois mdc (35,24) = 1. Os números 35 e 21 não são números primos entre si, pois mdc (35,21) = 7. Propriedade do M.D.C. Dentre os números 6, 18 e 30, o número 6 é divisor dos outros dois. Neste caso, 6 é o m.d.c.(6,18,30). Observe: 6 = 2 x 3 18 = 2 x 32 30 = 2 x 3 x 5 Portanto m.d.c.(6,18,30) = 6 Dados dois ou mais números, se um deles é divisor de todos os outros, então ele é o m.d.c. dos números dados. Mínimo múltiplo comum (M.M.C.) Múltiplo de um número natural Como 24 é divisível por 3, dizemos que 24 é múltiplo de 3. 24 também é múltiplo de 1, 2, 3, 4, 6, 8, 12 e 24. Se um número é divisível por outro, diferente de zero, então dizemos que ele é múltiplo desse outro. Os múltiplos de um número são calculados multiplicando-se esse número pelos números naturais. Exemplo: os múltiplos de 7 são: 7x0 , 7x1, 7x2 , 7x3 , 7x4 , ... = 0 , 7 , 14 , 21 , 28 , ... Observações importantes: 1) Um número tem infinitos múltiplos 2) Zero é múltiplo de qualquer número natural O que é M.M.C.? Dois ou mais números sempre têm múltiplos comuns a eles. Vamos achar os múltiplos comuns de 4 e 6: Múltiplos de 6: 0, 6, 12, 18, 24, 30,... Múltiplos de 4: 0, 4, 8, 12, 16, 20, 24,... Múltiplos comuns de 4 e 6: 0, 12, 24,... Dentre estes múltiplos, diferentes de zero, 12 é o menor deles. Chamamos o 12 de mínimo múltiplo comum de 4 e 6. O menor múltiplo comum de dois ou mais números, diferente de zero, é chamado de mínimo múltiplo comum desses números. Usamos a abreviação m.m.c. Cálculo do M.M.C. Podemos calcular o m.m.c. de dois ou mais números utilizando a fatoração. Acompanhe o cálculo do m.m.c. de 12 e 30: 1º) decompomos os números em fatores primos 2º) o m.m.c. é o produto dos fatores primos comuns e não-comuns: 12 = 2 x 2 x 3 30 = 2 x 3 x 5 m.m.c (12,30) = 2 x 2 x 3 x 5 Escrevendo a fatoração dos números na forma de potência, temos: 12 = 22 x 3 30 = 2 x 3 x 5 m.m.c (12,30) = 22 x 3 x 5 O m.m.c. de dois ou mais números, quando fatorados, é o produto dos fatores comuns e não-comuns a eles, cada um elevado ao maior expoente. Processo da decomposição simultânea Neste processo, decompomos todos os números ao mesmo tempo, em um dispositivo como mostra a figura ao lado. O produto dos fatores primos que obtemos nessa decomposição é o m.m.c. desses números. A seguir vemos o cálculo do m.m.c.(15,24,60). Portanto, m.m.c.(15,24,60) = 2 x 2 x 2 x 3 x 5 = 120 Propriedade do M.M.C. Entre os números 3, 6 e 30, o número 30 é múltiplo dos outros dois. Neste caso, 30 é o m.m.c.(3,6,30). Observe: m.m.c.(3,6,30) = 2 x 3 x 5 = 30 Dados dois ou mais números, se um deles é múltiplo de todos os outros, então ele é o m.m.c. dos números dados. Considere os números 4 e 15, que são primos entre si. O m.m.c.(4,15) é igual a 60, que é o produto de 4 por 15. Observe: m.m.c.(4,15) = 2 x 2 x 3 x 5 = 60 Dados dois números primos entre si, o m.m.c. deles é o produto desses números. Equações do 1º grau com uma variável Introduçao Equação é toda sentençamatemática aberta que exprime uma relação de igualdade. A palavra equação tem o prefixo equa, que em latim quer dizer "igual". Exemplos: 2x + 8 = 0 5x - 4 = 6x + 8 3a - b - c = 0 Não são equações: 4 + 8 = 7 + 5 (Não é uma sentença aberta) x - 5 < 3 (Não é igualdade) (não é sentença aberta, nem igualdade) A equação geral do primeiro grau: ax+b = 0 onde a e b são números conhecidos e a diferente de 0, se resolve de maneira simples: subtraindo b dos dois lados, obtemos: ax = -b dividindo agora por a (dos dois lados), temos: Por exemplo, considere a equação 2x - 8 = 3x -10. A letra é a incógnita da equação. A palavra incógnita significa "desconhecida". Na equação acima, a incógnita é x; tudo que antecede o sinal da igualdade denomina-se 1º membro, e o que sucede, 2º membro. Qualquer parcela, do 1º ou do 2º membro, é um termo da equação. Equação do 1º grau na incógnita x é toda equação que pode ser escrita na forma ax=b, sendo a e b números racionais, com a diferente de zero. Conjunto universo e conjunto verdade de uma equação Considere o conjunto A = {0, 1, 2, 3, 4, 5} e a equação x+2=5. Observe que o número 3 do conjunto A é denominado conjunto universo da equação e o conjunto {3} é o conjunto verdade dessa mesma equação. Observe este outro exemplo: Determine os números inteiros que satisfazem a equação x² = 25. O conjunto dos números inteiros é o conjunto universo da equação. Os números -5 e 5, que satisfazem a equação, formam o conjunto verdade, podendo ser indicado por: V = {-5, 5}. Daí, concluímos que: Conjunto universo é o conjunto de todos os valores que a variável pode assumir. Indica-se por U. Conjunto verdade é o conjunto dos valores de U que tornam verdadeira a equação. Indica-se por V. Observações: O conjunto verdade é subconjunto do conjunto universo. Não sendo citado o conjunto universo, devemos considerar como conjunto universo o conjunto dos números racionais. O conjunto verdade é também conhecido por conjunto solução e pode ser indicado por S. Raízes de uma equação Os elementos do conjunto verdade de uma equação são chamados raízes da equação. Para verificar se um número é raiz de uma equação, devemos obedecer à seguinte sequência: Substituir a incógnita por esse número. Determinar o valor de cada membro da equação. Verificar a igualdade. Sendo uma sentença verdadeira, o número considerado é raiz da equação. Exemplos: Verifique quais dos elementos do conjunto universo são raízes das equações abaixo, determinando em cada caso o conjunto verdade. Resolva a equação x - 2 = 0, sendo U = {0, 1, 2, 3}. Para x = 0, temos: 0 - 2 = 0 => -2 = 0. (F) Para x = 1, temos: 1 - 2 = 0 => -1 = 0. (F) Para x = 2, temos: 2 - 2 = 0 => 0 = 0. (V) Para x = 3, temos: 3 - 2 = 0 => 1 = 0. (F) Verificamos que 2 é raiz da equação x - 2 = 0, logo V = {2}. Resolva a equação 2x - 5 = 1, sendo U = {-1, 0, 1, 2}. Para x = -1, temos: 2 . (-1) - 5 = 1 => -7 = 1. (F) Para x = 0, temos: 2 . 0 - 5 = 1 => -5 = 1. (F) Para x = 1, temos: 2 . 1 - 5 = 1 => -3 = 1. (F) Para x = 2, temos: 2 . 2 - 5 = 1 => -1 = 1. (F) A equação 2x - 5 = 1 não possui raiz em U, logo V = Ø. Resolução de uma equação Resolver uma equação consiste em realizar uma série de operações que nos conduzem a equações equivalentes cada vez mais simples, que nos permitem determinar os elementos do conjunto verdade ou as raízes da equação. Resumindo: Resolver uma equação significa determinar o seu conjunto verdade, dentro do conjunto universo considerado. Na resolução de uma equação do 1º grau com uma incógnita, devemos aplicar os princípios de equivalência das igualdades (aditivo e multiplicativo). Exemplos: Sendo , resolva a equação . MMC (4, 6) = 12 -9x = 10 => Multiplicador por (-1) 9x = -10 Como , então . Sendo , resolva a equação 2.(x - 2) - 3.(1 - x) = 2.(x - 4). Iniciamos aplicando a propriedade distributiva da multiplicação: 2x - 4 - 3 + 3x = 2x - 8 2x + 3x -2x = - 8 + 4 + 3 3x = -1 Como , então Equações impossíveis e identidades Sendo , considere a seguinte equação: 2.(6x - 4) = 3.(4x - 1). Observe agora a sua resolução: 2 . 6x - 2 . 4 = 3 . 4x - 3 . 1 12x - 8 = 12x - 3 12x - 12x = - 3 + 8 0 . x = 5 Como nenhum número multiplicado por zero é igual a 5, dizemos que a equação é impossível e, portanto, não tem solução. Logo, V = Ø. Assim, uma equação do tipo ax + b = 0 é impossível quando e Sendo , considere a seguinte equação: 10 - 3x - 8 = 2 - 3x. Observe a sua resolução: -3x + 3x = 2 - 10 + 8 0 . x = 0 Como todo número multiplicado por zero é igual a zero, dizemos que a equação possui infinitas soluções. Equações desse tipo, em que qualquer valor atribuído à variável torna a equação verdadeira, são denominadas identidades. Pares ordenados Muitas vezes, para localizar um ponto em um plano, utilizamos dois números racionais, em uma certa ordem. Denominamos esses números de par ordenado. Exemplos: Assim: Indicamos por (x, y) o par ordenado formado pelos elementos x e y, onde x é o 1º elemento e y é o 2º elemento. Observações: 1) De um modo geral, sendo x e y dois números racionais quaisquer, temos: . Exemplos: 2) Dois pares ordenados (x, y) e (r, s) são iguais somente se x = r e y = s. Representação gráfica de um par ordenado Podemos representar um par ordenado através de um ponto em um plano. Esse ponto é chamado de imagem do par ordenado. Coordenadas cartesianas Os números do par ordenados são chamados coordenadas cartesianas. Exemplos: A (3, 5) ==> 3 e 5 são as coordenadas do ponto A. Denominamos de abscissa o 1º número do par ordenado, e ordenada, o 2º número desse par. Assim: Plano cartesiano Representamos um par ordenado em um plano cartesiano. Esse plano é formado por duas retas, x e y, perpendiculares entre si. A reta horizontal é o eixo das abscissas (eixo x). A reta vertical é o eixo das ordenadas (eixo y). O ponto comum dessas duas retas é denominado origem, que corresponde ao par ordenado (0, 0). Localização de um ponto Para localizar um ponto em um plano cartesiano, utilizamos a sequência prática: O 1º número do par ordenado deve ser localizado no eixo das abscissas. O 2º número do par ordenado deve ser localizado no eixo das ordenadas. No encontro das perpendiculares aos eixos x e y, por esses pontos, determinamos o ponto procurado. Exemplo: Localize o ponto (4, 3). Produto cartesiano Sejam os conjuntos A = {1, 2, 3} e B = {3, 4}. Com auxílio do diagrama de flechas ao lado, formaremos o conjunto de todos os pares ordenados em que o 1º elemento pertença ao conjunto A e o 2º pertença ao conjunto B. Assim, obtemos o conjunto: {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)} Esse conjunto é denominado produto cartesiano de A por B, sendo indicado por: Logo: Dados dois conjuntos A e B, não-vazios, denominamos produto cartesiano A x B o conjunto de todos os pares ordenados (x, y) onde O que é uma equaçao do 1º grau com duas variáveis? Considere a equação: 2x - 6 = 5 - 3y. Trata-se de uma equação com duas variáveis, x e y, que pode ser transformada numa equação equivalente mais simples. Observe: 2x + 3y = 5 + 6 2x + 3y = 11 ==> Equação do 1º grau na forma ax + by = c. Denominamos equação do 1º grau com duas variáveis, x e y, toda equação que pode ser reproduzida na forma ax + by = c, sendo a e b números diferentes de zero, simultaneamente. Na equação ax + by = c, denominamos: x e y - variáveis ou incógnita a - coeficiente de x b - coeficiente de y c - termo independente Exemplos: x + y = 30 2x + 3y = 15 x - 4y = 10 -3x - 7y = -48 2x- 3y = 0 x - y = 8 Solução de uma equação do 1º grau com duas variáveis Quais o valores de x e y que tornam a sentença x - 2y = 4 verdadeira? Observe os pares abaixo: x = 6, y = 1 x - 2y = 4 6 - 2 . 1 = 4 6 - 2 = 4 4 = 4 (V) x = 8, y = 2 x - 2y = 4 8 - 2 . 2 = 4 8 - 4 = 4 4 = 4 (V) x = -2, y = -3 x - 2y = 4 -2 - 2 . (-3) = 4 -2 + 6 = 4 4 = 4(V) Verificamos que todos esses pares são soluções da equação x - 2y = 4. Assim, os pares (6, 1); (8, 2); (-2, -3) são algumas das soluções dessa equação. Uma equações do 1º grau com duas variáveis tem infinitas soluções - infinitos (x, y) -, sendo portanto seu conjunto universo . Podemos determinar essas soluções atribuindo-se valores quaisquer para uma das variáveis, calculando a seguir o valor da outra. Exemplo: Determine uma solução para a equação 3x - y = 8. Atribuímos para x o valor 1, e calculamos o valor de y. Assim: 3x - y = 8 3 . (1) - y = 8 3 - y = 8 -y = 5 ==> Multiplicamos por -1 y = -5 O par (1, -5) é uma das soluções dessa equação. V = {(1, -5)} Resumindo: Um par ordenado (r, s) é solução de uma equação ax + by = c (sendo a e b não-nulos simultaneamente), se para x=r e y=s a sentença é verdadeira. Gráfico de uma equação de 1º grau com duas variáveis Sabemos que uma equação do 1º grau com duas variáveis possui infinitas soluções. Cada uma dessas soluções pode ser representada por um par ordenado (x, y). Dispondo de dois pares ordenados de um equação, podemos representá-los graficamente em um plano cartesiano, determinando, através da reta que os une, o conjunto das soluções dessa equação. Exemplo: Construir um gráfico da equação x + y = 4. Inicialmente, escolhemos dois pares ordenados que solucionam essa equação. 1º par: A (4, 0) 2º par: B (0, 4) A seguir, representamos esses pontos em um plano cartesiano. x y 4 0 0 4 Finalmente, unimos os pontos A e B, determinando a reta r, que contém todos os pontos soluções da equação. A reta r é chamada reta suporte do gráfico da equação. Sistemas de Equações Considere o seguinte problema: O jogador Pipoca, em sua última partida de basquete, acertou x arremessos de 2 pontos e y arremessos de 3 pontos. Ele acertou 25 arremessos e marcou 55 pontos. Quantos arremessos de 3 pontos ele acertou? Podemos traduzir essa situação através de duas equações: x + y = 25 (total de arremessos certos) 2x + 3y = 55 (total de pontos obtidos) Essas equações formam um sistema de equações. Costuma-se indicar o sistema usando chave. O par ordenado (20, 5), que torna ambas as sentenças verdadeiras, é chamado solução do sistema. Um sistema de duas equações com duas variáveis possui uma única solução. A seguir, aprenderemos como solucionar um sistema desse tipo. Resolução de Sistemas A resolução de um sistema de duas equações com duas variáveis consiste em determinar um par ordenado que torne verdadeiras, ao mesmo tempo, essas equações. Estudaremos a seguir alguns métodos: Método de substituição Solução: determinamos o valor de x na 1ª equação. x = 4 - y Substituímos esse valor na 2ª equação. 2 . (4 - y) -3y = 3 Resolvemos a equação formada. 8 - 2y -3y = 3 -5y = -5 => Multiplicamos por -1 5y = 5 y = 1 Substituímos o valor encontrado de y, em qualquer das equações, determinando x. x + y = 4 x + 1 = 4 x = 4 - 1 x = 3 A solução do sistema é o par ordenado (3, 1). V = {(3, 1)} Método da adição Sendo U = , observe a solução do sistema a seguir, pelo método da adição. Solução: Adicionamos membro a membro as equações: 2x = 16 x = 8 Substituímos o valor encontrado de x, em qualquer das equações, determinando y: x + y = 10 8 + y = 10 y = 10 - 8 y = 2 A solução do sistema é o par ordenado (8, 2). V = {(8, 2)} Inequações do 1º grau O que é uma inequação? Denominamos inequação toda sentença matemática aberta por uma desigualdade. As inequações do 1º grau com uma variável podem ser escritas em uma das seguintes formas: com a e b reais . Exemplos: Representação gráfica de uma inequação do 1º grau com duas variáveis Método prático Substituímos a desigualdade por uma igualdade. Traçamos a reta no plano cartesiano. Escolhemos um ponto auxiliar, de preferência o ponto (0, 0), e verificamos se o mesmo satisfaz ou não a desigualdade inicial. Em caso positivo, a solução da inequação corresponde ao semiplano ao qual pertence o ponto auxiliar. Em caso negativo, a solução da inequação corresponde ao semiplano oposto aquele ao qual pertence o ponto auxiliar. Exemplo: Vamos representar graficamente a inequação Tabela: x y (x, y) 0 4 (0, 4) 2 0 (2, 0) Gráfico: Substituindo o ponto auxiliar (0, 0) na inequação, verificamos: (Afirmativa positiva, o ponto auxiliar satisfaz a inequação) A solução da inequação corresponde ao semiplano ao qual pertence o ponto auxiliar (0, 0). Resolução gráfica de um sistema de inequações do 1º grau Para resolver um sistema de inequações do 1º grau graficamente, devemos: traçar em um mesmo plano o gráfico de cada inequação; determinar a região correspondente à intersecção dos dois semiplanos. Exemplo: dê a resolução gráfica do sistema: Solução: Traçando as retas -x + y = 4 e 3x + 2y = 6. Tabela -x+y=4 x y (x, y) 0 4 (0, 4) -4 0 (-4, 0) Tabela 3x+2y=6 x y (x, y) 0 3 (0, 3) 1 3/2 (1, 3/2) Gráfico: Potenciação O que é potenciação? Seja a multiplicação 2 . 2 . 2 . 2, onde todos os fatores sao iguais. Podemos indicar este produto de modo abreviado: 2 . 2 . 2 . 2 = 24 = 16 Denominamos: Base: o número que se repete. Expoente: o número de fatores iguais. Potência: o resultado da operação. A operação efetuada é denominada potenciação. Exemplos: 54 = 5 . 5 . 5 . 5 = 625 43 = 4 . 4 . 4 = 64 Leitura Observe alguns exemplos: 3² (lê-se “três elevado ao quadrado ou o quadrado de três”) 2³ (lê-se “dois elevado ao cubo ou o cubo de dois”) (lê-se “sete elevado à quarta potência ou a quarta potência de sete”) (lê-se “seis elevado à quinta potência ou a quinta potência de seis”) Observação: Um número natural é um quadrado perfeito quando é o produto de dois fatores iguais. Por exemplo, os números 4, 36 e 100 sao quadrados perfeitos, pois 2² = 4, 6² = 36 e 10² = 100. Propriedades da potenciação Todo número natural elevado ao expoente 1 é igual a ele mesmo. Exemplos: Todo número natural nao-nulo elevado ao expoente zero é igual a 1. Exemplos: Toda potência da base 1 é igual a 1. Exemplos: Toda potência de 10 é igual ao numeral formado pelo algarismo 1 seguido de tantos zeros quantas forem as unidades do expoente. Exemplos: O expoente negativo significa que ocorre a troca de lugar entre o numerador o denominador. Exemplos: Se tivermos uma potência negativa no denominador, este se transforma em numerador ao trocar o sinal da potência. Exemplos: Estudaremos a seguir algumas propriedades operatórias da potenciação. Produto de potências de mesma base Considere o produto . Observe que: Assim: Tomando por base o exemplo acima, podemos concluir que: Para multiplicar potências de mesma base, devemos conservar a base e somar os expoentes. Genericamente: Divisão de potências de mesma base Considere o quociente . Observe que: Assim: Tomando por base o exemplo acima, podemos concluir que: Para dividir potências de mesma base, não-nula, devemos conservar a base e subtrair os expoentes. Genericamente: Potência da potência Considere a potência . Observe que: Assim: Tomando por base o exemplo acima, podemos concluir que: Para elevar uma potência a um novo expoente, devemos conservar a base e multiplicar os expoentes. Genericamente: Distributiva da potenciação em relação à multiplicação Considere a expressao . Observe que: Tomando por base o exemplo acima, podemos concluir que: Para elevar um produto a um expoente, devemos elevar cada fator a esse expoente. Genericamente: Distributiva da potenciação em relação à divisão Considere a expressao . Observe que: Tomando por base o exemplo acima, podemos concluir que: Para elevar um quociente a um expoente, devemos elevar o numerador e o denominador a esse expoente. Genericamente: Radiciaçao O que é radiciação? Jásabemos que 6² = 36. Aprenderemos agora a operaçao que nos permite determinar qual o número que elevado ao quadrado equivale a 36. , pois 6 elevado ao quadrado é 36. Essa operaçao é a inversa da potenciação e denomina-se radiciação. Outros exemplos: , pois 2³ = 8. , pois . Sendo assim: Notaçao Leitura (lê-se “raiz quadrada de 81”) (lê-se “raiz cúbica de 64”) (lê-se “raiz quarta de 16”) Observação: Na indicação de raiz quadrada, podemos omitir o índice 2. Por exemplo, . Raízes de índice par Quando elevamos um número positivo ou um número negativo a um expoente par, o resultado sempre é um número positivo. Exemplo: (-4)² = (-4)(-4) = 16 e (+4)² = (+4)(+4) = 16 Porém, como em matemática o resultado de uma operaçao deve ser único, fica definido que: Genericamente: Qualquer raiz de índice par de um número positivo é o número positivo que elevado ao expoente correspondente a esse indíce equivale ao número dado. Observaçao: Não existe raiz real de um número negativo se o índice for par. Exemplo: nao existe, pois nao há nenhum número real que elevado ao quadrado dê - 4. Raízes de índice ímpar Quando o índice de uma raiz é ímpar e o radicando é positivo, a raiz é positiva. Quando o índice de uma raíz é ímpar e o radicando é negativo, a raiz é negativa. Exemplos: Potência com expoente fracionário Se a é um número real positivo, m é um número inteiro e n é um número natural nao-nulo, temos que: Exemplos Propriedades dos radicais Justificativa: Exemplo: Justificativa: Exemplo: Justificativa: Escrevendo em forma de potência com expoente fracionário: Exemplo: Propriedades operatórias dos radicais Radical de um produto Justificativa: Exemplo: Radical de um quociente Justificativa: Exemplo: Mudança de índice Justificativa: Exemplo: Simplificaçao de radicais Confira a seguir alguns exemplos de simplificaçao de radicais, com base nas propriedades operatórias do item anterior: Radicais semelhantes Radicais semelhantes sao aqueles que têm o mesmo índice e o mesmo radicando. Exemplos: Adiçao e subtraçao de radicais 1º caso: Radicais semelhantes Fazemos como na redução de termos semelhantes de uma soma algébrica. Exemplos: 2º caso: Radicais semelhantes após simplificação Depois de obter radicais semelhantes, procedemos como no 1º caso. 3º caso: Os radicais não são semelhantes Extraímos as raízes e efetuamos as operações. Multiplicação e divisão de radicais 1º caso: Os radicais têm o mesmo índice Efetuamos a operaçao entre os radicandos. 2º caso: Os radicais nao têm o mesmo índice Primeiramente os reduzimos ao mesmo índice e depois efetuamos as operações. Potência de um radical Para elevar um radical a uma certa potência, devemos conservar o índice e elevar o radicando à potência indicada. Veja a justificativa dessa propriedade através de um exemplo: Outros exemplos: Radical de um radical Para obter a raiz de uma raiz, devemos conservar o radicando e multiplicar os índices. Veja a justificativa dessa propriedade através de um exemplo: Outros exemplos: Racionalização de denominadores Considere a fração , cujo denominador é um número irracional. Vamos agora multiplicar o numerador e o denominador desta fração por , obtendo uma fração equivalente: Observe que a fração equivalente possui um denominador racional. A essa transformação, damos o nome de racionalização de denomindores. A racionalização de denominadores consiste, portanto, na obtenção de um fração com denominador racional, equivalente a uma anterior, que possuía um ou mais radicais em seu denominador. Para racionalizar o denominador de uma fração, devemos multiplicar os termos desta fração por uma expressão com radical, denominado fator racionalizante, de modo a obter uma nova fração equivalente com denominador sem radical. Principais casos de racionalização 1º caso: O denominador é um radical de índice 2. Exemplo: é o fator racionalizante de , pois = a 2º caso: O denominador é um radical de índice diferente de 2, ou a soma (ou diferença) de dois termos. Neste caso, é necessário multiplicar o numerador e o denominador da fraçao por um termo conveniente, para que desapareça o radical que se encontra no denominador. Exemplo: A seguir, os principais fatores racionalizantes, de acordo com o tipo do denominador. é o fator racionalizante de é o fator racionalizante de é o fator racionalizante de é o fator racionalizante de Veja outro exemplo: Razões O que é uma razao? Vamos considerar um carro de corrida com 4m de comprimento e um kart com 2m de comprimento. Para compararmos as medidas dos carros, basta dividir o comprimento de um deles pelo outro. Assim: (o tamanho do carro de corrida é duas vezes o tamanho do kart). Podemos afirmar também que o kart tem a metade do comprimento do carro de corrida. A comparação entre dois números racionais, através de uma divisão, chama-se razão. A razão pode também ser representada por 1:2 e significa que cada metro do kart corresponde a 2m do carro de corrida. Denominamos de razão entre dois números a e b (b diferente de zero) o quociente ou a:b. A palavra razão, vem do latim ratio, e significa "divisão". Como no exemplo anterior, são diversas as situações em que utilizamos o conceito de razão. Exemplos: Dos 1200 inscritos num concurso, passaram 240 candidatos. Razão dos candidatos aprovados nesse concurso: (de cada 5 candidatos inscritos, 1 foi aprovado). Para cada 100 convidados, 75 eram mulheres. Razão entre o número de mulheres e o número de convidados: (de cada 4 convidados, 3 eram mulheres). Observações: 1) A razão entre dois números racionais pode ser apresentada de três formas. Exemplo: Razão entre 1 e 4: 1:4 ou ou 0,25. 2) A razão entre dois números racionais pode ser expressa com sinal negativo, desde que seus termos tenham sinais contrários. Exemplos: A razão entre 1 e -8 é . A razão entre é . Termos de uma razão Observe a razão: (lê-se "a está para b" ou "a para b"). Na razão a:b ou , o número a é denominado antecedente e o número b é denominado consequente. Veja o exemplo: 3:5 = Leitura da razão: 3 está para 5 ou 3 para 5. Razões inversas Considere as razões . Observe que o produto dessas duas razões é igual a 1, ou seja, . Nesse caso, podemos afirmar que são razões inversas. Duas razões são inversas entre si quando o produto delas é igual a 1. Exemplo: são razões inversas, pois . Perceba que, nas razões inversas, o antecedente de uma é o consequente da outra, e vice-versa. Observações: 1) Uma razão de antecedente zero não possui inversa. 2) Para determinar a razão inversa de uma razão dada, devemos permutar (trocar) os seus termos. Exemplo: O inverso de . Razões equivalentes Dada uma razão entre dois números: Obtemos uma razao equivalente multiplicando-se ou dividindo-se os termos de uma razão por um mesmo número racional (diferente de zero), Exemplos: são razões equivalentes. são razões equivalentes. Razões entre grandezas da mesma espécie O conceito é o seguinte: Denomina-se razão entre grandezas de mesma espécie o quociente entre os números que expressam as medidas dessas grandezas numa mesma unidade. Exemplos: 1) Calcular a razão entre a altura de duas crianças, sabendo que a primeira possui uma altura h1= 1,20m e a segunda possui uma altura h2= 1,50m. A razão entre as alturas h1 e h2 é dada por: 2) Determinar a razão entre as áreas das superfícies das quadras de vôlei e basquete, sabendo que a quadra de vôlei possui uma área de 162m2 e a de basquete possui uma área de 240m2. Razão entre as área da quadra de vôlei e basquete: . Razões entre grandezas de espécies diferentes O conceito é o seguinte: Para determinar a razão entre duas grandezas de espécies diferentes, determina-se o quociente entre as medidas dessas grandezas. Essa razão deve ser acompanhada da notação que relaciona as grandezas envolvidas. Exemplos:1) Consumo médio: Beatriz foi de São Paulo a Campinas (92Km) no seu carro. Foram gastos nesse percurso 8 litros de combustível. Qual a razão entre a distância e o combustível consumido? O que significa essa razão? Solução: Razão = Razão = (lê-se "11,5 quilômetros por litro") Essa razão significa que a cada litro consumido foram percorridos em média 11,5 km. 2) Velocidade média: Moacir fez o percurso Rio-São Paulo (450Km) em 5 horas. Qual a razão entre a medida dessas grandezas? O que significa essa razão? Solução: Razão = Razão = 90 km/h (lê-se "90 quilômetros por hora") Essa razão significa que a cada hora foram percorridos em média 90 km. 3) Densidade demográfica: O estado do Ceará no último censo teve uma população avaliada em 6.701.924 habitantes. Sua área é de 145.694 km2. Determine a razão entre o número de habitantes e a área desse estado. O que significa essa razão? Solução: Razão = Razão = 46 hab/km2 (lê-se "46 habitantes por quilômetro quadrado") Essa razão significa que em cada quilômetro quadrado existem em média 46 habitantes. 4) Densidade absoluta ou massa específica: Um cubo de ferro de 1cm de aresta tem massa igual a 7,8g. Determine a razão entre a massa e o volume desse corpo. O que significa essa razão? Solução: Volume = 1cm . 1cm . 1cm = 1cm3 Razão = Razão = 7,8 g/cm3 (lê-se "7,8 gramas por centímetro cúbico") Essa razão significa que 1cm3 de ferro pesa 7,8g. Proporções O que é uma proporção? Exemplo: Rogerião e Claudinho passeiam com seus cachorros. Rogerião pesa 120kg, e seu cão, 40kg. Claudinho, por sua vez, pesa 48kg, e seu cão, 16kg. Observe a razão entre o peso dos dois rapazes: Observe, agora, a razão entre o peso dos cachorros: Verificamos que as duas razões são iguais. Nesse caso, podemos afirmar que a igualdade é uma proporção. Assim: Proporção é uma igualdade entre duas razões. Elementos de uma proporção Dados quatro números racionais a, b, c, d, não-nulos, nessa ordem, dizemos que eles formam uma proporção quando a razão do 1º para o 2º for igual à razão do 3º para o 4º. Assim: ou a:b=c:d (lê-se "a está para b assim como c está para d") Os números a, b, c e d são os termos da proporção, sendo: b e c os meios da proporção. a e d os extremos da proporção. Exemplo: Dada a proporção , temos: Leitura: 3 está para 4 assim como 27 está para 36. Meios: 4 e 27 Extremos: 3 e 36 Propriedade fundamental das proporções Observe as seguintes proporções: Produto dos meios = 4.30 = 120 Produto dos extremos = 3.40 = 120 Produto dos meios = 9.20 = 180 Produto dos extremos = 4.45 = 180 Produto dos meios = 8.45 = 360 Produto dos extremos = 5.72 = 360 De modo geral, temos que: Daí podemos enunciar a propriedade fundamental das proporções: Em toda proporção, o produto dos meios é igual ao produto dos extremos. Aplicações da propriedade fundamental Determinação do termo desconhecido de uma proporção Exemplos: Determine o valor de x na proporção: Solução: 5 . x = 8 . 15 (aplicando a propriedade fundamental) 5 . x = 120 x = 24 Logo, o valor de x é 24. Determine o valor de x na proporção: Solução: 5 . (x-3) = 4 . (2x+1) (aplicando a propriedade fundamental) 5x - 15 = 8x + 4 5x - 8x = 4 + 15 -3x = 19 3x = -19 x = Logo, o valor de x é . Os números 5, 8, 35 e x formam, nessa ordem, uma proporção. Determine o valor de x. Solução: (aplicando a propriedade fundamental) 5 . x = 8 . 35 5x = 280 x = 56 Logo, o valor de x é 56. Resolução de problemas envolvendo proporções Exemplo: Numa salina, de cada metro cúbico (m3) de água salgada, são retirados 40 dm3 de sal. Para obtermos 2 m3 de sal, quantos metros cúbicos de água salgada são necessários? Solução: A quantidade de sal retirada é proporcional ao volume de água salgada. Indicamos por x a quantidade de água salgada a ser determinada e armamos a proporção: Lembre-se que 40dm3 = 0,04m3. (aplicando a propriedade fundamental) 1 . 2 = 0,04 . x 0,04x = 2 x = 50 m3 Logo, são necessários 50 m3 de água salgada. Quarta proporcional Dados três números racionais a, b e c, não-nulos, denomina-se quarta proporcional desses números um número x tal que: Exemplo: Determine a quarta proporcional dos números 8, 12 e 6. Solução: Indicamos por x a quarta proporcional e armamos a proporção: (aplicando a propriedade fundamental) 8 . x = 12 . 6 8 . x = 72 x = 9 Logo, a quarta proporcional é 9. Proporção contínua Considere a seguinte proporção: . Observe que os seus meios são iguais, sendo por isso denominada proporção contínua. Assim: Proporção contínua é toda a proporção que apresenta os meios iguais. De um modo geral, uma proporção contínua pode ser representada por: Terceira proporcional Dados dois números naturais a e b, não-nulos, denomina-se terceira proporcional desses números o número x tal que: Exemplo: Determine a terceira proporcional dos números 20 e 10. Solução: Indicamos por x a terceira proporcional e armamos a proporção: (aplicando a propriedade fundamental) 20 . x = 10 . 10 20x = 100 x = 5 Logo, a terceira proporcional é 5. Média geométrica ou média proporcional Dada uma proporção contínua , o número b é denominado média geométrica ou média proporcional entre a e c. Exemplo: Determine a média geométrica positiva entre 5 e 20. Solução: 5 . 20 = b . b 100 = b2 b2 = 100 b = b = 10 Logo, a média geométrica positiva é 10. Propriedades das proporções 1ª propriedade Em uma proporção, a soma dos dois primeiros termos está para o 2º (ou 1º) termo, assim como a soma dos dois últimos está para o 4º (ou 3º). Demonstração: Considere as proporções: e Adicionando 1 a cada membro da primeira proporção, obtemos: Fazendo o mesmo na segunda proporção, temos: Exemplo: Determine x e y na proporção , sabendo que x+y=84. Solução: Assim: x+y = 84 => x = 84-y => x = 84-48 => x=36. Logo, x=36 e y=48. 2ª propriedade Em uma proporção, a diferença dos dois primeiros termos está para o 2º (ou 1º) termo, assim como a diferença dos dois últimos está para o 4º (ou 3º). Demonstração: Considere as proporções: e Subtraindo 1 a cada membro da primeira proporção, obtemos: Fazendo o mesmo na segunda proporção, temos (Mult. os 2 membros por -1) Exemplo: Sabendo-se que x-y=18, determine x e y na proporção . Solução: Pela 2ª propriedade, temos que: x-y = 18 => x=18+y => x = 18+12 => x=30. Logo, x=30 e y=12. 3ª propriedade: Em uma proporção, a soma dos antecedentes está para a soma dos consequentes, assim como cada antecedente está para o seu consequente. Demonstração: Considere a proporção: Permutando os meios, temos: Aplicando a 1ª propriedade, obtemos: Permutando os meios, finalmente obtemos: 4ª propriedade: Em uma proporção, a diferença dos antecedentes está para a diferença dos consequentes, assim como cada antecedente está para o seu consequente. Demonstração: Considere a proporção: Permutando os meios, temos: Aplicando a 2ª propriedade, obtemos: Permutando os meios, finalmente obtemos: Exemplo: Sabendo que a-b = -24, determine a e b na proporção . Solução: Pela 4ª propriedade, temos que: 5ª propriedade: Em uma proporção, o produto dos antecedentes está para o produto dos consequentes, assim como o quadrado de cada antecedente está para quadrado do seu consequente. Demonstração: Considere a proporção: Multiplicando os dois membros por , temos: Assim: Observação: a 5ª propriedade pode ser estendida para qualquer número de razões. Exemplo: Proporção múltipla Denominamos proporção múltipla uma série de razões iguais. Assim: é uma proporção múltipla. Dada a série de razões iguais , de acordo com a 3ª e 4ª propriedade, podemos escrever: Números romanos O sistema de numeração romano usa letras maiúsculas, as quais são atribuídos valores. Os algarismos romanos são usados principalmente:Nos números de capítulos uma obra. Nas cenas de um teatro. Nos nomes de papas e imperadores. Na designação de congressos, olimpíadas, assembleias... Regras A numeração romana utiliza sete letras maiúsculas, que correspondem aos seguintes valores: Letras Valores I 1 V 5 X 10 L 50 C 100 D 500 M 1000 Exemplos: XVI = 16; LXVI = 66. Se à direita de uma cifra romana se escreve outra igual ou menor, o valor desta se soma ao valor da anterior. Exemplos: VI = 6 XXI = 21 LXVII = 67 A letra "I" colocada diante da "V" ou de "X", subtrai uma unidade; a letra "X", precedendo a letra "L" ou a "C", lhes subtrai dez unidades e a letra "C", diante da "D" ou da "M", lhes subtrai cem unidades. Exemplos: IV = 4 IX = 9 XL = 40 XC = 90 CD = 400 CM = 900 Em nenhum número se pode pôr uma mesma letra mais de três vezes seguidas. Antigamente se via a letra "I" ou a "X" até quatro vezes seguidas. Exemplos: XIII = 13 XIV = 14 XXXIII = 33 XXXIV = 34 As letras "V", "L" e "D" não podem se duplicar porque outras letras ("X", "C", "M") representam seu valor duplicado. Exemplos: X = 10 C = 100 M = 1.000 Se entre duas cifras quaisquer existe outra menor, o valor desta pertencerá a letra seguinte a ela. Exemplos: XIX = 19 LIV = 54 CXXIX = 129 O valor dos números romanos quando multiplicados por mil, colocam-se barras horizontais em cima dos mesmos. Exemplos: Grandezas proporcionais O que é grandeza? Entendemos por grandeza tudo aquilo que pode ser medido, contado. As grandezas podem ter suas medidas aumentadas ou diminuídas. Alguns exemplos de grandeza sao: o volume, a massa, a superfície, o comprimento, a capacidade, a velocidade, o tempo, o custo e a produção. É comum ao nosso dia a dia situações em que relacionamos duas ou mais grandezas. Por exemplo: Em uma corrida de "quilômetros contra o relógio", quanto maior for a velocidade, menor será o tempo gasto nessa prova. Aqui as grandezas são a velocidade e o tempo. Em um forno utilizado para a produção de ferro fundido comum, quanto maior for o tempo de uso, maior será a produção de ferro. Nesse caso, as grandezas são o tempo e a produção. Grandezas diretamente proporcionais Um forno tem sua produção de ferro fundido de acordo com a tabela abaixo: Tempo (minutos) Produção (Kg) 5 100 10 200 15 300 20 400 Observe que uma grandeza varia de acordo com a outra. Essas grandezas são variáveis dependentes. Observe que: Quando duplicamos o tempo, a produção também duplica. 5 min --> 100Kg 10 min --> 200Kg Quando triplicamos o tempo, a produção também triplica. 5 min --> 100Kg 15 min --> 300Kg Assim: Duas grandezas variáveis dependentes são diretamente proporcionais quando a razão entre os valores da 1ª grandeza é igual a razão entre os valores correspondentes da 2ª Verifique na tabela que a razão entre dois valores de uma grandeza é igual a razão entre os dois valores correspondentes da outra grandeza. Grandezas inversamente proporcionais Um ciclista faz um treino para a prova de "1000 metros contra o relógio", mantendo em cada volta uma velocidade constante, obtendo assim um tempo correspondente, conforme a tabela abaixo: Velocidade (m/s) Tempo (s) 5 200 8 125 10 100 16 62,5 20 50 Observe que uma grandeza varia de acordo com a outra. Essas grandezas são variáveis dependentes. Observe que: Quando duplicamos a velocidade, o tempo fica reduzido à metade. 5 m/s --> 200s 10 m/s --> 100s Quando quadriplicamos a velocidade, o tempo fica reduzido à quarta parte. 5 m/s --> 200s 20 m/s --> 50s Assim: Duas grandezas variáveis dependentes são inversamente proporcionais quando a razão entre os valores da 1ª grandeza é igual ao inverso da razão entre os valores correspondentes da 2ª. Verifique na tabela que a razão entre dois valores de uma grandeza é igual ao inverso da razão entre os dois valores correspondentes da outra grandeza. Regra de três simples Regra de três simples é um processo prático para resolver problemas que envolvam quatro valores dos quais conhecemos três deles. Devemos, portanto, determinar um valor a partir dos três já conhecidos. Passos utilizados numa regra de três simples 1º) Construir uma tabela, agrupando as grandezas da mesma espécie em colunas e mantendo na mesma linha as grandezas de espécies diferentes em correspondência. 2º) Identificar se as grandezas são diretamente ou inversamente proporcionais. 3º) Montar a proporção e resolver a equação. Exemplos 1) Com uma área de absorção de raios solares de 1,2m2, uma lancha com motor movido a energia solar consegue produzir 400 watts por hora de energia. Aumentando-se essa área para 1,5m2, qual será a energia produzida? Solução: montando a tabela: Área (m2) Energia (Wh) 1,2 400 1,5 x Identificação do tipo de relação: Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna). Observe que, aumentando a área de absorção, a energia solar aumenta. Como as palavras correspondem (aumentando - aumenta), podemos afirmar que as grandezas são diretamente proporcionais. Assim sendo, colocamos uma outra seta no mesmo sentido (para baixo) na 1ª coluna. Montando a proporção e resolvendo a equação temos: Logo, a energia produzida será de 500 watts por hora. 2) Um trem, deslocando-se a uma velocidade média de 400Km/h, faz um determinado percurso em 3 horas. Em quanto tempo faria esse mesmo percurso, se a velocidade utilizada fosse de 480km/h? Solução: montando a tabela: Velocidade (Km/h) Tempo (h) 400 3 480 x Identificação do tipo de relação: Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna). Observe que, aumentando a velocidade, o tempo do percurso diminui. Como as palavras são contrárias (aumentando - diminui), podemos afirmar que as grandezas são inversamente proporcionais. Assim, colocamos uma outra seta no sentido contrário (para cima) na 1ª coluna. Montando a proporção e resolvendo a equação temos: Logo, o tempo desse percurso seria de 2,5 horas ou 2 horas e 30 minutos. 3) Bianca comprou 3 camisetas e pagou R$120,00. Quanto ela pagaria se comprasse 5 camisetas do mesmo tipo e preço? Solução: montando a tabela: Camisetas Preço (R$) 3 120 5 x Observe que, aumentando o número de camisetas, o preço aumenta. Como as palavras correspondem (aumentando - aumenta), podemos afirmar que as grandezas são diretamente proporcionais. Montando a proporção e resolvendo a equação temos: Logo, a Bianca pagaria R$200,00 pelas 5 camisetas. 4) Uma equipe de operários, trabalhando 8 horas por dia, realizou determinada obra em 20 dias. Se o número de horas de serviço for reduzido para 5 horas por dia, em que prazo essa equipe fará o mesmo trabalho? Solução: montando a tabela: Horas por dia Prazo para término (dias) 8 20 5 x Observe que, diminuindo o número de horas trabalhadas por dia, o prazo para término aumenta. Como as palavras são contrárias (diminuindo - aumenta), podemos afirmar que as grandezas são inversamente proporcionais. Montando a proporção e resolvendo a equação temos: Regra de três composta A regra de três composta é utilizada em problemas com mais de duas grandezas, direta ou inversamente proporcionais. Exemplos 1) Em 8 horas, 20 caminhões descarregam 160m3 de areia. Em 5 horas, quantos caminhões serão necessários para descarregar 125m3? Solução: montando a tabela, colocando em cada coluna as grandezas de mesma espécie e, em cada linha, as grandezas de espécies diferentes que se correspondem: Horas Caminhões Volume 8 20 160 5 x 125 Identificação dos tipos de relação: Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna). A seguir, devemos comparar cada grandeza com aquela onde está o x. Observe que, aumentando o número de horas de trabalho, podemos diminuir o número de caminhões. Portantoa relação é inversamente proporcional (seta para cima na 1ª coluna). Aumentando o volume de areia, devemos aumentar o número de caminhões. Portanto, a relação é diretamente proporcional (seta para baixo na 3ª coluna). Devemos igualar a razão que contém o termo x com o produto das outras razões de acordo com o sentido das setas. Montando a proporção e resolvendo a equação, temos: Logo, serão necessários 25 caminhões. 2) Em uma fábrica de brinquedos, 8 homens montam 20 carrinhos em 5 dias. Quantos carrinhos serão montados por 4 homens em 16 dias? Solução: montando a tabela: Homens Carrinhos Dias 8 20 5 4 x 16 Observe que, aumentando o número de homens, a produção de carrinhos aumenta. Portanto a relação é diretamente proporcional (não precisamos inverter a razão). Aumentando o número de dias, a produção de carrinhos aumenta. Portanto a relação também é diretamente proporcional (não precisamos inverter a razão). Devemos igualar a razão que contém o termo x com o produto das outras razões. Montando a proporção e resolvendo a equação, temos: Logo, serão montados 32 carrinhos. 3) Dois pedreiros levam 9 dias para construir um muro com 2m de altura. Trabalhando 3 pedreiros e aumentando a altura para 4m, qual será o tempo necessário para completar esse muro? Inicialmente colocamos uma seta para baixo na coluna que contém o x. Depois colocam-se flechas concordantes para as grandezas diretamente proporcionais com a incógnita e discordantes para as inversamente proporcionais, como mostrado abaixo: Montando a proporção e resolvendo a equação, temos: Logo, para completar o muro serão necessários 12 dias. Exercícios complementares Agora chegou a sua vez de tentar. Pratique tentando fazer esses exercícios: 1) Três torneiras enchem uma piscina em 10 horas. Quantas horas levarão 10 torneiras para encher 2 piscinas? Resposta: 6 horas. 2) Uma equipe composta de 15 homens extrai, em 30 dias, 3,6 toneladas de carvão. Se for aumentada para 20 homens, em quantos dias conseguirão extrair 5,6 toneladas de carvão? Resposta: 35 dias. 3) Vinte operários, trabalhando 8 horas por dia, gastam 18 dias para construir um muro de 300m. Quanto tempo levará uma turma de 16 operários, trabalhando 9 horas por dia, para construir um muro de 225m? Resposta: 15 dias. 4) Um caminhoneiro entrega uma carga em um mês, viajando 8 horas por dia, a uma velocidade média de 50 km/h. Quantas horas por dia ele deveria viajar para entregar essa carga em 20 dias, a uma velocidade média de 60 km/h? Resposta: 10 horas por dia. 5) Com uma certa quantidade de fio, uma fábrica produz 5400m de tecido com 90cm de largura em 50 minutos. Quantos metros de tecido, com 1 metro e 20 centímetros de largura, seriam produzidos em 25 minutos? Resposta: 2025 metros. Dízimas periódicas Há frações que não possuem representações decimal exata. Por exemplo: Aos numerais decimais em que há repetição periódica e infinita de um ou mais algarismos, dá-se o nome de numerais decimais periódicos ou dízimas periódicas. Em uma dízima periódica, o algarismo ou algarismos que se repetem infinitamente, constituem o período dessa dízima. Dízimas periódicas simples Nas dízimas periódicas simples, o período apresenta-se logo após a vírgula. Veja os exemplos: (período: 5) (período: 3) (período: 12) Dízimas periódicas compostas Nas dízimas periódicas compostas, entre o período e a vírgula existe uma parte não periódica. Exemplos: Período: 2 Parte não periódica: 0 Período: 4 Período não periódica: 15 Período: 23 Parte não periódica: 1 Observações: Consideramos parte não periódica de uma dízima o termo situado entre vírgulas e o período. Excluímos portanto da parte não periódica o inteiro. Podemos representar uma dízima periódica das seguintes maneiras: Geratriz de uma dízima periódica É possível determinar a fração (número racional) que deu origem a uma dízima periódica. Denominamos esta fração de geratriz da dízima periódica. Como determinar a geratriz de uma dízima Dízima simples A geratriz de uma dízima simples é uma fração que tem para numerador o período e para denominador tantos noves quantos forem os algarismos do período. Exemplos: Dízima Composta A geratriz de uma dízima composta é uma fração da forma , onde: n é a parte não periódica seguida do período, menos a parte não periódica. d tantos noves quantos forem os algarismos do período seguidos de tantos zeros quantos forem os algarismos da parte não periódica. Exemplos: Porcentagem É frequente o uso de expressões que refletem acréscimos ou reduções em preços, números ou quantidades, sempre tomando por base 100 unidades. Alguns exemplos: A gasolina teve um aumento de 15%. Significa que em cada R$100 houve um acréscimo de R$15,00. O cliente recebeu um desconto de 10% em todas as mercadorias. Significa que em cada R$100 foi dado um desconto de R$10,00. Dos jogadores que jogam no Grêmio, 90% são craques. Significa que em cada 100 jogadores que jogam no Grêmio, 90 são craques. Razão centesimal Toda a razão que tem para consequente o número 100 denomina-se razão centesimal. Alguns exemplos: Podemos representar uma razão centesimal de outras formas: As expressões 7%, 16% e 125% são chamadas taxas centesimais ou taxas percentuais. Considere o seguinte problema: João vendeu 50% dos seus 50 cavalos. Quantos cavalos ele vendeu? Para solucionar esse problema, devemos aplicar a taxa percentual (50%) sobre o total de cavalos. Logo, ele vendeu 25 cavalos, que representa a porcentagem procurada. Portanto, chegamos à seguinte definição: Porcentagem é o valor obtido ao aplicarmos uma taxa percentual a um determinado valor. Exemplos Calcular 10% de 300. Calcular 25% de 200kg. Logo, 50kg é o valor correspondente à porcentagem procurada. Exercícios 1) Um jogador de futebol, ao longo de um campeonato, cobrou 75 faltas, transformando em gols 8% dessas faltas. Quantos gols de falta esse jogador fez? Portanto o jogador fez 6 gols de falta. 2) Se eu comprei uma ação de um clube por R$250,00 e a revendi por R$300,00, qual a taxa percentual de lucro obtida? Montamos uma equação, onde somando os R$250,00 iniciais com a porcentagem que aumentou em relação a esses R$250,00, resulte nos R$300,00. Portanto, a taxa percentual de lucro foi de 20%. Fator de Multiplicaçao Se, por exemplo, há um acréscimo de 10% a um determinado valor, podemos calcular o novo valor apenas multiplicando esse valor por 1,10, que é o fator de multiplicação. Se o acréscimo for de 20%, multiplicamos por 1,20, e assim por diante. Veja outros exemplos na tabela abaixo: Acréscimo ou Lucro Fator de Multiplicação 10% 1,10 15% 1,15 20% 1,20 47% 1,47 67% 1,67 Exemplo: Aumentando 10% no valor de R$10,00 temos: 10 * 1,10 = R$ 11,00. No caso de haver um decréscimo, teremos: Fator de Multiplicação = 1 - taxa de desconto (na forma decimal) Veja exemplos na tabela abaixo: Desconto Fator de Multiplicação 10% 0,90 25% 0,75 34% 0,66 60% 0,40 90% 0,10 Exemplo: Descontando 10% no valor de R$10,00 temos: 10 * 0,90 = R$ 9,00 Área das figuras planas Retângulo Quadrado Triângulo Triângulo equilátero Paralelogramo Trapézio Losango Polígonos A palavra "polígono" vem da palavra grega "polúgonos", que significa ter muitos lados ou ângulos. Na geometria, polígono é uma figura plana limitada por uma linha poligonal fechada. Classificaçao dos polígonos Os nomes dos polígonos dependem do critério que utilizamos para classificá-los. Se usarmos o número de ângulos ou o número de lados, teremos a seguinte nomenclatura: NÚMERO DE LADOS (OU ÂNGULOS) NOME DO POLÍGONO EM FUNÇÃO DO NÚMERO DE ÂNGULOS EM FUNÇÃO DO NÚMERO DE LADOS 3 triângulo trilátero 4 quadrângulo quadrilátero 5 pentágono pentalátero 6 hexágono hexalátero 7 heptágono heptalátero 8 octógono octolátero9 eneágono enealátero 10 decágono decalátero 11 undecágono undecalátero 12 dodecágono dodecalátero 15 pentadecágono pentadecalátero 20 icoságono icosalátero Medidas de superfície Introdução As medidas de superficie fazem parte de nosso dia a dia e respondem a nossas perguntas mais corriqueiras do cotidiano: Qual a área desta sala? Qual a área desse apartamento? Quantos metros quadrados de azulejos são necessarios para revestir esta piscina? Qual a área dessa quadra de futebol de salão? Qual a área pintada dessa parede? Superfície e área Superficie é uma grandeza com duas dimensões, enquanto área é a medida dessa grandeza, portanto, um número. Metro quadrado A unidade fundamental de superfície chama-se metro quadrado. O metro quadrado (m2) é a medida correspondente à superfície de um quadrado com 1 metro de lado. Múltiplos Unidade Fundamental Submúltiplos quilômetro quadrado hectômetro quadrado decâmetro quadrado metro quadrado decímetro quadrado centímetro quadrado milímetro quadrado km2 hm2 dam2 m2 dm2 cm2 mm2 1.000.000m2 10.000m2 100m2 1m2 0,01m2 0,0001m2 0,000001m2 O dam2, o hm2 e km2 sao utilizados para medir grandes superfícies, enquanto o dm2, o cm2 e o mm2 são utilizados para pequenas superfícies. Exemplos 1) Leia a seguinte medida: 12,56m2 km2 hm2 dam2 m2 dm2 cm2 mm2 12, 56 Lê-se "12 metros quadrados e 56 decímetros quadrados". Cada coluna dessa tabela corresponde a uma unidade de área. 2) Leia a seguinte medida: 178,3 m2 km2 hm2 dam2 m2 dm2 cm2 mm2 1 78, 30 Lê-se "178 metros quadrados e 30 decímetros quadrados" . 3) Leia a seguinte medida: 0,917 dam2 km2 hm2 dam2 m2 dm2 cm2 mm2 0, 91 70 Lê-se 9.170 decímetros quadrados. Medidas agrárias As medidas agrárias são utilizadas parea medir superfícies de campo, plantações, pastos, fazendas, etc. A principal unidade destas medidas é o are (a). Possui um múltiplo, o hectare (ha), e um submúltiplo, o centiare (ca). Unidade agrária hectare (ha) are (a) centiare (ca) Equivalência de valor 100a 1a 0,01a Lembre-se: 1 ha = 1hm2 1a = 1 dam2 1ca = 1m2 Transformação de unidades No sistema métrico decimal, devemos lembrar que, na transformação de unidades de superfície, cada unidade de superfície é 100 vezes maior que a unidade imediatamente inferior: Observe as seguintes transformações: transformar 2,36 m2 em mm2. km2 hm2 dam2 m2 dm2 cm2 mm2 Para transformar m2 em mm2 (três posições à direita) devemos multiplicar por 1.000.000 (100x100x100). 2,36 x 1.000.000 = 2.360.000 mm2 transformar 580,2 dam2 em km2. km2 hm2 dam2 m2 dm2 cm2 mm2 Para transformar dam2 em km2 (duas posições à esquerda) devemos dividir por 10.000 (100x100). 580,2 : 10.000 = 0,05802 km2 Pratique! Tente resolver esses exercícios: 1) Transforme 8,37 dm2 em mm2 (R: 83.700 mm2) 2) Transforme 3,1416 m2 em cm2 (R: 31.416 cm2) 3) Transforme 2,14 m2 em dam2 (R: 0,0214 dam2) 4) Calcule 40m x 25m (R: 1.000 m2) Medidas de volume Introdução Frequentemente nos deparamos com problemas que envolvem o uso de três dimensões: comprimento, largura e altura. De posse de tais medidas tridimensionais, poderemos calcular medidas de metros cúbicos e volume. Metro cúbico A unidade fundamental de volume chama-se metro cúbico. O metro cúbico (m3) é medida correspondente ao espaço ocupado por um cubo com 1 m de aresta. Múltiplos e submúltiplos do metro cúbico Múltiplos Unidade Fundamental Submúltiplos quilômetro cúbico hectômetro cúbico decâmetro cúbico metro cúbico decímetro cúbico centímetro cúbico milímetro cúbico km3 hm3 dam3 m3 dm3 cm3 mm3 1.000.000.000m3 1.000.000 m3 1.000m3 1m3 0,001m3 0,000001m3 0,000000001 m3 Leitura das medidas de volume A leitura das medidas de volume segue o mesmo procedimento aplicado às medidas lineares. Devemos utilizar, porém, três algarismos em cada unidade no quadro. No caso de alguma casa ficar incompleta, completa-se com zero(s). Exemplos: Leia a seguinte medida: 75,84m3 km3 hm3 dam3 m3 dm3 cm3 mm3 75, 840 Lê-se "75 metros cúbicos e 840 decímetros cúbicos". Leia a medida: 0,0064dm3 km3 hm3 dam3 m3 dm3 cm3 mm3 0, 006 400 Lê-se "6400 centímetros cúbicos". Transformação de unidades Na transformação de unidades de volume, no sistema métrico decimal, devemos lembrar que cada unidade de volume é 1.000 vezes maior que a unidade imediatamente inferior. Observe a seguinte transformação: transformar 2,45 m3 para dm3. km3 hm3 dam3 m3 dm3 cm3 mm3 Para transformar m3 em dm3 (uma posição à direita) devemos multiplicar por 1.000. 2,45 x 1.000 = 2.450 dm3 Pratique! Tente resolver esses exercícios: 1) Transforme 8,132 km3 em hm3 (R: 8132 hm3) 2) Transforme 180 hm3 em km3 (R: 0,18 km3) 3) Transforme 1 dm3 em dam3 (R: 0,000001 dam3) 4) Expresse em metros cúbicos o valor da expressão: 3.540dm3 + 340.000cm3 (R: 3,88 m3) Medidas de capacidade Introdução A quantidade de líquido é igual ao volume interno de um recipiente. Afinal, quando enchemos este recipiente, o líquido assume a forma do mesmo. Capacidade é o volume interno de um recipiente. A unidade fundamental de capacidade chama-se litro. Litro é a capacidade de um cubo que tem 1dm de aresta. 1l = 1dm3 Múltiplos e submúltiplos do litro Múltiplos Unidade Fundamental Submúltiplos quilolitro hectolitro decalitro litro decilitro centilitro mililitro kl hl dal l dl cl ml 1000l 100l 10l 1l 0,1l 0,01l 0,001l Cada unidade é 10 vezes maior que a unidade imediatamente inferior. Relações: 1l = 1dm3 1ml = 1cm3 1kl = 1m3 Leitura das medidas de capacidade Exemplo: leia a seguinte medida: 2,478 dal kl hl dal l dl cl ml 2, 4 7 8 Lê-se "2 decalitros e 478 centilitros". Transformação de unidades Na transformação de unidades de capacidade, no sistema métrico decimal, devemos lembrar que cada unidade de capacidade é 10 vezes maior que a unidade imediatamente inferior. Observe a seguinte transformação: transformar 3,19 l para ml. kl hl dal l dl cl ml Para transformar l para ml (três posições à direita) devemos multiplicar por 1.000 (10x10x10). 3,19 x 1.000 = 3.190 ml Pratique! Tente resolver esses exercícios: 1) Transforme 7,15 kl em dl (R: 71.500 dl) 2) Transforme 6,5 hl em l (R: 650 l) 3) Transforme 90,6 ml em l (R: 0,0906 l) 4) Expresse em litros o valor da expressão: 0,6m3 + 10 dal + 1hl (R: 800 l) Medidas de massa Introdução Observe a distinção entre os conceitos de massa e peso: Massa é a quantidade de matéria que um corpo possui, sendo portanto constante em qualquer lugar da terra ou fora dela. Peso de um corpo é a força com que esse corpo é atraído (gravidade) para o centro da terra. Varia de acordo com o local em que o corpo se encontra. Por exemplo: a massa do homem na Terra ou na Lua tem o mesmo valor. O peso, no entanto, é seis vezes maior na terra do que na lua. Explica-se esse fenômeno pelo fato da gravidade terrestre ser 6 vezes superior à gravidade lunar. Obs: A palavra grama, empregada no sentido de "unidade de medida de massa de um corpo", é um substantivo masculino. Assim 200g, lê-se "duzentos gramas". Quilograma A unidade fundamental de massa chama-se quilograma. O quilograma (kg) é a massa de 1dm3 de água destilada à temperatura de 4ºC. Apesar de o quilograma ser a unidade fundamental de massa, utilizamos na prática o grama como unidadeprincipal de massa. Múltiplos e submúltiplos do grama Múltiplos Unidade principal Submúltiplos quilograma hectograma decagrama grama decigrama centigrama miligrama kg hg dag g dg cg mg 1.000g 100g 10g 1g 0,1g 0,01g 0,001g Observe que cada unidade de volume é dez vezes maior que a unidade imediatamente inferior. Exemplos: 1 dag = 10 g 1 g = 10 dg Leitura das medidas de massa A leitura das medidas de massa segue o mesmo procedimento aplicado às medidas lineares. Exemplos: Leia a seguinte medida: 83,731 hg. kg hg dag g dg cg mg 8 3, 7 3 1 Lê-se "83 hectogramas e 731 decigramas". Leia a medida: 0,043g. kg hg dag g dg cg mg 0, 0 4 3 Lê-se " 43 miligramas". Relações importantes Podemos relacionar as medidas de massa com as medidas de volume e capacidade. Assim, para a água pura (destilada) a uma temperatura de 4ºC é válida a seguinte equivalência: 1 kg <=> 1dm3 <=> 1L São válidas também as relações: 1m3 <=> 1 Kl <=> 1t 1cm3 <=> 1ml <=> 1g Observação: Na medida de grandes massas, podemos utilizar ainda as seguintes unidades especiais: 1 arroba = 15 kg 1 tonelada (t) = 1.000 kg 1 megaton = 1.000 t ou 1.000.000 kg Transformação de unidades Cada unidade de massa é 10 vezes maior que a unidade imediatamente inferior. Observe as seguintes transformações: Transforme 4,627 kg em dag. kg hg dag g dg cg mg Para transformar kg em dag (duas posições à direita) devemos multiplicar por 100 (10 x 10). 4,627 x 100 = 462,7 Ou seja: 4,627 kg = 462,7 dag Observação: em algumas situações você pode encontrar os termos "peso bruto" e "peso líquido", que significam: Peso bruto: peso do produto com a embalagem. Peso líquido: peso somente do produto. Medidas de tempo Introdução É comum em nosso dia a dia ouvirmos perguntas do tipo: Qual a duração dessa partida de futebol? Qual o tempo dessa viagem? Qual a duração desse curso? Qual o melhor tempo obtido por esse corredor? Todas essas perguntas serão respondidas tomando por base uma unidade padrão de medida de tempo. A unidade de tempo escolhida como padrão no Sistema Internacional (SI) é o segundo. Segundo O Sol foi o primeiro relógio do homem: o intervalo de tempo natural decorrido entre as sucessivas passagens do Sol sobre um dado meridiano dá origem ao dia solar. O segundo (s) é o tempo equivalente a do dia solar médio. As medidas de tempo não pertencem ao Sistema Métrico Decimal. Múltiplos e submúltiplos do segundo Quadro de unidades Múltiplos minutos hora dia min h d 60 s 60 min = 3.600 s 24 h = 1.440 min = 86.400s São submúltiplos do segundo: décimo de segundo centésimo de segundo milésimo de segundo Cuidado: nunca escreva 2,40h como forma de representar 2h40min, pois o sistema de medidas de tempo não é decimal. Observe: Outras importantes unidades de medida mês (comercial) = 30 dias ano (comercial) = 360 dias ano (normal) = 365 dias e 6 horas ano (bissexto) = 366 dias semana = 7 dias quinzena = 15 dias bimestre = 2 meses trimestre = 3 meses quadrimestre = 4 meses semestre = 6 meses biênio = 2 anos lustro ou quinquênio = 5 anos década = 10 anos século = 100 anos milênio = 1.000 anos Medidas de Comprimento Sistema Métrico Decimal Desde a antiguidade, os povos foram criando suas unidades de medida. Cada um deles possuía suas próprias unidades-padrão. Com o desenvolvimento do comércio, ficavam cada vez mais difíceis a troca de informações e as negociações com tantas medidas diferentes. Era necessário que se adotasse um padrão de medida único para cada grandeza. Foi assim que, em 1791, época da revolução francesa, um grupo de representantes de vários países reuniu-se para discutir a adoção de um sistema único de medidas. Surgia o sistema métrico decimal. Metro A palavra metro vem do gegro métron e significa "o que mede". Foi estabelecido inicialmente que a medida do metro seria a décima milionésima parte da distância do Pólo Norte ao Equador, no meridiano que passa por Paris. No Brasil, o metro foi adotado oficialmente em 1928. Múltiplos e submúltiplos do metro Além da unidade fundamental de comprimento, o metro, existem ainda os seus múltiplos e submúltiplos, cujos nomes são formados com o uso dos prefixos: quilo, hecto, deca, deci, centi e mili. Observe o quadro: Múltiplos Unidade Fundamental Submúltiplos quilômetro hectômetro decâmetro metro decímetro centímetro milímetro km hm dam m dm cm mm 1.000m 100m 10m 1m 0,1m 0,01m 0,001m Os múltiplos do metro são utilizados para medir grandes distâncias, enquanto os submúltiplos, para pequenas distâncias. Para medidas milimétricas, em que se exige precisão, utilizamos: mícron (µ) = 10-6 m angströn (Å) = 10-10 m Para distâncias astronômicas utilizamos o Ano-luz (distância percorrida pela luz em um ano): Ano-luz = 9,5 · 1012 km O pé, a polegada, a milha e a jarda são unidades não pertencentes ao sistemas métrico decimal, sendo utilizadas em países de língua inglesa. Observe as igualdades abaixo: Pé = 30,48 cm Polegada = 2,54 cm Jarda = 91,44 cm Milha terrestre = 1.609 m Milha marítima = 1.852 m Observe que: 1 pé = 12 polegadas 1 jarda = 3 pés Leitura das medidas de comprimento A leitura das medidas de comprimentos pode ser efetuada com o auxílio do quadro de unidades. Exemplos: Leia a seguinte medida: 15,048 m. Sequência prática: 1º) Escrever o quadro de unidades: km hm dam m dm cm mm 2º) Colocar o número no quadro de unidades, localizando o último algarismo da parte inteira sob a sua respectiva. km hm dam m dm cm mm 1 5, 0 4 8 3º) Ler a parte inteira acompanhada da unidade de medida do seu último algarismo e a parte decimal acompanhada da unidade de medida do último algarismo da mesma. 15 metros e 48 milímetros Outros exemplos: 6,07 km ( lê-se "seis quilômetros e sete decâmetros") 82,107 dam (lê-se "oitenta e dois decâmetros e cento e sete centímetros") 0,003 m (lê-se "três milímetros") ransformação de Unidades Cada unidade de comprimento é 10 vezes maior que a unidade imediatamente inferior. Observe as seguintes transformações: Transforme 16,584hm em m. km hm dam m dm cm mm Para transformar hm em m (duas posições à direita) devemos multiplicar por 100 (10 x 10). 16,584 x 100 = 1.658,4 Ou seja: 16,584hm = 1.658,4m Transforme 1,463 dam em cm. km hm dam m dm cm mm Para transformar dam em cm (três posições à direita) devemos multiplicar por 1.000 (10 x 10 x 10). 1,463 x 1.000 = 1,463 Ou seja: 1,463dam = 1.463cm. Transforme 176,9m em dam. km hm dam m dm cm mm Para transformar m em dam (uma posição à esquerda) devemos dividir por 10. 176,9 : 10 = 17,69 u seja: 176,9m = 17,69dam Transforme 978m em km. km hm dam m dm cm mm Para transformar m em km (três posições à esquerda) devemos dividir por 1.000. 978 : 1.000 = 0,978 Ou seja: 978m = 0,978km. Observação: para resolver uma expressão formada por termos com diferentes unidades, devemos inicialmente transformar todos eles numa mesma unidade, para a seguir efetuar as operações. Perímetro de um polígono Perímetro de um polígono é a soma das medidas dos seus lados. Perímetro do retângulo O perímetro de um retângulo é calculado da seguinte forma: b - base ou comprimento h - altura ou largura Perímetro = 2b + 2h = 2(b + h) Perímetro dos polígonos regulares Triângulo equilátero Quadrado P = l+ l + l P = 3 · l P = l + l + l+ l P = 4 · l Pentágono Hexágono P = l + l + l + l + l P = 5 · l P = l + l + l + l + l + l P = 6 · l l - medida do lado do polígono regular P - perímetro do polígono regularPara um polígono de n lados, temos: P = n · l Comprimento da circunferência Um pneu tem 40cm de diâmetro, conforme a figura. Pergunta-se: cada volta completa deste pneu corresponde na horizontal a quantos centímetros? Envolva a roda com um barbante. Marque o início e o fim desta volta no barbante. Estique-o bastante e meça o comprimento da circunferência correspondente à roda. Medindo essa dimensão, você encontrará aproximadamente 125,6cm, que é um valor um pouco superior a 3 vezes o seu diâmetro. Vamos ver como determinar este comprimento por um processo não experimental. Você provavelmente já ouviu falar de uma antiga descoberta matemática: Dividindo o comprimento de uma circunferência (C) pela medida do seu diâmetro (D), encontramos sempre um valor aproximadamente igual a 3,14. Assim: O número 3,141592... corresponde em matemática à letra grega (lê-se "pi"), que é a primeira lera da palavra grega perímetro. Costuma-se considera = 3,14. Logo: Utilizando essa fórmula, podemos determinar o comprimento de qualquer circunferência. Podemos agora conferir com auxílio da fórmula o comprimento da roda obtido experimentalmente. C = 2r C = 2. 3,14 · 20 C = 125,6 cm 3,141592... Equações do 2º grau O que é uma equação do 2º grau? Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax2 + bx + c = 0; a, b, c IR e Exemplos: x2 - 5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. 6x2 - x - 1 = 0 é um equação do 2º grau com a = 6, b = -1 e c = -1. 7x2 - x = 0 é um equação do 2º grau com a = 7, b = -1 e c = 0. x2 - 36 = 0 é um equação do 2º grau com a = 1, b = 0 e c = -36. Nas equações escritas na forma ax² + bx + c = 0 (forma normal ou forma reduzida de uma equação do 2º grau na incógnita x) chamamos a, b e c de coeficientes. a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente. Equações completas e incompletas Uma equação do 2º grau é completa quando b e c são diferentes de zero. Exemplos: x² - 9x + 20 = 0 e -x² + 10x - 16 = 0 são equações completas. Uma equação do 2º grau é incompleta quando b ou c é igual a zero, ou ainda quando ambos são iguais a zero. Exemplos: x² - 36 = 0 (b = 0) x² - 10x = 0 (c = 0) 4x² = 0 (b = c = 0) Raízes de uma equação do 2º grau Resolver uma equação do 2º grau significa determinar suas raízes. Raiz é o número real que, ao substituir a incógnita de uma equação, transforma-a numa sentença verdadeira. O conjunto formado pelas raízes de uma equação denomina-se conjunto verdade ou conjunto solução. Exemplos: Dentre os elementos do conjuntos A= {-1, 0, 1, 2}, quais são raízes da equação x² - x - 2 = 0? Solução: Substituímos a incógnita x da equação por cada um dos elementos do conjunto e verificamos quais as sentenças verdadeiras. Para x = -1 (-1)² - (-1) - 2 = 0 1 + 1 - 2 = 0 0 = 0 (V) Para x = 0 0² - 0 - 2 = 0 0 - 0 -2 = 0 -2 = 0 (F) Para x = 1 1² - 1 - 2 = 0 1 - 1 - 2 = 0 -2 = 0 (F) Para x = 2 2² - 2 - 2 = 0 4 - 2 - 2 = 0 0 = 0 (V) Logo, -1 e 2 são raízes da equação. Determine p sabendo que 2 é raiz da equação (2p - 1) x² - 2px - 2 = 0. Solução: Substituindo a incógnita x por 2, determinamos o valor de p. Logo, o valor de p é . Resolução de equações incompletas Resolver uma equação significa determinar o seu conjunto verdade. Na resolução de uma equação incompleta, utilizamos as técnicas da fatoração e duas importantes propriedades dos números reais: 1ª Propriedade: 2ª Propriedade: 1º Caso: equação do tipo . Exemplo: Determine as raízes da equação , sendo . Solução Inicialmente, colocamos x em evidência: Para o produto ser igual a zero, basta que um dos fatores também o seja. Assim: Obtemos dessa maneira duas raízes que formam o conjunto verdade: De modo geral, a equação do tipo tem para soluções e . 2º Caso: equação do tipo Exemplos: Determine as raízes da equação , sendo U = IR. Solução: De modo geral, a equação do tipo possui duas raízes reais se for um número positivo, não tendo raiz real caso seja um número negativo. Resolução de equações completas Para solucionar equações completas do 2º grau utilizaremos a fórmula de Bhaskara. A partir da equação , em que a, b, c IR e , desenvolveremos passo a passo a dedução da fórmula de Bhaskara (ou fórmula resolutiva). 1º passo: multiplicaremos ambos os membros por 4a. 2º passo: passar 4ac par o 2º membro. 3º passo: adicionar aos dois membros. 4º passo: fatorar o 1º elemento. 5º passo: extrair a raiz quadrada dois membros. 6º passo: passar b para o 2º membro. 7º passo: dividir os dois membros por . Assim, encontramos a fórmula resolutiva da equação do 2º grau: Podemos representar as duas raízes reais por x' e x", assim: Exemplos: Resolução da equação: . Temos Discriminante Denominamos discriminante o radical b2-4ac que é representado pela letra grega (delta). Podemos agora escrever deste modo a fórmula de Bhaskara: De acordo com o discriminante, temos três casos a considerar: 1º caso: o discriminante é positivo . O valor de é real e a equação tem duas raízes reais diferentes, assim representadas: Exemplo: Para quais valores de k a equação x² - 2x + k- 2 = 0 admite raízes reais e desiguais? Solução Para que a equação admita raízes reais e desiguais, devemos ter Logo, os valores de k devem ser menores que 3. 2º caso: o discriminante é nulo O valor de é nulo e a equação tem duas raízes reais e iguais, assim representadas: Exemplo: Determine o valor de p, para que a equação x² - (p - 1) x + p-2 = 0 possua raízes iguais. Solução: Para que a equação admita raízes iguais, é necessário que . Logo, o valor de p é 3. 3º caso: o discriminante é negativo . O valor de não existe em IR, não existindo portanto raízes reais. As raízes da equação são número complexos. Exemplo: Para quais valores de m a equação 3x² + 6x +m = 0 não admite nenhuma raiz real? Solução: Para que a equação não tenha raiz real, devemos ter Logo, os valores de m devem ser maiores que 3. Resumindo Dada a equação ax² + bx + c = 0, temos: Para , a equação tem duas raízes reais diferentes. Para , a equação tem duas raízes reais iguais. Para , a equação não tem raízes reais. Equações literais As equações do 2º grau na variável x que possuem alguns coeficientes ou alguns termos independentes indicados por outras letras são denominadas equações literais. As letras que aparecem em uma equação literal, excluindo a incógnita, são denominadas parâmetros. Exemplos: ax2+ bx + c = 0 incógnita: x parâmetros: a, b, c ax2 - (2a + 1) x + 5 = 0 incógnita: x parâmetro: a Equações literais incompletas A resolução de equações literais incompletas segue o mesmo processo das equações numéricas. Observe os exemplos: Resolva a equação literal incompleta 3x2 - 12m2=0, sendo x a variável. Solução: 3x2 - 12m2 = 0 3x2 = 12m2 x2 = 4m2 x= Logo, temos: Resolva a equação literal incompleta my2- 2aby=0, com m0, sendo y a variável. Solução my2 - 2aby = 0 y(my - 2ab)=0 Temos, portanto, duas soluções: y=0 ou my - 2ab = 0 my = 2ab y= Assim: Na solução do último exemplo, teríamos cometido um erro grave se tivéssemos assim resolvido: my2 - 2aby= 0 my2 = 2aby my = 2ab Desta maneira, obteríamos apenas a solução . O zero da outra solução foi "perdido" quando dividimos ambos os termos por y. Esta é uma boa razão para termos muito cuidado com os cancelamentos, evitando desta maneira a divisão por zero, que é um absurdo. Equações literais completas As equações literais completas podem sertambém resolvidas pela fórmula de Bhaskara. Acompanhe o exemplo: Resolva a equação: x2 - 2abx - 3a2b2, sendo x a variável. Solução: Temos a=1, b = -2ab e c=-3a2b2 Portanto: Assim, temos: V= { - ab, 3ab}. Relações entre os coeficientes e as raízes Considere a equação ax2 + bx + c = 0, com a 0 e sejam x'e x'' as raízes reais dessa equação. Logo: Observe as seguintes relações: Soma das raízes (S) Produto das raízes (P) Como ,temos: Denominamos essas relações de relações de Girard. Verifique alguns exemplos de aplicação dessas relações. Determine a soma e o produto das raízes da equação 10x2 + x - 2 = 0. Solução Nesta equação, temos: a=10, b=1 e c=-2. A soma das raízes é igual a . O produto das raízes é igual a . Assim: Assim: Determine o valor de k na equação x2 + ( 2k - 3)x + 2 = 0, de modo que a soma de suas raízes seja igual a 7. Solução Nesta equação, temos: a=1, b=2k e c=2. S= x1 + x2 = 7 Logo, o valor de k é -2. Composição de uma equação do 2º grau, conhecidas as raízes Considere a equação do 2º grau ax2 + bx + c = 0. Dividindo todos os termos por a , obtemos: Como , podemos escrever a equação desta maneira. x2 - Sx + P = 0 Exemplos: Componha a equação do 2º grau cujas raízes são -2 e 7. Solução: A soma das raízes corresponde a: S= x1 + x2 = -2 + 7 = 5 O produto das raízes corresponde a: P= x1 . x2 = ( -2) . 7 = -14 A equação do 2º grau é dada por x2 - Sx + P = 0, onde S=5 e P= -14. Logo, x2 - 5x - 14 = 0 é a equação procurada. Formar a equação do 2º grau, de coeficientes racionais, sabendo-se que uma das raízes é . Solução: Se uma equação do 2º grau, de coeficientes racionais, tem uma raiz , a outra raiz será . Assim: Logo, x2 - 2x - 2 = 0 é a equação procurada. Forma fatorada Considere a equação ax2 + bx + c = 0. Colocando a em evidência, obtemos: Então, podemos escrever: Logo, a forma fatorada da equação ax2 + bx + c = 0 é: a.(x - x') . (x - x'') = 0 Exemplos: Escreva na forma fatorada a equação x2 - 5x + 6 = 0. Solução: Calculando as raízes da equação x2 - 5x + 6 = 0, obtemos x1= 2 e x2= 3. Sendo a= 1, x1= 2 e x2= 3, a forma fatorada de x2 - 5x + 6 = 0 pode ser assim escrita: (x-2).(x-3) = 0 Escreva na forma fatorada a equação 2x2 - 20x + 50 = 0. Solução: Calculando as raízes da equação 2x2 - 20x + 50 = 0, obtemos duas raízes reais e iguais a 5. Sendo a= 2, x1=x2= 5, a forma fatorada de 2x2 - 20x + 50 = 0 pode ser assim escrita: 2.(x - 5) (x - 5) = 0 ou 2. (x - 5)2=0 Escreva na forma fatorada a equação x2 + 2x + 2 = 0. Solução: Como o , a equação não possui raízes reais. Logo, essa equação não possui forma fatorada em IR. Equações biquadradas Observe as equações: x4 - 13x2 + 36 = 0 9x4 - 13x2 + 4 = 0 x4 - 5x2 + 6 = 0 Note que os primeiros membros são polinômios do 4º grau na variável x, possuindo um termo em x4, um termo em x2 e um termo constante. Os segundos membros são nulos. Denominamos essas equações de equações biquadradas. Ou seja, equação biquadrada com uma variável x é toda equação da forma: ax4 + bx2 + c = 0 Exemplos: x4 - 5x2 + 4 = 0 x4 - 8x2 = 0 3x4 - 27 = 0 Cuidado! As equações abaixo não são biquadradas, pois em uma equação biquadrada a variável x só possui expoentes pares. x4 - 2x3 + x2 + 1 = 0 6x4 + 2x3 - 2x = 0 x4 - 3x = 0 Resolução de uma equação biquadrada Na resolução de uma equação biquadrada em IR, devemos substituir sua variável, transformando-a numa equação do 2º grau. Observe agora o procedimento que deve ser utilizado. Sequência prática: Substitua x4 por y2 (ou qualquer outra incógnita elevada ao quadrado) e x2 por y. Resolva a equação ay2 + by + c = 0. Determine a raiz quadrada de cada uma da raízes ( y'e y'') da equação ay2 + by + c = 0. Essas duas relações indicam-nos que cada raiz positiva da equação ay2 + by + c = 0 dá origem a duas raízes simétricas para a biquadrada: a raiz negativa não dá origem a nenhuma raiz real para a mesma. Exemplos: Determine as raízes da equação biquadrada x4 - 13 x2 + 36 = 0. Solução: Substituindo x4 por y2 e x2 por y, temos: y2 - 13y + 36 = 0 Resolvendo essa equação, obtemos: y'=4 e y''=9 Como x2= y, temos: Logo, temos para conjunto verdade: V={ -3, -2, 2, 3}. Determine as raízes da equação biquadrada x4 + 4x2 - 60 = 0. Solução: Substituindo x4 por y2 e x2 por y, temos: y2 + 4y - 60 = 0 Resolvendo essa equação, obtemos: y'=6 e y''= -10 Como x2= y, temos: Logo, temos para o conjunto verdade:. Determine a soma das raízes da equação . Solução: Utilizamos o seguinte artifício: Assim: y2 - 3y = -2 y2 - 3y + 2 = 0 y'=1 e y''=2 Substituindo y, determinamos: Logo, a soma das raízes é dada por: Resolução de equações da forma: ax2n + bxn + c = 0 Esse tipo de equação pode ser resolvida da mesma forma que a biquadrada. Para isso, substituimos xn por y, obtendo: ay2 + by + c = 0, que é uma equação do 2º grau. Exemplo: Resolva a equação x6 + 117x3 - 1.000 = 0. Solução: Fazendo x3=y, temos: y2 + 117y - 1.000 = 0 Resolvendo a equação, obtemos: y'= 8 e y''= - 125 Então: Logo, V= {-5, 2 }. Composição da equação biquadrada Toda equação biquadrada de raízes reais x1, x2, x3 e x4 pode ser composta pela fórmula: (x -x1) . (x - x2) . (x - x3) . (x - x4) = 0 Exemplo: Compor a equação biquadrada cujas raízes são: Solução: a) (x - 0) (x - 0) (x + 7) (x - 7) = 0 x2(x2 -49) = 0 x4 - 49x2 = 0 b) (x + a) (x - a) (x + b) (x - b) = 0 (x2-a2) (x2-b2) = 0 x4 - (a2 + b2) x2 + a2b2 = 0 Propriedades das raízes da da equação biquadrada Consideremos a equação ax4 + bx2 + c = 0, cujas raízes são x1, x2, x3 e x4 e a equação do 2º grau ay2 + by + c = 0, cujas raízes são y' e y''.De cada raiz da equação do 2º grau, obtemos duas raízes simétricas para a biquadrada. Assim: Do exposto, podemos estabelecer as seguintes propriedades: 1ª propriedade: a soma das raízes reais da equação biquadrada é nula. x1 + x2 + x3 + x4 = 0 2ª propriedade: a soma dos quadrados das raízes reais da equação biquadrada é igual a -. 3ª propriedade: o produto das raízes reais e não-nulas da equação biquadrada é igual a . Equações irracionais Considere as seguintes equações: Observe que todas elas apresentam variável ou incógnita no radicando. Essas equações são irracionais. Ou seja: Equação irracional é toda equação que tem variável no radicando. Resolução de uma equação irracional A resolução de uma equação irracional deve ser efetuada procurando transformá-la inicialmente numa equação racional, obtida ao elevarmos ambos os membros da equação a uma potência conveniente. Em seguida, resolvemos a equação racional encontrada e, finalmente, verificamos se as raízes da equação racional obtidas podem ou não ser aceitas como raízes da equação irracional dada (verificar a igualdade). É necessária essa verificação, pois, ao elevarmos os dois membros de uma equação a uma potência, podem aparecer na equação obtida raízes estranhas à equação dada. Observe alguns exemplos de resolução de equações irracionais no conjunto dos reais. Solução: Logo, V= {58}. Solução: Logo, V= { -3}; note que 2 é uma raiz estranha a essa equação irracional. Solução: Logo, V= { 7 }; note que 2 é uma raiz estranha a essa equação irracional. Solução: Logo, V={9}; note que é uma raiz estranha a essa equação irracional. Sistemas de equações do 2º grau Observe o seguinte problema: Uma quadra de tênis tem a forma da figura, com perímetro de 64 m e área de 192 m2. Determine as medidas x e y indicadas na figura. De acordo com os dados, podemos escrever: Perímetro: 8x + 4y = 64 Área: 2x . ( 2x + 2y) = 192 4x2 + 4xy = 192 Simplificando, obtemos: 2x + y = 16 (1) x2 +xy = 48 (2) Temos aí um sistema de equações do 2º grau, pois umadas equações é do 2º grau. Podemos resolvê-lo pelo método da substituição: Assim: 2x + y = 16 (1) y = 16 - 2x Substituindo y em (2), temos: x2 + x ( 16 - 2x) = 48 x 2 + 16x - 2x2 = 48 - x2 + 16x - 48 = 0 Multiplicando ambos os membros por -1. x2 - 16x + 48 = 0 x'=4 e x''=12 Determinando y para cada um dos valores de x, obtemos: y'=16 - 2 . 4 = 8 y''=16 - 2 . 12 = - 8 As soluções do sistema são os pares ordenados (4,8) e ( 12, -8). Desprezando o par ordenado que possui ordenada negativa, teremos para dimensões da quadra: Comprimento = 2x + 2y = 2.4 + 2.8 = 24m Largura = 2x = 2. 4 = 8m Verifique agora a solução deste outro sistema: Isolando y na primeira equação: y - 3x = -1 y = 3x - 1 Substituindo na segunda: x2 - 2x(3x - 1) = -3 x2 - 6x2 + 2x = -3 -5x2 + 2x + 3 = 0 Multiplicando ambos os membros por -1. 5x2 - 2x - 3 = 0 x'=1 e x''=- Determinando y para cada um dos valores de x, obtemos: As soluções do sistema são os pares ordenados ( 1, 2) e . Logo, temos para conjunto verdade: Problemas do 2º grau Para resolução de problemas do 2º grau, devemos seguir etapas: Sequência prática: Estabeleça a equação ou sistema de equações que traduzem o problema para a linguagem matemática. Resolva a equação ou o sistema de equações. Interprete as raízes encontradas, verificando se são compatíveis com os dados do problema. Observe agora, a resolução de alguns problemas do 2º grau: Determine dois números inteiros consecutivos tais que a soma de seus inversos seja . Solução: Representamos um número por x, e por x + 1 o seu consecutivo. Os seus inversos serão representados por . Temos então a equação: . Resolvendo-a: Observe que a raiz não é utilizada, pois não se trata de número inteiro. Resposta: Os números pedidos são, portanto, 6 e o seu consecutivo 7. Um número de dois algarismos é tal que, trocando-se a ordem dos seus algarismos, obtém-se um número que o excede de 27 unidades. Determine esse número, sabendo-se que o produto dos valores absolutos dos algarismos é 18. Solução: Representamos um número por 10x + y, e o número com a ordem dos algarismos trocada por 10y + x. Observe: Número: 10x + y Número com a ordem dos algarismos trocada: 10y + x. Temos, então, o sistema de equações: Resolvendo o sistema, temos: Isolando y na primeira equação: -x + y = 3 y= x + 3 Substituindo y na segunda equação: xy = 18 x ( x + 3) = 18 x2 + 3x = 18 x2 + 3x - 18 = 0 x'= 3 e x''= -6 Determinando y para cada um dos valores de x, obtemos: y'= 3 + 3 = 6 y''= -6 + 3 = -3 Logo, o conjunto verdade do sistema é dado por: V= { (3,6), ( -6, -3)}. Desprezando o par ordenado de coordenadas negativas, temos para solução do problema o número 36 ( x=3 e y=6). Resposta: O número procurado é 36. Outros exemplos de problemas do 2º grau Duas torneiras enchem um tanque em 6 horas. Sozinha, uma delas gasta 5 horas mais que a outra. Determine o tempo que uma delas leva para encher esse tanque isoladamente. Solução: Consideremos x o tempo gasto para a 1ª torneira encher o tanque e x+5 o tempo gasto para a 2ª torneira encher o tanque. Em uma hora, cada torneira enche a seguinte fração do tanque: Em uma hora, as duas torneiras juntas encherão do tanque; observe a equação correspondente: Resolvendo-a, temos: 6( x + 5 ) + 6x = x ( x + 5 ) 6x + 30 + 6x = x2 + 5x x2 - 7x - 30 = 0 x'= - 3 e x''=10 Como a raiz negativa não é utilizada, teremos como solução x= 10. Resposta: A 1ª torneira enche o tanque em 10 horas e a 2ª torneira, em 15 horas. Num jantar de confraternização, seria distribuído, em partes iguais, um prêmio de R$ 24.000,00 entre os convidados. Como faltaram 5 pessoas, cada um dos presentes recebeu um acréscimo de R$ 400,00 no seu prêmio. Quantos pessoas estavam presentes nesse jantar? Solução: Podemos representar por: Resolvendo-a: Resposta: Nesse jantar deveriam estar presentes 20 pessoas. Como faltaram 5, então 15 pessoas estavam presentes no jantar.