181 pág.

Pré-visualização | Página 5 de 28
é sempre constante. Exemplo: Sejam as grandezas X e Y, tais que cada uma delas assume os seguintes valores: X – 1, 2, 3. Y – 30, 15, 10. Portanto as grandezas X e Y são inversamente proporcionais, pois o produto entre os valores que elas assumem é sempre igual a 30. EXERCÍCIOS PROPOSTOS 91) Dividir o número 150 em duas partes diretamente proporcionais a 3 e 7. a) 25 e 125 b) 30 e 120 c) 35 e 115 d) 40 e 110 e) 45 e 105 Resposta: E 92) Dividir o número 180 em três partes diretamente proporcionais a 2, 3 e 4. a) 40, 60 e 80. b) 40,50 e 80. c) 60, 70 e 70. d) 80, 40 e 40. e) 80, 40 e 50. Resposta: A 93) Dividir o número 150 em três partes diretamente proporcionais a 2, 5 e 8. a) 20, 50 e 80 b) 30, 40 e 80 c) 20, 60 e 70 d) 30, 50 e 70 e) 30, 60 e 70 Resposta: A 94) Dividir o número 380 em três partes inversamente proporcionais a 2 , 5 e 4 . a) 80, 125 e 175 b) 100, 80 e 200 c) 200, 80 e 100 d) 80, 130 e 170 e) 130, 150 e 170 Resposta: C 95) Dividir o número 160 em duas partes inversamente proporcionais a 3 e 5 . a) 100 e 60 b) 60 e 100 c) 50 e 30 d) 30 e 50 32 e) 150 e 90 Resposta: A 96) Dividir o número 26 em três partes inversamente proporcionais a 2 , 3 e 4 , respectivamente. a) 12 , 8 e 6 b) 10 , 10 e 6 c) 8 , 12 e 6 d) 6 , 8 e 12 e) 6 , 10 e 12 Resposta: A 97) (Vunesp)O setor de limpeza de uma empresa prepara um produto utilizando detergente e água, nessa ordem, em quantidades diretamente proporcionais a 2 e 7. Se, no preparo desse produto, são usados 72 litros de detergente, então a diferença positiva entre as quantidades de água e de detergente, em litros, é igual a: a) 154 b) 160 c) 168 d) 175 e) 180 Resposta: E Instruções: Para resolver as questões de números 98 e 99, considere o enunciado abaixo: Um lote de 390 documentos deve ser arquivado por dois técnicos que trabalham num mesmo setor. Na tabela abaixo têm-se as idades e os tempos de serviço desses técnicos. Idade(anos) Tempo de serviço(meses) Rodrigo 24 8 Rogério 28 5 98) (Vunesp) Se os dois técnicos arquivarem todos os documentos, dividindo essa quantidade em partes diretamente proporcionais aos respectivos números de meses que cada um trabalha no setor, então o número de documentos arquivados por um deles será: a) 250 b) 240 c) 220 d) 200 e) 180 Resposta: B 99) (Vunesp) Se a divisão do total de documentos fosse feita em partes inversamente proporcionais às suas respectivas idades, o número que caberia ao mais velho seria: a) 210 b) 192 33 c) 180 d) 175 e) 164 Resposta: C 2.5- REGRA DE TRÊS SIMPLES E COMPOSTA 2.5.1- REGRA DE TRÊS SIMPLES Os problemas que envolvem grandezas diretamente ou inversamente proporcionais são chamados de problemas de regra de três simples. Torcemos para que o leitor tenha conhecimento deste assunto iniciaremos esta seção com um exemplo simples: Exemplo: 12 operários fizeram 30 metros de um muro. Quantos operários, nas mesmas condições, farão 45 metros do mesmo muro? Solução: Para obter a solução do problema devemos primeiramente descobrir quais são as variáveis envolvidas no contexto. É fácil observar que as variáveis são operários e metros do muro. Temos então que: quanto mais (menos) metros de muro tiverem que ser construídos, mais (menos) operários serão necessários. Isto é quanto mais cresce (ou demente) a variável metros do muro mais cresce (ou demente) a variável operários. Portanto quanto maior for o muro mais operários serão necessários. Sendo assim vemos que as duas variáveis tem o mesmo sentido. Neste caso, já que possuem o mesmo sentido, fixamos um sentido para a variável que possui a incógnita (veja a figura), e como possuem o mesmo sentido repetimos o sinal da figura. Operários Metros de Muro 12 30 x 45 Como as variáveis possuem o mesmo sentido mantemos a razão: 12 30 45x = Agora é só resolver 30x = 12x45 x = 18 operários Exemplo: 12 operários fazem um serviço em 40 dias. Em quantos dias 15 operários farão o mesmo serviço? Solução: Temos que as variáveis são Operários e dias. Quanto mais operários trabalham menos dias serão necessários para terminá-lo. Temos então que o sentido das variáveis é oposto.Logo escolha um sentido para cada variável. Operários Dias 12 40 15 x 34 Como o sentido das variáveis é oposto invertemos uma das razões 40 15 12x = logo: 15x = 40 x 12 x = 32 dias 2.5.1- REGRA DE TRÊS COMPOSTA Os problemas de regra de três que possuem mais de duas variáveis serão chamados de problemas de regra d três simples. Iniciaremos então resolvendo um exercício. Exemplo: Se 2/3 de uma obra foi realizada em 5 dias por 8 operários trabalhando 6 horas por dia, o restante da obra será feito, agora com 6 operários, trabalhando 10 horas por dia, em quantos dias? Solução: Evidente que teremos Observe que: • Quanto maior for a obra mais dias serão necessários. • Quanto mais operários estão trabalhando menos dias serão necessários. • Quanto mais horas por dia trabalharem menos dias serão necessários. EXERCÍCIOS PROPOSTOS 100) 12 operários fazem um serviço em 20 dias. Em quantos dias 15 operários farão o mesmo serviço? a) 9 b) 10 c) 12 d) 15 e) 16 Resposta: E 35 101) Para proceder auditoria, 6 técnicos previram sua conclusão em 30 dias. Tendo sido observado a ausência de um dos componentes da equipe, o trabalho agora poderá ser executado em: a) 36 dias b) 40 dias c) 35 dias d) 45 dias e) 25 dias Resposta: A 102) Um automóvel consome 8 litros de gasolina quando funciona durante 40 minutos seguidos. Se funcionasse durante 3 horas e 20 minutos, quantos litros de gasolina consumiria? a) 40 b) 60 c) 38 d) 55 e) 72 Resposta: A 103) 24 operários fazem 2/5 de determinado serviço em 10 dias, trabalhando 7 horas por dia. Em quantos dias a obra estará terminada, sabendo-se que foram dispensados 4 operários e o regime de trabalho diminuído em uma hora por dia? a) 8 b) 11 c) 12 d) 21 e) 18 Resposta: D 104) Se 2/3 de uma obra foi realizada em 5 dias por 8 operários trabalhando 6 horas por dia, o restante da obra será feito, agora com 6 operários, trabalhando 10 horas por dia em: a) 7 dias b) 6 dias c) 2 dias d) 4 dias e) 3 dias Resposta: C 105) Trabalhando 8 horas por dia, os 2 500 operários de uma indústria automobilística produzem 500 veículos em 30 dias. Quantos dias serão necessários para que 1200 operários produzam 450 veículos, trabalhando 10 horas por dia? a) 45 b) 50 c) 55 d) 60 36 e) 65 Resposta: A 106) Um alfaiate pode fazer uma roupa em 3 dias, e a sua esposa pode faze-la em 6 dias. Trabalhando juntos, em quantos dias farão a mesma roupa? a) 2 b) 3 c) 4 d) 1 e) 5 Resposta: A 107) Um depósito de água tem capacidade de 360 litros, e tem duas torneiras, onde uma delas o enche em 15 horas e a outra o esvazia em 20 horas. Abrindo-se as duas torneiras simultaneamente, em quantas horas o depósito ficará cheio? a) 60 b) 40 c) 30 d) 25 e) 20 Resposta: A 108) Uma caixa d’água tem capacidade de 900 litros. Uma torneira a enche em 9 horas, e a outra a esvazia em 18 horas. Abrindo-se as duas torneiras simultaneamente, a caixa d’água ficará cheia em: a) 18 horas b) 12 horas c) 6 horas d) 3 horas e) 8 horas Resposta: A 109) Uma caixa d’água com capacidade de 960 litros possui uma tubulação que a enche em 7 horas. Possui um “ladrão” que a esvazia em 12 horas. Com a água jorrando, enchendo a caixa, e o “ladrão” funcionando simultaneamente, em quanto tempo a caixa ficará cheia?: a) 16h e 8min b) 14h e 8min c) 16h e 28min d) 16h e 48min e) 14h e 48min Resposta: D VERIFICAÇÃO DE APRENDIZAGEM GERAL DO CAPÍTULO II (PROBLEMAS