Buscar

apostila de química geral experimental

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 86 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 86 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 86 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

1 
 
UNIVERSIDADE FEDERAL DE PERNAMBUCO 
CENTRO DE TECNOLOGIA E GEOCIÊNCIA 
DEPARTAMENTO DE ENGENHARIA QUÍMICA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
QUÍMICA GERAL EXPERIMENTAL 
 
 
 
CURSO DE QUÍMICA INDUSTRIAL 
 
 
 
 
 
 
 
 
 
Prof:_________________________________ 
 
Aluno:________________________________ 
 
 
 
 
 
 
 
RECIFE-PE 
2011.1 
 
2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apostila originalmente elaborada pelas 
profas. Andréa Bandeira e Márcia Nascimento 
do Dept. de Antibióticos da UFPE 
e adaptada pelo corpo docente do DEQ-UFPE. 
 
 
 
 
 
 
 
 
 
 
Caro aluno, 
 
por favor anote todos os erros que encontrar na apostila e avise ao 
professor para ele corrigir para o próximo período. Críticas e sugestões 
sobre a apostila ou os experimentos serão muito bem vindas. 
Atenciosamente, corpo docente do DEQ-UFPE. 
 
 
 
3 
 
SUMÁRIO 
 
 
 
 
 
 
 
 
 
 
1. INTRODUÇÃO 
2. INFORMAÇÕES IMPORTANTES 
3. EXPERIÊNCIAS 
3.1. DETERMINAÇÃO DA DENSIDADE DE SÓLIDOS E LÍQUIDOS 
3.2. SEPARAÇÃO DE MISTURAS 
3.3. CROMATOGRAFIA 
3.4. SÍNTESE DO ALÚMEN DE POTÁSSIO [KAl(SO4)2.12H2O] 
3.5. SOLUÇÕES: PREPARAÇÃO E VOLUMETRIA DE NEUTRALIZACÃO 
3.6. CINÉTICA QUÍMICA 
3.7. TERMOQUÍMICA: CALOR DE REAÇÃO 
3.8. EQUILÍBRIO QUÍMICO 
3.9. REAÇÕES QUÍMICAS E CÁLCULOS ESTEQUIOMÉTRICOS 
(SUBSTITUTIVO) 
 
4. SEGURANÇA NO LABORATÓRIO 
4.1. NORMAS BÁSICAS DE SEGURANÇA NO LABORATÓRIO 
4.2. ACIDENTES COMUNS EM LABORATÓRIOS E PRIMEIROS 
SOCORROS 
 
4.3. DESCARTE DE REJEITOS (RESÍDUOS) 
5. EQUIPAMENTOS BÁSICOS DE LABORATÓRIO 
6. OPERAÇÕES BÁSICAS DE LABORATÓRIO 
6.1. TUBO DE ENSAIO 
6.2. MANIPULANDO PRODUTOS QUÍMICOS 
6.3. LAVAGEM DE VIDRARIA 
6.4. O USO DO MATERIAL VOLUMÉTRICO 
6.5. A BALANÇA DE LABORATÓRIO 
6.5.1. PROCEDIMENTO PARA EFETUAR UMA PESAGEM 
6.6. BICO DE GÁS 
6.7. AQUECIMENTO DE LÍQUIDOS 
6.8. EVAPORANDO LÍQUIDOS 
6.9. FILTRAÇÃO 
7. ERRO EXPERIMENTAL: TRATAMENTO ESTATÍSTICO DE DADOS 
7.1. NOTAÇÃO EXPONENCIAL 
7.2. MULTIPLICAÇÃO E DIVISÃO 
7.3. ADIÇÃO E SUBTRAÇÃO 
7.4. ALGARISMOS SIGNIFICATIVOS 
7.5. PRECISÃO E EXATIDÃO DE MEDIDAS 
7.6. TRATAMENTO ESTATÍSTICO DOS DADOS 
7.7. REJEIÇÃO DE MEDIDAS 
 
4 
 
 
 
1. INTRODUÇÃO 
 
O curso de Química Geral Experimental será realizado por meio de trabalhos 
práticos em laboratório, visando à aprendizagem e familiarização do estudante com 
as técnicas, métodos e instrumentos de laboratório e a compreensão dos 
fundamentos teóricos em que as mesmas se baseiam. 
Este curso exigirá do estudante dedicação, interesse, cuidado, atenção e, 
especialmente, uma atividade no laboratório cuidadosamente planejada. 
Aconselha-se ao estudante estudar o procedimento da aula de laboratório 
antes de iniciar sua execução, a fim de facilitar o aprendizado e utilizar 
adequadamente o tempo destinado às aulas práticas. 
É importante dispor de um caderno de anotações de laboratório. Todos os 
dados, observações, cálculos, e questionamentos devem nele ser anotados direta e 
organizadamente. Esse procedimento facilitará a elaboração dos relatórios. 
Cada grupo de estudantes, em cada experiência, trabalhará com um conjunto 
de materiais necessário para a realização das análises. Esses materiais deverão ser 
entregues ao término de cada aula em devidas condições de limpeza e ordem. 
Qualquer acidente que, porventura, venha ocorrer deverá ser comunicado 
diretamente ao professor. 
No início de cada aula prática serão fornecidas orientações, ou até mesmo 
alterações de texto, a fim de propiciar melhor compreensão do assunto no contexto 
da Disciplina. 
 O laboratório Químico é o lugar privilegiado para a realização de 
experimentos. Possui instalações de água, luz, gás e local especial para 
manipulação das substâncias tóxicas (a capela), que dispõe de sistema próprio de 
exaustão de gases. O laboratório é um local onde há um grande número de 
equipamentos e reagentes que possuem os mais variados níveis de toxidez. Este é 
um local bastante vulnerável a acidentes quando não se trabalha com as devidas 
precauções. A seguir, apresentamos as práticas e posteriormente alguns cuidados 
que devem ser observados nas suas realizações de modo a minimizar os riscos de 
acidentes. 
 
 
 
5 
 
 
2. INFORMAÇÕES IMPORTANTES 
 
 
Faltas: Alunos com número de faltas superior a 2 serão reprovados por falta. Em 
caso de doença trazer atestado médico, que dá direito a uma prática de reposição 
no final do curso. 
 
Horário: Uma questão que deve merecer especial atenção é o horário de início da 
aula. Fica estabelecido que acima de 15 minutos de atraso o aluno não poderá 
realizar a prática. Alunos que chegama trasado perdem a explicação do professor e 
colocam os colegas em risco no laboratório. 
 
Roupa: Obrigatoriedade de uso de bata de manga comprida, calça, sapato fechado, 
luvas (compradas pelos alunos), óculos de proteção, cabelos grandes presos. O 
aluno que não atender a todas essas exigências não poderá assitir a aula. Esse 
procedimento pode salvar o aluno em caso de acidente, como queimadura, corte ou 
contato com ácidos concentrados. 
 
Comportamento no laboratório: Todos os procedimentos deve ser feitos com 
calma, sem movimentos bruscos, e com atenção para não quebrar vidrarias, 
equipamentos ou desperdiçar reagentes. O trabalho em equipe é importante. A 
postura do aluno no laboratório também será considerada na avaliação. 
 
Final da aula: O aluno deve mostrar ao técnico ou professor que lavou todas as 
vidrarias, limpou a bancada e guardou ou rejeitou os reagentes e produtos de forma 
apropriada para ser liberado após o final da prática. 
 
Pré-relatório: É fundamental que o aluno leia atentamente a prática antes da aula e 
anote no caderno de laboratório todo o procedimento que irá realizar. Os cálculos 
necessários para a realização da prática deverão ser feitos no pré-relatório. 
 
Caderno de laboratório: O aluno deve anotar todas as informações necessárias 
durante a prática no caderno de laboratório para ajudar na elaboração do relatório. 
 
Relatório: Leia atentamente o manual de elaboração de relatório, que contém todas 
as informações necessárias sobre esse assunto. 
 
 
 
 
 
 
 
 
 
 
 
6 
 
 
3. EXPERIMENTOS 
 
3.1. DETERMINAÇÃO DA DENSIDADE DE SÓLIDOS E LÍQUIDOS 
 
3.1.1. Introdução 
 
 As substâncias podem ser identificadas utilizando propriedades físicas 
características. Uma substância pode ter cor, odor, ponto de ebulição e de fusão 
únicos. Essas propriedades não dependem da quantidade de substância e são 
chamadas de propriedades intensivas. Densidade também é uma propriedade 
intensiva e pode servir como meio de identificação. 
 A densidade de uma substância é a razão da sua massa por unidade de 
volume. Densidade pode ser encontrada matematicamente dividindo-se a massa da 
substância pelo seu volume. A fórmula é: d = m/V, onde d é a densidade, m é a 
massa e V é o volume. Mesmo que a massa e o volume dependam da quantidade 
da substância (essas são propriedades extensivas), a razão é constante a uma 
dada temperatura. As unidades de densidade é dada em termos de g/mL ou g/cm3 
a 20ºC. A temperatura deve ser mencionada, uma vez que o volume de uma 
substância varia com a temperatura e, portanto, também a densidade. 
 
Por exemplo: um banco recebeu uma barra de metal amarela, com a marca OURO, 
de massa 453,6g e volume igual a 23,5 cm3 (mL). A barra é de ouro? A literatura 
informa que a densidade do ouro é 19,3 g/cm3 a 20ºC. 
 
Assim, d = m/V = 453,6 g / 23,5 cm3= 19,3 g/cm3 . 
 
Portanto, a barra é de ouro.3.1.2. Objetivo 
 
-Determinar as densidades de objetos de forma regular e irregular e usá-las como 
meio de identificação. 
- Determinar a densidade de líquidos. 
 
7 
 
 
 
3.1.3. Procedimento experimental 
 
A) Densidade de objetos de forma regular 
 
-Escolher um bloco sólido e anotar o número código. 
-Com uma régua, determinar as dimensões do bloco sólido (comprimento, largura e 
altura) registrando os valores na tabela em Dados e resultados, com precisão de 
0,01 cm. Calcular o volume do bloco. Repetir a medida. 
- Usando uma balança de precisão de 0,01g, determinar a massa do bloco. Repetir a 
medida. Calcular a densidade do bloco. 
 
B) Densidade de objetos de forma irregular 
 
-Escolher uma amostra de um metal desconhecido e anotar o número código. 
-Pesar a amostra e anotar a massa com precisão de 0,01g na tabela fornecida em 
Dados e resultados. 
-Em uma proveta de 10,0 mL, adicionar água até aproximadamente a metade, para 
fazer o próximo item. Anotar cada volume com precisão de 0,1mL. 
-Colocar, cuidadosamente, cada amostra metálica dentro da proveta previamente 
preparada. Certificar-se de que não há bolhas aderidas ao metal. Ler e anotar o 
novo volume (com precisão de 0,1mL). Assumindo que o metal não se dissolve e 
nem reage com a água, a diferença entre os dois níveis de água na proveta, 
representa o volume da amostra. Anotar o resultado na tabela fornecida em dados e 
resultados. 
-Recuperar a amostra e secá-la cuidadosamente. Repetir o procedimento com todas 
as amostras. 
-De posse dos dados, efetuar o cálculo da densidade de cada amostra, observando 
os algarismos significativos que deverão ser considerados. 
-Comparar os valores experimentais com os valores da literatura, listados na tabela 
a seguir. 
-Recuperar a amostra. 
-Repetir medidas com régua e paquímetro. 
 
8 
 
 
 
Tabela 1. Densidade de alguns metais 
 
Amostras 
(METAIS) 
Símbolo Densidade (g/mL) 
Alumínio Al 2,70 
Ferro (aço) Fe (aço) 7,86 
Estanho Sn 7,29 
Zinco Zn 7,13 
Cobre Cu 8,92 
Chumbo Pb 11,30 
 
 
C) Densidade de um líquido desconhecido 
 
-Medida da temperatura do experimento: colocar água destilada em um 
erlenmeyer de 125 mL, até cerca da metade de seu volume; inserir um termômetro 
e, após cerca de 5 minutos, medir a temperatura da água . 
-Pesar ou tarar um béquer de 25mL, limpo e seco, com precisão de 0,01g. 
-Com uma pipeta volumétrica de 10,0 mL, transferir 10,0 mL do liquido fornecido 
para o béquer previamente pesado ou tarado. Pesar imediatamente o conteúdo do 
béquer, e anotar a massa com precisão de 0,01g na tabela fornecida a seguir. 
Calcular o peso do líquido desconhecido por subtração e anotar o valor da tabela em 
Dados e resultados. 
-Recolher o líquido utilizado, num frasco apropriado. Repetir o procedimento com 
todas as amostras, iniciando cada determinação com um novo béquer de 25mL, 
limpo e seco. 
-De posse dos dados, efetue o cálculo da densidade de cada amostra, observando 
os algarismos significativos que deverão ser considerados. 
-Compare os valores experimentais com os valores da literatura, listados na tabela a 
seguir. 
 
 
 
 
 
 
 
 
 
 
 
9 
 
 
 
 
 
Tabela 2. Densidade de alguns líquidos 
Amostras Fórmula Densidade 
(g/mL) 
Água H2O 1,000 
Hexano C6H12 0,659 
Glicerina HOCH2(CHOH)CH2OH 1,261 
Acetato de etila CH3(COOCH2CH3 ) 0,88 
Propilenoglicol CH3(CHOH)CH2OH 1,036 
Glicerina HOCH2(CHOH)CH2OH 1,261 
Óleo de soja mistura 0,925 
 
* Líquido heterogêneo constituído de: 87% de água; 3,8% de partículas 
emulsificadas de ácidos graxos e gorduras; 3% de caseína (proteína); 5% de 
açúcar;soro, cálcio, fósforo, potássio, ferro, magnésio, cobre, proteínas e diversas 
vitaminas. 
 
3.1.4. Dados e Resultados 
 
-Colocar as medidas com seus erros correspondentes 
-Calcular a propagação de incertezas para a densidade (faça para um exemplo com 
cálculos detalhados para mostrar que entendeu) 
 
 
 
 
 
 
 
 
 
 
 
10 
 
Tabela 3. Densidade de objetos de forma regular. 
Nº código da amostra: ___________ 1ª medida 2ª medida 
Comprimento (cm) 
Altura (cm) 
Largura (cm) 
Volume (cm3) 
Massa (g) 
Densidade (g/cm3) 
Densidade média do bloco (g/cm3) 
 
Tabela 4. Densidade de objetos de forma irregular. 
Nº código da amostra: ___________ 1ª medida 2ª medida 
Massa da amostra (g) 
Volume de água inicial (cm3) 
Volume de água final (cm3) 
Colume do metal (cm3) 
Densidade do metal (g/cm3) 
Densidade média do metal (g/cm3) 
 
Tabela 5. Densidade de um líquido desconhecido. 
Nº código da amostra: ___________ 1ª medida 2ª medida 
Temperatura do líquido (ºC) 
Massa do béquer (g) 
Massa do béquer + líquido (g) 
Massa do líquido (g) 
Volume do líquido (cm3) 10 10 
Densidade do líquido (g/cm3) 
Densidade média do líquido (g/cm3) 
 
3.1.5. Bibliografia 
BRADY, J. ; HUMISTON, G. E. Química Geral, Vol. 1, Livros Técnicos e Científicos 
Editora S.A., Rio de Janeiro, 1986. 
MAHAN, B. Química um Curso Universitário, São Paulo, Ed. Edgard Blücher Ltda., 
411 edição, 1995. 
 
11 
 
3.2. SEPARAÇÃO DE MISTURAS 
 
3.2.1. Introdução 
A separação das substancias constituintes de uma mistura baseia-se nas 
propriedades físicas destas. Deste modo, para facilitar a separação, busca-se uma 
propriedade onde a substância que se deseja purificar seja muito distinta dos outros 
componentes. Assim, uma mistura heterogênea sólido-líquido é facilmente separada 
por filtração enquanto uma mistura líquido-líquido pode ser separada por decantação 
(para líquidos imiscíveis) ou destilação (para líquidos miscíveis). 
Neste experimento cinco técnicas de purificação serão apresentadas: 
filtração, sublimação, evaporação, destilação e cromatografia. 
A sublimação é um processo que envolve o aquecimento de um sólido até 
que ele passe diretamente da fase sólida para fase gasosa. Exemplos de alguns 
sólidos que sublimam: iodo, cafeína, naftaleno (naftalina), p-diclorobenzeno, etc. 
A filtração é um processo de separação entre um sólido e um líquido, pela 
utilização de filtros - material poroso que pode ser papel, carvão, areia, etc; esses 
materiais permitem que o líquido passe através deles separando-o do sólido. 
A evaporação é um processo através do qual, uma mistura é aquecida e o 
componente mais volátil deixa a mistura, permanecendo no recipiente, o 
componente menos volátil. 
 A destilação é um dos métodos mais comuns para purificar líquidos. É um 
método muito simples: um líquido é levado à ebulição passando para o estado 
gasoso, que é então condensado retornando ao estado líquido. A temperatura em 
que ocorre a ebulição de um líquido é o ponto de ebulição. A figura 1 mostra um 
sistema de destilação. 
 
12 
 
 
Figura 1. Aparelho de destilação 
 
O líquido no balão é aquecido à ebulição, o vapor alcança o condensador 
que está resfriado pela água corrente, condensa e retorna à fase líquida. Se a 
mistura te um componente de baixo ponto de ebulição (uma substância volátil), ele 
destilará primeiro e pode ser coletado primeiro. Os compostos de ponto de 
ebulição mais altos permanecem no balão. Estes compostos só podem ser 
destilados se a temperatura do sistema for aumentada. 
Destilação realizada à pressão atmosférica apresenta ponto de ebulição 
“normal”. Entretanto, quando a ebulição ocorre em um sistema fechado, é possível 
mudar o ponto de ebulição do líquido pela redução da pressão no sistema. Se a 
pressão é reduzida utilizando uma bomba à “vácuo”, o ponto de ebulição do 
líquido é reduzido. Assim, substâncias sensíveis ao calor, que se decompõem 
quando atingem seu pontode ebulição “normal”, destilam com o mínimo ou 
nenhuma decomposição à pressão reduzida. Por exemplo, a anilina de fórmula 
C6H5NH2 pode ser destilada a 184 ºC (750 mmHg) ou a 68 ºC (10 mmHg). 
 
13 
 
A separação de uma mistura de diversos componentes com propriedades 
químicas e físicas similares, na maioria das vezes não pode ser realizada por 
métodos como a destilação. Atualmente, dispomos de um conjunto de técnicas 
que se constitui em uma das ferramentas mais utilizadas nos laboratórios de 
química. Trata-se da cromatografia, que será abordada numa prática posterior. 
3.2.2. Objetivos 
-Separar três substâncias sólidas, previamente misturadas. 
-Observar a técnica da destilação. 
 
3.2.3. Procedimento experimental 
 
A) Separação de uma mistura de três componentes: Naftaleno (C10H8), sal 
(NaCl) e areia (SiO2) 
 
- Pesar uma cápsula de porcelana (tamanho pequeno ou médio) limpa e seca com 
precisão de 0,001g e anotar a massa (1) 
- Transferir para a cápsula aproximadamente 2g da mistura. Anotar a massa da 
cápsula com a amostra (2). 
- Colocar um vidro de relógio com gelo sobre a cápsula contendo a mistura, 
cuidando para não cair água dentro da cápsula. 
-Aquecer vagarosamente a cápsula, com bico de bunsen, aumentando a intensidade 
da chama até que apareça os vapores que serão condensados no vidro de relógio 
devidamente resfriado pelo gelo. Após aproximadamente 10 minutos, apagar a 
chama e remover cuidadosamente o vidro de relógio. Utilizar uma espátula para 
coletar o sólido (sublimado) depositado no vidro de relógio. Secar o vidro de relógio, 
se necessário, adicionar mais gelo, agitar o conteúdo da cápsula com um bastão de 
vidro e repetir o processo novamente para coletar mais sublimado. 
-Deixar a cápsula esfriar até a temperatura ambiente e pesá-la com o restante do 
sólido (4). Calcular a massa de naftaleno que sublimou (5) por subtração de (2)-(4). 
Descartar o naftaleno em recipiente apropriado. 
-Adicionar à cápsula contendo o sólido (NaCl + SiO2), 25 mL de água destilada, 
aquecer e agitar por 5 minutos. 
 
14 
 
-Pesar um béquer (recipiente 2) de 150 mL, limpo e seco com precisão de 0,001g e 
anotar a massa (6). 
-Filtrar o conteúdo da cápsula utilizando funil comum com papel de filtro dobrado 
como mostra a figura da página 42. O filtrado será coletado no béquer previamente 
pesado. 
-Lavar a cápsula com 5-10 mL de água para que todo o sólido seja removido e 
coletado no funil. Repetir o procedimento. 
-Aquecer suavemente o béquer com bico de Bunsen. Controlar a chama para evitar 
ebulição violenta. Conforme o volume diminuir, aparecerá NaCl sólido. Depois de 
evaporar todo o líquido, esfriar o béquer à temperatura ambiente. Pesar o béquer 
com sólido residual (7). Calcular a massa de NaCl recuperada (8) pela subtração (7)-
(6). 
-Pesar uama cápsula de porcelana (recipiente 3) que esteja limpa e seca (9), 
transferir a areia do papel de filtro para esta cápsula e aquecer com bico de bunsen 
cuidadosamente para secar a areia. Esperar esfriar à temperatura ambiente, pesar a 
cápsula + areia (10) e calcular a massa de areia recuperada (11) pela subtração 
(10)-(9). 
-Calcular o rendimento do processo e de cada componente da mistura da seguinte 
maneira: 
 
a) Rendimento do processo (%) = gramas do sólido recuperado x 100 
 gramas da amostra inicial 
 
b) Rendimento do componente (%) = gramas do componente recuperado x 100 
 gramas da amostra inicial 
 
Exemplo: 
Um estudante isolou os componentes de 1,132g de uma amostra desconhecida, 
obtendo: 
0,170 g de naftaleno 
0,443g de NaCl 
0,499 g de areia 
1,112g de sólido recuperado 
 
 
15 
 
Rendimento do processo (%) = 1,112 x 100 = 98,2 % 
 1,132 
Rendimento do naftaleno (%) = 10,170 x 100 = 15,0 % 
 1,132 
 
Rendimento do NaCl (%) = 0,443g x 100 = 39,1 % 
 1,132 
 
Rendimento da areia (%) = 0,499 x 100 = 44,1 % 
 1,132 
 
B) Separação de uma mistura por destilação 
- Nesse experimento, uma mistura de sal e água será separada por destilação. A 
pureza da água destilada será demonstrada por teste químico específico para Na+ e 
Cl-. 
-Montar um aparelho como mostrado na figura da página 48. O kit contendo todas as 
peças será obtido com o professor. Antes de colocar as peças em contato, aplicar 
uma fina camada de silicone em cada junta para prevenir que as mesmas “colem” 
umas nas outras. 
-Usar balão de fundo redondo, de 250 mL, como frasco de destilação. Adicionar ao 
frasco 100 mL da mistura sal e água já preparada e algumas pérolas de ebulição 
para evitar ebulição violenta. Ligar a água que irá resfriar o condensador, 
vagarosamente, de modo que todo o condensador fique cheio de água. O fluxo de 
água corrente deve ser pequeno para que as mangueiras não desconectem do 
condensador. Ajustar o bulbo do mercúrio do termômetro abaixo da junção do 
condensador com o frasco de destilação, como mostra a figura da página 48. 
-Aquecer o balão de destilação suavemente até que o líquido entre em ebulição e 
vapores se desprendam. Esses vapores irão entrar no condensador, se tornarão 
líquidos e serão coletados num frasco apropriado. 
-Descartar o primeiro mL coletado e anotar a temperatura dos vapores. Continuar a 
coletar a água destilada até que aproximadamente metade da mistura tenha 
destilado. Anotar a temperatura dos vapores neste ponto. Desligar o aquecimento e 
deixar o sistema voltar à temperatura ambiente. 
-A água destilada e o líquido no frasco de destilação serão testados. 
 
16 
 
-Colocar em dois tubos de ensaio, limpos e secos, 2 mL de água destilada e 2 mL da 
mistura do frasco de destilação. Adicionar a cada um 5 gotas de solução de nitrato 
de prata (AgNO3). Observar e anotar o que acontece. 
 
Ag+ + Cl- → AgCl(s) (ppt branco) 
 
-Certificar-se de que você limpou a graxa (silicone) das juntas antes de lavar a 
vidraria utilizada na destilação. 
 
 
3.2.4. Dados e resultados 
 
A) Separação de uma mistura de três componentes: Naftaleno (C10H8), sal 
(NaCl) e areia (SiO2) 
 
Tabela 1. Massas das substâncias separadas. 
Substâncias e vidrarias Massa (g) 
Cápsula de porcelana (recipiente 1) 
Cápsula + amostra (2) 
Mistura (2) – (1) = (3) 
Cápsula + sólido após sublimação (4) 
Naftaleno (2) – (4) = (5) 
Béquer (recipiente 2) (6) 
Béquer + NaCl (7) 
NaCl (7) –(6) = (8) 
Béquer (recipiente 3) (9) 
Béquer + areia (10) 
Areia (10) – (9) = (11) 
Sólidos recuperados (5) + (8) + (11) = (12) 
 
 
 
 
 
 
17 
 
Tabela 2. Rendimento das substâncias separadas. 
Material Rendimento (%) 
sólidos recuperados [(12)/(3)] x100 
naftaleno [(5)/(3)] x100 
NaCl [(8)/(3)] x 100 
areia [(11)/(3)] x 100 
 
 
 
B) Separação de uma mistura por destilação 
 
Tabela 3. Monitoramento da temperatura do vapor ao longo da destilação. 
Vapor Temperatura (ºC) 
no início da coleta (ponto de ebulição normal) 
após coleta de 1 mL 
ao final da destilação 
 
 
Tabela 4. Fenômenos observados com a adição de AgNO3 aos componentes da 
mistura obtidos com a detilação. 
Componentes da mistura Fenômeno observado com a adição de AgNO3 
Água destilada 
Líquido do frasco de ebulição 
 
 
 
3.2.5. Bibliografia 
 
BETTELHEIM, F.; LANDSBERG, J.; LEE, J. Laboratory Experiments for General, 
Organicand Biochemistry. 2ª Ed., New York, 1995. 
COLLINS, C. H.; BRAGA, G. L.; PIERINA, S. B. Introdução a métodos 
cromatográficos. 4ª Ed., Editora da Unicamp, Campinas, 1990. 
NETO, F.R. A.; NUNES, D. S. S. Cromatografia: princípios básicos e técnicas afins. 
Editora Interciência, Rio de Janeiro, 2003. 
 
18 
 
3.3. CROMATOGRAFIA 
 
3.3.1. Introdução 
 
Cromatografia é um método para separar dois (ou mais) componentes de uma 
solução, distribuindo-os entre duas fases imiscíveis: uma móvel e outra estacionária. 
A fase móvel é geralmente um solvente ou uma mistura de solventes, enquanto a 
fase estacionária é o suporte sólido, em geral sílica gel ou alumina. Existem hoje em 
dia muitos métodos de cromatografia, alguns muito sofisticados. A fase móvel pode 
ser líquida ou gasosa e a fase estacionária pode ser também um líquido absorvido 
num sólido. A cromatografia é um método extremamente útil e comum para separar 
substâncias de misturas, tanto no laboratório como em escala industrial. No 
laboratório, podemos fazer uma distinção sucinta entre dois tipos de cromatografia. 
Uma - a cromatografia analítica - que usa quantidades muito pequenas (< 1 mg) para 
analisar uma mistura de substâncias, e a outra - a cromatografia preparativa - que 
tem como fim a separação e, mesmo, a coleta de maiores quantidades (10 mg - 20 g) 
de componentes numa mistura. 
 O fenômeno da separação pode ser entendido se considerarmos que 
substâncias diferentes têm características diferentes, tais como ponto de fusão, ponto 
de ebulição, índice de refração e “polaridade” - o que é mais importante na 
cromatografia. Basta agora lembrar que um composto muito polar terá uma interação 
maior com um suporte sólido também polar do que um composto relativamente não 
polar. Isto é devido às forças eletrostáticas entre o polo parcial negativo do composto 
e o polo parcial positivo do suporte, ou vice-versa. 
 Quando a solução dos componentes da mistura passa ao longo da fase 
estacionária (suporte sólido) estes componentes têm atrações (ou interações) 
diferentes com a fase estacionária, e, portanto os componentes passarão pelo sólido 
com velocidades diferentes. É justamente este fato que permite utilizar a 
cromatografia como um método de separação. Deste modo um composto polar 
passará com uma velocidade menor que o composto não polar, ao longo da fase 
estacionária que é polar. 
Em 1906, o botânico russo Mikhail Tswett inventou a cromatografia para 
separar as substâncias que dão a cor (pigmentos) de uma folha. A palavra 
cromatografia, de origem grega, significa "escrever com cor" (chromatus = cor e 
graphein = escrever). Embora na maioria das vezes, os solutos cromatografados não 
 
19 
 
produzem bandas coloridas, o termo cromatografia é aplicado a qualquer separação 
empregando o mesmo princípio que o método descrito por Tswett. No caso da 
cromatografia de solutos incolores, após a separação é necessário a aplicação de um 
reagente químico ou a ação da luz ultravioleta para localizar as bandas ou as 
manchas onde se encontram os solutos separados. A cromatografia é muito utilizada 
para análise qualitativa e quantitativa de misturas de solutos e para o isolamento de 
componentes de uma mistura. 
Como mencionado anteriormente, as separações cromatográficas baseiam-
se em processos de adsorção e de partição. O sistema cromatográfico é composto 
de uma fase móvel e uma fase estacionária. As separações de solutos dependem 
de uma distribuição desses entre a fase móvel e a fase estacionária. As 
separações cromatográficas podem ser realizadas: 
a) sobre papel: as fibras de celulose servem como suporte. Devido aos 
frupos alccóolicos das unidades de glucose, há formação de ligações de 
hidrogênio com a água (umidade atmosférica). A água retida no papel é que atua 
como fase estacionária. A separação dos componentes sobre papel ocorre por 
partição dos solutos entre a fase móvel e a fase estacionária. Os solutos mais 
solúveis na fase móvel migram mais e aqueles mais solúveis na água (fase 
estacionária) ficam mais tempo retidos no papel e portanto, migram menos. A 
figura a seguir mostra as maneiras como uasar o papel como cromatografia. 
 
 
D 
 
20 
 
Figura 1. Formas de utilização do papel cromatográfico: A e B - folha de papel 
cilíndrico ocupando todo o recipiente; C - tira de papel; D - Modelo esquemático da 
estrutura da celulose. 
 b) em camada delgada: a fase estacionária pode ser um sólido como 
alumina, sílica gel, celulose, ou outros, distribuídos sob a forma de uma fina 
camada sobre um suporte. O suporte pode ser uma placa de vidro, de alumínio, 
ou de poliamida. No caso das separações de alumina e sílica gel, as separações 
dos componentes de uma mistura ocorrem por processos de adsorção-sedorção 
desses, entre a fase móvel e a fase estacionária. 
 c) em coluna: o fundamento das separações são os mesmos já citados, 
apenas que a fase estacionária é colocada em um tudo de vidro e a fase móvel, é 
passada continuamente para eluição dos componentes da mistura. 
 
21 
 
 
Figura 2. Esquema de uma coluna de adsorção. a: reservatório; b:fase móvel; d: 
adsorvente; e: chumaço de algodão; f:frasco coletor; g; amostra. 1-4 Ilustração 
esquemática da migração dos componentes da mistura. 
1 2 3 4
 
22 
 
 Nesta prática, vamos analisar qualitativamente uma mistura de íons de 
níquel (II), cobre (II) e ferro (III), passando-os ao longo de uma faixa de papel de 
filtro, e usando como fase líquida uma mistura de acetona e ácido clorídrico. Os 
íons têm atrações diferentes à celulose, conseqüentemente passando pelo papel 
com velocidades diferentes. 
 Antes de vir ao laboratório você deve se familiarizar com os conceitos 
envolvidos na técnica de cromatografia, como também com a química dos íons que 
serão investigados. Não esqueça de trazer uma tesoura, fita crepe e uma régua 
para a realização do experimento. 
 
3.3.2. Objetivos 
-Usar um procedimento bastante simples para entender a técnica de cromatografia. 
 
3.3.3. Procedimento experimental 
 Você receberá soluções aquosas de cada um dos sais CuSO4, FeCl3 e NiCl2 e 
também uma solução desconhecida contendo um, dois ou todos os três sais 
mencionados. 
 Corte um papel de filtro, em forma de retângulo, de modo que este se adapte 
ao interior de um béquer de 50 mL, revestido com papel de filtro, sem que o mesmo 
toque as paredes do recipiente, como mostra a figura 1. Com lápis grafite faça uma 
linha reta de aproximadamente 1,5 cm a partir da extremidade inferior do papel. 
Pegue um capilar e coloque a ponta dentro da solução de FeCl3. Remova o excesso 
de solução da ponta do capilar. Aplique um pouco da solução na linha reta 
desenhada com o lápis no papel de filtro, numa distância aproximada de 1 cm das 
laterais do papel. Tenha cuidado para que a solução difunda o menos possível no 
papel, produzindo assim uma mancha bem definida. Repita este processo, no mesmo 
papel, para as outras soluções que você recebeu, aplicando-as uniformemente na 
linha de lápis. 
 Seque bem as manchas, usando o ventilador ou colocando o papel na estufa. 
Cole o papel numa placa de Petri e coloque a placa em cima de um béquer contendo 
uma mistura de acetona e ácido clorídrico 3,0 mol L-1 na proporção de 8:2. A faixa 
deve ficar pendurada dentro da solução contida no béquer, mas é importante que as 
 
23 
 
manchas dos sais se encontrem em cima do menisco do líquido, como ilustra a figura 
1. 
 
 
Figura 1: Esquema do sistema cromatográfico a ser montado. 
 
 Você observará que no momento em que o papel entra no líquido, este vai 
subir pelo papel por ação capilar. É importante assegurar que o papelde filtro 
revestindo a parede esteja realmente saturado com a solução contida no béquer. Isto 
é importante para manter uma atmosfera saturada dentro do béquer. Caso contrário, 
o líquido corre o perigo de subir irregularmente pelo papel devido à sua evaporação 
numa atmosfera totalmente saturada. 
 Quando a frente do líquido tiver atravessado o papel, os íons metálicos terão 
sido transportados também. Agora precisamos saber por qual distância. Para isto, 
teremos que revelar os íons. 
 Um tipo de íon já é visível a olho nu. Para visualizar os outros dois, vamos 
prosseguir da seguinte maneira: 
 
1) Pegue o papel e segure-o em cima de uma placa de Petri contendo uma solução 
de amônia, porém não molhando o papel. A amônia formará um complexo visível com 
um dos íons. 
 
2) Usando como pincel um pouco de algodão, ou mesmo um pedaço de papel de 
filtro, pinte um pouco de uma solução de dimetilglioxima na faixa cromatográfica para 
revelar o terceiro íon. 
Acetona/HCl
Papel de filtro 
Placa de Petri 
 
24 
 
 Tendo identificado a localização de cada um dos compostos, prossiga 
agora para medir a distância atravessada por cada tipo de íon. Divida este valor 
pela distância atravessada pelo solvente, para determinar o valor do fator de 
retenção (Rf) de cada um deles, figura 2. O valor Rf é característico para cada 
composto, num determinado suporte e com um determinado solvente, e assim 
pode ser usado como método de identificação de substâncias. Se todas as 
condições são mantidas constantes, os valores de Rf permanecem constantes. Se 
ocorrer variações na temperatura, ou na composição do solvente ou na fase 
estacionária, os valores de Rf se alterarão. Os valores de Rf quando comparados 
com aqueles de substância padrão, auxiliam na identificação dos componentes 
presentes em uma mistura. 
 
 Figura 2: Esquema para o cálculo do Rf. 
 
Repita o mesmo procedimento utilizando como solvente, misturas de acetona/ácido 
clorídrico 3 mol L-1 de 95/5 e de 6/4. 
 
3.3.4. dados e Resultados 
-Monte as tabelas necessárias para coletar os dados. 
 
3.3.5. Questões para resem respondidas no relatório 
1) Qual o íon que é visível a olho nu? 
2) A amônia revela que íon? Qual é a coloração observada neste teste, e que tipo de 
complexo é formado pela reação de amônia com o íon metálico? 
3) A dimetilglioxima revela que íon? Qual a coloração? 
 
25 
 
4) Dê os valores de Rf para cada um dos íons em cada sistema de solvente. 
Utilizando a mudança de Rf com as proporções relativas de acetona e ácido 
clorídrico, estabeleça qual destes dois solventes é mais responsável pelo transporte 
dos íons no papel. Tente dar uma explicação baseando nos argumentos delineados 
na introdução deste texto. 
5) Na cromatografia, durante passagem da fase móvel sobre a fase estacionária, as 
substâncias da mistura são distribuídas entre duas fases. Explique o processo de 
separação. 
 
3.3.6. Bibliografia 
1- Silva, R. R., Bocchi, N. e Rocha Filho, R. C., Introdução à Química Experimental, 
São Paulo, Mc Graw-Hill. 1990 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26 
 
3.4. SÍNTESE DO ALÚMEN DE POTÁSSIO [KAl(SO4)2.12H2O] 
 
3.4.1. Introdução 
 Alúmen de potássio ou simplesmente alúmen é o sulfato duplo de alumínio e 
potássio. Sua fórmula química é KAl(SO4)2 e é comumente encontrado em sua 
forma dodecahidratada como KAl(SO4)2·12(H2O). Apresenta-se também com vinte e 
quatro moléculas de água de hidratação, KAl(SO4)2·24(H2O). 
A produção industrial do alúmen de potássio, KAl(SO4)2·12H2O, o mais 
antigo composto de alumínio utilizado pelo homem, vem diminuindo nos últimos 
anos e os métodos de produção possuem interesse quase exclusivamente histórico. 
Atualmente, o alúmen é produzido somente a partir do hidróxido de alumínio 
proveniente da bauxita e ainda é utilizado na indústria do couro, como um mordente 
(substância usada para manter a durabilidade da cor), na indústria farmacêutica e de 
cosméticos e como agente de coagulação do látex. A aplicação industrial mais 
importante do alúmen de potássio hoje é como um aditivo na produção de cimento 
marmoreado e de gesso. 
Nesta experiência de síntese do alúmen de potássio, a partir de reações ácido 
- base e de reação redox, será utilizado papel de alumínio como fonte do alumínio. 
O metal alumínio reage muito pouco com soluções ácidas diluídas, pois a superfície 
do metal normalmente fica protegida por uma camada de óxido de alumínio. Por 
outro lado, soluções alcalinas dissolvem essa camada de óxido, atacando em 
seguida o metal e como produto forma-se o ânion [Al(OH)4-](aq). Apesar do alumínio 
ser mais reativo que o potássio, ele não “desloca” o potássio para formar Al(OH)3, a 
reação envolve água para formar o íon aluminato [Al(OH)4-] aquoso e ocorre a 
liberação do gás hidrogênio. 
2Al (s) + 2KOH (aq) + 6H2O (l) → 2K+ (aq) + 2[Al(OH)4](aq)- + 3H2 (g) 
 
Quando se adiciona ácido sulfúrico à solução, inicialmente uma das hidroxilas 
será removida o que resulta em um produto neutro, [Al(OH)3], que precipita em 
meio aquoso. Continuando a adição do ácido esse ppt (precipitado) sofre 
dissolução. 
 
27 
 
[Al(OH)4](aq)- + H+ (aq) → [Al(OH)3] (s) + H2O (l) 
 
Adição de excesso de H2SO4 (aq), sob agitação 
 
[Al(OH)3] (s) + 3H+ (aq) → Al3+(aq) + 3H2O(l) 
 
Resfriamento da solução 
 
K+(aq) + Al3+(aq) + 2(SO4)2-(aq) + 12H2O(l) → KAl(SO4)2 . 12H2O(s) 
 
3.4.2. Objetivos 
- Sintetizar o sal KAl(SO4)2.12H2O 
- Demonstrar a importância da cristalização 
3.4.3. Procedimento experimental 
- Pese 1,0 g de alumínio com precisão de ± 0,01g. 
- Coloque o alumínio num becker de 250 mL, e acrescente com uma proveta 50 mL 
de uma solução 4,0 mol/L de KOH numa capela. 
- Deixe a mistura em reação até que a liberação de gás não seja mais observada 
usando um bastão de vidro. 
- Filtre a mistura ainda quente por filtração simples, coletando o filtrado num béquer 
de 250 mL. Todo o resíduo escuro deverá ficar retido no papel de filtro, devendo ser 
descartado deixando o filtrado incolor, para ser utilizado a seguir. 
- Adicione ao filtrado 30 mL de uma solução 9,0 mol/L de ácido sulfúrico, de 10 em 
10 mL com uma pipeta. Observe que, inicialmente aparecerá um precipitado de 
[Al(OH)3] que será dissolvido quando mais ácido for adicionado. Note que a solução 
aquecerá, devido a reação ácido – base ser exotérmica. 
- Espere 5 minutos. 
- Coloque a mistura em banho de gelo por 30 minutos ou mais e observe a formação 
dos cristais. 
- Filtre os cristais à vácuo ainda frio. 
- Despreze o filtrado e lave os cristais com uma pisseta usando aproximadamente 
30 mL de uma mistura resfriada de Etanol:Água (1:1) – rinsar com a pisseta. 
Terminada a filtração, deixe os cristais de alúmen secarem à temperatura ambiente 
 
28 
 
e em seguida determine sua massa e calcule o rendimento da síntese. Pese a 
vidraria que for armazenar os cristais anteriormente. 
3.4.4. Dados e resultados 
Tabela 1. Pesagem dos cristais de alúmen de potássio. 
Materias Massa (g) 
Vidraria 
Vidraria + cristais de KAl(SO4)2.12H2O 
Cristais de KAl(SO4)2.12H2O 
 
 
 
3.4.5. Bibliografia 
 
CONSTANTINO, V. R.; ARAKI, K.; SILVA, D. O.; OLIVEIRA, W. Preparação de 
compostos de alumínio a partir da bauxita: considerações sobre alguns aspectos 
envolvidos em um experimento didático. Química nova, v. 25, no. 3, p. 490-498, 
2002. 
SHRIVER ;D. F.; ATKINS, P.W. Química Inorgânica. Editora Bookman, 3ed., 2003. 
COTTON, F. A.; WIKINSON, E G. Química Inorgânica, L.T.C. Ed. S.A., 1ª ed., 1978.29 
 
3.5. SOLUÇÕES: PREPARAÇÃO E VOLUMETRIA DE NEUTRALIZAÇÃO 
 
3.5.1. Introdução 
 
Solução é uma dispersão particular homogênea de duas ou mais substâncias, 
ou seja, um estado em que as substâncias estão subdivididas de modo que suas 
partículas estejam em dimensões moleculares, atômicas ou iônicas, dependendo da 
natureza das substâncias. Quando um dos componentes de uma mistura é um gás 
ou um sólido e o outro é um líquido, o primeiro é chamado de soluto e o último de 
solvente. Quando ambos os componentes são líquidos, o componente em maior 
quantidade é denominado solvente e o componente em menor quantidade é o 
soluto. É claro que pode haver vários solutos em uma solução – uma solução não 
precisa ter somente dois componentes. 
As relações entre as porções de soluto e de solvente em uma solução líquida, 
ou entre porções de soluto e solução, podem ser expressas de diferentes maneiras: 
Relação massa de soluto/massa total de solução, relação massa de 
soluto/volume de solução, relação quantidade de matéria de soluto/volume de 
solução ou relação da quantidade de matéria de soluto/massa de solvente. 
A primeira dessas relações (uma composição), a fração em massa do 
soluto, é usualmente transformada numa percentagem, conhecida como título; 
assim, uma solução aquosa H2SO4 com título 70% contém 70 g de H2SO4 para 
cada100g de solução. 
 
σ = m1 x 100 m1= massa do soluto; m2 = massa do solvente 
 m m = massa da solução (m1 +m2) 
 
A segunda relação é bastante utilizada em indústrias, com unidade g/L, kg/L. 
Ela é a denominada concentração de soluto em massa. 
 
C = m1/V m1 = massa do soluto (g) 
 V= volume da solução (L) 
 
A terceira relação e mais utilizada em laboratórios de Química em geral, 
sendo expressa na unidade mol/L; essa relação, cujo uso é recomendado pela 
 
30 
 
IUPAC (União Internacional de Química Pura e Aplicada), é denominada 
concentração de soluto em quantidade de matéria ou molaridade. Essa é a 
relação que será usada nesta experiência para expressar a concentração de solutos. 
 
M = n1/V M = molaridade (mol/L) 
 n1 = quantidade em mol de soluto (mol) 
 V= volume da solução (L) 
 n1 = m1/MM m1= massa do soluto (g) 
 MM = massa molar do soluto (g) 
 
A última relação (uma composição), denominada molalidade, tem unidade 
mol/kg; é utilizada sempre que se quer ter uma relação que não dependa da 
temperatura. Note-se que as duas relações anteriores variam com a temperatura, já 
que o volume da solução pode aumentar ou diminuir quando a temperatura varia. 
Para se converter a relação conhecida como título em concentração 
(segunda e terceira relações), há necessidade se conhecer a densidade da solução. 
 
 C = 1000x d x σ C = concentração (g/L); d = densidade (g/mL) 
 σ = título 
 
Para soluções aquosas de algumas substâncias mais comuns existem tabelas 
de títulos em função da densidade; isso permite que se calcule a concentração de 
soluto em massa ou em quantidade de matéria. Uma solução aquosa de ácido 
sulfúrico de densidade 1,5533 g/mL tem titulo de 65%; isso significa que em um litro 
de solução, 1009,6 g são de H2SO4 e 543,7 g são de H2O. 
 
C = 1000x 1,5533x 0,65 C = 1009,6 g/L 
 
Cabe ressaltar, entretanto, que a relação entre título e densidade é utilizada 
mais comumente para soluções concentradas comerciais. No caso de soluções 
diluídas, prefere-se utilizar diretamente concentração em quantidade de matéria, já 
que a determinação precisa de suas densidades é mais difícil. 
Soluções podem ser preparadas, mais comumente, a partir de soluto sólido 
ou a partir de uma solução concentrada em estoque do soluto. Quando se prepara 
 
31 
 
uma solução, sabe-se que se quer obter certo volume da solução a uma dada 
concentração. Assim, para preparar uma solução a partir de um soluto sólido há 
necessidade de se saber qual o valor de massa do soluto que deve ser tomado; 
analogamente, no caso de soluto em solução em estoque, há que se saber qual o 
volume da solução estoque que deve ser tomado. 
Por exemplo, você pode preparar 200 mL de uma solução de NaOH 0,1 mol/L 
de duas maneiras: 
1. A partir do NaOH sólido: você deve calcular primeiro a massa de NaOH 
necessária para se obter o volume com a concentração requerida. (MM: Na=23; O = 
16; H = 1) 
 
m1= M x MM x V m1 = 0,1 x 40 x 0,2 m1 = 0,8 g 
 
 Em seguida, pesar a massa calculada (0,8 g) e dissolvê-la em um béquer com 
um pouco de água destilada. Depois você deve transferir a solução para um balão 
volumétrico de 200 mL e completar o volume com água destilada aferindo o 
menisco. Tampar o balão e agitar a solução. 
2. A partir de uma solução estoque mais concentrada de NaOH: você deve 
calcular o volume necessário da solução estoque para diluir e obter o volume com 
a concentração requerida. Supondo que a solução estoque de NaOH tenha 
concentração 1 mol/L. O volume necessário dessa solução para preparar 200 mL 
com concentração 0,1 mol/L é: 
Solução Solução 
Inicial final 
M1 x V1 = M2x V2 1 x V1 = 0,1 x 200 V1 = 20 mL 
 
Então, você deve medir 20 mL da solução mais concentrada colocar em um 
balão volumétrico de 200 ml e completar o volume aferindo o menisco. Em seguida, 
tampar o balão e agitar. 
Como o NaOH não é um padrão primário faz-se necessário padronizar a 
solução ou seja determinar a concentração real da solução que foi preparada pela 
pesagem direta do sólido, utilizando a volumetria de neutralização. 
 
32 
 
A volumetria ou titrimetria de neutralização compreende os métodos baseados 
na reação de neutralização: 
H3O
+
 
+ OH-→ 2 HOH 
Soluções de substâncias alcalinas como o NaOH podem ser padronizadas com 
soluções padrões ácidas. Com soluções padrões alcalinas são padronizadas 
substâncias ácidas. Tem-se assim, duas variantes da titrimetria de neutralização: a 
acidimetria e a alcalimetria. 
Tanto na acidimetria como na alcalimetria, o ponto estequiométrico coincide 
com o ponto de neutralidade (pH = 7), sempre que a reação se processa entre 
ácidos e bases fortes. Nos demais casos, a hidrólise faz com que o ponto 
estequiométrico se situe na região ácida ou alcalina. São as condições do 
equilíbrio, em cada caso particular, que determinam o valor do pH em que se situa 
o aludido ponto. 
O conhecimento do valor do pH em que se situa o ponto estequiométrico e da 
maneira como varia o pH no curso da titulação é de fundamental importância para 
o estudo do problema de identificação do ponto final. 
Comumente, o ponto final nas titulações da titrimetria de neutralização é 
acusado mediante o emprego de indicadores de pH. 
 
Tabela 1. Exemplos de alguns indicadores de pH. 
Indicador Faixa de 
Viragem (pH)
Mudança de Cor 
Azul de timol 1,2 - 2,8 Vermelho - Amarelo 
Azul de bromofenol 3,0 - 4,6 Amarelo – Violeta avermalhado 
Vermelho Congo 3,0 - 5,2 Violeta azulado- Alaranjado 
avermelhado 
Metil Orange 3,1 - 4,4 Vermelho – Alaranjado amarelado 
Verde de bromocresol 3,8 - 5,4 Amarelo – Azul 
Vermelho de metila 4,4 - 6,2 Vermelho – Amarelo alaranjado 
Tornassol 5,0 - 8,0 Vermelho – Azul 
Vermelho de fenol 6,4 - 8,2 Amarelo – Vermelho 
Vermelho de cresol 7,0 - 8,8 Amarelo – Púrpura 
Azul de timol 8,0 - 9,6 Amarelo – Azul 
Fenolftaleína 8,2 - 9,8 Incolor – Violetaavermelhado 
 
 
 
 
 
33 
 
 
Os padrões primários devem possuir algumas propriedades especiais, tais 
como: 
 
a) não devem se alterar ao ar, isto é, não serem higroscópicos (absorvem água), 
não se oxidando e nem reagindo com o CO2 atmosférico. 
b) devem possuir elevada massa molar, pois assim os erros na pesagem diminuem. 
c) devem ser solúveis. 
d) são encontrados no comércio com grande pureza e podem ser secados 
facilmente. 
e) devem manter sua pureza por longo tempo. 
f) devem dar reações estequiométricas com a substância a ser titulada. 
 
Observação - Considerações sobre o Hidróxido de Sódio P.A.: 
O hidróxido de sódio, de fórmula NaOH; peso molecular = 40,00, é um sólido 
em forma de pastilhas branco, deliqüescente, inodoro e higroscópico (logo, não pode 
ser usado como padrão primário). 111 gramas solubilizam-se em 100 gramas de 
água a 25 ºC. Funde-se a 318 °C. É estável sob condições comuns de uso e 
armazenamento. Entretanto, pode reagir com dióxido de carbono existente no ar, 
formando carbonato de sódio, que pode ser completamente removido quando se 
prepara uma solução saturada de NaOH e a deixa em repouso por 24 horas. O 
carbonato precipita por ser pouco solúvel na solução. 
Em contato com ácidos e haletos orgânicos (especialmente o tricloroetileno), 
pode causar violentas reações. O contato com nitrometano e outros compostos 
nitros similares pode formar sais sensíveis a impactos. Reage com vidro e dissolve a 
sílica, formando silicatos solúveis. A presença desses silicatos pode causar erros e, 
por isso, as soluções de NaOH devem ser conservadas em frascos de polietileno. 
É um irritante poderoso. Sua ingestão pode causar sérias queimaduras na 
boca, garganta e estômago. Pode resultar em ulceração grave dos tecidos e em 
morte. Sintomas podem incluir sangramento, vômito, diarréia, queda da pressão 
sanguínea. Os danos podem aparecer dias após a exposição. Em caso de ingestão 
NÃO INDUZIR O VÔMITO; ingerir grandes quantidades de água, ou leite - se 
disponível - e encaminhar ao atendimento médico. 
 
 
34 
 
3.5.2. Objetivo 
 
-Preparar e padronizar soluções de NaOH e HCl 0,1 mol/L. 
 
3.5.3. Procedimento experimental 
 
A) Preparação da SOLUÇÃO 1 de NaOH 0,1 mol/L 
- Preparar 200 mL de solução de NaOH 0,1Mol/L, partindo-se da substância sólida. 
Atenção: calcular no pré-relatório a massa sólida de NaOH necessária para 
essa solução. Pesar a massa num béquer em balança analítica e posteriormente 
acrescentar água dissolvendo com a ajuda de um bastão de vidro. Perceber se a 
reação é exotérmica ou endotérmica e explicar no relatório. Após sua preparação, 
reservar essa solução para proceder a sua padronização, conforme descrito no item 
D. 
 
B) Preparação da SOLUÇÃO 2 de HCl 0,1 mol/L 
 - Preparar 100 mL de solução de HCI 0,1Mol/L, partindo-se do HCI concentrado. 
Tomar o cuidado de acertar o menisco muito bem. Não deixar os frascos de 
reagentes abertos ou mal tampados. Após sua preparação, reservar essa solução 
para proceder a sua padronização, conforme descrito no item D. Atenção: fazer o 
cálculo no pré-relatório da quantidade em volume de HCl concentrado usada. Para 
preparar a solução adicione o volume calculado num balão volumétrico de 100 mL e 
depois complete com água até o menisco. Escolha a pipeta graduada apropriada 
para transferir o volume calculado de HCl concentrado para o balão volumétrico. 
 
C) Padronização da SOLUÇÃO 1 de NaOH 0,1 mol/L 
- Pesar em triplicata a quantidade de biftalato de potássio (sal ácido) necessária 
para reagir completamente com 25 mL da solução recém preparada de NaOH; 
correspondente a 0,5105 gramas do sal. 
-Colocar cada fração pesada em num erlenmeyer de 125 mL. 
-Diluir a 50 mL com água destilada usando uma proveta. 
-Adicionar 3 gotas de uma solução 1% de fenolftaleína. A solução resultante é a 
solução padrão primária, e corresponde ao titulante da análise. 
 
35 
 
-O titulado (solução preparada de NaOH supostamente 0,1 mol/L, mas que pode 
assumir valores diferentes contanto que bem determinado – em caso de dúvida 
consultar o professor) será colocado em uma bureta de 50 mL tomando o cuidado 
de acertar o menisco, depois de verificar se a bureta não está vazando ou se tem 
bolhas de ar. 
-Proceder a titulação até a viragem do indicador. 
- Zerar novamente a bureta, enchendo-a com solução de NaOH e repetir o 
procedimento mais 2 vezes. 
-Fazer a média dos três resultados de volume da solução de base consumida e 
calcular a molaridade real da solução de NaOH. 
 
D) Padronização da SOLUÇÃO 2 de HCl 0,1 mol/L 
Para certificar-se da real concentração de uma solução de ácido preparada, 
como a SOLUÇÃO 2, por exemplo, deve-se fazer a titulação dessa solução com 
uma base como NaOH 0,1Mol/L previamente padronizada na presença de um 
indicador tal como a fenolftaleína. 
- Colocar em um erlemmeyer 20 mL da solução de HCl (supostamente 0,1 mol/L, 
mas que pode assumir valores diferentes contanto que bem determinado – em caso 
de dúvida consultar o professor) 
-Adicionar 3 gotas do indicador fenolftaleína. 
-Preparar mais 2 erlemmeyer desta maneira 
-Colocar a solução de NaOH padronizada na bureta de 50 mL, tomando o cuidado 
de acertar o menisco, depois de verificar se a bureta não está vazando ou se tem 
bolhas de ar. 
-Desenvolver a titulação até a viragem do indicador 
-Anotar o volume de NaOH consumido na operação 
-Repetir o procedimento para os demais erlemmeyer 
- Fazer a média dos três resultados de volume da solução de base consumida e 
calcular a molaridade real da solução de HCl. 
 
 
 
 
 
 
36 
 
3.5.4. Dados e resultados 
 
Tabela 2. Padronização da solução SOLUÇÃO 1 de NaOH 0,1 mol/L. 
Medida Volume gasto 
de NaOH 
1 
2 
3 
Média 
 
 Concentração molar da SOLUÇÃO 1:__________________________ 
 
 
Tabela 3. Padronização da solução SOLUÇÃO 2 de HCl 0,1 mol/L. 
Medida Volume gasto 
de NaOH 
1 
2 
3 
Média 
 
Concentração molar da SOLUÇÃO 2:__________________________ 
 
 
3.5.5. Bibliografia 
 
BACCAN, N.; ANDRADE, J.C.; GODINHO, O.E.S.; BARONE, J.S., Química Analítica 
Quantitativa Elementar. VIII, 29 edição, Editora Edgard Biücher Uda., Campinas, 
1985. 
BRADY, J. ; HUMISTON, G. E. Química Geral, Livros Técnicos e Científicos Editora 
S.A., Rio de Janeiro, 1986. 
VOGEL, A. Quimica analitica cuantitativa : teoria y pratica. Vol. 2, 2 ed., 
Editora Kapelusz, Buenos Aires, 1960. 
 
 
37 
 
3.6. CINÉTICA QUÍMICA 
 
3.6.1. Introdução 
 A cinética química é o estudo das velocidades e mecanismos das reações 
químicas. A velocidade de uma reação é a medida da rapidez com que os reagentes 
são consumidos e os produtos são formados. 
Desta forma, a velocidade média é dada pela expressão 1. 
Vm = ∆n / ∆T (1) 
∆n = Variação da concentração de um dos reagentes ou um dos produtos. 
∆T = Variações do tempo em que ocorrem as reações; 
 
 Logo, para a reação genérica 
 
aA + bB → cC + dD 
vmédia de formação de C =
∆[C]
———
∆t 
vmédia de consumo de A =
-∆ [A]
———
∆t 
vmédia da reação =
-∆[A]
———
a·∆t 
=
- ∆[B]
———
b·∆t 
=
∆[C]
———
c·∆t 
=
∆[D] 
——— 
d·∆t 
 
Portanto, quanto menor o tempo de reação, maior a velocidade. 
 
 O mecanismo da reação consiste na seqüência detalhada de etapas simples, 
elementares, que levam dos reagentes aos produtos. Uma equação global não exibe 
nenhuma dessas etapas, mostrando apenas a modificação líquida, resultado final de 
todas as etapas que participam do mecanismo. Muito do que conhecemos sobre 
mecanismos de reações provém do estudoda velocidade de reação e da influencia 
de diferentes fatores sobre o sistema. Variações de temperatura, concentração de 
 
38 
 
reagentes e presença de catalisador são alguns dos fatores que influenciam a 
velocidade de uma reação. 
Neste experimento será realizada sempre a mesma reação que consiste na 
reação 1. Varia-se apenas, ora a temperatura, ora a concentração dos reagentes, 
ora a presença ou não de catalisador. A modificação na velocidade da reação será 
devida a um destes fatores. 
 
5C2O42-(aq) + 2MnO4-(aq) + 16H+(aq) → 10CO2(g) + 2Mn2+(aq) + 8H2O(l) (1) 
 
O íon permanganato (MnO4-) apresenta a cor violeta e ao reagir com o oxalato 
(C2O4- -) forma o Mn2+ que é incolor, se esta reação se processar em meio ácido, 
como é o nosso caso. 
 Desta forma pode-se medir a velocidade da reação pela medida do intervalo 
de tempo necessário para descorar a solução após a adição do permanganato. Vale 
ressaltar que se a reação for realizada em meio básico, forma-se o MnO2 de cor 
turva escura (marrom). A formação do MnO2 também é causada pela ação da luz. 
 A reação será realizada: 
(i) Em temperaturas diferentes, visando observar a influência desta sobre a 
velocidade da reação; 
(ii) Com diferentes concentrações, visando observar a influência desta sobre a 
velocidade da reação; 
(iii) Em presença e ausência de catalisador, visando observar o efeito deste sobre a 
velocidade da reação; 
O aluno deverá escrever no pré-relatório a expressão geral da velocidade 
média desta reação, em função dos reagentes e dos produtos. 
 
3.6.2. Objetivos 
-Verificar a influência da temperatura sobre a velocidade de uma reação química. 
-Verificar a influência da concentração sobre a velocidade de uma reação química. 
-Verificar a influência de um catalisador sobre a velocidade de uma reação química. 
 
 
39 
 
3.6.3. Procedimento Experimental 
 
A) Influência da Concentração 
a) Numerar 4 copos de béquer, limpos e secos. 
b) No béquer 1 adicionar em ordem: 10 mL de de HCl 5 M, 5 mL de solução 
oxalato de sódio, 0,5 M e 4 mL de solução de KmnO4. Agitar a solução. 
Contar o tempo de descoramento a partir do instante em que foi adicionado o 
KmnO4 e registrar este tempo na tabela em dados e resultados. 
c) No béquer 2 novamente adicionar 10 mL de HCl 5 M, 5 ml do oxalato de 
sódio 0,5 M e 50 mL de água destilada, agitar a solução até homogeneizar. 
Com auxílio de pipeta adicionar 4 mL, de solução de KMnO4. Agitar a solução 
e contar o tempo de descoramento. 
d) No béquer 3 repetir as mesmas operações adicionando 100 mL de água 
destilada. 
e) No béquer 4 repetir as mesmas operações adicionando 150 mL de água 
destilada. 
 
Observação: Para calcular a concentração de oxalato, utilizar a fórmula: 
 M1V1 = M2V2 
Construir o gráfico colocando no eixo das ordenadas a concentração de oxalato 
(C2O42-) e no eixo das abscissas o tempo de descoramento. 
 
B) Influência da temperatura 
a) Lavar e secar os 4 copos de béquer da primeira parte para utilizar novamente. 
b) Adicionar aos copos de béquer 1, 2, 3 e 4, 10 mL de HCl 5 M , 5 mL de 
oxalato de sódio 0,5 M e 10 mL de água destilada. 
c) Ao copo de béquer 1 adicionar à temperatura ambiente, 4 mL de solução de 
KMnO4, 0,04 M. Agitar. Anotar na tabela a seguir o tempo de descoramento e 
a temperatura (na qual ocorreu o descoramento). 
d) Elevar a temperatura do copo de béquer 2 até próximo aos 35oC. Repetir os 
procedimentos do item c, anotar o tempo (no qual ocorreu o descoramento). 
 
40 
 
e) Elevar a temperatura do copo de béquer 3 até próximo aos 45oC. Repetir os 
procedimentos do item c. 
f) Elevar a temperatura do copo de béquer 4 até próximo aos 55oC. Repetir os 
procedimentos do item c. 
Construir o gráfico colocando no eixo das ordenadas a temperatura e no eixo das 
abscissas o tempo de descoramento. 
 
C) Influência de catalisador (obs ao prof: por favor verifique se esse 
procedimento está correto) 
a) Nos béqueres 1 e 2 depois de lavados e secos adicionar 50 ml de água 
destilada, 10 ml de HCl e 5 ml de oxalato de sódio. 
b) Ao béquer 1 adicionar 2 gotas de solução de KMnO4 0,04 M. Agitar e anotar o 
tempo de descoramento. 
c) Ao béquer 2 adicionar 4 ml de solução de KMnO4 0,04 M. Agitar e anotar o 
tempo de descoramento. Guardar a solução para o item d. 
d) Ao béquer 2 adicionar novamente 4 ml de solução de KMnO4 0,04 M e anotar 
o tempo de descoramento. 
 
Observação: O catalisador desta reação é o Mn2+ produto da própria reação. 
Explicar no relatório a causa das diferentes velocidades nos bequeres. 
Transcrever a expressão geral da velocidade média da reação. 
 
3.6.4. Dados e resultados 
A) Influência da concentração 
Tabela 1. Influência da concentração na cinética da reação. 
 
 
 
 
Nº do béquer Tempo de descoramento
(s) 
Concentração de C2O42 –
(mol/L) 
1 
2 
3 
4 
 
41 
 
 
 
B) Influência da temperatura 
Tabela 2. Influência da temperatura na cinética da reação. 
 
C) Influência de catalisador 
Tabela 3. Influência do catalisador na cinética da reação. 
 
 
3.6.5. Bibliografia 
ROSITO, B. ; FERRARO, C. ; REMOR, C.; COSTA, I. Experimentos em 
Química. Vol.2 , Ed. Sulina, 1981. 
OLIVEIRA, E.A. Aulas práticas de química. Ed. Moderna, 1993. 
RUSSEL, J.B. Química Geral, Ed. McGraw-Hill, 1982. 
 
 
 
 
 
 
 
Nº do béquer Tempo de descoramento 
(s) 
Temperatura 
(oC) 
1 
2 
3 
4 
Nº do béquer 
 
Tempo de descoramento (s) 
b 
c 
d 
 
42 
 
3.7. TERMOQUÍMICA: CALOR DE REAÇÃO 
 
3.7.1. Introdução 
Termoquímica é a parte da Química que trata das trocas de calor que 
acompanham as reações. As reações químicas podem ser: exotérmicas- quando a 
reação ocorre com liberação de calor e endotérmicas- quando a reação ocorre com 
absorção de calor. 
Toda substância possui uma quantidade de energia armazenada nas suas 
ligações. Quando a energia contida nos reagentes é maior que a contida nos 
produtos, temos uma reação exotérmica pois ocorre liberação de energia. Quando a 
energia contida nos reagentes é menor que a contida nos produtos, temos uma 
reação endotérmica pois ocorre absorção de energia. Essa energia contida nas 
substâncias recebe o nome de entalpia (H). A variação de entalpia para uma dada 
reação química é dada por 
 ∆H = HP - HR 
onde 
HP é a soma das entalpias dos produtos e HR é a soma das entalpias dos reagentes. 
Quando a reação se realiza a pressão constante o ∆H é chamado de calor de 
reação. Em Termoquímica é usual se expressar as variações de energia nas 
reações através de quilocalorias (Kcal). 
 1 Kcal = 1000 cal 1 cal = 4,18 J 
 
Neste experimento serão determinados os calores de reação correspondentes aos 
seguintes processos: 
 
I. Dissolução do hidróxido de sódio sólido em água. 
NaOH(s) → Na+(aq) + OH– (aq) ∆H1 = ? 
II. Reação do hidróxido de sódio sólido com uma solução aquosa de ácido clorídrico. 
NaOH(s) + H+(aq) + Cl –(aq) → Na+(aq) + Cl– (aq) + H2O (l) ∆H2 = ? 
 
43 
 
III. Reação entre uma solução de hidróxido de sódio e uma solução de ácido 
clorídrico. 
Na+(aq) + OH– (aq) + H+(aq) + Cl –(aq) → Na+(aq) + OH– (aq) + H2O (l) ∆H3 = ? 
 
 Para calcular os calores de reação, pelo procedimento abaixo, é necessário 
saber os valores dos calores específicos da água (1,0 cal / g oC) e do vidro (0,2 cal / 
g oC). 
 
3.7.2. Objetivos 
 
-Determinar calores de reação correspondentesa 3 processos 
 
3.7.3. Procedimento experimental 
 
A) Calor da Reação I 
1. Pese um erlenmeyer de 250 mL, seco e limpo, com aproximação de 0,1 g. 
2. Acrescente 200 mL (±1 mL) de água destilada ao erlenmeyer e meça a 
temperatura, com um termômetro. Para calcular a massa de água, considere a 
densidade igual a 1,0 g / mL. 
3. Pese cerca de 2 g de hidróxido de sódio (NaOH) sólido, com aproximação de 
0,01 g. 
4. Adicione o hidróxido de sódio à água do erlenmeyer e agite com um bastão de 
vidro, até dissolvê-lo. Verifique, com um termômetro, a variação da temperatura 
da solução durante todo o processo de dissolução. Anote a temperatura máxima 
alcançada. 
 
B) Calor da Reação II 
5. Lave e enxugue o erlenmeyer de 250 mL utilizado na etapa anterior. 
6. Repita o procedimento dos itens 2, 3 e 4, substituindo a água do item 2 por 200 
mL de solução aquosa de ácido clorídrico 0,25 mol / L. Para calcular a massa da 
solução de ácido clorídrico, considere a densidade igual a 1,0 g / mL. 
 
44 
 
 C) Calor da Reação III 
7. Lave e enxugue o erlenmeyer de 250 mL utilizado na etapa anterior. 
8. Coloque 100 mL de uma solução de hidróxido de sódio 0,5 mol / L em uma 
proveta e meça sua temperatura. Para calcular a massa da solução de hidróxido 
de sódio, considere a densidade igual a 1,0 g / mL. 
9. Coloque 100 mL de uma solução de ácido clorídrico 0,5 mol / L em uma proveta 
e meça sua temperatura. Para calcular a massa da solução de ácido clorídrico, 
considere a densidade igual a 1,0 g / mL. 
10. Coloque a solução de ácido clorídrico no erlenmeyer de 250 mL. 
11. Adicione a solução de hidróxido de sódio, à soluça de ácido clorídrico, agitando 
com um bastão de vidro. 
12. Anote a temperatura máxima alcançada. 
 
 
3.7.4. Questões 
1. Os processos investigados são endotérmicos ou exotérmicos? Explique. 
2. Qual é a relação entre as seguintes unidades de energia: caloria e Joule. 
3. Em cada reação, determine a quantidade de calor absorvida pela solução e pelo 
frasco de vidro. 
4. Determine os calores (∆H) das reações I, II e III, em calorias e em Joules. 
5. Determine a quantidade, em moles, de hidróxido de sódio utilizada em cada 
reação. 
6. Calcule as entalpias molares das reações I, II e III, em cal/mol e em J/mol de 
NaOH. 
7. Quantas calorias teriam sido liberadas da reação I se tivessem sido utilizados 4 g 
de hidróxido de sódio? Qual o efeito disto no valor da entalpia molar? 
 
 
 
 
 
 
 
 
 
45 
 
3.7.5. Dados e resultados 
 
Tabela 1. Calor de Reação I. 
massa do erlenmeyer / g 
temperatura da água / oC 
massa da água / g 
massa de NaOH / g 
temperatura máxima medida / oC 
 
Tabela 2. Calor da Reação II. 
massa do erlenmeyer / g 
temperatura da solução de HCl / oC 
massa da solução de HCl / g 
massa de NaOH / g 
temperatura máxima medida / oC 
 
Tabela 3. Calor da Reação III. 
massa do erlenmeyer / g 
temperatura da solução de HCl / oC 
temperatura da solução de NaOH / oC 
massa da solução de HCl / g 
massa da solução de NaOH / g 
temperatura máxima medida / oC 
 
3.7.6. Bibliografia 
1. BRADY, J. E.; HUMISTON, G. E. Química Geral. 2.ed, v.2, LTC Editora, Rio de 
Janeiro, 1986. 
 
 
 
 
 
 
46 
 
3.8. EQUILÍBRIO QUÍMICO 
 
3.8.1. Introdução 
 
 Os íons cromato (CrO4–2) conferem uma coloração amarelada à solução 
aquosa, enquanto que os íons dicromato (Cr2O7–2) conferem uma coloração 
alaranjada. Em solução, estes dois íons existem em equilíbrio: 
 
Cr2O7–2(aq) + H2O(l) = 2CrO4–2 (aq) + 2H+(aq) 
 
 Dependendo do pH da solução, este equilíbrio é deslocado para a direita, ou 
para a esquerda. Assim, em solução ácida (pH baixo), o equilíbrio é deslocado para 
a esquerda, formando mais íons dicromato. Em solução básica (pH alto), o equilíbrio 
é deslocado para a direita, formando mais íons cromato. 
 
3.8.2. Objetivos 
-Desenvolver o conceito de equilíbrio químico; 
-Caracterizar o estado de equilíbrio de sistemas químicos; 
-Reconhecer alguns fatores que influenciam no equilíbrio químico. 
 
3.8.3. Procedimento experimental 
a) Coloque 2 mL de solução de dicromato de potássio 0,1 mol/L em um tubo de 
ensaio e 2 mL de solução de cromato de potássio 0,1 mol/L em outro tubo de 
ensaio. Anote a coloração e o pH de cada solução. 
b) Adicione solução de hidróxido de sódio 1 mol/L, gota a gota, usando pipeta 
Pasteur, ao tubo de ensaio contendo a solução de dicromato de potássio, até 
a mudança de coloração. Anotar o pH em que ocorre a mudança de 
coloração. 
c) Adicione solução de ácido clorídrico 1 mol/L, gota a gota, usando pipeta 
Pasteur, ao tubo de ensaio contendo a solução de cromato de potássio, até a 
mudança de coloração. Anotar o que ocorreu. Anotar o pH em que ocorre a 
mudança de coloração 
 
 
47 
 
3.8.4. Dados e resultados 
 
Tabela 1. Equilíbrio químico. 
 
3.8.5. Bibliografia 
KOTZ, J.C.; TREICHEL Jr., P. Química e Reações Químicas. v. 2, LTC Editora S.A., 
Rio de Janeiro, 2002. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Procedimento cor pH 
 A 
 B 
 C 
 
48 
 
3.9. REAÇÕES QUÍMICAS E CÁLCULOS ESTEQUIOMÉTRICOS 
(SUBSTITUTIVO) 
 
3.9.1. Introdução 
O termo reação química refere-se ao reagrupamento dos átomos entre 
substâncias de um dado sistema. Ela é representada esquematicamente por uma 
equação química, que dá informações qualitativas e quantitativas. A equação escrita 
deve fornecer a descrição da reação que ocorre, quando os reagentes são 
misturados. Para escrever uma reação química, é necessário conhecer a fórmula 
dos reagentes e dos produtos. Para se chegar a tal informação é preciso observar o 
curso da reação tentando a identificação dos produtos, através de observação e/ou 
análise química. 
Em primeiro lugar deve-se deduzir se houve uma reação química ao colocar em 
contato duas ou mais substâncias. Obtêm-se evidencias de reação química no 
laboratório quando aparecem diferenças perceptíveis e significativas entre o estado 
inicial e o estado final, estados estes que correspondem respectivamente aos 
reagentes antes de serem colocados em contato e o que resulta após. É possível 
utilizar-se critérios qualitativos e quantitativos para detectar esta mudança. Critérios 
qualitativos são baseados em observações macroscópicas utilizando os órgãos dos 
sentidos (exceto pelo paladar). 
As reações químicas podem ser classificadas: 
⇒ Reação de síntese ou adição 
Quando duas ou mais substâncias reagem, produzindo uma única substância: 
 
 C + O2 CO2 
É a queima do 
carvão 
 
 4Fe + 3 O2 2 Fe2O3 
ocorre, quando o ferro 
enferruja 
 
 
49 
 
⇒ Reação de análise ou decomposição 
Quando se forma mais de uma substância a partir de um único reagente: 
 
2HgO 2Hg + O2 
 
 
 2 KCIO3 2KCI + 3 O2 
 
 
 2Cu(NO3)2 2CuO + 4NO2 + O2 
 (sólido azul) (sólido preto) (gás vermelho) (gás incolor) 
 
Certas reações de análise ou de composição recebem nomes especiais como: 
◊ Pirólise = decomposição pelo calor ( na indústria, é chamando também de 
CALCINAÇÃO) 
◊ Eletrólise = decomposição pela eletricidade 
◊ Fotólise = decomposição pela luz 
 
⇒ Reação de deslocamento ou de simples troca 
Quando uma substância simples reage com uma substância composta, formando 
uma nova substância simples e uma nova composta. 
 
 Fe + CuSO4 FeSO4 + Cu 
 
 
 
 Fe + 2 HCl FeCl2 + H2 
 
⇒ Reações de dupla troca 
Quandoduas substâncias compostas reagem formando duas novas substâncias 
compostas. 
 Na Cl + AgNO3 AgCl + NaNO3 
 
 
 
50 
 
 
 CuSO4 + 2 NaOH Cu ( OH )2 + Na2SO4 
 
 
⇒ Reação de oxirredução (redox) 
Quando há transferência de elétrons. 
 
Na + Cl Na+ + Cl- 
 
OXIDAÇÃO = perda de elétrons 
REDUÇÃO = ganho de elétrons 
 
Através do cálculo estequiométrico, pode-se determinar as quantidades de 
reagentes consumidos e de produtos formados nas reações químicas. Os cálculos 
estequiométricos podem ser de dois tipos: 
• A partir da massa de um dos reagentes, calculam-se as massas dos produtos 
da reação química. 
• A partir da massa de um dos produtos de uma reação química, calculam-se 
as massas dos reagentes. 
 O seguinte roteiro facilita a resolução de problemas de cálculo 
estequiométrico: 
• Escrever a equação que representa a reação química. 
• Encontrar os coeficientes estequiométricos que balanceiam a reação. 
• Identificar, no problema, quais são os dados e quais são as incógnitas. 
• Relacionar os dados do problema com as incógnitas. 
 
3.9.2. Objetivos 
-Utilizar evidências experimentais para concluir sobre a ocorrência de uma reação 
química. 
-Classificar reações químicas. 
-Representar reações através de uma equação química. 
-Analisar aspectos quantitativos das reações químicas. 
 
51 
 
 
3.9.3. Procedimento experimental 
 
A) Evidências da ocorrência e classificação das reações químicas 
-Prepare os tubos de ensaio e numere-os. Procure seguir as instruções abaixo 
anotando as observações em dados e resultados. Para cada reação utilize 1 mL de 
cada solução, exceto quando houver outra especificação. 
-Escreva a equação química balanceada correspondente a cada reação. Classifique 
as reações. 
1. ácido clorídrico diluído + solução de nitrato de prata 
2. solução de sulfato de cobre II + solução de hidróxido de sódio 
3. solução de nitrato de cobre II + hidróxido de amônio 
4. solução de cromato de potássio + solução de nitrato de prata 
5. Com auxílio de uma pinça metálica, queime um pedaço de magnésio metálico e 
coloque o pó formado em tubo de ensaio. Adicione algumas gotas de água sobre o 
pó branco formado e coloque algumas gotas de fenolfataleína. CUIDADO: ao 
queimar o Mg você deve evitar olhar diretamente para a chama brilhante. O 
vapor de magnésio é bastante tóxico, atacando o sistema nervoso central. 
6. Coloque em um tubo de ensaio um pouco de bicarbonato de sódio sólido e 
adicione 1 mL de ácido clorídrico diluído 
7. Coloque em um tubo de ensaio um pedaço de ferro metálico e adicione 1 mL de 
solução de sulfato cúprico 
8. Coloque em um tubo de ensaio um pedaço de zinco metálico e adicione 1mL de 
solução de ácido clorídrico 
9. Coloque em um tubo de ensaio um pedaço de cobre metálico e adicione 1mL de 
solução de ácido clorídrico 
 
B) Cálculos estequiométricos 
B.1) 
-Coloque 5 mL de solução de ácido clorídrico 1 mol/L (ou concentração maior) em 
um tubo de ensaio. Pese 1 g de magnésio numa cápsula de porcelana. Mergulhe o 
magnésio na solução ácida. Caso seja necessário aqueça levemente o tubo para 
acelerar a velocidade da reação. Observe e anote o que ocorre. O término da reação 
pode ser observado pelo desaparecimento do magnésio. Escreva a equação 
 
52 
 
química correspondente. Através de cálculos estequiométricos, determine a massa 
dos produtos da reação, considerando um rendimento de 100%. 
-Pese um béquer seco e filtre o conteúdo do tubo de ensaio para o béquer. Passe 
1mL de água destilada para lavar o tubo e transfira para a cápsula de porcelana. Se 
for necessário repita a operação de lavagem para garantir que todo o material foi 
transferido para a cápsula, evitando desta forma perda de material. Aqueça a 
cápsula, usando tripé, tela de amianto e bico de Bunsen, para evaporar o solvente. 
Observe o que restou na cápsula, após a evaporação do solvente. Deixe a cápsula 
esfriar e pese-a novamente. Determine a massa do produto sólido da reação. 
Compare a massa obtida com a previsão estequiométrica. Se for o caso, discuta por 
que a massa do produto obtido foi diferente da prevista pela estequiometria da 
reação. Calcule o rendimento da reação. 
B.2) 
-Coloque 10 mL de solução 1 mol/L de nitrato de chumbo em um tubo de ensaio. 
Adicione 1 mL de solução 1 mol/L de hidróxido de sódio. Observe e anote o que 
ocorre. Escreva a equação química correspondente. Através de cálculos 
estequiométricos, determine a massa dos produtos da reação, considerando um 
rendimento de 100%. 
-Filtre a mistura obtida e lave o precipitado com 10 mL de água destilada. Passe a 
massa para um béquer e pese. Após secagem do sólido obtido, pese a cápsula 
novamente. Determine a massa do produto sólido da reação. Compare a massa 
obtida com a previsão estequiométrica. Se for o caso, discuta por que a massa do 
produto obtido foi diferente da prevista pela estequiometria da reação. Calcule o 
rendimento da reação. 
 
3.9.4. Dados e resultados 
 
A) Evidências da ocorrência e classificação das reações químicas 
 
 
 
 
 
 
53 
 
Tabela 1. Reações e observações relacionadas. 
Reação Observações Equação da reação Tipo de reação 
1 
2 
3 
4 
5 
6 
7 
8 
9 
 
 
B) Cálculos estequiométricos 
 
Tabela 2. Pesagem dos produtos. 
Substâncias e materiais Massa (g)
1. Mg 
Cápsula de porcelana 
Cápsula de porcelana + produto 
2. Béquer 
Béquer + precipitado seco 
 
3.9.5. Bibliografia 
BACCAN, N., GODINHO, O.E.S., ALEIXO, L.M., STEIN, E. Introdução a 
semimicroanálise qualitativa, Editora da UNICAMP, Campinas, 1987. 
VOGEL, A. I; Química analítica qualitativa, 5a edição, Editora mestre jou, São Paulo, 
1982. 
ROSITO, B., FERRARO, C., REMOR, C., COSTA, I., ALBUQUERQUE, R. 
Experimentos em química. v.2 Editora Sulina, 1981. 
OLIVEIRA, E. A. Aulas práticas de química. Editora Moderna, 1993. 
RUSSEL, J. B. Química geral. Editora McGraw-Hill, 1982. 
 
 
54 
 
4. SEGURANÇA NO LABORATÓRIO 
 
A segurança no laboratório é uma responsabilidade que deve ser assumida 
por professores, monitores, técnicos e alunos. No recinto do laboratório não são 
permitidas brincadeiras ou atitudes que possam provocar danos para si ou outras 
pessoas. Apesar disso, os laboratórios de química não são necessariamente 
lugares perigosos embora muitos dos perigos estejam associados a eles. Acidentes 
são, na maioria das vezes, causados por falta de cuidado, ignorância e desinteresse 
pelo assunto. 
Embora não seja possível enumerar todas as causas de possíveis acidentes num 
laboratório, existem alguns cuidados que são básicos e que se observados 
ajudam a evitá-los. 
 
 
4.1. NORMAS BÁSICAS DE SEGURANÇA NO LABORATÓRIO 
 
1. É PROIBIDO comer, beber ou fumar no laboratório; 
2. Deve-se evitar trabalhar sozinho no laboratório, a presença de outras 
pessoas será sempre uma valiosa ajuda em caso de acidentes; 
3. Utilize sempre que necessário materiais que possam garantir maior 
segurança no trabalho, tais como: luvas, pinça, óculos, bata 
(obrigatórios), etc. 
OBS: Se estiver sem óculos de proteção não use lentes de contato 
quando estiver trabalhando no laboratório. 
4. Conserve sempre limpo os equipamentos, vidraria e sua bancada de 
trabalho. Evite derramar líquidos, mas se o fizer, limpe o local 
imediatamente; 
5. Gavetas e portas dos armários devem ser mantidas sempre fechadas 
quando não estiverem sendo utilizadas; 
6. Lave suas mãos freqüentemente durante o trabalho prático, especialmente 
se algum reagente químico foi respingado. 
 
55

Outros materiais