Buscar

Comissionamento de Cabos em Parques Eólicos

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 73 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 73 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 73 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

U�IVERSIDADE FEDERAL DO CEARÁ 
CE�TRO DE TEC�OLOGIA 
DEPARTAME�TO DE E�GE�HARIA ELÉTRICA 
CURSO DE E�GE�HARIA ELÉTRICA 
 
 
 
 
 
COMISSIO�AME�TO DE CABOS SUBTERR�EOS DE 
MÉDIA TE�SÃO EM PARQUES EÓLICOS 
 
 
 
 
JORGE FELIPE SALGADO NOGUEIRA 
 
 
 
 
 
 
 
 
Fortaleza 
Junho de 2010 
ii 
 
JORGE FELIPE SALGADO NOGUEIRA 
 
 
 
 
 
 
COMISSIO�AME�TO DE CABOS SUBTERR�EOS DE 
MÉDIA TE�SÃO EM PARQUES EÓLICOS 
 
 
Monografia apresentada para a obtenção 
dos créditos da disciplina Trabalho de 
Conclusão de Curso do Centro de 
Tecnologia da Universidade Federal do 
Ceará, como parte das exigências para a 
graduação no curso de Engenharia Elétrica. 
 
Área de concentração: 
Sistema Elétrico de Potência 
 
Orientador: Prof. Alexandre Rocha 
Filgueiras. 
 
 
 
 
 
 
Fortaleza 
Junho de 2010 
iii 
 
 
iv 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
“Tornar-se nobre por merecimento próprio é melhor do que ser nobre por nascimento”. 
(Cícero) 
 
 
v 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A Deus, 
Aos meus pais, Marilio e Rosemir, 
Ao irmão, Marílio Salgado, 
A namorada, Renata, 
Aos meus familiares, 
A todos os amigos. 
vi 
 
AGRADECIME�TOS 
 
 A Deus, que me deu vida, saúde e inteligência, e que me dá força para 
continuar a caminhada em busca dos meus objetivos. 
 Aos meus pais, irmão e namorada, pela dedicação e apoio que tem me dado e 
sem os quais não alcançaria essa conquista. 
 Aos professores do curso de Engenharia Elétrica da Universidade Federal do 
Ceará pelos ensinamentos e em especial ao meu orientador, Alexandre Rocha Filgueiras, que 
se dispôs e muito colaborou para o engrandecimento desta monografia. 
 Aos colegas de trabalho da RMS Engenharia, pela ajuda e pelo tempo 
concedido com explicações que me ajudaram tanto na parte teórica quanto prática do assunto. 
 Aos amigos de sala pela alegria, companheirismo e por tornarem esses anos de 
faculdade muito especiais para mim. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
vii 
 
RESUMO 
 
 O presente trabalho proprõe uma metodologia de ensaios a serem aplicados 
em comissionamento de cabos de média tensão instalados em redes subterrâneas utilizados na 
distribuição de energia em parques eólicos. 
 Durante este trabalho, foram apresentados dois tipos de ensaios realizados em 
cabos isolados, utilizando os equipamentos megohmetro e hipot que medem, respectivamente, 
a resistência de isolamento e a capacidade da isolação do cabo suportar a tensão de operação, 
dando confiabilidade ao sistema de distribuição subterrânea. Para a demonstração desta 
proposta, foram apresentados resultados de ensaios feitos em um parque eólico modelo com a 
potência de 50,4MW, composto de 24 aerogeradores, sendo divididos em 3 alimentadores 
principais. 
 Os equipamentos de ensaios foram o hipot de 120 kVcc da Instronic, modelo 
HT-120.05CC, e o megohmetro de 5kV da Metrel, modelo MI-2077, e os cabos de média 
tensão ensaiados são compostos por condutor de fio de alumínio, blindagem do condutor 
termofixo semicondutor, isolação em XLPE, blindagem da isolação composto por termofixo 
semicondutor e cobertura em termoplástico de polietileno. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
viii 
 
ABSTRACT 
 
 The present work proposes one methodology to be used in testing and 
commissioning of medium voltage cables installed on underground networks that are used on 
power wind farms. 
 During this work, two tests were performed on insulated cables, using megger 
and HIPOT, that measure, respectively, the insulation resistance and insulation capacity of the 
cable to resist the operation voltage, giving reliability to the underground distribution system. 
To demonstrate this proposal, the tests were made in model of a wind farm composed by 54 
wind turbines with an output of 50.4MW, divided on three main feeders. 
 The test equipments were Hipot 120kVcc, model HT 120.05CC from 
Isotronic, High Voltage Insulation Tester, model MI-2077 from Metrel and medium voltage 
tested cables were composed by aluminum wire, insulation shield with XLPE, insulation 
shield composed of semicondutor and external coverage with thermosetting thermoplastic 
polyethylene. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ix 
 
SUMÁRIO 
 
CAPÍTULO 1 - INTRODUÇÃO .......................................................................................... 1 
1.1 OBJETIVO ............................................................................................................ 3 
1.2 ESTRUTURA DO TRABALHO ............................................................................ 3 
1.3 EQUIPAMENTOS UTILIZADOS ......................................................................... 4 
CAPÍTULO 2 – DISTRIBUIÇÃO DE ENERGIA ELÉTRICA SUBTERRÂNEA ................ 5 
2.1 APLICAÇÕES NO BRASIL .................................................................................. 5 
2.2 CABOS UTILIZADOS EM RDS EM PARQUES EÓLICOS ................................. 7 
2.2.1 CONDUTOR ........................................................................................... 8 
2.2.2 SISTEMA DIELÉTRICO ......................................................................... 8 
2.2.3 COBERTURA ....................................................................................... 11 
2.3 MÉTODOS DE INSTALAÇÃO ........................................................................... 11 
CAPÍTULO 3 – REDE DE DISTRIBUIÇÃO SUBTERRÂNEA EM OPERAÇÃO ............ 16 
3.1 FALHAS NOS CIRCUITOS DE RDS ................................................................. 16 
3.2 ENSAIOS DO DIELÉTRICO ANTES E APÓS A INSTALAÇÃO ...................... 20 
CAPÍTULO 4 – APLICAÇÃO DOS ENSAIOS EM RDS .................................................. 24 
4.1 METODOLOGIA DOS ENSAIOS ....................................................................... 24 
4.2 APRESENTAÇÃO DE RESULTADOS DE ENSAIOS EM UM PARQUE MO-
DELO.................. ............................................................................................................. 28 
CAPÍTULO 5 - CONCLUSÃO .......................................................................................... 41 
REFERÊ�CIAS BIBLIOGRÁFICAS .............................................................................. 42 
APÊ�DICE A – DIMENSIONAMENTO DOS CONDUTORES ....................................... 44 
APÊ�DICE B – CÁLCULO DA QUEDA DE TENSÃO ................................................... 47 
APÊ�DICE C – CÁLCULO DAS PERDAS ELÉTRICAS ................................................ 56
 
Introdução 
1
1 I�TRODUÇÃO 
 
 No Brasil cerca de 97% das redes de distribuição de energia elétrica são aéreas 
(RDA) e os 3% restantes são redes subterrâneas (RDS). Esses últimos, concentram-se nas 
regiões centrais das grandes cidades e em alguns locais específicos, como redes internas de 
parques eólicos. A RDA tem baixo investimento inicial, porém possui alto custo de operação, 
além de manutenção de podas em árvores. Estima-se que os gastos com podas são 10 dólares 
por árvore, perfazendo um total de 4 a 7 milhões de dólares por ano em uma cidade de grande 
porte. Por outro lado, a RDSpossui maior investimento inicial, contudo menor custo em ma-
nutenção[1]. 
 Na RDA, uma vez que os cabos ficam expostos, as intervenções para consertos 
também precisam ser frequentes. Os danos são causados por raios (descargas atmosféricas), 
ventos, pássaros, chuvas, contaminação ambiental (poluição, salinidade) e acidentes com veí-
culos que atingem postes. Ademais, é grande o número de pessoas que morrem todo ano de-
vido aos acidentes com os fios, que em sua maioria são construídos com cabos não-isolados. 
 A RDS proporciona maior confiabilidade, segurança, integração com o meio 
ambiente, valorização da área e não possui interferência com arborização. Todavia, sua des-
vantagem é em relação a derivações complexas e alto investimento inicial, com utilização de 
itens, como cabos de energia de média tensão com isolação elétrica adequada, podendo chegar 
a dez vezes mais que a rede convencional [1]. 
 A isolação elétrica é uma das mais importantes partes dos componentes de alta 
tensão e sua qualidade determina a confiabilidade dos diversos equipamentos elétricos utiliza-
dos na geração, transmissão e distribuição de energia elétrica, tais como cabos, isoladores, 
transformadores, geradores e motores. 
 Em sistemas de distribuição subterrânea são utilizados cabos de energia com 
isolação elétrica constituídos de materiais poliméricos sintéticos, termofixos, dos quais, desta-
cam-se o polietileno reticulado (XLPE) e a borracha etilenopropileno (EPR), devido a suas 
excelentes propriedades dielétricas, propiciando elevada rigidez dielétrica e a alta resistivida-
de volumétrica. 
 A camada dielétrica é projetada para suportar diversos estresses, aos quais fica 
submetida durante sua vida. Estes estresses são normalmente classificados em quatro tipos, a 
saber: elétrico (campo aplicado, tensão, frequência de operação e sobretensões), térmico 
 
Introdução 
2
(temperatura de operação e gradientes de temperatura), mecânico (vibração e torção) e ambi-
ental (umidade), podendo agir sobre o sistema de isolação de forma individual ou combinada. 
 Os cabos isolados de média tensão empregados em RDS mantem um campo 
elétrico confinado e baixa influência do campo magnético no meio. Em campo, eles podem 
ser instalados em dutos ou diretamente enterrados no solo. Para qualquer uma dessas situa-
ções, o ambiente no qual o cabo está imerso experimentará vários estresses. Ainda, estão as-
sociados à alta confiabilidade, com índices reduzidos de interrupção devido às suas caracterís-
ticas construtivas que impedem a ocorrência de perturbações devido aos fenômenos climáti-
cos, mecânicos ou humanos. No entanto, quando ocorrem as falhas em cabos subterrâneos são 
de custo mais elevado, pois exige a substituição da seção de linha defeituosa para o restabele-
cimento do sistema. De forma distinta as redes aéreas, onde a localização de defeitos pode ser 
realizada por meio de inspeções visuais, a topologia subterrânea impossibilita a utilização 
desta abordagem [2]. 
 Todavia, deve ser observado que os estresses podem levar a degradação da 
isolação do cabo, como arborescência em água, este tipo de degradação é devido aos meca-
nismos de migração de água contendo íons na presença de campo elétrico. Ademais, por mais 
cuidadoso que seja o controle de qualidade durante o processo de manufatura dos condutores 
é praticamente impossível evitar a presença de defeitos no produto final, tais como vazios que 
são fontes geradoras de descargas elétricas parciais internas. 
 A evolução da arborescência e ocorrência contínua de descargas, quando sob 
estresse elétrico, leva à progressiva deterioração das propriedades físicas dos materiais isolan-
tes podendo vir, em última instância, a causar a falha do equipamento por ruptura, comprome-
tendo o desempenho e a confiabilidade dos sistemas de distribuição subterrâneos [2]. 
 O rompimento de isolação em cabos de média tensão gera em sua volta um 
campo magnético, devido à tensão elevada, como também um campo elétrico em suas proxi-
midades com valores consideráveis, suficiente para provocar distúrbios de fuga de corrente. 
Considerando, por exemplo, que três cabos com tensão de 34,5kV entre eles, havendo rompi-
mento da isolação em apenas um cabo haveria um "vazamento de corrente" neste local. No 
caso, distribuição estrela aterrada, teríamos 19,92 kV de tensão entre o cabo e o meio (terra), 
onde o cabo se encontra. Como o meio em que está o condutor normalmente é úmido por es-
tar enterrado haverá uma condutividade maior, ou seja, uma corrente igual à tensão no local 
de ruptura dividido pela resistência elétrica entre o cabo e o meio. 
 O ensaio de tensão aplicada é o método mais comum e usual para diagnóstico e 
detecção de falhas presentes na isolação elétrica, sendo amplamente utilizado em testes de 
 
Introdução 
3
cabos e acessórios (emendas e terminais). Normalmente os ensaios são realizados, em condu-
tores de média tensão blindados e pela aplicação de tensão elétrica contínua entre condutor e 
blindagem aterrada. 
 Os ensaios de corrente contínua, aplicados a cabos com processo de isolação 
forçada de forma semi-contínua, ou seja, isolação extrudada, principalmente em instalações 
antigas, podem causar o envelhecimento precoce ou danos permanentes. Por outro lado, um 
ensaio preventivo elimina, em momento conveniente, os defeitos incipientes que poderiam 
ocorrer durante a operação do sistema, provocando transtornos e perdas monetárias [3]. 
 
1.1 OBJETIVO 
 
 Dois fatores principais motivaram o desenvolvimento deste estudo. Primeiro, 
do ponto de vista de engenharia, a técnica de localização e detecção de falhas em sistema de 
distribuição em média tensão se apresenta como uma importante ferramenta de diagnóstico e 
localização de defeitos em sistemas de isolação. Segundo, do ponto de vista econômico, a 
aplicação de técnicas de comissionamento evita lucros cessantes principalmente em parques 
eólicos. 
 O presente trabalho objetiva criar um roteiro com métodos de ensaios e instala-
ção adequada e testes que garanta a confiabilidade do sistema de distribuição subterrâneo em 
parque eólico. Para tal fim será utilizado um Parque Modelo, JS WIND, usando dados de um 
parque já existente, criando sugestões de aprimoramento para solucionar problemas encontra-
dos em testes e ensaios elétricos de isolação elétrica em condutores enterrados. 
 
1.2 ESTRUTURA DO TRABALHO 
 
 Para o desenvolvimento deste trabalho, foi realizada uma pesquisa bibliográfi-
ca em empresas de energia, normas e na literatura especializada, no sentido de se obter subsí-
dios adicionais que contribuíssem para o desenvolvimento da monografia. Como resultado 
desta revisão bibliográfica, adotou-se uma estrutura de trabalho em quatro capítulos, cujos 
conteúdos serão descritos a seguir. 
 No capítulo 2 está apresentado todos os aspectos teóricos relevantes para o 
entendimento do trabalho como um todo. Inicialmente, mostra-se um panorama de como se 
encontra a utilização de redes subterrâneas em sistemas de distribuição elétrica de média ten-
 
Introdução 
4
são. Com isso, serão explanados conceitos sobre a estrutura geral de condutores elétricos, bem 
como os diversos tipos existentes no mercado e os métodos de instalações subterrâneas. 
 Os princípios dos ensaios de cabos de média tensão para detecção de defeitos 
que possam interferir no funcionamento adequado de cada um deles, assegurando que os con-
dutores isolados e seus acessórios estejam aptos para entrarem em operação, com qualidade e 
segurança, serão detalhados no capítulo 3. 
 No capítulo 4 está apresentado um roteiro de testes e ensaios elétricos para 
detecção de falhas e diagnósticos em cabos subterrâneos,abrangendo aspectos constantes e 
também ausentes na norma NBR 7287. Este roteiro mostra alguns testes e ensaios elétricos 
que devem ser realizados, indicando inclusive, equipamentos necessários para os testes e pro-
cedimentos passo a passo de como realizá-los. Além disso, será analisado um estudo de caso 
visando exemplificar na prática os procedimentos realizados em campo. Este estudo utiliza 
como base um parque eólico, cujo nome do modelo é JS Wind, constituído de 24 torres, capa-
cidade de gerar 50,4MW e tensão na rede de distribuição subterrânea de 34,5 kV. 
 No capítulo 5 está apresentado conclusões do trabalho, bem como sugestões 
para pesquisas futuras, dando continuidade assim ao tema abordado. 
 
1.3 EQUIPAME�TOS UTILIZADOS 
 
Megohmetro 
Modelo: MI-2077 
Fabricante Metrel 
 
Aparelho para aplicação de tensão aplicada (HIPOT) 
Modelo: HT-120.05CC 
Fabricante: Instronic 
 
Termohigrômetro 
Modelo: MS6505 
Fabricante: Instronic 
 
Capítulo 02 
5
2 DISTRIBUIÇÃO DE E�ERGIA ELÉTRICA SUBTERRÂ�EA 
 
2.1 APLICAÇÕES �O BRASIL 
 Segundo [12], o aumento da população e as novas instalações em uma região 
caracterizam muitas vezes um crescimento desordenado na rede de distribuição aérea de ener-
gia elétrica. A disputa entre as árvores nas calçadas e as redes elétricas pelo mesmo espaço é 
sem dúvida um dos principais problemas existentes numa cidade. Além disso, a maioria das 
árvores, uma vez podadas, começa a brotar em direção aos condutores elétricos precisando de 
novas manutenções em curto espaço de tempo. 
 A rede convencional aérea fica totalmente desprotegida contra as influências 
do meio ambiente, situações adversas, apresenta alta taxa de falhas e exige que sejam feitas 
podas drásticas nas árvores, visto que o simples contato com do condutor com um galho de 
árvore pode provocar o desligamento de parte da rede. Interrupção no fornecimento de ener-
gia não planejado pode causar uma situação insustentável. Muitas das interrupções duram 
horas até serem restabelecidas, por isso mesmo, é incalculável o prejuízo que tais falhas no 
fornecimento de energia acarretam, pois poderão haver perda de muitos dias de trabalho (lu-
cros cessantes). 
 O custo inicial pode ser um empecilho para a construção de redes subterrâneas, 
no entanto, existem muitas outras características que jogam a favor como, por exemplo: maior 
confiabilidade na distribuição, redução significativa de interferência externas, menor custo de 
manutenção, aumento da segurança da população devido à tecnologia avançada dos equipa-
mentos e instalações. 
 Segundo análise comparativa dos custos de diferentes redes de distribuição de 
energia elétrica, o sistema subterrâneo de distribuição de energia elétrica é mais complexo que 
o sistema aéreo, apesar do custo mais elevado, para sua instalação e manutenção apresenta 
uma série de benefícios, como [12]: 
• Redução significativa das interrupções pela diminuição da exposição 
dos circuitos aos agentes externos, incrementando a confiabilidade do 
serviço. 
• Eliminação dos circuitos aéreos, o que melhora bastante a aparência do 
sistema e principalmente, ajuda a preservar as árvores, contribuindo, 
 
Capítulo 02 
6
consequentemente, para o melhoramento do aspecto visual das cidades 
e conservação do meio ambiente. 
• Aumento da segurança para a população, com a redução do risco de a-
cidentes por ruptura de condutores e contatos acidentais. 
• Redução dos custos de manutenção, como podas de árvores e desloca-
mento de turmas de emergência . 
 Deste modo, as RDS estão sendo cada vez mais utilizadas porque trazem gran-
des benefícios de segurança, confiabilidade e em alguns locais, até mesmo benefícios econô-
micos. Quando se somam os custos de poda de árvore, da interrupção do fornecimento de 
energia, dos custos sociais, da falta de segurança e da não-produção, fica mais fácil notar que 
ao longo do tempo as redes subterrâneas são vantajosas, tanto para quem instala quanto para 
quem as utiliza. Um exemplo disso são condomínios que optaram por instalações subterrâ-
neas, explicitando uma valorização do patrimônio que supera o investimento feito. Outra de-
monstração dessa vantagem é a instalação de RDS em usinas eólicas, devido à confiabilidade, 
redução do custo de manutenção e diminuição da contaminação ambiental, evitando possíveis 
perdas monetárias no momento de interrupção de fornecimento de energia [9]. 
 A enorme diferença do custo inicial se deve principalmente ao condutor, que 
na média tensão passa a desenvolver uma filosofia de construção completamente diferente. Na 
linha aérea de distribuição de energia o ar é utilizado como isolante, pois possui uma alta rigi-
dez dielétrica, além dos condutores ficarem localizados em uma altura inacessível para os 
transeuntes. No entanto, nas instalações subterrâneas o isolante passa a ser o material sintético 
em volta do cabo. Por isso, ele deverá ter uma espessura suficiente para suportar esforços do 
campo elétrico do condutor ao meio externo. 
 Esses esforços tem que ser uniformes, porque como o espaço é pequeno pode 
haver rompimento do dielétrico. Outro problema apresentado é que os cabos podem estar lo-
calizados a uma distância próxima aos transeuntes e assim os campos eletromagnéticos cria-
dos ao redor do condutor induziriam correntes perigosas no ambiente. Por essa razão, os ca-
bos de média tensão isolados precisam ser blindados e aterrados para confinar o campo elétri-
co no seu interior. Essa blindagem é de difícil construção e tem que ser feita em toda a exten-
são da rede o que leva ao seu encarecimento [9]. 
 
 
 
 
Capítulo 02 
7
2.2 CABOS UTILIZADOS �AS RDS EM PARQUES EÓLICOS 
 O elevado custo inicial para a aplicação de RDS é atribuído ao emprego de 
condutores com isolação adequada. A qualidade da isolação elétrica determina a confiabilida-
de dos equipamentos elétricos utilizados na distribuição, tais como cabos, transformadores, 
geradores e motores. 
 Os cabos elétricos tem a finalidade de conduzir energia elétrica, sendo classifi-
cados comercialmente em três classes de acordo com a tensão elétrica aplicada. Essa classifi-
cação é feita de acordo com a maioria dos fabricantes de condutores elétricos. Condutor de 
baixa tensão possui a tensão de isolamento em até 1 kV, média tensão de 1 kV até 35 kV e 
alta tensão acima de 35 kV. É importante salientar que essa classificação pode variar de acor-
do com o fabricante, principalmente a distinção entre condutores de baixa e média tensão 
[13]. 
 A estrutura construtiva do cabo vai depender fundamentalmente da sua tensão 
de isolamento, de sua aplicação e utilização. O elemento de transporte de energia elétrica de 
média tensão mais utilizada em usinas eólicas são os cabos singelos, sendo compostos pelo 
condutor, sistema dielétrico e proteção externa, descritos posteriormente. 
 A figura 2.1 apresenta as camadas construtivas de um cabo de média tensão 
utilizado em RDS. 
 
 
Figura 2.1 – Camadas construtivas do cabo de média tensão. 
 
 
 
 
 
 
Capítulo 02 
8
2.2.1 CO�DUTOR 
 Os materiais normalmente utilizados como condutores elétricos são o cobre e o 
alumínio. A seleção do material condutor leva em conta a capacidade de condução de corrente 
(ampacidade), custo e, algumas vezes, a massa do cabo. 
 Os condutores dos cabos de energia podem ser formados por um único fio ou 
pela reunião de vários fios formando cordas. As cordas são formadas de modo a se chegar a 
diferentes graus de flexibilidade, a qual depende da relação entre a seção total do condutor e a 
do fio elementar. 
 De um modo geral, quanto maior for o número de fios componentesmais fle-
xível será o cabo, porém também haverá a tendência de um custo mais elevado para o produto 
acabado, devido a um maior número de operações de trefilação e encordoamento. 
 Na estrutura construtiva pode ser adicionado o bloqueio do condutor que tem a 
finalidade de eliminar a possibilidade de migração de água pelo condutor, através do preen-
chimento de um material compatível entre os espaços internos vazios entre os fios componen-
tes do condutor. Normalmente, os tipos de bloqueio se apresentam na forma de massas poli-
méricas, pó, fios ou fitas de bloqueio. A construção bloqueada impede a corrosão dos condu-
tores de alumínio isolados e o surgimento do fenômeno de arborescência em água (“water 
treeing”), devido à presença de água nos condutores, em cabos com isolação polimérica para 
média tensão. 
 
 
2.2.2 SISTEMA DIELÉTRICO 
 
 Em condutores de média tensão, o sistema dielétrico é composto pela blinda-
gem do condutor, blindagem da isolação e a isolação. 
 A blindagem do condutor constituído por materiais poliméricos condutores 
não-metálicos, normalmente chamados de semicondutores, tem como principal finalidade 
transformar a superfície irregular em uma superfície praticamente cilíndrica e lisa. Com isto, 
ocasiona a diminuição substancial de concentrações de campo elétrico na isolação. 
 A blindagem da isolação é normalmente constituída por meio de uma parte 
semicondutora, equalizando o campo elétrico através de uma distribuição radial e simétrica. 
Ademais, associado a uma parte metálica para o transporte das correntes capacitivas e de cur-
to-circuito do sistema. 
 
Capítulo 02 
9
 A blindagem do condutor e a blindagem da isolação mantendo contato perfeito 
com as superfícies externas eliminam espaços vazios na estrutura do cabo, evitando a ocor-
rências de descargas parciais. As duas blindagens deverão ser composta através de camada 
extrudada, obtendo uma espessura média de 0,4mm e espessura mínima de 0,32mm. 
 
Para ser efetiva a blindagem do condutor deve ter resistividade máxima de 50.000Ω.cm a 
70°C para compostos termoplásticos e 100.000Ω.cm a 90°C para compostos termofixos 
(TEXEIRA JUNIOR, 2004, p. 28). 
 
 Em RDS utilizadas em parque eólicos é mais comum a utilização de cabos de 
energia com isolação elétrica constituídos de materiais poliméricos sintéticos, termofixos, dos 
quais destacam-se o polietileno reticulado (XLPE) e a borracha etilenopropileno (EPR), devi-
do a suas excelentes propriedades dielétricas, propiciando elevada rigidez dielétrica, a alta 
resistividade volumétrica e baixas perdas dielétricas. 
 
As isolações termofixas são obtidas a partir da extrusão e reticulação do material, capaz de 
manter o seu estado físico mesmo em regimes onde altas temperaturas estão envolvidas a-
lém do limite admissível, carbonizando-se sem tornar-se líquido (TEXEIRA JUNIOR, 
2004, p. 32). 
 
 Com isso, permite que mais potência possa ser transportada para a mesma se-
ção de condutor do que o similar termoplástico e, principalmente, em sistemas onde se tem 
alto nível de curto-circuito. 
 Os termofixos podem ser instalados diretamente ao solo por serem materiais 
resistentes ao fenômeno de “water treeing”, desde que adequadamente formulados. No caso 
do XLPE é necessária a adição de ingrediente retardante na sua base polimérica. 
 Na tabela 2.1 são apresentadas as características gerais da isolação dos termo-
fixos XLPE e EPR, através de valores típicos não devendo ser utilizados para especificações. 
 
 
 
 
 
 
 
 
Capítulo 02 
10
Tabela 2.1 – Características de isolação. 
Característica �ominal 
Material 
XLPE EPR 
Rigidez dielétrica (kV/mm) 
CA 50 40 
Impulso 65 60 
Fator de perdas (tg&) 0,0005 0,003 
Constante dielétrica(ɛ) 2,3 2,6 – 3,0 
ɛ. tg&(x103) 1,15 7,8 – 9,0 
Resistividade térmica(°C.m/W) 3,5 5,0 
Estabilidade em água regular ótima 
Flexibilidade ruim ótima 
Limites Térmicos (°C) 
Permanente 90 90 
Sobrecarga 105-130 130 
Curto-circuito 250 250 
 
 
 A espessura da isolação de um cabo de energia é determinada de modo que 
esteja garantida a sua integridade mecânica e elétrica durante os processos de fabricação, ins-
talação e operação. Portanto, tem que suportar gradiente de potencial máximo especificado, 
tanto em condições de operação normal quanto em condições transitórios de impulso. 
 Através da Equação 2.1, pode-se determinar gradiente de potencial máximo 
para uma estrutura coaxial. 
 
 
)1ln(
r
t
r
Vo
E
+
= (2.1) 
 
Onde: 
 E – Gradiente de potencial (kV/mm); 
 Vo – Tensão fase-terra (kV); 
 r – Raio da blindagem do condutor (mm); 
 t – Espessura da isolação (mm). 
 
 No entanto, as espessuras da isolação para cabo de média tensão são normal-
mente fixadas por normas, independentemente da variação da seção dos condutores. Além 
disso, podem ser observados diferentes gradientes de potencial para cada seção de condutor, 
desde que sejam mantidas fixas a tensão de isolamento e a espessura de isolamento [3]. 
 
 
Capítulo 02 
11 
2.2.3 Cobertura 
 A cobertura é aplicada sobre a blindagem da isolação, por extrusão, e é deter-
minada pelas características elétricas, mecânicas e químicas. Os materiais normalmente utili-
zados em cabos para usinas geradoras como cobertura são os termoplásticos, como o policlo-
reto de vinila (PVC) e o polietileno (PE), devido à boa resistência à brasão, impermeabilidade 
e estabilidade térmica.[3] 
 
2.3 MÉTODOS DE I�STALAÇÃO 
 Existem quatro modalidades de instalações subterrâneas para cabos de energia, 
são elas: instalação em dutos subterrâneos, instalação direta no solo, instalação em canaletas e 
instalação em bandejas. A maneira de se instalar um cabo tem grande influência não somente 
no investimento inicial, mas também no custo operacional e na continuidade de serviço do 
sistema. 
 Em sistemas de distribuição urbanos e industriais de grande porte a instalação 
em dutos é normalmente a mais difundida. Isto se deve ao fato de, apesar do custo de implan-
tação ser bastante elevado, permite a ampliação dos sistemas com a instalação de novos cir-
cuitos e também a substituição de um lance defeituoso em um tempo mínimo. 
 Instalações de cabos em canaletas ou sobre bandejas são restritas respectiva-
mente as instalações em usinas e subestações com trechos de pequenos comprimentos ou no 
interior de instalações industriais. 
 Na figura 2.2 apresenta instalação elétrica subterrânea com cabos dentro de 
dutos flexíveis. 
 
 
Capítulo 02 
12
Figura 2.2 – Instalação subterrânea em dutos. 
 
 A instalação de condutores direto no solo vem sendo cada vez mais difundida, 
devido principalmente ao atrativo econômico. Esta, que no passado era restrita a cabos de 
iluminação pública, instalados em parques e jardins, hoje em dia se estende também aos mo-
dernos sistemas de distribuição. A principal desvantagem desta maneira é no que diz respeito 
ao tempo necessário às substituições de cabos defeituosos e à limitação do número de circui-
tos na mesma vala. Atualmente, sua aplicação é bastante difundida no caso de cabos para 
transmissão subterrânea, em sistemas radiais urbanos e sistemas de distribuição interna de 
parques eólicos de geração de energia. 
 A tendência é da especificação de cabos de baixa tensão multipolares armados 
e de cabos de média tensão unipolares não armados, sendo que neste caso a responsabilidade 
da proteção contra danos mecânicos, provenientes de escavações, fica por conta de lajotas de 
concreto dispostas ao longo da rota dos cabos ou simplesmente por fitas de polietileno com 
inscrições de alerta. 
 O método de lançamento diretodos cabos na vala é normalmente preferido em 
relação ao puxamento sobre os roletes. Esse, dispensa o uso de acessórios especiais e não 
submete o cabo a esforços de tração durante a instalação, no entanto, em centros urbanos a 
dificuldade quase sempre consiste na obtenção de espaço físico para o deslocamento do carre-
tel ao longo da rota do sistema. A limitação do lance a ser instalado se deve principalmente à 
existência de obstáculos ao longo da rota, ou seja: tubulações de água, gás, óleo, etc. e ao lan-
ce máximo de fabricação do cabo. Em parques eólicos não possuem estes obstáculos facili-
tando a aplicação deste método, apenas limitando-se ao comprimento máximo de confecção 
dos condutores. A execução pode ser simultânea com a abertura da vala, ou seja, a bobina de 
cabo é acoplada a uma escavadeira específica que, ao mesmo tempo abre a vala e lança o 
condutor [3]. 
 Segundo [10], os circuitos de distribuição de média tensão em parques eólicos, 
quando singelos e instalados em trifólio, devem sofrer uma amarração em espaços regulares a 
fim de garantir esta configuração. Devem ainda, ser protegidos contra as deteriorações causa-
das por movimentação de terra, contatos com corpos duros, choques de ferramentas em caso 
de escavações, bem como contra umidade e ações químicas causadas pelos elementos do solo. 
As características da carga e a resistividade térmica real do solo influenciam sobre a capaci-
dade de condução de corrente destes cabos de média tensão. 
 
Capítulo 02 
13
 A figura 2.3 apresenta cabos de média tensão sendo instalados diretamente no 
solo de rede de distribuição de usinas eólicas. 
 
 
Figura 2.3 – Instalação de uma RDS de usina eólica. 
 Como prevenção contra os efeitos de movimentação de terra, os cabos devem 
ser instalados, em terreno normal, pelo menos a 0,90 m da superfície do solo. Essas profundi-
dades podem ser reduzidas em terreno rochoso ou quando os cabos estiverem protegidos, por 
exemplo, por eletrodutos que suportem sem danos as influências externas as que possam ser 
submetidos. 
 Segundo [3], o lance máximo de fabricação dos condutores de média tensão 
implica na instalação de acessórios, como emendas e terminais. Estes, muitas vezes, são con-
siderados os pontos mais frágeis do sistema. Isto se deve ao fato de as estatísticas de falhas 
em sistemas de cabos elétricos apontarem um maior número de defeitos em acessórios. 
 
Capítulo 02 
14
 As falhas de especificação e principalmente as de montagem são as principais 
causas de defeitos em acessórios. A importância do entendimento da tecnologia envolvida, 
bem como a perfeita compreensão dos métodos de montagem contribuem para a correta espe-
cificação, resultando em uma probabilidade de sucesso na rede. 
 Os terminais e emendas devem levar em consideração o campo elétrico e con-
dições do ambiente. Uma perfeita coordenação entre o índice de confiabilidade do sistema, 
dos cabos e dos terminais é primordial a fim de se evitar pontos fracos no sistema. E estes, 
quase sempre, implicando em perdas monetárias tanto no decorrer da operação quanto durante 
a implantação do sistema de energia elétrica. 
 A interrupção do circuito da blindagem quando se instala um acessório ocasio-
na uma distorção no campo elétrico, deixando de ser radial e uniforme. No entanto, pode-se 
utilizar métodos de alívio capacitivo, alívio dielétrico e alívio resistivo não-linear para tornar 
uniforme o campo elétrico, através de cone de alívio de tensões, recobrimento de uma parte 
do isolamento do cabo com material de alta constante dielétrica e aplicação de um pequeno 
comprimento de material resistivo sobre a superfície do isolamento do cabo, respectivamente, 
a partir do término da blindagem. 
 A confecção de uma emenda e o procedimento sistemático de reconstituir um 
trecho do cabo no campo dando continuidade elétrica e dielétrica com um grau de confiabili-
dade relativamente alto. Os dielétricos dos acessórios devem ser altamente compatíveis quí-
mica e termicamente com os dos cabos, e as superfícies de contato de ambos os dielétricos 
devem ser tais que não permitam descargas parciais durante a operação do sistema. 
 Os materiais da blindagem devem ter condutância suficiente para eliminar ele-
trostaticamente a tensão induzida e transportar correntes capacitivas e de fuga. As correntes 
induzidas eletromagneticamente e de sequência zero provenientes de defeitos, normalmente 
são transportadas pela reconstituição da blindagem metálica dos cabos. 
 A cobertura deve ser provida de selagem física contra a penetração de umidade 
para resistir ao ataque de contaminantes presentes no universo da instalação. Com isso, é im-
prescindível que seja seguido com rigor o projeto e instruções de montagem, e observada a 
limpeza dos cabos e materiais envolvidos. 
 
Capítulo 3 
16
3 REDE DE DISTRIBUIÇÃO SUBTERRÂ�EA EM OPERAÇÃO 
3.1. FALHAS �OS CIRCUITOS DE RDS 
 
 Os cabos isolados utilizados em sistemas de distribuição subterrânea, quando 
em operação, estão sujeitos aos seguintes estresses: campo elétrico aplicado, gradientes de 
temperatura no cabo, variações de temperatura ambiente e umidade. A atuação combinada 
destes estresses pode levar a degradação da isolação do cabo, apesar da excelente estabilidade 
térmica e elevada rigidez dielétrica. 
 Um dos principais fenômenos de degradação que atua nos cabos isolados são 
as arborescências, conhecido também pela expressão “treeing”. Este fenômeno tem como cau-
sa principal a influência de campo elétrico e umidade, ocasionando ruptura elétrica parcial do 
sistema dielétrico. O processo de deterioração da rigidez dielétrica apresenta caminhos que se 
assemelham as árvores. Após o início do fenômeno, muitas vezes, este processo pode durar 
anos até que se rompa o dielétrico, perdendo assim sua capacidade de isolação [14]. 
 Segundo [13], as arborescências podem ser classificadas em três categorias: 
elétrica, “water trees” e a eletroquímica. 
 A arborescência elétrica, denominada de “electrical tree”, desenvolve-se nor-
malmente em falhas do sistema dielétrico sob campo elétrico intenso e são acompanhados 
pelo processo de ionização e descargas parciais. A “electrical tree” propaga-se por canais va-
zios dentro do dielétrico, devido à decomposição do material. 
 Na figura 3.1 apresenta uma degradação realizada por arborescência elétrica 
em cabo com isolação XLPE, antes da ruptura da rigidez dielétrica. 
 
Figura 3.1 – Arborescência elétrica. 
 
Capítulo 3 
17
 A arborescência em água, também chamada de “water tree”, ocorre a partir da 
influência de uma gradiente elétrico combinado com a penetração de umidade em caminhos 
estreitos. A “water tree” pode ser visível e a deterioração apresenta-se de forma difusa e tem-
porária, parecendo com árvores. 
 Segundo [13], quando a energia que alimenta a evolução de uma “water tree” é 
retirada ou a fonte de umidade é eliminada, a maioria da água injetada difunde-se e evapora, e 
a arborescência desaparece. Esse desaparecimento indica que os caminhos da arborescência 
são fechados com a retirada da umidade, pois, caso contrário, ficariam ainda mais visíveis 
quando a água fosse substituída por ar. 
 Na figura 3.2 apresenta os pontos de falhas de “water tree” na isolação de ca-
bos de média tensão. 
 
Figura 3.2 – Estrutura do “water tree”. 
 
 A “water tree” pode ser subdivida em duas categorias: “Bow-tie tree” e “Ven-
ted tree”. Este último, formado por canais longos e estreitos, a degradação é iniciada pela su-
perfície da isolação, através de uma imperfeição ou concentração de gradiente elétrico, po-
dendo causar a ruptura do dielétrico sem decompor sua estrutura externa enquantoprogride. O 
“bow-tie tree” em forma de gravata de borboleta, inicia-se no interior do volume da isolação, 
devido à presença de impurezas e vazios, propagando-se lateralmente e em direções opostas, 
ao longo das linhas do campo elétrico. 
 
 
Capítulo 3 
18
 Na figura 3.3 apresenta a degradação da isolação por “bow-tie tree”. 
 
 
Figura 3.3 – Falha na isolação por “bow-tie tree”. 
 
Na figura 3.4 apresenta a degradação da isolação por “vented tree”. 
 
 
Figura 3.4 – Evolução do fenômeno “vented tree”. 
 
 No caso, o “bow-tie tree” leva a uma degradação lenta e geralmente não leva o 
cabo a falhar em serviço, devido à baixa concentração de umidade no interior da isolação. 
Porém, o “vented tree” realiza uma degradação de com maior intensidade, reduzindo a estabi-
lidade do dielétrico até a perfuração da isolação, com isso inicia a conversão de um “water 
tree” em um “electrical tree”. 
 
Capítulo 3 
19
 Na figura 3.5 apresenta a evolução de um fenômeno “vented tree” até a conver-
são em “eletrical tree”. Com isso, houve descargas parciais, ocasionando o rompimento do 
sistema dielétrico. 
 
 
Figura 3.5 – Descargas parciais em cabos de média tensão. 
 
 Por último, a arborescência eletroquímica é causada pela contaminação quími-
ca, devido à migração dos produtos da corrosão do condutor, podendo ser também pela mi-
gração da umidade, contendo na água íons solúveis. 
 A penetração de água pelo condutor e pela blindagem ocasiona um envelheci-
mento acelerado, ocasionando uma degradação da rigidez dielétrica. Portanto, os equipamen-
tos utilizados para transporte de energia de média tensão que devam operar em contato com a 
água ou em ambientes úmidos, devem ser especificados uma construção bloqueada. No caso 
de isolação de XLPE é necessário a adição de retardantes em arborescência na base poliméri-
ca, melhorando a estabilidade do sistema dielétrico quando em contato com água. Já cabos 
com isolação em EPR são muito menos susceptíveis ao fenômeno “treeing”[4]. 
 
Capítulo 3 
20
 Segundo [13], ressalta que o fenômeno “treeing” não é o maior causador de 
falhas em cabos subterrâneos. Cerca de 90% dos defeitos se dão por causas mecânicas, sendo 
que dentro dos 10% restantes muitos defeitos estão localizados nas emendas e terminações e a 
maioria deles tem causas não perfeitamente determinadas, entre os quais se inclui o “treeing”. 
 A figura 3.6 apresenta a realização de uma emenda em cabo subterrâneo, fal-
tando a reconstituição da blindagem da isolação e a cobertura. 
 
 
 
Figura 3.6 – Emenda em cabo de média tensão. 
 
3.2. E�SAIOS DOS DIELÉTRICOS A�TES E APÓS A I�STALAÇÃO 
 As condições gerais para o ensaio de tensão no dielétrico para cabos de energia 
são baseadas nas recomendações das normas de fabricação e experiências de concessionárias 
de energia elétrica adquirida ao longo do tempo. 
 No teste de um circuito subterrâneo, após a sua instalação e antes da sua entra-
da em serviço, deve-se verificar sua confiabilidade no que se refere à instalação propriamente 
dita e à montagem dos acessórios (emendas e terminais). Com isto, garante-se o seu desempe-
nho perante todo o sistema elétrico a ele associado. Este teste consiste em dois ensaios para 
detecção de falhas. Primeiro, o ensaio de medição da resistência de isolamento do condutor. 
Segundo, o ensaio de tensão de corrente contínua (CC) aplicada entre o condutor e a blinda-
gem metálica. 
 
Capítulo 3 
21
 Por outro lado, a experiência nacional e internacional das concessionárias de 
energia elétrica tem demonstrado que testes consecutivos e prolongados, durante o período de 
vida ativa dos cabos, levam a um envelhecimento precoce do dielétrico. 
 Segundo [3], adota-se principalmente ensaio em corrente contínua, pois este 
está condicionado aos seguintes fatores: 
• Os ensaios com tensão alternada (Vca) exigem equipamentos de grandes 
dimensões e alto custo, devido a necessidade de grandes potências. 
• Os ensaios com tensão alternada, em cabos longos, produzem altos valores 
de corrente de carga. 
• Os ensaios com corrente contínua (CC) são menos destrutivos do que os de 
corrente alternada. 
• Os ensaios com corrente contínua são previstos nas Normas dos Cabos de 
Potência. 
 
 Os cabos de média tensão deverão inicialmente passar no teste de medição da 
resistência de isolamento, através da injeção de corrente contínua com megômetro de tensão 
entre 500V e 5.000V, pelo período de 1 a 5 minutos. Os resultados obtidos, Rmed, neste teste 
deverão ser comparados com o nível de isolação estabelecido pela norma específica de cada 
tipo de isolação. Após a aprovação deste teste, deve-se iniciar o ensaio de tensão aplicada 
[11]. 
 O ensaio da resistência de isolamento tem a finalidade de verificar a integrida-
de da isolação do cabo, utilizando o resultado como parâmetro para indicar a suportabilidade 
do tensão aplicada no ensaio posterior. 
 A tensão de isolamento do condutor é fornecida pelo fabricante da seguinte 
forma: valor eficaz da tensão entre condutor e a terra ou blindagem da isolação (Vo) e valor 
eficaz da tensão entre condutores isolados (V). 
 O cabo ou o circuito, incluindo os acessórios, imediatamente antes da sua en-
trada em serviço, deverão ser submetidos à tensão de ensaio em corrente contínua, especifica-
da na Tabela 3.1, continuamente, durante 15 minutos. 
 
 
 
 
 
Capítulo 3 
22
Tabela 3.1 – Ensaios após a instalação. 
Tensão de isolamento do condutor 
(Vo/V kV) 
Tensão de ensaio 
(kV – CC) 
3,6/6 21 
6/10 29 
8,7/15 42 
12/20 58 
15/25 72 
20/35 96 
 
 No entanto, caso o tempo total das aplicações atingir 30 minutos, devido às 
falhas no cabo ou acessórios, o tempo de aplicação dos eventuais ensaios subseqüentes deve 
ser reduzido a 5 minutos. Os ensaios em corrente contínua aplicados com isolação extrudada, 
principalmente de instalações antigas, podem causar o seu envelhecimento precoce. Nestes 
casos, é recomendado que os circuitos sejam testados através de sua energização sem carga, 
por um período de 24 horas. 
 No caso em que o condutor ou circuito subterrâneo for retirado de serviço para 
reparos ou para expansão do sistema, muitas vezes se deseja testar a sua confiabilidade antes 
de sua re-energização. Este tipo de teste serve para detectar possíveis defeitos incipientes cau-
sados durante a manutenção ou aumento da rede, ou mesmo constatar a manipulação impró-
pria tanto no lançamento como na montagem de acessórios, assegurando as condições de ser-
viços futuro. 
 Existem também, os testes chamados de ensaios de manutenção, que são efetu-
ados após a entrada em serviço dos condutores aplicados diretamente no solo em qualquer 
época de sua vida. Os ensaios de manutenção constituem, em algumas concessionárias de 
energia elétrica, uma rotina periódica para assegurar de modo preventivo a confiabilidade de 
suas linhas subterrâneas de distribuição primária. 
 Um ensaio pode produzir ou precipitar um defeito que jamais ocorreria se o 
dielétrico não fosse solicitado por tensões elevadas. Por outro lado, um ensaio preventivo eli-
mina, em momento conveniente, os defeitos incipientes que poderiam ocorrer durante a ope-
ração normal do sistema, provocando transtornos e perdas monetárias. 
 Os ensaios de alta tensão em cabos de energia, de maneira geral, são utilizados 
a partir da tensão de isolamento de 3,6/6 kV, salvo condições especiais que os justifiquem. 
Não existe normas ou padrões que estipulem valores para as tensões/tempo para ensaios du-
rante o período de vida ativa dos cabos. No entanto, existem filosofias de usuários de condu-
tores elétricos para tal procedimento.Um método utilizado é o de aplicar o equivalente de 
 
Capítulo 3 
23
corrente contínua da tensão nominal, ou seja, 2,4 vezes a tensão nominal à temperatura de 
25°C, de acordo com a Tabela 3.2, durante 5 minutos consecutivos. 
 
Tabela 3.2 – Ensaios de manutenção. 
 Tensão de isolamento do 
condutor (Vo/V kV) 
Tensão de ensaio CC 
(kV) 
3,6/6 8,5 
6/10 14,5 
8,7/15 21 
12/20 29 
15/25 36 
20/35 48 
 
 
Capítulo 4 
24
4 APLICAÇÃO DOS E�SAIOS EM RDS 
4.1. METODOLOGIA DOS E�SAIOS 
 Segundo [5], os ensaios de resistência de isolação são realizados utilizando o 
megohmetro. Durante o procedimento deste teste, aplica-se entre o condutor e a isolação, uma 
alta voltagem em corrente contínua que causará um pequeno fluxo de corrente. A quantidade 
de corrente depende da quantidade de voltagem aplicada, podendo ser entre 500V e 5000V, 
da capacitância do sistema, da resistência total e da temperatura do material. 
 A resistência medida (Rmed) será a soma da resistência interna do condutor 
mais a resistência de isolação. Esta resistência de isolação lida será em função das correntes 
de fuga. A Rmed deverá ser maior que a resistência de referência (Rf) estabelecida pelo fabri-
cante e pela norma do cabo de isolação específica. 
 O ensaio em circuito instalado é efetuado no comprimento total do lance, à 
temperatura ambiente. Para realizar a medição corretamente, deverá ser conectado o terminal 
de tensão do equipamento no condutor, o qual deve estar com a polaridade negativa, no inter-
valo de tempo maior que 1 minuto e inferior a 5 minutos, desde que se obtenha uma leitura 
estável. 
 Na Figura 4.1 é apresentado a ligação de um megôhmetro em um condutor de 
média tensão para medição da resistência de isolamento. 
 
Figura 4.1 – Ensaio de resistência elétrica. 
 
 
 
Capítulo 4 
25
 A partir de [14], para temperatura ambiente de 20°C, a resistência de referência (Rf) é 
calculada de acordo com a equação (4.1). 
 
l
d
D
Ki
Rf
)log(×
= 
(4.1) 
Onde: 
 Rf – Resistência de isolamento (Ω); 
 Ki – Constante de isolamento (Ω.km); 
 D – Diâmetro nominal sobre a isolação (mm); 
 d – Diâmetro nominal sob a isolação (mm); 
 l – Comprimento do condutor (km) 
 
 No entanto, o resultado calculado da resistência de isolamento (Rf), em tempe-
ratura do meio diferente de 20°C, deve ser reajustado utilizando fatores de correção para a 
temperatura na qual o teste será realizado de acordo com a norma da isolação de cada cabo. 
Nas figuras 4.2 e 4.3 são apresentados a aplicação do equipamento. 
 
 
Figura 4.2 – Megohmetro realizando a medição. 
 
Figura 4.3 – Locais de ligação no cabo 
 de média tensão. 
 No ensaio de tensão aplicada em cabos unipolares, deve realizar o teste entre o 
condutor e a blindagem metálica aterrada, tendo antes interligado a esta qualquer eventual 
revestimento metálico componente do cabo, conforme apresentado pela figura 4.4. Nos cabos 
de três condutores, a tensão de ensaio deve ser aplicada entre cada condutor individualmente e 
 
Capítulo 4 
26
a sua blindagem. Deve ser notado que as três fases devem ser ensaiadas e que os ensaios são 
fase-terra [5]. 
 
Figura 4.4 – Ensaio de tensão aplicada. 
 Durante o teste, a tensão deverá ser aplicada continuamente, com aumento gra-
dativo e uniforme a uma taxa aproximadamente de 1 kV por segundo, de tal forma que a ten-
são máxima de ensaio seja atingida em não menos de 10 e não mais de 60 segundos. Quando 
a tensão máxima de ensaio for atingida, deve-se tomar leitura da corrente de fuga a cada mi-
nuto até o término do ensaio, para que se possa avaliar os resultados. 
 Ao final do teste em corrente contínua, a tensão deve ser reduzida a zero, po-
rém, uma tensão residual permanece e, portanto, o cabo deve ser adequadamente aterrado 
após a realização do ensaio por um período no mínimo igual a duas vezes o tempo de duração 
do teste e depois conectado ao sistema para ser colocado em operação [3]. 
 Nas figuras 4.5 e 4.6 são apresentados as ligações do equipamento e o painel de 
comando do HIPOT. 
 
 
Figura 4.5 – Ligações do HIPOT. 
 
 
Figura 4.6 – Painel de comando do 
HIPOT. 
 
 
Capítulo 4 
27
 No entanto, quando houver a reprovação em algum dos dois testes, faz-se ne-
cessário a detecção exata do lugar da falha para a realização de reparos ou substituição do 
circuito em caso extremo. Para isto, é utilizado um gerador de impulso que é conectado em 
uma das extremidades do condutor que emite uma onda eletromagnética, ou seja, uma descar-
ga capacitiva, a fim de provocar um arco no lugar da falha que possa ser ouvido por um detec-
tor acústico, conforme apresentado pela figura 4.7. 
 
 
Figura 4.7 – Gerador de impulso com detector acústico para localização de falhas. 
 
 O princípio deste método consiste no gerador de ondas descarregar bruscamen-
te seu grupo de capacitores no cabo com defeito. Essa onda de choque viaja pelo cabo até o 
defeito. Toda a energia da onda de choque é descarregada no defeito sob forma de um arco 
elétrico. O som produzido pelo arco é captado por um microfone de solo (Geofone). Este som 
é amplificado antes de ser enviado aos fones de ouvido. Com isso, quanto mais perto estiver o 
Geofone do defeito, mais forte será o som. 
 Deve-se levar em consideração que quanto mais fundo estiver enterrado o ca-
bo, mais fraco é o som na superfície. No caso de o defeito se encontrar no interior de uma 
emenda que não estourou, estiver submerso, ou principalmente, sob lama densa, ocorre uma 
blindagem acústica que torna difícil a escuta. 
 Este método é utilizado em parques eólicos com instalação de circuitos direto 
no solo. No entanto, não é recomendado à aplicação deste procedimento em instalações que 
utilizam dutos, devido ao som do arco ser canalizado para as duas extremidades dos dutos. 
Além disso, não se deve enviar ondas de choque sobre defeitos a terra em cabos sem blinda-
gem pois, nesse caso, não se conhece o percurso de volta das correntes, com isso, pode-se 
produzir um aumento de potencial nos acessórios ou em todas as partes metálicas [10]. 
 
Capítulo 4 
28
 O roteiro de testes em circuitos subterrâneos aplicados em usinas eólicas pode 
ser exemplificado através do fluxograma apresentado na figura 4.8. 
 
Figura 4.8 – Fluxograma para realização dos testes. 
4.2 APRESE�TAÇÃO DE RESULTADOS DE E�SAIOS EM UM PARQUE MODELO 
 Um parque modelo, cujo nome é JS Wind, será utilizado em um estudo de caso 
visando exemplificar na prática os procedimentos realizados em campo. A rede interna de 
distribuição subterrânea possui o nível de tensão de 34,5kV. Esta RDS de 34,5kV tem a fun-
ção de transportar a energia gerada pelos aerogeradores (AG’s) até a subestação elevadora 
(SE) 34,5/230kV. 
 A usina eólica tem 24 aerogeradores com 2,1MW de potência nominal indivi-
dual os quais são interligados em paralelos, através da RDS. O parque possui a rede elétrica 
dividida em três alimentadores primário, cada um composto por oito aerogeradores. 
 As principais características da rede subterrânea de distribuição são descritas 
na tabela 4.1. 
Tabela 4.1 – Descrição da RDS do JS Wind. 
 
Capítulo 4 
29
Tipo construtivo subterrâneo 
Tensão primária de distribuição 34,5kV 
Fator de Potência 0,92 indutivo à 0,99 capacitivo 
Número de aerogeradores(AG’s) 24 
Fator de Capacidade de Projeto (FC) 45,55% 
Número de alimentadores 3 
Cabo condutor Alumínio com isolação em XLPE 
Potência Instalada por 08 AG’s 16,8MW (306A) 
Extensão Total dos Circuitos 9.805 metros 
Potência Instalada 50,4MW 
 
 Os alimentadores são enterrados diretamente no solo emvalas que acompa-
nham paralelamente as vias internas de acesso ao parque. Estas valas estão em alguns trechos 
na borda da via e outros pontos na própria via devidos aos problemas com erosão. A distância 
mínima entre os circuitos é de 1,5 metros com exceção na chegada na subestação elevadora 
SE 34,5/230 kV. 
 Cada aerogerador (AG) produz energia com nível de tensão de 600V, tendo sua 
tensão elevada para 34,5 kV através de subestações unitárias de distribuição, com transforma-
dores elevadores de 0,6/34,5 kV cuja potência nominal é de 2,0 MVA. Os 24 aerogeradores 
são agrupados em três circuitos primários radiais simples (alimentadores) na tensão de 34,5 
kV, três alimentadores compostos por 8 máquinas. 
 A rede de distribuição primária, composta por 03 alimentadores, é subterrânea 
com cabos diretamente enterrados no solo, tipo de isolação XLPE, fio de alumínio, bloqueado 
contra propagação longitudinal de água e de tensão de 20/35 kV. Como critério de projeto 
para a rede de distribuição primária interna foi estabelecido o uso de três diferentes secções de 
condutores de alumínio. Os cabos de 150mm² de secção serão destinados a trechos com até 04 
máquinas em série, os cabos de 240mm² de secção são destinados aos trechos de 05 à 07 má-
quinas em série, cabos de 400mm² de secção são utilizado em trechos de 07 à 08 máquinas em 
série. O trajeto dos circuitos da RDS obedece aproximadamente ao trajeto das estradas interna 
do parque eólico, exceto alguns pontos onde isso não foi possível. 
 A figura 4.9 apresenta o cabo de média tensão de secção de 150mm², alumínio, 
sem a blindagem da isolação e a cobertura, utilizado na RDS do parque eólico. 
 
 
Capítulo 4 
30
 
Figura 4.9 – Cabo de média tensão sem a blindagem da isolação e a cobertura. 
 
 O sistema de aterramento do parque é todo interconectado. Juntamente com o 
cabo de força foi lançado na vala o cabo de cobre nu de 70mm² de secção, onde fora realizada 
a conexão das malhas de aterramento da SE, dos aerogeradores e do transformador de pedes-
tal. 
 Os cabos de média tensão são conectados ao transformador pedestal através de 
terminações chamadas desconectáveis. Ademais, devido a grandes extensões de alguns circui-
tos e da secção dos cabos utilizados, não foi possível a fabricação de trechos de cabos únicos 
para ligar a SE até as primeiras máquinas de cada circuito. Com isso foram feitas algumas 
emendas para conexão dos mesmos, descritas através da tabela 4.2. 
 Tabela 4.2 – Descrição da RDS do JS Wind 
N° do circuito Secção do Cabo 
Quantidade 
de Emenda 
Local da Emenda 
Fase Atingida 
 
Circuito 1 
400mm² 18 SE – AG08 A B C 
400mm² 1 Em frente ao AG16 C 
400mm² 2 Entre AG18 e AG19 B e C 
Circuito 2 
400mm² 9 SE – AG16 A B C 
400mm² 2 Em frente ao AG17 A 
Circuito 3 
400mm² 3 SE – AG19 A B C 
400mm² 1 SE – AG19 B 
 
 
 
Capítulo 4 
31
 A figura 4.10 apresenta a disposição de todos os circuitos do JS Wind através 
de um diagrama unifilar com locação geral de todos aerogeradores no formato A3. Além dis-
so, as figuras 4.11, 4.12 e 4.13 apresentam respectivamente os diagramas unifilar dos alimen-
tadores 01, 02 e 03. 
 A tabela 4.3 apresenta um resumo de todos os circuitos com a distância de cada 
ramal, incluindo as quedas de tensões e as perdas elétricas esperadas, de acordo com a secção 
de cada cabo, levando em consideração o tipo de instalação. Os Apêndices A, B e C apresen-
taram cálculos respectivamente da ampacidade, de queda de tensão e das perdas elétricas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Capítulo 4 
32
 
 
 
Capítulo 4 
33
 
Capítulo 4 
34
 
Capítulo 4 
35
 
Capítulo 4 
36
Tabela 4.3 – Parque eólico JS Wind 
 
Trecho 
Cabo 
(Bitola) 
Comprimento Geração 
Tensão F.P. 
Queda de Tensão Perdas Elétricas 
No trecho 
(km) 
Acumulado 
(km) 
Potência 
(MW) 
Corrente 
(A) 
No Trecho 
(%) 
Acumulado 
(%) 
No Trecho(kV) Acumulado(kW) 
Max Med Max Med 
A 
L 
I 
M 
 
1 
AG01 – AG02 150mm² 0,190 0,185 2,10 38,20 34,50 0,92 0,0137 0,0137 0,2880 0,0698 0,2880 0,0698 
AG02 – AG03 150mm² 0,192 0,686 4,20 76,40 34,50 0,92 0,0277 0,0414 1,1640 0,2821 1,452 0,3519 
AG03 – AG04 150mm² 0,187 0,569 6,30 114,60 34,50 0,92 0,0417 0,0831 2,5507 0,6183 4,0027 0,9702 
AG04 – AG05 150mm² 0,147 0,716 8,40 152,80 34,50 0,92 0,0424 0,1255 3,5646 0,8641 7,5673 1,8343 
AG05 – AG06 240mm² 0,805 1,521 10,50 191,00 34,50 0,92 0,1929 0,3184 18,7480 4,545 26,3153 6,3793 
AG06 – AG07 240mm² 0,190 0,184 2,10 38,20 34,50 0,92 0,0546 0,3730 6,3719 1,5445 32,6872 7,9238 
AG07 – AG08 240mm² 0,186 0,368 4,20 76,40 34,50 0,92 0,0624 0,4354 8,4904 2,058 41,1776 9,9818 
AG08 – SE 400mm² 2,895 4,837 16,80 305,60 34,50 0,92 0,7896 1,225 112,337 27,230 153,514 37,211 
A 
L 
I 
M 
 
2 
AG09 – AG10 150mm² 0,188 0,188 2,10 38,20 34,50 0,92 0,0136 0,0136 0,2849 0,0691 0,2849 0,0691 
AG10 – AG11 150mm² 0,498 0,686 4,20 76,40 34,50 0,92 0,0720 0,0856 3,0190 0,7318 3,3039 0,8009 
AG11 – AG12 150mm² 0,185 0,871 6,30 114,60 34,50 0,92 0,0401 0,1257 2,5234 0,6117 5,8273 1,4126 
AG12 – AG13 150mm² 0,188 1,059 8,40 152,80 34,50 0,92 0,0543 0,1800 4,5588 1,1051 10,3861 2,5177 
AG13 – AG14 240mm² 0,185 1,244 10,50 191,00 34,50 0,92 0,0443 0,2243 4,3086 1,0444 14,6947 3,5621 
AG14 – AG15 240mm² 0,190 1,434 12,60 229,20 34,50 0,92 0,0546 0,2789 6,3720 1,5446 21,0667 5,1067 
AG15 – AG16 240mm² 0,186 1,620 14,70 267,40 34,50 0,92 0,0624 0,3413 8,4904 2,0581 29,5571 7,1648 
AG16 – SE 400mm² 1,584 3,204 16,80 305,60 34,50 0,92 0,4321 0,7734 61,4657 14,899 91,0228 22,064 
A 
L 
I 
M 
 
3 
AG17 – AG18 150mm² 0,185 0,185 2,10 38,20 34,50 0,92 0,0134 0,0134 0,2804 0,068 0,2804 0,0680 
AG18 – AG19 150mm² 0,197 0,382 4,20 76,40 34,50 0,92 0,0285 0,0419 1,1943 0,289 1,4747 0,3575 
AG19 – AG20 150mm² 0,185 0,567 6,30 114,60 34,50 0,92 0,0380 0,0799 2,5234 0,611 3,9981 0,9692 
AG20 – AG21 150mm² 0,173 0,740 8,40 152,80 34,50 0,92 0,0500 0,1299 4,1951 1,0169 8,1932 1,9861 
AG21 – AG22 240mm² 0,193 0,933 10,50 191,00 34,50 0,92 0,0462 0,1761 4,4949 1,0896 12,6881 3,0757 
AG22 – AG23 240mm² 0,186 1,119 12,60 229,20 34,50 0,92 0,0534 0,2295 6,2379 1,5121 18,9260 4,5878 
AG23 – AG24 240mm² 0,187 1,306 14,70 267,40 34,50 0,92 0,0627 0,2922 8,5361 2,0691 27,4621 6,6569 
AG24 – SE 400mm² 0,503 1,809 16,80 305,60 34,50 0,92 0,1372 0,4294 19,5185 4,7313 46,9806 11,388 
 
Quantidade de cabo por secção: 
Cabo de 150mm² - AL - XLPE = 7,545 km 
Cabo de 240mm² - AL - XLPE = 6,924 km 
Cabo de 400mm² - AL - XLPE = 14,946 km 
 
Capítulo 4 
37
 Os testes dos cabos de média tensão do Parque JS Wind, com tensão de isola-
mento de 20/35 kV, foram realizados de duas formas. Primeiro, o ensaio da resistência ôhmi-
ca do isolamento dos condutores, através do equipamento megôhmetro, com aplicação de 5 
kV durante o intervalo de 5 minutos. Segundo, o ensaio de tensão aplicada, na qual foi utili-
zado do equipamento hipot, aparelho para ensaio de tensão aplicada, com aplicação de 96 kV 
em corrente contínua. 
 O resultado calculado da resistência de isolamento de referência (Rf), tomará 
como base a constante de isolamento (Ki) igual a 3.700 MΩ e coeficiente de temperatura do 
fabricante do cabo de 1,23. Também adotou-se concomitantemente a tabela de fator de corre-
ção da resistência de isolamento em função da temperatura da norma para cabos de potência 
com isolação XLPE (NBR-7287). 
 Na tabela 4.4 são apresentados uma faixa de fatores para correção das resistên-
cias de isolamento em função da temperaturaextraído da norma NBR-7287. 
 
Tabela 4.4 – Fatores de correção de Rf. 
Temperatura (°C) 
Coeficiente/°C 
1,15 1,16 1,17 1,18 1,19 1,20 1,21 1,22 1,23 
20 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
21 1,15 1,16 1,17 1,18 1,19 1,20 1,21 1,22 1,23 
22 1,32 1,35 1,37 1,39 1,42 1,44 1,46 1,49 1,51 
23 1,52 1,56 1,60 1,64 1,69 1,73 1,77 1,82 1,86 
24 1,75 1,81 1,87 1,94 2,01 2,07 2,14 2,22 2,29 
25 2,01 2,10 2,19 2,29 2,39 2,49 2,59 2,70 2,82 
26 2,31 2,44 2,57 2,70 2,84 2,99 3,14 3,30 3,46 
27 2,66 2,83 3,00 3,19 3,38 3,58 3,80 4,02 4,26 
28 3,06 3,28 3,51 3,75 4,02 4,30 4,59 4,91 5,24 
29 3,52 3,80 4,11 4,44 4,79 5,16 5,56 5,99 6,44 
30 4,05 4,41 4,81 5,23 5,69 6,19 6,73 7,30 7,93 
31 4,65 5,12 5,62 6,18 6,78 7,43 8,14 8,91 9,75 
32 5,35 5,94 6,58 7,29 8,06 8,92 9,85 10,87 11,99 
33 6,15 6,89 7,70 8,60 9,60 10,70 11,92 13,26 14,75 
34 7,08 7,99 9,01 10,15 11,42 12,84 14,42 16,18 18,14 
35 8,14 9,27 10,54 11,97 13,59 15,41 17,45 19,74 22,31 
36 9,36 10,75 12,33 14,13 16,17 18,49 21,11 24,09 27,45 
37 10,76 12,47 14,43 16,67 19,24 22,19 25,55 29,38 33,76 
38 12,38 14,46 16,88 19,67 22,90 26,62 30,91 35,85 41,52 
39 14,23 16,78 19,75 23,21 27,25 31,95 37,40 43,74 51,07 
40 16,37 19,46 23,11 27,39 32,43 38,34 45,26 53,36 62,82 
 
 
 
 
Capítulo 4 
38
 Os resultados dos testes serão expostos em três tabelas de acordo com a tempe-
ratura ambiente e a umidade relativa do ar, no horário da realização do ensaio para cada cir-
cuito. Na tabela 4.5, estão dispostos os resultados do Alimentador 1. Na tabela 4.6, estão dis-
postos os resultados do Alimentador 2. Na tabela 4.7, estão dispostos os resultados do alimen-
tador 3. 
 
Tabela 4.5 – Resultado dos Testes do Alimentador 1. 
Circuito Fase 
Ensaio de 
Tensão 
Aplicada 
(mA) 
Ensaio de 
Resistência 
Isolamento 
(Rmed) – (Ω) 
Temperatura 
Ambiente 
(ºC) 
Umidade 
Relativa 
do Ar (%) 
Resistência 
de Isolamento 
Mínima 
(Rf) – (Ω) 
AG01↔AG02 
A 0,00 705.000M 
30,5 60,5 70.953M B 0,00 939.000M 
C 0,00 971.000M 
AG02↔AG03 
A 0,00 512.000M 
32,6 61,7 106.222M B 0,00 663.000M 
C 0,00 827.000M 
AG03↔AG04 
A 0,00 1.020.000M 
28,6 71,0 47.617M B 0,00 1.350.000M 
C 0,00 1.100.000M 
AG04↔AG05 
A 0,00 725.000M 
28,4 68,5 60.575M B 0,00 853.000M 
C 0,00 962.000M 
AG05↔AG06 
A 0,00 100.000M 
33,3 
 
65,0 
 
26.085M B 0,00 120.400M 
C 0,00 80.140M 
AG06↔AG07 
A 0,00 1.290.000M 
28,2 67,8 39.236M B 0,00 1.440.000M 
C 0,00 723.000M 
AG07↔AG08 
A 0,00 2.180.000M 
27,3 70,0 32.611M B 0,00 1.390.000M 
C 0,00 781.000M 
AG08↔SE 
A 0,00 10.000M 
32,0 65,0 3.984M B 0,00 12.400M 
C 0,00 8.140M 
 
 
 
 
 
 
 
 
 
Capítulo 4 
39
Tabela 4.6 – Resultado dos Testes do Alimentador 2. 
Circuito Fase 
Ensaio de 
 Tensão 
Aplicada 
(mA) 
Ensaio de 
Resistência 
Isolamento 
(Rmed) – (Ω) 
Temperatura 
Ambiente 
(ºC) 
Umidade 
Relativa do 
Ar (%) 
Resistência de 
Isolamento 
Mínima 
(Rf) – (Ω) 
AG09↔AG10 
A 0,00 872.000M 
34,0 65,0 133.414M B 0,00 1.970.000M 
C 0,00 1.330.000M 
AG10↔AG11 
A 0,00 877.000M 
30,6 67,8 27.070M B 0,00 1.410.000M 
C 0,00 572.000M 
AG11↔AG12 
A 0,00 614.000M 
32,9 61,2 110.241M B 0,00 921.000M 
C 0,00 740.000M 
AG12↔AG13 
A 0,00 916.000M 
32,9 62,6 108.482M B 0,00 909.000M 
C 0,00 700.000M 
AG13↔AG14 
A 0,00 588.000M 
28,2 68,3 40.296M B 0,00 545.000M 
C 0,00 1.230.000M 
AG14↔AG15 
A 0,00 1.130.000M 
35,0 52,3 110.518M B 0,00 1.190.000M 
C 0,00 935.000M 
AG15↔AG16 
A 0,00 1.790.000M 
31,7 63,3 74.620M B 0,00 1.800.000M 
C 0,00 1.200.000M 
AG16↔SE 
A 0,00 8.620M 
32,0 65,0 7.281M B 0,00 12.400M 
C 0,00 10.900M 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Capítulo 4 
40
Tabela 4.7 – Resultado dos Testes do Alimentador 3. 
Circuito Fase 
Ensaio de 
 Tensão 
Aplicada 
(mA) 
Ensaio de 
Resistência 
Isolamento 
(Rmed) – (Ω) 
Temperatura 
Ambiente 
(ºC) 
Umidade 
Relativa 
do Ar (%) 
Resistência de 
Isolamento 
Mínima 
(Rf) – (Ω) 
AG17↔AG18 
A 0,00 519.000M 
27,9 71,0 39.163M B 0,00 1.580.000M 
C 0,00 147.000M 
AG18↔AG19 
A 0,00 1.190.000M 
28,5 69,0 45.200M B 0,00 617.000M 
C 0,00 1.170.000M 
AG19↔AG20 
A 0,00 743.000M 
32,5 61,0 110.241M B 0,00 549.000M 
C 0,00 870.000M 
AG20↔AG21 
A 0,00 725.000M 
32,0 61,0 81.612M B 0,00 853.000M 
C 0,00 962.000M 
AG21↔AG22 
A 0,00 545.000M 
32,0 61,0 73.155M B 0,00 588.000M 
C 0,00 712.000M 
AG22↔AG23 
A 0,00 552.200M 
32,0 61,0 75.908M B 0,00 563.100M 
C 0,00 706.900M 
AG23↔AG24 
A 0,00 512.500M 
31,7 63,3 75.502M B 0,00 536.700M 
C 0,00 619.400M 
AG24↔SE 
A 0,00 24.100M 
32,0 65,0 22.931M B 0,00 23.500M 
C 0,00 32.800M 
 
 
 Os resultados da medição da resistência de isolação (Rmed) superior ao resul-
tado calculado de referência (Rf) habilita o circuito ao teste de tensão aplicada, indicando que 
o cabo de energia poderá suportar gradiente de potencial desejado. 
 Após a aprovação do ensaio com o megohmetro, através do hipot, foi aplicada 
uma tensão em corrente contínua conforme a tabela 3.1, observando-se nenhuma sobrecorren-
te nos circuito ensaiados, ou seja, não foi detectada ruptura da isolação durante o teste, certifi-
cando confiabilidade aos circuitos para entrar em operação.
 
Conclusão 
41
5 Conclusão 
 Neste trabalho é apresentado o embasamento teórico e um estudo de caso de 
comissionamento de rede subterrânea em sistema de distribuição de um parque eólico. Como 
exemplo de aplicação de ensaios da rede de distribuição, é apresentado um estudo de caso de 
implantação em um parque modelo, JS WIND, que foi instalado no estado do Ceará. 
 Os ensaios de cabos de média tensão subterrâneos são responsáveis por 
determinar a confiabilidade do sistema de distribuição de energia de forma a atender critérios, 
tais como nível de isolação, continuidade e segurança, deixando-os de acordo com padrões 
normatizados e visando perdas monetárias das usinas geradoras através de lucros cessantes. 
 Quando um sistema de distribuição subterrânea é construído sem atender os 
pré-requisitos devidos, ele pode vir a entrar em operação de forma inadequada. Isso acarreta 
riscos para as pessoas que trabalham no sistema elétrico e causa restrições à operação. Ao ser 
necessário uma intervenção na rede subterrânea, cada circuito a ser alterado deve passar por 
um novo comissionamento a fim de garantir a confiabilidade do sistema. Caso essa exigência 
não seja atendida, fica o sistema exposto a possíveis falhas, causando perda de produtividade 
para as usinas eólicas que tem sua atividade produtiva paralisada. 
 O comissionamento do sistema distribuição subterrânea apresentado beneficia 
diretamente os parques eólicos que geram energia elétrica, os profissionais das áreas de 
operação e manutenção do sistema, permitindo um menor tempo para a restauração dos 
serviços, além de reduzir o custo operacional, contribui para a melhoria dos índices de 
qualidade do serviço e confiabilidade do sistema. 
 Como proposta de trabalho futuro, pode-se sugerir estudos de ensaios de RDS 
através de corrente alternada de VLF (“Very low frequence”), com baixa frequência, devido a 
menor degradação do cabo ensaiado. Além disso, análise financeira ao se evitar os lucros 
cessantes em parques eólicos. 
 Além dos benefícios supracitados, este trabalho proporcionou a oportunidade 
de aprofundar os conhecimentos adquiridos nas disciplinas do curso de Engenharia Elétrica, 
contribuindo para a consolidação dos meus conhecimentos, através de uma necessidade da 
Empresa. 
 
Referências Bibliográficas 
42
REFERÊNCIAS BIBLIOGRÁFICAS 
 
[1] Disponível na URL: http://www.prysmianclub.com.br/revista/PClub_12,acessada dia 
30/04/2010. 
 
[2] Silva, G. C. “Descargas parciais estimuladas por raios-x contínuo e pulsado em materiais 
dielétricos: similaridades e diferenças”, Universidade Federal do Paraná, 2005, 165p. 
 
[3] M. D. Texeira, Cabos de Energia: cabos elétricos, Artliber, 2. Ed., São Paulo, BRA, 2004. 
 
[4] G. C. Silva, E. L. Leguenza, J. V. Gulmine, M. Munaro, J. Tomioka, e M.L. Moraes, 
“Uma estimativa do perfil de degradação da isolação em XLPE de cabos de potência 
utilizados na rede subterrâneas da CEB”, apresentado na CITENEL, Brasília, BRA, 
novembro, 2001. 
 
[5] Fluke, Teste de resistência de isolação, Vortex Equipamentos Ltda. 
 
[6] T. Heinhold, Cables y conductores para transporte de energia, Dossat, 2. Ed.,Madrid, 
1982. 
 
[7] J. Mamede Filho, Manual de equipamentos elétricos, 3. Ed., Rio de Janeiro, BRA, 2005. 
 
[8] A. J. Pansini, Electrical distribution enginneering, 2. Ed., Oklahoma, USA, 1991. 
 
[9] Queiroz, L. G. “Análise regulatória de alternativas para distribuição de energia elétrica na 
rede primária em áreas urbanas”, Universidade Salvador, 2003, 167p. 
 
[10] F. O. Texeira, Localização de falhas em cabos de potência, apresentado no Encontro da 
Light, Rio de Janeiro, BRA. 
 
[11] Disponível na URL: http://www.reativa.com/index.php?id_pagina=187, acessada dia 
15/05/2010. 
 
[12] A. P. Corrêa, J. P. Borges, L. R. Nogueira, “Rede de distribuição subterrânea de energia 
elétrica”, apresentado no XIII INIC, São Paulo, BRA, outubro, 2009. 
 
Referências Bibliográficas 
43
 
[13] J. J. A. de Paula, “Cabo de média tensão – processos de isolação”, apresentado no X 
JICABLE, Alagoas, BRA, outubro, 2009. 
 
[14] G. T. Laskoski, “Conceitos fundamentais sobre condutores elétricos”, Centro Federal de 
Educação Tecnológico do Paraná, 2006, 30p. 
 
[15] B. N. Bressan, “Desenvolvimento de Sistema e Metodologia Para Avaliar a Influência da 
Temperatura em Medidas de Tensão de Retorno em Cabos Isolados em XLPE”, Universidade 
Federal do Paraná, 2006, 62p. 
 
[16] G. Velasco, “Arborização viária versus sistema de distribuição de energia elétrica: 
avaliação dos custos, estudo das podas e levantamento de problema fitotécnicos”, 
Universidade de São Paulo, 2003, 117p. 
 
[17] Associação Brasileira de Normas Técnicas, ABNT NBR 5410 - Instalações elétricas de 
baixa tensão. 
 
[18] Associação Brasileira de Normas Técnicas, ABNT NBR 6813 – Ensaio de resistência de 
isolamento. 
 
[19] Associação Brasileira de Normas Técnicas, ABNT NBR 7286 – Cabos de potência com 
isolação extrudada de borracha etilenopropileno (EPR) para tensões de 1 kV a 35 kV - 
Requisitos de desempenho. 
 
[20] Associação Brasileira de Normas Técnicas, ABNT NBR 7287 – Cabos de potência com 
isolação extrudada polietileno reticulado (XLPE) para tensões de 1 kV a 35 kV - Requisitos 
de desempenho. 
 
[21] Associação Brasileira de Normas Técnicas, ABNT NBR 14039 – Instalações elétricas de 
média tensão de 1,0 kV a 36,2 kV. 
 
[22] Associação Brasileira de Normas Técnicas, ABNT NBR 6251 – Cabos de potência com 
isolação extrudada para tensões de 1 kV a 35 kV – Requisitos Construtivos.
 
Apêndice A 
44
AP�DICE A 
 
DIME�SIO�AME�TO DOS CO�DUTORES DE CADA CIRCUITO 
 
 
A.1 DEFI�IÇÃO DOS CABOS PELA AMPACIDADE 
 
A.1.1. Premissas: 
 
· Cabos enterrados diretamente no solo; 
· Configuração dos alimentadores: trifólio; 
· Número de circuitos por vala: 1 alimentador; 
· Dimensões da vala: 
a) Profundidade: 1,0 metro 
b) Largura máxima: 0,5 metro 
 
· Afastamento entre circuitos: mínimo de 1,5m excetuando na chegada da SE; 
· Número de aerogeradores por alimentador primário de distribuição: 08; 
· Temperatura do solo a 1,0 metro de profundidade: aproximadamente 30°C; 
· Fator de correção de temperatura de 20°C para 30°C (FT): 0,93 
· Fator de correção por agrupamento (FA): 1 (para cabos dispostos em trifólio, com um 
alimentador por vala - NBR14039); 
· Resistividade térmica do solo: 1,5 K.m/W 
· Corrente nominal(In) por aerogerador em 34,5 kV: 38,2A 
· Corrente maxima (Imax) por alimentador: 305,6A 
· Fator de utilização considerado dos condutores (FU): 0,85 
· Tipo de condutor considerado fio de alumínio, blindagem do condutor composto por 
termofixo semicondutor, isolação em XLPE, blindagem da isolação composto por termofixo 
semicondutor e cobertura em termoplástico de polietileno. 
 
 
 
 
 
 
 
Apêndice A 
45
A.1.2 Determinação da seção mínima do condutor para geração máxima por trechos, 
segundo critérios da ampacidade e as premissas adotadas. 
 
Trecho com até 4 (quatro) máquinas: 
 
Considerando: 
FU = 0,85 
FT = 0,93 
FA = 1 
It x 4 = 152,8 A 
Teremos : 
FAFTFU
It
Incondutor
××
×
=
4
 
193,085,0
8,152
××
=Incondutor 
AIncondutor 29,193= 
 
 Seção do condutor utilizado : 150 mm² - Al (segundo tabela 29 da NBR 14039 e 
aplicando o fator de correção da tabela 33 da mesma norma, corrigindo assim a resistividade 
térmica do solo de 2,5K.m/W para 1,5K.m/W conforme projeto, o valor de ampacidade 
suportada é de 267,84). 
 
Trecho com até 07 (sete) máquinas: 
Considerando: 
FU = 0,85 
FT = 0,93 
FA = 1 
It x 7 = 267,4 A 
Teremos : 
FAFTFU
It
Incondutor
××
×
=
7
 
193,085,0
4,267
××
=Incondutor 
AIncondutor 27,338= 
 
Apêndice A 
46
 Seção do condutor utilizado: 240 mm² - Al (segundo tabela 29 da NBR 
14039 e aplicando o fator de correção da tabela 33 da mesma norma, corrigindo assim a 
resistividade térmica do solo de 2,5K.m/W para 1,5K.m/W conforme projeto, o valor de 
ampacidade suportada é de 349,68). 
 
Trecho com 08 (oito) máquinas: 
 
Considerando: 
FU = 0,85 
FT = 0,93 
FA = 1 
It x 8 = 305,6 A 
Teremos : 
FAFTFU
It
Incondutor
××
×
=
8
 
193,085,0
6,305
××
=Incondutor 
AIncondutor 59,386= 
 
 Seção do condutor utilizado : 400 mm² - Al (segundo tabela 29 da NBR 14039 
e aplicando o fator de correção da tabela 33 da mesma norma, corrigindo assim a resistividade 
térmica do solo de 2,5K.m/W para 1,5K.m/W conforme projeto, o valor de ampacidade 
suportada é de 450,12). 
 
Apêndice B 
47
AP�DICE B 
 
CÁLCULO DA QUEDA DE TE�SÃO �OS ALIME�TADORES 
PRIMÁRIOS SUBTERRÂ�EOS 
 
 
B.1 Parâmetros dos cabos utilizados 
 
Premissas 
· Cabos enterrados diretamente no solo. 
· Configuração dos alimentadores: trifólio 
· Temperatura do solo a 1,0 metro de profundidade: 30°C 
· Temperatura em serviço em regime contínuo: 90°C 
· Fator de potência: 0,92 ind. 
 
Cabo 150mm² - Al 
x = 0,150 ohms/Km 
R20°c = 0,270 ohms/Km 
Corrigindo o valor da resistência para temperatura de 90°C: 
 
)
22820
22890
°C(270,0°C90)
228
228
°C(20°C90
+
+
=→
+
+
= R
Tr
Tc
RR
 
3462,0°C90 =R ohms/Km 
 
Cabo 240mm² - Al 
x = 0,139 ohms/Km 
R20°c = 0,166 ohms/Km 
Corrigindo o valor da resistência para temperatura de 90°C: 
 
)
22820
22890
(166,0°C90)
228
228
°C(20°C90
+
+
=→
+
+
= R
Tr
Tc
RR
 
2128,0°C90 =R ohms/Km 
 
 
 
 
Apêndice B 
48
 
Cabo 400mm² - Al 
x = 0,129 ohms/Km 
R20°c = 0,108 ohms/Km 
Corrigindo o valor da resistência para temperatura de 90°C: 
 
)
22820
22890
(108,0°C90)
228
228
°C(20°C90
+
+
=→
+
+
= R
Tr
Tc
RR
 
1385,0°C90 =R ohms/Km 
 
 
B.1.2 Calculo da constante C’ para os diversos cabos utilizados. 
 
Cabo 150mm² - AL 
C’ = rcosy + xseny 
C’ = 0,3462 x 0,92 + 0,150 x 0,3919 
C’ = 0,3772 ohms/Km 
 
Cabo 240mm²

Outros materiais