Prévia do material em texto
3-1 CHAPTER 3 PROBLEM (3.1) A rigid bar BDE is supported by two links AB and CD as shown in Fig. P3.1. After load P is applied, point E moves 2.4mm downward and the axial strain in bar AB equals -500 . What is the axial strain in bar CD? SOLUTION The change in length of bar AB is 6( 500 10 )(800) 0.4AB AB ABL mm From triangles B’BF and EE’F: 0.4 2.4 , 214.3 1500 x mm x x From triangles DD’F and EE’F: 285.7 1285.7 , 0.533 2.4 D D mm Thus 0.533 533 1000 D CD CDL ________________________________________________________________________ PROBLEM (3.2) A spherical balloon changes its diameter from 200 to 201 mm when pressurized. Determine the average circumferential strain. SOLUTION 0 0 1 5000 200 fd d d ________________________________________________________________________ PROBLEM (3.3) A hollow cylinder is subjected to an internal pressure that increases its 200 mm inner diameter by 0.5 mm and its 400 mm outer diameter by 0.3 mm. Calculate: (a) The maximum normal strain in the circumferential direction. (b) The average normal strain in the radial direction. SOLUTION (a) 2 ( ) 2 2 c r r r r r r max 0.25 ( ) ( ) 2500 100 c c i 0.15 ( ) 750 200 c o 1000 mm F 2.4 mm 0.4 mm D’ B’ D E B x E’ 500 mm D 3-2 (b) 0.25 0.15 1000 200 100 o i o i r r r r ________________________________________________________________________ PROBLEM (3.4) A prismatic bar of length L is subjected to an axial load P, as shown in Fig. P3.4. Calculate the maximum strain x , if the displacement along the member varies as follows: (a) u = ( 2x /L) 310 . (b) u = L( 310 ) sin ( x/2L). SOLUTION (a) 2 1000 500 x x du x u L dx L At x=L: max( ) 2000x (b) sin cos 1000 2 2000 2 x L x du x u L dx L At x=0: max( ) 1570 2000 x ________________________________________________________________________ PROBLEM (3.5) A horizontal rod AB is supported and loaded by a force P as seen in Fig. P3.5. Determine the permissible normal strains in the wires CE and DF, if the allowable vertical displacement of end B is 1/8 in. Assumption: Rod AB is rigid. Geometry: 0.125 40 60 80 CE DF Solving, 0.0625 . 0.09375 .CE DFin in Normal Strains: 0.0625 1786 35 CE CE CEL 0.09375 1875 50 DF DF DFL B C D F D E CE A B Figure (a) F 20 in. 35 in. 50 in. 20 in. 40 in. 3-3 ________________________________________________________________________ PROBLEM (3.6) The structure shown in Fig. P3.5 consists of a horizontal rod AB supported by two vertical wires (CE and DE) and by a pin at A. What is the the allowable vertical displacement of the end B, if the permissible normal strain in each wire is all = 1500 ? Assumption: Rod AB is rigid. SOLUTION Geometry [see: Figure (a) of Solution 3.5]: 40 60 80 CE DF B Normal Strains: 0.0015(35) 0.0525 .CE all CEL in 8 2(0.0525) 0.105 . 4 B CE in Also 0.0015(50) 0.075 .DF all DEL in 8 4 (0.075) 0.1 . 6 3 B DF allin ________________________________________________________________________ PROBLEM (*3.7) The assembly of the strut BC and rod AB is used to support a vertical load P as depicted in Fig. P3.7. Determine: (a) The normal stresses AB and BC in the rod and strut. (b) The normal strain AB , if the rod elongates 0.05 in. (c) The normal strain BC , if the strut shortens 0.025 in. Given: P = 3.5 kips. The cross-sectional areas of the members: BCA = 0.25 2.in and BCA =0.4 2.in *SOLUTION We have 2 260 45 75 .ABL in 2 260 25 65 .BCL in Equilibrium: 4 12 0 : 0 5 13 x AB BCF F F 3 5 0 : 3.5 0 5 13 y AB BCF F F B C D E A F 50 in. 35 in. 20 in. 20 in. 40 in. A C BCF ABF P B 45 25 12 60 5 3 4 13 5 3-4 Solving, 3.25 ( ) 3.75 ( )BC ABF kips C F kips T (a) 3.75 3.25 15 8.125 0.25 0.4 AB BCksi ksi (b) 0.05 667 75 AB (c) 0.025 385 65 BC ________________________________________________________________________ PROBLEM (3.8) As a result of loading, the thin 40 mm by 20 mm rectangular plate of Fig. P3.8 deforms into a parallelogram in which sides AB and CD elongate 0.005 mm and rotate 1200 rad clockwise, while sides AD and BC shorten 0.002 mm and rotate 400 rad counterclockwise. Calculate the strain components in the xy plane. SOLUTION 0.002 50 40 x u x 0.005 250 20 y v y 400 1200 1600xy v u x y ________________________________________________________________________ PROBLEM (3.9) Solve Prob. 3.8, assuming that sides AD and BC elongate 0.001 mm and rotate 1600 rad clockwise and the other sides have the same extension and rotation. SOLUTION 0.001 25 40 x u x 0.005 250 20 y v y 1600 1200 400xy v u x y 40 mm 20 mm A D y C B x 3-5 ________________________________________________________________________ PROBLEM (3.10) A thin 8 in. by 6 in. rectangular plate (see Fig. P3.10) is acted upon by a biaxial tensile loading resulting in the uniform strains x = 600 and y = 400 . Calculate the change in length of diagonal AC. SOLUTION 6400(10 )(6)ABL 32.4 10 .in 6600(10 )(8)ADL 34.8 10 .in 2 2 2 AC AB ADL L L 2 2 2AC AC AB AB AD ADL L L L L L or AB AD AC AB AD AC AC L L L L L L L (1) Substituting the numerical values: 36 8[ (2.4) (4.8)]10 10 10 ACL 35.28 10 .in ________________________________________________________________________ PROBLEM (3.11) Redo Prob.3.10, with the plate in biaxial compression for which x = -200 and y = - 100 . SOLUTION 6 3100(10 )6 0.6 10 .ABL in 6 3200(10 )8 1.6 10 .ADL in Using Eq. (1) of Solution of Prob. 3.8: 36 8[ ( 0.6) ( 1.6)]10 10 10 ACL 31.64 10 .in ________________________________________________________________________ PROBLEM (3.12) Determine the normal strain in the members AB and CB of the pin- connected plane structure shown in Fig. 3.12 if point B moves leftward 3 mm,after load P is applied. Assumption: Axial deformation is uniform throughout the length of each member. SOLUTION 3 1500 AB AB AB L L 2000 0.003cos 2.5 BC BC BC L L 8 in. 6 in. A D y C B x 10 in. 3 mm 2.5 m A C B 1..5 m 2 m BCL 3-6 0.003(1.5 2.5) 2.5 720 ________________________________________________________________________ PROBLEM (3.13) The shear force V deforms plate ABCD into AB’C’D (Fig. P3.13). Determine the shear strain in the plate: (a) At any point. (b) At the center. (c) At the origin. Given: b = 200 mm, h = 0.5 mm SOLUTION (a) 2 2dx h y dy b 2 2(0.0005) (0.2) y or 0.025 y (1) (b) From Eq. (1) at 2 :y b 0.025(0.1) 2500 (c) From Eq. (1) at 0 :y 0 ________________________________________________________________________ PROBLEM (3.14) Redo Prob. 3. 13 for the case in which curves AB’ = DC’ are straight lines. Given: b = 250 mm, h = 0.4 mm SOLUTION (a) 0.4 1600 250 h b (b) 0.2 1600 125 (c) 1600 ________________________________________________________________________ PROBLEM (3.15) A 100 mm by 100 mm square plate is deformed into a 100 mm by 100.2 mm rectangle as shown by the dashed lines in Fig. P3.15. Determine the positive shear strain between its diagonals. SOLUTION 2 1 1002 tan 2 100.2 1998 dx y x dy 100 mm 0.2 mm 2 100 mm A D C B 3-7 ________________________________________________________________________ PROBLEM (3.16) A square plate is subjected to the uniform strains x = -500 , y = 500 , and xy = 0. Calculate the negative shearing strain between its diagonal s. SOLUTION 2 1 1.00052 tan 2 0.9995 L L 1000 ________________________________________________________________________ PROBLEM (*3.17) When loaded, the 400 mm by 400 mm square plate of Fig. P3.17 deforms into a shape in which diagonal BD elongates 0.2 mm and diagonal AC contracts 0.4 mm while they remain perpendicular and side AD remains horizontal. Calculate the average strain components the xy plane. *SOLUTION 2 2400 400 565.69AC BD mm ' ' 565.69 0.4A C 565.29 mm ' ' 565.69 0.2B D 565.89 mm Geometry: ' ' ' 'A B A D Thus, ' ' x y A B AD AD 1 2 2 2 565.29 565.89 400 2 2 400 0.0001685 169 1 565.89 2' 2 tan 2 2 565.29 2 xy 0.001061 1061 ________________________________________________________________________ PROBLEM (3.18) A 15 in. by 20 in. rectangular sheet of plastic is loaded in its own plane. After loading the sheet distorts into a shape A’B’C’D’ as shown by the dashed lines in Fig. P3.18. Determine the normal strains occurring along the diagonals AC and BD. SOLUTION Refer to Figure P3.18. Geometry: -0.0005L 0.0005L 2 L L A' D' y C' B' x ' 3-8 2 220 15 25 .AC BD in 2 2' (20.12) (15.1) 25.156 .AC in 2 2' ' (20.02) (15) 25.016 .B D in Normal strains: ' 25.156 25 6240 25 AC AC AC AC ' ' 25.016 25 640 25 BD B D BD BD ________________________________________________________________________ PROBLEM (3.19) Reconsider the plastic sheet that is initially rectangular (Fig. P3.18). Subsequent to loading the sheet deforms into a shape as indicated by the dashe d lines in the figure. Calculate the shear strains at the corners A, B, C, and D. SOLUTION Geometry (for small angles): 0.05 2,491 20.07 rad 0.05 3,322 15.05 rad Shear strains: ( ) ( ) 2,491 3.222xy A xy C 5,813 rad ( ) ( ) ( ) 5,813xy B xy D rad ________________________________________________________________________ PROBLEM (3.20) The pin-connected structure ABCD is deformed into a shape AB'C'D, as shown by the dashed lines in Fig. P3.20. Calculate the average normal strains in member BC and AC. SOLUTION ' 5 64 . ' 5 32CC in BB 5 64 5 32 6 12 BC BC BC L L 1085 AC AC AC L L (5 64)cos 45 543 72 12 o ________________________________________________________________________ A D y C B x 0.05 in. 20 in. 0.05 in 15 in. 0.05 in 0.07 in 0.12 in. 6 ft 6 ft A C B 45o ACL C" C' 72 ft B’ 3-9 PROBLEM (3.21) Solve Prob. 3.20, assuming that member BC moves 3/16 in. down as a rigid body and remains vertical - that is, BB' = CC' = 3/16 in. SOLUTION Refer to Solution of Prob. 3.20. 0 0BCBC BC BC L L L (3 16)cos 45 1302 72 12 o AC AC AC L L ________________________________________________________________________ PROBLEM (3.22) The handbrakes on a bicycle consist of two blocks of hard rubber attached to the frame of the bike, which press against the wheel during stopping (Fig. P3.22a). Assuming that a force P causes a parabolic deflection (x = 2ky ) of the rubber when the brakes are applied (Fig. P3. 22b), determine the shearing strain in the rubber. SOLUTION 2x ky 2ka 2k a We have 2 2 2dx kydy ydy a Thus, 2 2( ) dx y dy a ________________________________________________________________________ PROBLEM (*3.23) The thin, triangular plate ABC shown in Fig. P3.23 is uniformly deformed into a shape A’B’C’. Calculate: (a) The plane stress components x , y , and xy . (b) The shear strain between edges AC and BC. *SOLUTION (a) 2.4 1200 2000 x 1.5 1500 1000 y 0xy (b) 90oACB x y x=ky2 a 3-10 1 1.0012' ' ' 2 tan 90.1547 0.9985 oA C B 390 90.1547 0.1547 2.7 10o o o rad 2700 ________________________________________________________________________ PROBLEM (3.24) Redo Prob. 3.23 for the case in which the plate ABC is uniformly deformed into a shape ABC'. SOLUTION (a) 0 0x xy 1.5 1500 1000 y (b) 90oACB 1 1' 2 tan 90.086 0.9985 oAC B 390 90.086 0.086 1.5 10o o o rad 1500 ________________________________________________________________________PROBLEM (3.25) The stress-strain curves for a structural steel bar are shown in Fig. P3.25. Note that, the entire diagram and its initial portion are plotted using a strain scale N and an enlarged strain scale M in the figure, respectively. Determine: (a) The strains at yield point and fracture of the material. (b) The % elongation of the bar for a 50-mm gage length. SOLUTION (a) 0.0014 1400y 0.28 280,000f (b) 50 50(0.28) 64fL mm % Elongation= 64 50 (100) 50 28 % ________________________________________________________________________ PROBLEM (3.26) A 10 mm by 10 mm square ABCD is drawn on a member prior to loading. After loading, the square becomes the rhombus shown in Fig. P3.26. Determine: (a) The modulus of elasticity. (b) Poisson's ratio. SOLUTION 2 210 10 14.14AC BDL L mm 14.11 14.14 2122 14.14 AC x AC L L 3-11 14.15 14.14 707 14.14 BD x BD L L (a) 6 6 85(10 ) 40 2122(10 ) x x E GPa (b) 707 0.33 2122 y x ________________________________________________________________________ PROBLEM (3.27) Two rectangular blocks of rubber, each of width a = 25 mm, depth b = 50 mm, and height h = 150 mm are bonded together to rigid supports and to the movable center plate (see Fig. 3.26). Calculate the shear stress , strain , and shear modulus of elasticity G of the rubber, if a force P = 15 kN causes a downward deflection = 2 mm. SOLUTION Refer to Example 3.8. 315(10 ) 1 2 2(0.05)(0.15) P MPa bh 2 0.08 80,000 25 rad a 61(10 ) 12.5 0.08 G GPa ________________________________________________________________________ PROBLEM (*3.28) Figure P3.28 depicts a vibration isolation support that includes a steel rod of radius a bonded to a hollow rubber cylinder of height h. Determine, in terms of the quantities a, b, P, r, h, and G, as needed: (a) The shear stress in the rubber at a distance r from the center of the support. (b) The downward displacement of the rod. Assumptions: 1. The displacement is so small that dy/dr = tan = . Clearly, the maximum value of y occurs for r = a that the deflection is zero at r = b. 2. Hooke’s law for shear applies to the rubber. 3. The steel rod and cylinder are rigid. *SOLUTION (a) Shear stress: The shear area at radius r equals 2 .A rh Hence 2 P P A rh (b) Displacement: Applying Hook’s Law 2 P G rhG Then, dy dr at :y 3-12 2 b b a a P dr dr rhG ln 2 2 b a P dr P b hG r hG a ________________________________________________________________________ PROBLEM (3.29) For the handbrakes on the bicycle described in Prob. 3.22, express the deflection of the hard rubber in terms of P, L, G, a, and b (see Fig. P3.22). Here b and G, respectively, denote the width and the shear modulus of elasticity of a n a x b x L rectangular rubber block. SOLUTION From solution of Prob. 3.22: 2 2 2 ; 2 a y a y (1) Also, 2 P P G AG bLG (2) For y a , Eqs. (1) & (2) gives 2 2 4 a Pa a bGL ________________________________________________________________________ PROBLEM (3.30) A 2-in.-diameter bar 6 ft long, shortens 3/64 in. under an axial load of 40 kips. If the diameter is increased 0.4(10-3) in. during loading, calculate: (a) Poisson's ratio. (b) The modulus of elasticity. (c) The shear modulus of elasticity. SOLUTION (a) 3 64 651 6 12 x 30.4(10 ) 200 2 y Thus, 200 0.31 651 (b) 3 2 40(10 ) 12.73 (2) 4 x ksi 3-13 3 6 6 12.73(10 ) 19.6 10 651(10 ) x x E psi (c) 619.6 10 2(1 0.31) 2.62 E G 67.48 10 psi ________________________________________________________________________ PROBLEM (3.31) Figure P3.31 shows a steel block subjected to an axial compression load of 400 kN. After loading, if dimensions b and L are changed to 40.02 and 199.7 mm, respectively, calculate: (a) Poisson's ratio. (b) The modulus of elasticity. (c) The final value of the dimension a. (d) The shear modulus of elasticity. Given: a = 60 mm, b = 40 mm, L = 200 mm SOLUTION 3400(10 ) 166.7 0.04 0.06 x MPa (a) 0.3 1500 200 x 0.02 500 40 y 500 1 1500 3 (b) 6 6 166.7(10 ) 1500(10 ) x x E 111 GPa (c) 6 9 1 166.7 10 ( ) 500 111 10 3 x z E 6500(10 )(60)a 0.03 mm 60 0.03 60.03fa mm (d) 9111 10 2(1 ) 8 3 E G 41.6 GPa L=200 mm a=60 mm x y z 400 kN b=40 mm 3-14 ________________________________________________________________________ PROBLEM (3.32) The data shown in the accompanying table are determined from a tensile test of a mild steel specimen. Plot the data and determine: (a) The modulus of elasticity. (b) The yield point. (c) The proportional limit. (d) The ultimate stress. ------------------------------------------------------------------------------------------- Stress, MPa Strain Stress, MPa Strain -------------------------------------------------------------------------------------------- 35 0.0001 245 0.009 70 0.0003 300 0.025 100 0.0005 340 0.05 135 0.0007 380 0.09 170 0.0008 435 0.15 205 0.0010 450 0.25 240 0.0012 440 0.30 255 0.0025 420 0.36 250 0.0050 325 0.40 --------------------------------------------------------------------------------------------- SOLUTION (a) 6240(10 ) 200 0.0012 E GPa (b) 255y MPa (c) 240p MPa (d) 450u MPa 0 0.1 0.2 0.002 0.001 0.4 450 )(MPa M N 0.3 100 200 400 255 450 240 A 300 3-15 ________________________________________________________________________ PROBLEM (3.33) The following data are obtained from a tensile test of a 12.7-mm-diameter aluminum specimen having a gage length of 50 mm. After the specimen ruptures, the minimum (neck) diameter is found to be 8.8 mm. --------------------------------------------------------------------------------------------------- Stress, MPa Strain Stress, MPa Strain --------------------------------------------------------------------- ------------------------------- 35 0.0005 284 0.0062 70 0.0010 305 0.02 104 0.0014 319 0. 05 139 0.0017 326 0.08 172 0.0024 312 0. 12 207 0.0030 291 0.15 242 0.0035 256 0. 20 259 0.0039 (Fracture) --------------------------------------------------------------------------------------------------- Plot the engineering stress-strain diagram and determine: (a) The modulus of elasticity. (b) The proportional limit. (c) The yield strength at 0.2 %. (d) The ultimate strength. (e) The percent elongation in 50 mm. (f) The percent reduction in area. (g) The true ultimate stress. (h) The tangent and secant moduli at a stress level of 310 MPa. SOLUTION (a) 6242(10 ) 69 0.0035 E GPa (b) 242p MPa (c) 275y MPa Et 275 310 Es 0 0.05 0.1 0.004 0.002 0.2 326 )(MPa M N 0.15 100 200 0.006 242 300 3-16 (d) 326u MPa (e) 50 0.2(50) 50 (100) 20 % 50 (f) 2 2 2 (12.7) (8.8) 4 4 (100) 52 % (12.7) 4 (g) 2 2 (12.7) 4( ) 326 679 (8.8) 4 u t MPa (h) 6(330 290)10 0.8 0.05 tE GPa 6310 10 10 0.031 sE GPa ________________________________________________________________________ PROBLEM (3.34) A stepped bar of diameters ABd and BCd made of an aluminum alloy, is subjected to an axial force P (Fig. P3.34a). The initial portion of the stress-strain curve is as seen in Fig. P3.34b. Calculate: (a) The elongation of the bar when the load is applied. (b) The permanent elongation of the bar. Given: a = 20 in., b = 15 in., ABd = 7/8 in., BCd = 5/8 in., P = 16 kips, E = 10x106 psi Assumption: The weight of the bar is small compared with the loading and can be neglected. SOLUTION (a) Stresses 2 16 26.6 7 ( ) 4 8 AB AB P ksi A 2 16 52.2 5 ( ) 4 8 BC BC P ksi A - diagram (ksi) F 0 y = 40 0.04 60 E 20 G 0.02 0.03 D 3-17 From diagram, material in region 0D is strained elastically, since 40 26.6 .y ksi By Hooke’s Law, 3 6 26.6(10 ) 2,660 10 10 AB AB E Material in region DF is strained plastically, since 40 52.2 .y ksi From curve, for 52.2BC ksi : 0.03 30,000BC The approximate elongation of the bar is thus 6[(2,660 20) (30,000 15)]10 0.5 .L in (b) When the load is removed, segment AB will be restored to its initial length. But segment BC will recover elastically along line FG: 3 6 52.2(10 ) 5,000 10(10 ) BC rec E The remaining plastic strain in part BC is 30,000 5,000 25,000OG Thus, when the load is removed the bar is elongates 0.025(15) 0.375 .p OG BCL in ________________________________________________________________________ PROBLEM (3.35) Calculate the smallest diameter and shortest length that may be selected for a steel control rod of a machine under an axial load of 4 kN if the rod must stretch 2.5 mm. Given: E = 200 GPa, all = 150 MPa SOLUTION 3 3 6 2 2 4(10 ) 16(10 ) 150 10 4 x d d min 0.0058 5.8d m mm Also, 6 9150 10 200 10 0.0025 E L or min 3.333L m L d 4 kN 2.5 mm 4 kN 3-18 ________________________________________________________________________ PROBLEM (*3.36) Determine the axial strain in the block of Fig. P3.36 when subjected to an axial load of 4 kips. The block is constrained against y- and z-directed contractions. Given: a = ¾ in., b = 3/8 in., L = 4 in., E = 610 10 psi, = 1/3 *SOLUTION 34(10 ) 0 14.22 (3 4)(3 8) y z x ksi 1 0 [ ( )]y y x z E (1) 1 0 [ ( )]z z x y E (2) 1 0 [ ( )]x x y z E (3) The first two expressions become y z x (1’) z y x (2’) Adding: 2( ) 2 (1 ).y z x Equation (3) now reduces to 21 2 1 x x E Substituting the data: 3 6 1 2 1 14.22(10 )3 9 1 10 10 1 3 x 948 ________________________________________________________________________ PROBLEM (3.37) A round steel rod of diameter d is subjected to axial tensile force P as shown in Fig. P3.37. The decrease in diameter is d. Compute the largest value of P. Given: d = 1 in., d = 0.5(10-3 ), E = 29x106 psi , = 1/3 SOLUTION d=1 in. P P 3-19 y x x d AE P A EA EA d 2 4 4 d d d E dE d Inserting the given numerical values: 3 60.5 10 (1)(29 10 ) 4 3 P 34.16 kips ________________________________________________________________________ PROBLEM (3.38) A short cylindrical pipe of cold-rolled (510) bronze having an outside diameter D and thickness t is placed in acompression machine and sequeezed until the axial load applied is P with a safety factor of ns against yielding. Determine the minimum required Dmin Given: t = D/6, P = 250 kips, sn = 2, y = 75 ksi (from Table B.4) SOLUTION 2 2 2 5[ ( ) ] 4 3 36 D D A D D , y s all s all y PnP A n Hence 2 min 5 , 6 36 5 s s y y Pn PnD D Introducing the data given min 250 2 6 1.954 . 5 (75) D in ________________________________________________________________________ PROBLEM (3.39) A 5-ft long and 7/8-in. diameter bar is made of a 6061-T6 aluminum alloy. What is the final length of the bar if it is subjected to an axial tension of 8 kips? Given: E = 610 10 psi , y = 38 ksi (from Table B.4). SOLUTION Normal stress: 2 4(8) 13.304 38 7 ( ) 8 P ksi ksi A and hence Hooke’s law applies. Normal Strain: 3-20 3 13,304 1,330 10(10 )E So 6 0 1,330(10 )(5 12) 0.08 .L L in 0 60 0.08 60.08 .fL L L in ________________________________________________________________________ PROBLEM (3.40) A 1.5–in. diameter and 60 in.– total length bar ABC is composed of an aluminum part AB and a steel part BC as shown in Fig. P3.40. When axial force P is applied , a strain gage attached to the steel measures normal strain at the longitudinal direction as s = 500 . Calculate: (a) The magnitude of the applied force P. (b) The total elongation of the bar if each material behaves elastically. Given: E a = 10x106 psi, E s = 10x106 psi SOLUTION (a) Axial stress in the bar s a is 500(30) 15s sE ksi Hence 215[ (1.5 )] 26.5 4 P A kips (b) Axial strain in aluminum equals 3 6 15(10 ) 1,500 10(10 ) a a aE Therefore a a s sL L 6[1,500(15) 500(45)]10 0.045 .in ________________________________________________________________________ PROBLEM (3.41) A cold-rolled yellow brass specimen see (Table B.4) has a diameter od and a gage length oL (Fig. P3.41). When a force P elongates the gage length , determine: (a) The modulus of elasticity E. (b) The contraction of diameter 0d . Given: od = 0.4 in., oL = 2 in., = 6 ( 310 ), P = 5.6 kips SOLUTION From Table B.4; 63y ksi and 65.6 10G ksi (a) Modulus of elasticity. 3-21 2 5.6 45 (0.4) 4 P ksi A 3 0 6(10 ) 0.003 3,000 2 a L Since 63 ,y ksi material behaves elastically. So 3 645(10 ) 15 10 0.003a E ksi (b) Poisson’s ratio: 6 6 15 10; 5.6 10 , 0.34 2(1 ) 2(1 ) E G Then ; 0.34 , 0.00102 0.003 t t t a Hence 4 0 0 (0.00102)(0.4) 4.08(10 ) .td d in ________________________________________________________________________ PROBLEM (*3.42) Verify that the change in the slope of the diagonal line AB, , of a rectangular plate (see Fig. P3.42) subjected to a uniaxial compression st ress is given by the equation: 1 ( ) [ 1] 1 ( ) a E b E (P3.42) where alb is the initial slope. Calculate the value of when = 120 MPa. Given: a = 25 mm, b = 50 mm, = 0.3, E = 70 GPa *SOLUTION a t b a b a E E 1 ( ) ( ) 1 ( ) t f a a a E slope b b E Thus, 1 ( ) ( ) ( ) 1 ( ) f i a E a slope slope b E b or 1 ( ) [ 1] 1 ( ) a E b E Q.E.D. 3-22 Introducing the data 6 9 6 9 25 1 (0.3 120 10 70 10 ) [ 1] 50 1 (120 10 70 10 ) 0.0011 0.06orad ________________________________________________________________________ PROBLEM (3.43) Rework Prob.3.42, assuming that the plate is subjected to a uniaxial tensile stress . SOLUTION a t b a b a E E 1 ( ) ( ) 1 ( ) t f a a a E slope b b E Thus, 1 ( ) ( ) ( ) [ 1] 1 ( ) f i a E slope slope b E Inserting the given numerical values 3 3 25 1 (0.3 120 70 10 ) 1 50 1 (120 70 10 ) 0.011 0.06orad ________________________________________________________________________ PROBLEM (3.44) A 5/8 -in.-diameter bar with a 5-in. gage length is subjected to a gradually increasing tensile load. At the proportional limit, the value of the load is 8 kips, the gage length increases 14.4(10-3) in., and the diameter decreases 0.6(10-3) in. Calculate: (a) The proportional limit. (b) The modulus of elasticity. (c) Poisson's ratio. (d) The shear modulus of elasticity. SOLUTION (a) 3 2 8(10 ) 26.1 (5 8) 4 p ksi 314.4(10 ) 2880 5 p (b) 3 6 6 26.08 10 9.1 10 2880(10 ) E psi 3-23 (c) 30.6(10 ) 960 5 8 t 960 1 2880 3 t a (d) 63 (9.1 10 ) 2(1 ) 8 E G 63.4 10 psi ________________________________________________________________________ PROBLEM (3.45) A 6-m-long truss member is made of two 50-mm-diameter steel bars. For a tensile load of 250 kN, calculate: (a) The change in the length of the member. (b) The change in the diameter of the member. Given: E = 210 GPa, y = 230 MPa, = 0.3 SOLUTION 2 22( 50 4) 1250A mm (a) 3 6 250 (10 ) 200 1250 (10 ) P MPa A Since y , the result is valid. Thus, 6 9 200(10 ) 952 210(10 )E 3 66(10 )(952 10 )L L 5.71 mm (b) 60.3(952)(10 ) 286t 6286(10 )(50)d 0.014 mm ________________________________________________________________________ PROBLEM (3.46) The stress-strain diagram seen in Fig. P3.46 is plotted from tensile test data of high-strength steel. The test specimen had a diameter of 0.51 in. and gage length of 2 in. was used. The total elongation between the gage marks at the fracture was 0.4 in. and the minimum diameter was 0.36 in. Determine: (a) The modulus of elasticity (b) The load yP on the specimen that causes tielding. (c) The ultimate load uP the specimen supports. (d) Percent elongation in 2.00 in. and percent reduction in area. SOLUTION 3-24 (a) Refer to diagram in Fig. P3.46. 40 ksi when 0.001 1000 Hence 640 0 40 10 0.001 0 E ksi (b) We have 40p y ksi ( by curve). 240[ (0.51) ] 8.17 4 y yP A kips (c) From curve, 76u ksi 276[ (0.51) ] 15.52 4 uP kips (d) Percent elongation 0 0 (100) fL L L 2.4 2 (100) 20 % 2 Percent reduction iA area 0 0 (100) fA A A 2 2 2 (0.51) (0.36) (100) 50.2 % (0.51) ________________________________________________________________________ PROBLEM (*3.47) For many materials, the stress-strain curve may be described by the Ramberg-Osgood equation of the form (Reference 3.7): nk E (P3.47) in which the parameters E, k, and n are obtained from the diagram of a given material. Considering the diagram of a metal shown in Fig. P3.47, determine E, k, n, and hence, obtain a formula for the curve. *SOLUTION Refer to diagram in Fig. P3.47. The estimated proportional limit 670(10 )p Pa is at 31 (10 ) 3 p . Thus 210p pE GPa We also have 280 MPa at 0.1, 420 MPa at 0.3 3-25 Applying Eq. (P3.47): 3 3 280 0.1(10 ) (280) 210(10 ) nk or 0.012333 (280)nk (1) Similarly, 3 3 420 0.3(10 ) (420) 210(10 ) nk or 0.001700 (420)nk (2) Solving, Eqs.(1) and (2), we obtain 60.7915 14.26(10 )n k ________________________________________________________________________ PROBLEM (3.48) A short cylindrical rod of ASTM – A36 structural steel, having an original diameter of od and length oL is placed in a compression machine and sequeezed until its length becomes fL . Determine the new diameter of the rod. Given: d = 30 mm, oL = 50 mm, fL = 49.7 mm, = 0.3 SOLUTION Axial strain: 0 0 49.7 50 6,000 50 f a L L L Transverse strain: (0.3)( 0.006) 1,800t a Therefore, 0 0.0018(30) 0.054td d mm 0 30 0.054 30.054d d d mm ________________________________________________________________________ PROBLEM (*3.49) A prismatic bar is under uniform axial tension. Determine Poisson’s ratio for the material, for the case in which the ratio of the unit volume change to the unit cross-sectional area change is -5/8. *SOLUTION We have x y z . From Eq.(3.14): 0 (1 2 ) x V V (1) Upon following a procedure similar to that of Sec. 3.10, the final area: [(1 ) (1 ) ]f y zA dy dz 3-26 0[1 ( )]y z dydz A A and 0 2y z x A A (2) It is required that 0 0 1 2 5 2 8 V V A A Solving, 4 13 ________________________________________________________________________ PROBLEM (3.50) A tensile test is performed on a 2024-T6 aluminum alloy specimen of diameter d and gage length oL , depicted in Fig. P3.50. After the loading reaches a value of P = 5 kips, the distance oL has increased by = 4.8x10-3 in. Determine: (a) The decrease in diameter d . (b) The modulus of elasticity E. (c) The dilatation e of the bar. Given: d = ½ in., oL = 2 in., = 0.33 SOLUTION (a) 3 34.8 100.33( )(0.5) 0.396 10 . 2 d d in (b) 0 0 PLP A E L A 3 6 2 3 5(10 )(2) 10.6 10 1 ( ) (4.8 10 ) 4 2 psi (c) 34.8 10 (1 2 ) (1 2 0.33)( ) 2 e 30.816 10 ________________________________________________________________________ PROBLEM (3.51) A 2-in.-diameter solid brass bar (E = 15 x 106 psi, = 0.3) is fitted in a hollow bronze tube. Determine the internal diameter of the tube so that its surface and that of the bar are just in contact, with no pressure, when the bar is subjected to an axial compressive load P = 40 kips. SOLUTION Axial stress in brass bar: 3 2 40 10 12.73 (2) 4 x ksi and 3 6 12.73 10 0.3 255 15 10 x y E The diametral increase of the bar is 3-27 6 3255(10 )2 0.51 10 .yd d in The required internal diameter of the tube is thus 32 0.51 10iD d d 2.00051 .in ________________________________________________________________________ PROBLEM (3.52) The cast-iron pipe shown in Fig. P3.52 is under an axial compressive load P. Determine: (a) The change in length .L (b) The change in d iameter D . (c) The change in thickness t . Given: D = 130 mm, t = 15 mm, L = 0.5 m, P = 200 kN, E = 70 GPa, = 0.3 Assumption: Buckling does not occur. SOLUTION 3 9 2 2 200(10 ) 70(10 )( 4)(0.13 0.1 ) P E AE 527 (a) 6 3527(10 )(0.5 10 )L L 0.264 mm (b) 6( ) 0.3(527)(10 )130D D 0.021 mm (c) 6( ) 0.3(527)(10 )15t t 0.0024 mm ________________________________________________________________________ PROBLEM (3.53) Redo Prob. 3.52 for the case in which the axial load P is in tension and the pipe shown in Fig. P3.52 is made of brass. Given: D = 130 mm, t = 15 mm, L = 0.5 m, P = 200 kN, E = 105 GPa, = 0.3 SOLUTION 3 9 2 2 200(10 ) 105(10 )( 4)(0.13 0.1 ) P E AE 351 (a) 6351(10 )500L L 0.176 mm (b) 6( ) 0.3(351)(10 )130D D 0.014 mm (c) 6( ) 0.3(351)(10 )15t t 0.0016 mm ________________________________________________________________________ PROBLEM (3.54) The aluminum rod, 50 mm in diameter and 1.2 m in length, of a hydraulic ram is subjected to the maximum axial loads of ±200 kN. What are the largest diameter and the largest volume of the rod during service? Given: E = 70 GPa, = 0.3. 3-28 SOLUTION 2 6 3(0.05 )(1.2) 2355(10 ) 4 oV m 3 2 200(10 ) 101.9 (0.05 ) 4 x MPa 6 9 101.9(10 ) 1456 70(10 ) x 60.3(1456)(10 ) 437t 6437(10 )(0.05) 0.022td d mm max 50.022d mm Also, 6 6(1 2 ) 0.4(1456)(10 ) 582(10 )xe 6 6582(10 )(2355)(10 )oV eV 6 31.371 10 m 6 max (2355 1.371)10oV V V 3 32356.371(10 ) mm ________________________________________________________________________ PROBLEM (3.55) Calculate the smallest diameter and volume of the hydraulic ramrod described in Prob. 3.54. SOLUTION From solution of Prob. 3.54: 6 30.022 2355(10 )d mm V m 6 31.3710V m Thus, min 50 0.022 49.978d mm 6 min (2355 1.371)10V 3 32353.629(10 ) mm ________________________________________________________________________ PROBLEM (3.56) A 20-mm-diameter bar is subjected to tensile loading. The increase in length resulting from the load of 50 kN is 0.2 mm for an initial length of 100 mm. Determine: (a) The conventional and true strains. (b) The modulus of elasticity. SOLUTION 100 mm 20 mm 50 kN 0.2 mm 50 kN 1.2 m 200 kN 0.05 m 3-29 3 2 50(10 ) 159.2 (0.02) 4 x MPa (a) 0.2 2000 ln(1 0.002) 1998 100 x t (b) 6159.2(10 ) 79.6 0.002 E GPa ________________________________________________________________________ PROBLEM (*3.57) A solid aluminum-alloy rod of diameter d, modulus of elasticity E and and Poisson’s ratio is fitted in a hollow plastic tube of 1.002-in. internal diameter, as depicted in Fig. P3.57. Determine the maximum axial compressive load P that can be applied to the rod for which its surface and that of the tube are just in contact and under no pressure. Given: d = 1 in., E = 11 610 psi, = 0.3 *SOLUTION 2 2 4 4 x x x t x P P d E d E 4 t P d d dE or 4 d P dE Introducing the given number values: 60.002 ( 1 11 10 ) 4 0.3 P 57.6 kips ________________________________________________________________________ PROBLEM (3.58) A cast-iron bar of diameter d and length L is subjected to an axial compressive load P. Determine: (a) The increase d in diameter. (b) The decrease L in length. (c) The change in volume V . Given: d = 75 mm, L = 0.5 m, E = 80 GPa, = 0.3 SOLUTION d=1 in. P d=1.002 in. P 0.5 m d=75 mm 200 kN 200 kN 3-30 3 2 200(10 ) 45.3 (0.075) 4 x MPa 6 9 45.3(10 ) 566 80 10 x x E (a) 6( ) 0.3(566)(10 )75xd d 0.013 mm (b) 6566(10 )500xL L 0.283 mm (c) 6(1 2 ) 0.4( 566)(10 )xe 6226.4(10 ) 6 2 4 226.4(10 )[ (0.075 )(0.5)]oV eV 6 3 30.5(10 ) 500m mm ________________________________________________________________________ PROBLEM (3.59) A 2-in.-diameter and 4-in.-long solid cylinder is subjected to uniform axial tensile stress of x = 7.2 ksi. Calculate: (a) The change in length of the cylinder. (b) The change in volume of the cylinder. Given: E = 30x106 psi, = 1/3 SOLUTION 2 3(1) 4 12.566 .oV in 3 6 7.2(10 ) 240 30 10 x (a) 6 3240(10 )4 0.96 10 .xL L in (b) (1 2 ) x oV V 6 31 (240)(10 )(12.566) . 3 in 3 31.005 10 .in ________________________________________________________________________ PROBLEM (3.60) A bar of any given material is subjected to uniform triaxial stresses. Determine the maximum value of Poisson's ratio. SOLUTION Using generalized Hook’s Law: 7.2 ksi 2 in. 4 in. 3-31 1 2 ( )x y z x y z E (1) For a constant triaxial state of stress, we have x y z and x y z Then, Eq. (1) becomes 1 2 E Since and must have identical sign: 1 2 0 or 1 2 ________________________________________________________________________ PROBLEM (3.61) The rectangular concrete block shown in Fig. P3.61 is subjected to loads that have the resultants xP = 100 kN, yP = 150 kN, and zP = 50 KN. Calculate: (a) Changes in lengths of the block. (b) The value of a single force system of compressive forces applied only on the y faces that would produce the same deflection as do the initial forces. Given: E = 24 GPa, = 0.2 SOLUTION 3100(10 ) 20 0.1 0.05 x MPa 3150(10 ) 15 0.2 0.05 y MPa 350(10 ) 2.5 0.2 0.1 z MPa Thus, 6 9 10 [20 0.2(15 2.5)] 688 24(10 ) x 6 9 10 [15 0.2(22.5)] 438 24(10 ) y 6 9 10 [2.5 0.2(35)] 188 24(10 ) z 0.05 m 0.1 m 0.2 m A D E C B 150 kN 50 kN 100 kN z y x 3-32 (a) 6438(10 )100 0.044ABL mm 6688(10 )200 0.138BCL mm 6188(10 )50 0.009CEL mm (b) 6 9 438(10 ) 0.2 0.05(24 10 ) y y y P P AE or 105.1yP kN ________________________________________________________________________ PROBLEM (3.62) Redo Prob. 3.61 for the x faces of the block to be free of stress. SOLUTION We have 0x . From Solution of Prob. 3.61: 15 2.5y zMPa MPa Thus, 6 9 10 [ 0.2(17.5)] 146 24(10 ) x 6 9 10 [15 0.2(2.5)] 604 24(10 ) y 6 9 10 [2.5 0.2(15)] 21 24(10 ) z (a) 6604(10 )100 0.604ABL mm 6146(10 )200 0.0292BCL mm 621(10 )50 0.001CEL mm (b) 6 9 604(10 ) 0.2 0.05(24 10 ) y y P , 145yP kN ________________________________________________________________________ PROBLEM (*3.63) A vibration isolation unit consists of rubber cylinder of diameter d compressed inside of a steel cylinder by a force R applied to a steel rod, as shown in Fig. P3.63. Determine, in terms of d, R, and Poisson’s ratio for the rubber, as required: (a) An expression for the lateral pressure p between the rubber and the steel cylinder. (b) The lateral pressure p between the rubber and the steel cylinder for d = 60 mm, = 0.45, and R = 4 kN. Assumptions: 1. Friction between the rubber and steel can be omitted. 2. Steel cylinder and rod are rigid. 3-33 *SOLUTION (a) According to assumption 1, the rubber is in triaxial stress: 2 2 4 , 4 x z y R R p d d Strains are: 0.x z The first of Eqs. (3.17) gives 1 0 [ ( )]x x y z E or 2 4 0 ( ) R p p d Solving, 2 4 (1 ) R p d (b) Substituting the data, 3 2 4(0.45)(4 10 ) 1.157 ( ) (0.06) (1 0.45) p MPa C ________________________________________________________________________ PROBLEM (*3.64) A rectangular aluminum plate (E = 70 GPa, = 0.3) is subjected to uniformly distributed loading, as shown in Fig. P3.64. Determine the values of xw and yw (in kilonewtons per meter) that produce a change in length in the x direction of 1.5 mm and in the y direction of 2 mm.Use a = 2 m, b = 3 m, and t = 5 mm. *SOLUTION 1.5 2 500 1000 3000 2000 x y 970 10 27 2(1 0.3) G GPa Equations (3.15): 6 9 1 500(10 ) ( 0.3 ) 70(10 ) x y 6 9 1 1000(10 ) ( 0.3 ) 70(10 ) y x or 635(10 ) 0.3x y (1) 670(10 ) 0.3y x (2) Solve Eqs. (1) and (2): x z y 3-34 61.5 88.5x yMPa MPa Thus, 661.5(10 )(0.005) 308xw kN m 688.5(10 )(0.005) 443yw kN m ________________________________________________________________________ PROBLEM (3.65) Rework Prob. 3.64, assuming that a = 4 m, b = 2 m, t = 6 mm and that the plate is made of steel (E = 210 GPa, = 0.3). SOLUTION 1.5 2 750 500 200 4000 x y 9210(10 ) 80.8 2(1 0.3) G GPa Equations (3.15): 6 9 1 750(10 ) ( 0.3 ) 210(10 ) x y 6 9 1 500(10 ) ( 0.3 ) 210(10 ) y x or 6157.5(10 ) 0.3x y (1) 6105(10 ) 0.3y x (2) Solve Eqs. (1) and (2): 207.3 167.2x yMPa MPa Hence, 6207.3(10 )(0.006) 1244xw kN m 6167.2(10 )(0.006) 1003yw kN m ________________________________________________________________________ PROBLEM (3.66) A solid sphere of diameter d experiences a uniform pressure p, as depicted in Fig. P3.66. Calculate: (a) The decrease in circumference of the sphere. (b) The decrease in volume of the sphere V . Given: d = 200 mm, p = 120 MPa, E = 70 GPa, = 0.3 SOLUTION x y z p=120 MPa= - d=200 mm 3-35 3 3 6 34 4 (100 ) 4.19(10 ) 3 3 oV r mm (a) 1 [ ( )] (1 2 )x E E 6 9 120(10 ) (1 0.6) 686 70 10 6686(10 )200xd d 0.137 mm Decrease in circumference: ( ) 0.137 0.43d mm (b) (1 2 ) x oV V 6 6(0.4)( 686)(10 )(4.19 10 ) 31150 mm ________________________________________________________________________ PROBLEM (3.67) A solid cylinder of diameter d and length L is under hydrostatic loading with x y z =-7.2 ksi. Determine: (a) The change in length of the cylinder L . (b) The change in volume of the cylinder V . Given: d = 2 in., L = 4 in., E = 30 610 psi, = 1/3 SOLUTION 2 3(1) 4 12.566 .oV in 1 [ (2 )] (1 2 )x E E 3 3 7.2(10 )(1 3) 80 30(10 ) (a) 6 380(10 )4 0.32 10 .L in (b) (1 2 ) x oV V 6 30.4( 80)(10 )(12.566) .in 3 30.402 10 .in ________________________________________________________________________ PROBLEM (*3.68) A steel plate ABCD of thickness t is subjected to uniform stresses x and y (see Fig. P3.68). Calculate the change in: (a) The length of edge AB. (b) The length of edge AD. (c) The length of diagonal BD. (d) The thickness. Given: a = 160 mm, b = 200 mm, t = 5 mm, x = 120 MPa, y = 90 MPa E = 200 GPa, = 1/3 3-36 *SOLUTION 2 2160 200BDL 256 mm 6 9 1 10 90 ( ) (120 ) 450 200(10 ) 3 x x y E 6 9 1 10 120 ( ) (90 ) 250 200(10 ) 3 y y x E (a) 6200(250)(10 ) 0.05ABL mm (b) 6160(450)(10 ) 0.072ADL mm (c) 2 2 2 BD AB ADL L L 2 2 2BD BD AB AB AD ADL L L L L L or AB AD BD AB AD BD BD L L L L L L L (1) 200 160 (0.05) (0.072) 256 256 BDL 0.084 mm (d) 1 [0 ( )]z x y E 6 9 10 210 ( ) 350 200(10 ) 3 6350(10 )5 0.002zt t mm ________________________________________________________________________ PROBLEM (3.69) Redo Prob. 3.68, with the plate acted upon by biaxial loading that results in uniform stresses x = 100 MPa and y = -60 MPa. SOLUTION 6 9 10 60 (100 ) 600 200 10 3 x 160 mm 200 mm A D y C B 90 MPa 120 MPa x 3-37 6 9 10 100 ( 60 ) 467 200 10 3 y 6 9 10 100 60 (0 ) 67 200 10 3 z (a) 6200( 467)(10 ) 0.093ABL mm (b) 6160(600)(10 ) 0.096ADL mm (c) From Eq. (1) of solution of Prob. 3.68: 200 160 ( 0.093) (0.096) 256 256 BDL 0.013 mm (d) 667(10 )5zt t 30.34(10 ) mm ________________________________________________________________________ PROBLEM (3.70) Using the stress-strain diagram of a structural steel shown in Fig. P3.70, determine: (a) The modulus of resilience. (b) The approximate modulus of toughness. SOLUTION From Fig. P3.70: 6190(10 ) 190 0.001 E GPa 245y MPa (a) 2 6 2 0 9 3 (245 10 ) 158 2 2(190 10 ) y kJ U E m (b) Total area under diagram: 6 3 350 10 (0.28) 98t MJ U m ________________________________________________________________________ PROBLEM (3.71) From the stress-strain curve of a magnesium alloy seen in Fig. P3.71, find the approximate values of: (a) The modulus of resilience. (b) The modulus of toughness. SOLUTION Referring Fig. P3.71, we have 6100 10 45 0.0022 E GPa 200y MPa 3-38 (a) 2 6 2 0 9 (200 10 ) 2 2(45 10 ) y U E 3 444 kJ m (b) Total area under diagram: 6250(10 )(0.176)tU 3 44 MJ m ________________________________________________________________________ PROBLEM (3.72) Calculate the modulus of resilience for two grades of steel (see Table D.4): (a) ASTM-A242. (b) Cold-rolled, stainless steel (302). SOLUTION (a) ASTM-A242 200 345yE GPa MPa 2 6 2 0 9 3 (345 10 ) 298 2 2(200 10 ) y kJ U E m 3298 43.2 . . 6.895 in lb in (b) Stainless (302) 190 520yE GPa MPa 2 6 2 0 9 3 (520 10 ) 712 2 2(190 10 ) y kJ U E m 3712 103 . . 6.895 in lb in ________________________________________________________________________ PROBLEM (3.73) The stress-strain diagram for a high-strength steel bar in tension is shown in Fig. P3.73. Determine for the material: (a) The modulus of resilience. (b) The approximate modulus of toughness. SOLUTION (a) The area under the linear portion of the curve: 6 31 (280)(10 )(0.001) 140 2 oU m kN m (b) Toughness modulus is represented by the total area under curve that can be Estimated by counting the numberof square from the diagram. From the diagram, The number of square equals about 45. Thus, 6 345(10 )(70 0.04) 126tU m MN m 3-39 ________________________________________________________________________ PROBLEM (3.74) Calculate the modulus of resilience for the following two materials (see Table B.4): (a) Aluminum alloy 2014-T6. (b) Annealed yellow brass. SOLUTION (a) 2014-T6 72 410yE GPa MPa 2 6 2 0 9 (410 10 ) 2 2(72 10 ) y U E 3 3 1167 1167 169 . . 6.895 kJ in lb in m (b) Yellow, annealed, brass 105 105yE GPa MPa 2 6 2 0 9 (105 10 ) 2 2(105 10 ) y U E 3 3 52.5 52.5 7.61 . . 6.895 kJ in lb in m ________________________________________________________________________ PROBLEM (3.75) A 3 41 -square machine part having E=30x106 psi and length L=4 ft is to resist an axial energy load of 1.5 in. kip. Based on a factor of safety ns=2, calculate: (a) The required proportional limit of steel. (b) The corresponding modulus of resilience for the steel. SOLUTION 31.75 1.75 4 12 147 .V in (a) 2 2 p sn U V E Solving, 6 2 (2 ) 2(1500)(2 30 10 ) 147 s p n U E V 812.24 10 or 35p ksi (b) 2 8 3 6 12.24 10 20.4 . . 2 2(30 10 ) p oU in lb in E 3-40 ________________________________________________________________________ PROBLEM (3.76) Members AB and AC of the truss shown in Fig. P3.76 are fabricated of an elastoplastic material with y = 40 ksi. If Pu = 50 kips and = 60°, determine the minimum cross- sectional areas AAB , and ABC. SOLUTION tan sin AB BC P P F F for :uP P 350 10 28.87 tan 60 AB o F kips 350 10 57.74 sin 60 BC o F kips Thus, 3 2 3 28.87 10 0.722 . 40 10 AB AB y F A in 3 2 3 57.74 10 1.444 . 40 10 BC BC y F A in ________________________________________________________________________ PROBLEM (3.77) Solve Prob. .3.75 for Pu = 20 kips and = 30°. SOLUTION We have 320 10 34.64 tan tan 30 u AB o P F kips 320 10 40 sin sin 30 u BC o P F kips Thus, 3 2 3 34.64 10 0.866 . 40 10 BC BC y F A in 3 2 3 40 10 1.0 . 40 10 BCA in ________________________________________________________________________ PROBLEM (3.78) Determine the ultimate load Pu that can be carried by truss ABC (see Fig. P3.75) if each member is made of an elastoplastic material with y = 38 ksi. Given: AAB = 2ABC = 1.8 in.2 , = 40° 3-41 SOLUTION Since BC ABA A and sin tan : 338 10 (0.9) 34.2BC yp BCF A kips Thus, 3sin 34.2 10 (sin 40 )ou BCP F 21.98 kips End of Chapter 3