Buscar

Apostila Laserterapia - 2019

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 82 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 82 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 82 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

LASERTERAPIA 
 
 
2 
 
Laserterapia 
 
SOBRE A FACULDADE 
 
Propósito 
• Mudar a vida das pessoas para melhor. 
Missão 
• Educar profissionais da saúde e negócios para fazer diferença no mercado e 
na vida. 
Visão 
• Proporcionar educação de qualidade segmentos da Saúde, Estética, Bem-
Estar e Negócios, tornando-se referência nos mercados regional, nacional e 
internacional. 
Valores 
• Liderança: porque devemos liderar pessoas, atraindo seguidores e 
influenciando mentalidades e comportamentos de formas positiva e vencedora. 
• Inovação: porque devemos ter a capacidade de agregar valor aos produtos da 
empresa, diferenciando nossos beneficiários no merca- do competitivo. 
• Ética: porque devemos tratar as coisas com seriedade e em acordo com as 
regulamentações e legislações vigentes. 
• Comprometimento: porque devemos construir e manter a confiança e os bons 
relacionamentos. 
• Transparência: porque devemos sempre ser verdadeiros, sinceros e ca- pazes 
de justificar as nossas ações e decisões. 
 
 
3 
 
Laserterapia 
Caro Aluno, 
 
Nessa disciplina você terá contato com equipamentos de Laserterapia 
direcionados para tratamentos de disfunções estéticas. 
Serão abordadas teoria e interações da luz com o tecido biológico, forma 
de aplicação, indicações, contraindicações, possíveis intercorrências e combinação 
de algumas terapias. Dessa forma, os equipamentos estão divididos em: 
• Laser de alta potência: Laser de diodo, Laser Er:YAG, Laser Nd:YAG, Laser de 
CO2 entre outros; 
• Laser de baixa potência e emissores de luz por diodo (LEDs): azul, vermelho, 
infravermelho, âmbar; 
• Outras fontes de luz: Luz Intensa Pulsada (LIP). 
 
 
 
Tenha um excelente estudo! 
 
 
 
4 
 
Laserterapia 
SUMÁRIO 
 
1. Introdução de conceitos fundamentais ................................................................. 6 
1.1 Revisão sobre pele e seus anexos .................................................................... 6 
1.2 Revisão sobre fototipos e processo de envelhecimento .................................. 12 
2.1 LASER: Introdução e aspectos históricos ....................................................... 17 
2.2 Definição de LASER e conceitos físicos .......................................................... 18 
2.3 Biofísica dos Lasers: Princípios de óptica ....................................................... 22 
2.4 Composição de um equipamento de LASER .................................................. 25 
2.5 Características do feixe de luz LASER ............................................................ 27 
2.6 Efeitos biológicos da interação LASER e tecidos ............................................ 29 
2.7 Modos de emissão do feixe de luz LASER ...................................................... 33 
2.8 Aplicações clínicas na Biomedicina Estética e Saúde Estética ....................... 36 
2.9 Biossegurança no uso de LASERs .................................................................. 37 
3 Laser de baixa potência, LEDs e terapia fotodinâmica ....................................... 41 
3.1 Mecanismo de ação ........................................................................................ 43 
3.2 Indicações da Fototerapia ............................................................................... 47 
3.4 Efeitos colaterais e contraindicações .............................................................. 48 
3.5 Aplicação e cuidados durante a fototerapia ..................................................... 48 
4 Luz Intensa Pulsada (LIP) ................................................................................... 49 
4.1 Fundamentação teórica e componentes da Luz Intensa Pulsada ................... 49 
4.2 Seleção do comprimento de onda na LIP ........................................................ 50 
4.3 Diferenças entre LIP e LASER ........................................................................ 51 
4.4 Indicações da LIP ............................................................................................ 53 
4.5 Contraindicações absolutas e relativas do uso da LIP .................................... 54 
4.6 Cuidados durante a aplicação de LIP .............................................................. 54 
4.7 Efeitos adversos e intercorrências no uso de LIP ............................................ 55 
5 LASER de alta potência ...................................................................................... 56 
5.1 LASER para epilação: LASER de diodo .......................................................... 56 
5.1.1 Mecanismo de ação da epilação a LASER .................................................. 56 
5.1.2 LASERs e fontes de luz utilizados para epilação ......................................... 58 
5.1.3 Contraindicações absolutas e relativas ........................................................ 61 
5.1.4 Cuidados antes, durante e após a aplicação do LASER .............................. 61 
 
 
5 
 
Laserterapia 
5.1.5 Efeitos adversos e intercorrências no uso de Laser de diodo para epilação 62 
5.2 Remoção de tatuagens utilizando LASER ....................................................... 62 
5.2.1 LASERs utilizados e mecanismo de ação .................................................... 62 
5.2.2 Contraindicações absolutas e relativas ........................................................ 64 
5.2.3 Efeitos adversos e intercorrências no uso de LASER para remoção de 
tatuagens................................................................................................................... 65 
5.3 LASER de CO2 fracionado .............................................................................. 66 
5.3.1 Princípios do fracionamento do feixe de luz do LASER de CO2 .................. 66 
5.3.2 Indicações do LASER de CO2 fracionado .................................................... 69 
5.3.3 Contraindicações absolutas e relativas ........................................................ 70 
5.3.4 Efeitos adversos e intercorrências no uso de LASER de CO2 fracionado .... 70 
6 Novas tecnologias: Jato de Plasma e Eletrocautério .......................................... 71 
6.1 Definições ........................................................................................................ 72 
6.2 Mecanismos de geração do plasma ................................................................ 72 
6.3 Indicações ....................................................................................................... 75 
6.4 Contraindicações ............................................................................................. 76 
6.5 Cuidados pré e pós-procedimento com eletrocautério .................................... 76 
REFERÊNCIAS ......................................................................................................... 77 
 
 
 
 
6 
 
Laserterapia 
1. Introdução de conceitos fundamentais 
 
1.1 Revisão sobre pele e seus anexos 
 
O objetivo dessa apostila é fornecer um melhor entendimento sobre 
equipamentos de LASER e outras fontes de luz, como Luz Intensa Pulsada e 
emissores de luz por diodo, e a forma como interagem com a pele. Para isso, será 
abordado primeiramente uma revisão sobre conceitos fundamentais para 
compreensão deste capítulo. 
Todos os organismos possuem um envoltório (tegumento), com função de 
proteção, delimitação de sua forma e controle de entrada e a saída de diferentes 
substâncias. As funções da pele incluem: proteção contra agressões físicas, químicas 
e biológicas; proteção contra radiação ultravioleta (UV) dos raios solares; formação 
de vitamina D; termorregulação e perda de água; secreção de ferormônios; percepção 
e sensibilidade; defesa imunológica. As células da epiderme incluem os melanócitos, 
células de Langerhans e células de Merkel (FARIA, 2011). 
A pele é composta pela combinação de quatro tecidos associadosà 
estruturas denominadas anexos da pele. Dessa forma, temos a divisão da pele em 
epiderme, derme e hipoderme (Figura 1). Além disso, a hipoderme repousa sobre 
camadas de músculo estriado esquelético que se liga ao tecido ósseo. Na derme 
também encontramos músculo liso associado ao pelo (músculo eretor do pelo). O 
tecido nervoso também está associado à pele através de terminações nervosas livres 
(dor, calor, pressão) até estruturas especializadas, como os corpúsculos de Meissner 
e Pacini, que são receptores de tato e de pressão (JUNQUEIRA; CARNEIRO, 2017). 
 
 
 
7 
 
Laserterapia 
 
Figura 1. Representação esquemática da organização da estrutura da pele e 
seus anexos. Adaptado de (NISHIDA, 2006). 
 
Ao se trabalhar com equipamentos de LASER e outras fontes de luz deve-
se ter atenção aos fototipos de pele e estado de bronzeamento da mesma. Células 
denominadas melanócitos sintetizam o pigmento melanina, que é responsável por 
caracterizar a tonalidade de pele observada em cada fototipo. A melanina é um 
pigmento marrom-escuro que tem como função a proteção da pele da radiação 
ultravioleta. Os melanócitos têm origem de células das cristas neurais. Essas células 
são localizadas na camada basal ou espinhosa, ou abaixo da camada basal (Figura 
2), e apresentam morfologia celular globosa de onde se originam prolongamentos que 
se dirigem à superfície da epiderme, penetrando por entre as células da camada basal 
e espinhosa (FARIA, 2011). 
 
 
 
8 
 
Laserterapia 
 
Figura 2. Representação de melanócitos e sua localização na camada basal da 
epiderme. Adaptado de (FARIA, 2011). 
 
Os prolongamentos celulares dos melanócitos têm a capacidade de 
transferir a melanina sintetizada por essas células para o interior de células epiteliais, 
onde o pigmento se acumula na região supranuclear. Os grânulos de melanina 
depositados formam uma barreira de proteção contra a ação danosa dos raios UV 
sobre o ácido desoxirribonucleico (DNA) das células. A síntese de melanina ocorre no 
interior dos melanócitos e ocorre devido à ação da enzima tirosinase, que é sintetizada 
no retículo endoplasmático rugoso e no aparelho de Golgi e armazenada em vesículas 
no citoplasma dos melanócitos (Figura 3). Essas vesículas são denominadas de pré-
melanossomos dentro deles se inicia a síntese de melanina (FARIA, 2011; OLIVEIRA; 
JUNIOR, 2003). Em presença de oxigênio molecular, a tirosinase oxida a tirosina em 
dopa (dioxifenilalanina) e está em dopaquinona. A partir desse momento, a presença 
ou ausência de cisteína determina o rumo da reação para síntese de eumelanina ou 
feomelanina (MIOT et al., 2009). 
 
 
9 
 
Laserterapia 
 
Figura 3. Representação da ultraestrutura de um melanócito, ilustrando a 
síntese de melanina. Retirado de (FARIA, 2011). 
 
A eumelanina é um polímero marrom, alcalino e insolúvel e a feomelanina 
é um pigmento alcalino, solúvel e amarelado. Pigmentos semelhantes à feomelanina, 
no entanto, podem ser estruturalmente derivados da eumelanina, assim como esta 
pode ser oxidada, na presença de íons metálicos, resultando em um pigmento solúvel 
e mais claro. Outro pigmento sulfurado, derivado da feomelanina, pode ser encontrado 
em pequenas quantidades nos cabelos humanos vermelhos, é denominado tricromo. 
A eumelanina absorve e dispersa a radiação UV, atenuando sua penetração na pele 
e reduzindo os efeitos nocivos do sol. Em outras palavras, indivíduos com maior 
pigmentação tendem a se queimar menos e bronzeiam mais do que indivíduos de 
fototipos mais baixos (THODY; GRAHAM, 1998). Por outro lado, a feomelanina tem 
 
 
10 
 
Laserterapia 
um grande potencial em gerar radicais livres, em resposta à radiação UV, já que são 
capazes de causar danos ao DNA, dessa forma, podendo contribuir para os efeitos 
fototóxicos da radiação UV. Isto explica o porquê de as pessoas com pele clara, as 
quais contêm relativamente altas quantidades de feomelanina, apresentarem um risco 
aumentado de dano epidérmico, induzido por ultravioleta, inclusive neoplasias (ITO, 
2003; THODY; GRAHAM, 1998; WAGNER et al., 2002). 
A radiação UV do sol pode ativar os melanócitos, com consequente 
bronzeamento inicial da pele. A exposição crônica aos raios solares pode causar 
danos permanentes e até o desenvolvimento de neoplasias. Hormônios também 
podem estimular a produção de melanina, com consequente hiperpigmentação que 
ocorre durante o período gestacional (FARIA, 2011). 
As glândulas sebáceas, glândulas sudoríparas, unhas e os pelos são 
denominados estruturas anexas da pele. Nesta apostila abordaremos unicamente a 
estrutura do pelo, pois apresenta importância para aplicação em epilação a LASER 
ou utilizando Luz Intensa Pulsada (LIP). Os pelos são estruturas alongadas e 
queratinizadas presentes em quase toda a superfície do corpo humano, com exceção 
de lábios, glande, região urogenital, palmas das mãos e planta dos pés. Há dois tipos 
de pelos: os velos, pelos curtos não pigmentados e muito finos, estão distribuídos por 
toda a superfície do corpo; e os pelos terminais longos que são grossos e 
pigmentados, estes são encontrados em regiões específicas como púbis, face, axila, 
pálpebras, couro cabeludos, braços e pernas (FARIA, 2011). 
Os pelos são formados a partir de uma invaginação da epiderme 
denominada folículo piloso, que se aprofunda na derme (Figura 4). Em um pelo em 
crescimento, o folículo piloso apresenta dilatação em sua extremidade terminal 
formando a estrutura denominada bulbo piloso (ou bulge). No centro dessa estrutura 
existe uma papila dérmica na qual se encontram capilares sanguíneos que vão nutrir 
o bulbo. As células do centro da raiz do pelo originam a medula do pelo. As células 
laterais da raiz formam o córtex do pelo constituído por células queratinizadas e 
compactadas. As células mais periféricas da raiz formam a cutícula do pelo. Ainda, as 
células periféricas do bulbo do folículo piloso formam duas bainhas epiteliais, sendo 
que, a bainha interna persiste até a região em que o duto das glândulas sebáceas 
desemboca no folículo. Os feixes musculares do músculo eretor do pelo se inserem 
nas papilas dérmicas. Quando o músculo se contrai, desloca o folículo e o pelo para 
 
 
11 
 
Laserterapia 
uma posição mais perpendicular à superfície da pele (FARIA, 2011; IBRAHIMI et al., 
2011; SISTER, 2011). 
Os pelos são pigmentados devido à presença de melanócitos que se 
localizam entre as células epiteliais da raiz do pelo e produzem melanina, como ocorre 
na epiderme. Com a idade, os melanócitos dos folículos pilosos podem ser danificados 
e morrer, ou parar de produzir melanina. Dessa forma, aparecem os pelos brancos 
(FARIA, 2011; OLIVEIRA; JUNIOR, 2003). 
 
Figura 4. Representação de uma unidade pilossebácea (folículo piloso e 
glândula sebácea associada). Adaptado de (IBRAHIMI et al., 2011). 
 
 
12 
 
Laserterapia 
O pelo apresenta as seguintes fases de desenvolvimento: anágena, 
catágena e telógena (Figura 5). Para que um novo pelo seja produzido os folículos 
passam por ciclos de rápido crescimento (fase anágena), regressão (fase catágena) 
e repouso (fase telógena). Essas transformações são controladas por alterações 
hormonais e padrão de expressão/produção de citocinas, neurotransmissores, 
receptores, fatores de transcrição e proteínas de sinalização do próprio folículo piloso 
(KRAUSE; FOITZIK, 2006). 
Figura 5. Fases de desenvolvimento do pelo. O pelo apresenta as seguintes fases 
de desenvolvimento: anágena catágena e telógena. Retirado de (PHANDYS SAFE 
COSMETICS, 2017). 
 
1.2 Revisão sobre fototipos e processo de envelhecimento 
 
A coloração da pele depende de uma combinação de vários fatores, 
compreendendo espessura do estrato córneo até quantidade de pigmentos existentes. 
Em 1975, Fitzpatrick classificou a pele humana em seis tipos de acordo com a 
coloração e etnia (Tabela 1) (FITZPATRICK, 1988). 
 
Tabela 1. Classificaçãodos fototipos de pele propostos por Fitzpatrick. 
Fototipo Coloração Eritema Bronzeamento Sensibilidade 
I Branca Sempre Nunca Muito sensível 
II Branca Sempre Às vezes Sensível 
III Morena clara Moderado Moderado Normal 
IV Morena 
moderada 
Pouco Sempre Normal 
V Morena escura Raro Sempre Pouco sensível 
VI Negra Nunca Pele muito 
pigmentada 
Insensível 
Retirado de (GUIRRO; GUIRRO, 2003) 
 
 
 
13 
 
Laserterapia 
Durante a aula prática recomendamos fortemente que utilize a Tabela 2 
para classificação de fototipos e correta escolha de parâmetros nos equipamentos de 
LASER utilizados durante a aula prática. 
 
 
14 
 
Laserterapia 
 
Tabela 2. Questionário para classificação de fototipos para uso em aula prática. 
 
Nome do Paciente: 
Pontuação 0 1 2 3 4 
Qual a cor dos 
olhos? 
Azul Claro ou 
cinza 
Azul ou verde 
Castanho 
claro ou mel 
Castanho 
escuro 
Marrom 
escuro ou 
preto 
Qual a cor natural 
dos cabelos? 
Vermelhos ou 
avermelhados 
Loiro 
Loiro escuro 
ou castanho 
claro 
Marrom escuro Preto 
Qual é a cor da sua 
pele? (partes 
expostas ao sol) 
Avermelhada Bem pálida 
Pálida com 
bege 
Marrom claro 
Marrom 
escuro ou 
preto 
Você tem sardas em 
áreas expostas ao 
sol? 
Várias Muitas Poucas INCIDENTAIS? Nenhuma 
O que acontece se 
ficar muito tempo 
exposto ao sol? 
Vermelhidão, 
dor, bolhas e 
descamação 
Bolhas 
seguidas de 
descamação 
Queima, às 
vezes ocorre 
descamação 
Às vezes 
queima 
Nunca 
queima muito 
A que grau você fica 
bronzeado? 
Nada ou 
quase nada 
Bronzeamento 
leve 
Bronzeado 
razoável 
Bronzeia muito 
fácil 
Escurece 
bem rápido 
Você fica bronzeado 
após muitas horas 
de sol? 
Nunca Raramente 
De vez em 
quando 
Geralmente Sempre 
Como seu rosto 
responde ao sol? 
Muito 
sensível 
Sensível Normal Bem resistente 
Nunca teve 
problemas 
Quando você se 
expõe ao sol ou 
mesa de 
bronzeamento pela 
ultima vez? 
Há mais de 3 
meses 
2 -3 meses 1 -2 meses 
Há mais de 1 
mês 
Há mais de 2 
semanas 
Com que frequência 
a área que você 
quer tratar é exposta 
ao sol? 
Nunca Raramente 
De vez em 
quando 
Geralmente Sempre 
TOTAL 
Some as colunas assinaladas e verifique o resultado. A pontuação corresponde ao fototipo 
de pele. 
Pontuação ESCALA FITZPATRICK 
0-7 I 
08- 16 II 
17-25 III 
26-30 IV 
Acima de 30 V 
 
 
15 
 
Laserterapia 
Cada tipo de pele necessita de um tratamento específico e o uso de 
produtos adequados para a obtenção de um tratamento eficaz com resultados 
satisfatórios. Um paralelo que pode ser feito em relação aos fototipos é que quanto 
mais baixo for o fototipo, maior será o grau de envelhecimento cutâneo precoce (DE 
MAIO; MAGRI, 2011). 
Envelhecer, apesar de ser um processo fisiológico de qualquer ser vivo, é 
degenerar do ponto de vista da biologia. Este processo significa compensar 
degenerações e insuficiências orgânicas. No processo de envelhecimento observa-se 
flacidez de pele, diminuição do coxim gorduroso, hipercinese muscular e desgaste 
ósseo. Estes processos produzem cada dez mais um aspecto desfavorável na estética 
facial (DE MAIO, 2011). O envelhecimento cutâneo pode ser dividido em 
envelhecimento intrínseco e fotoenvelhecimento (extrínseco). Durante o processo de 
envelhecimento, a pele sofre alterações genéticas e ambientais (Figura 6). As 
alterações ambientais são decorrentes, principalmente, à exposição a radiação UV. 
Esse comportamento afeta a derme, sendo que, inicialmente há redução da espessura 
da derme a partir dos 50 anos de idade em ambos os gêneros (feminino e masculino). 
É observada também a substituição de feixes finos de colágeno por uma mistura de 
água e glicosaminoglicanos na derme papilar, especialmente na pele com 
fotoenvelhecimento (DE MAIO; MAGRI, 2011; DE RIGAL et al., 1989). 
As principais alterações morfológicas macroscópicas associadas ao 
envelhecimento são: ressecamento, aparecimento de rugas, flacidez, pigmentação 
irregular. Sendo que, a aparência clínica de uma pele envelhecida de forma intrínseca 
é atrófica com vascularização proeminente, transparência e perda de elasticidade (DE 
MAIO, 2011). 
 
 
 
16 
 
Laserterapia 
 
Figura 6. Envelhecimento durante as diferentes décadas de vida. Notar que a 
complexidade de alterações morfológicas ocorre em diversos planos faciais da pele 
ao arcabouço ósseo. Retirado de (DE MAIO, 2011). 
 
Em conjunto, a análise estética do envelhecimento pode ser realizada pelo 
estudo das bases de modelo anatômico de cada indivíduo. Dessa forma, a correta 
seleção do procedimento estético mais apropriado deve ser baseada na relação risco 
e benefício para o cliente. Além disso, o profissional esteta deve conceder ao cliente 
informação correta e limitações de cada procedimento. O uso adequado de 
determinadas terapias, individuais ou associadas, produz o efeito estético de 
satisfação desejado. 
 
 
 
17 
 
Laserterapia 
2.1 LASER: Introdução e aspectos históricos 
 
A luz LASER revelou-se uma ferramenta extremamente versátil, com 
aplicações em diagnóstico, tratamentos e terapias médicas, sendo também utilizados 
como ferramentas em procedimentos como cirurgias, onde são utilizados como bisturi, 
até a cicatrização de feridas. Apesar de o LASER ter sido desenvolvido em 1960, a 
física de seu princípio de funcionamento foi desenvolvida nas duas primeiras décadas 
do século XX com o desenvolvimento da teoria quântica por Niels Bohr. (PAULO; 
NETO; FREIRE JÚNIOR, 2017). 
A explicação do efeito de emissão estimulada foi dada por Albert Einstein 
em 1917. Quando os elétrons em um átomo estão no estado de maior energia, 
conhecido também como estado excitado, eles podem mudar para o estado de menor 
energia de duas maneiras. Eles podem emitir energia espontaneamente, ou eles 
podem ser estimulados a emitir radiação e mudar para o estado de menor energia. A 
primeira pessoa a pensar em usar emissão estimulada para gerar luz foi Valentim 
Fabrikant, um físico da União Soviética, no final da década de 1930, mas ele não 
conseguiu criar uma forma eficiente de obter uma inversão de população e não chegou 
a elaborar um ressonador. (PAULO; NETO; FREIRE JÚNIOR, 2017). 
Em 1951, Charles Townes teve a ideia de como obter inversão de 
população para fazer um gerador de microondas usando emissão espontânea. E em 
1954 foi criado o dispositivo MASER (Microwave Amplification by Stimulated Emission 
of Radiation), obtido através da amplificação de micro-ondas. Por volta de 1957, os 
físicos começaram a considerar a possibilidade de fazer um MASER que amplificasse 
a luz, ou seja, um LASER. No ano seguinte, Charles Townes e seu colaborador Arthur 
Schawlow discutiram algumas possibilidades de criar o que eles chamaram de maser 
óptico em um artigo que se tornou um clássico da física de LASERs, sendo 
considerado como o salvo que deu a largada da corrida para operar o primeiro LASER 
(SCHAWLOW; TOWNES, 1958). 
O vencedor da corrida foi um engenheiro norte-americano, Theodore 
Maiman, em 1960. Maiman criou o primeiro aparelho de LASER através de uma 
montagem surpreendentemente simples, feita de um bastão de rubi colocado no 
centro de uma lâmpada de flash. E assim foi criado o LASER de rubi (MAIMAN, 1960). 
 
 
18 
 
Laserterapia 
O LASER não foi uma invenção de um único homem e a história do 
desenvolvimento do LASER pode ser vista como uma competição transnacional entre 
homens comprometidos com ideologias opostas que resultou em um empreendimento 
coletivo para criar um dos dispositivos mais extraordinários já inventados (PAULO; 
NETO; FREIRE JÚNIOR, 2017). 
 
2.2 Definição de LASER e conceitos físicos 
 
LASER é um acrônimo do inglês de Light Amplification by Stimulated 
Emission of Radiation, sendo traduzido para o português por amplificação da luz por 
emissão estimulada de radiação. Em termos práticos, chamamos de LASER qualquer 
dispositivo e/ou aparelho que geram radiação eletromagnéticacom características 
próprias e com feixe de luz único (FRANCK; HENDERSON; ROTHAUS, 2016; 
WETTER, 2011). 
Para uma melhor compreensão dos equipamentos e técnicas utilizados em 
Laserterapia é fundamental uma breve descrição de alguns conceitos físicos 
fundamentais. 
Luz: é uma onda de radiação eletromagnética que transporta energia em 
quanta, conhecida como fótons. 
De modo geral, quando um feixe de luz atinge um corpo qualquer ocorre 
um bombardeamento de átomos da matéria que compõem esse corpo com fótons. 
Uma vez que, esses fótons atingem os elétrons, fazem estes se deslocarem de sua 
camada orbital e se destacarem a uma órbita com maior nível energético. Essa 
migração torna o átomo instável, sendo que, o elétron retorna para sua camada orbital 
original restabelecendo o estado de equilíbrio energético do átomo. Ao retornar à sua 
órbita original, o elétron denominado em estado excitado, produz um quanta (fóton) 
de energia, que é dissipada em forma de calor ou de luz por meio da emissão de um 
novo fóton (PIROLA; GIUSTI, 2010). 
Comprimento de onda: é a distância (em metros ou submúltiplos) entre 
duas cristas ou dois vales consecutivos de uma onda eletromagnética. Geralmente, é 
caracterizado pela letra grega λ. É interessante notar que quanto menor o 
comprimento de uma onda, maior será sua fluência. Isso ocorre de acordo com a 
Teoria de Planck, as emissões de maior frequência são mais energéticas (HALLIDAY; 
 
 
19 
 
Laserterapia 
RESNICK; WALKER, 2006). A Figura 7 ilustra uma onda eletromagnética e seu 
respectivo comprimento de onda. 
 
 
Figura 7. Representação esquemática de uma onda eletromagnética. A letra 
grega λ representa o comprimento de onda. Retirado de (FRANCK; HENDERSON; 
ROTHAUS, 2016). 
 
Espectro eletromagnético – luz visível: o espectro eletromagnético 
compreende energias eletromagnéticas de diferentes comprimentos de onda, como 
representado na Figura 8. Podemos observar que os LASERs no espectro visível 
representam apenas uma pequena parte de todo o espectro eletromagnético. 
 
 
 
20 
 
Laserterapia 
 
Figura 8. Representação esquemática de diferentes comprimentos de onda do 
espectro eletromagnético. Observe que os equipamentos de LASER que operam 
com comprimentos de onda do espectro da luz visível e infravermelho são radiações 
não ionizantes. Adaptado de (PIROLA; GIUSTI, 2010). 
 
Resumidamente o espectro eletromagnético pode ser dividido em duas 
faixas: visível e invisível. Dessa forma, o espectro correspondente à luz visível é a 
porção do espectro eletromagnético que pode ser detectada pelo olho humano. As 
radiações eletromagnéticas cujos comprimentos de onda pertencem a essa porção 
são denominadas luz visível. A Tabela 3 ilustra comprimentos de onda da luz visível 
e suas respectivas cores. 
 
 
 
21 
 
Laserterapia 
Tabela 3. Referência do espectro de comprimentos de onda da luz visível e suas 
respectivas cores. 
 
Cor Comprimento de onda (nm) 
Violeta 380 a 450 
Azul 450 a 495 
Verde 495 a 570 
Amarelo 570 a 590 
Laranja 590 a 620 
Vermelho 620 a 750 
Adaptado de (PIROLA; GIUSTI, 2010) 
 
O espectro da luz visível, apresentado na Figura 8, pode ser observado 
quando um feixe de luz branca é incidido sobre um prisma. Ocorre refração da luz e 
decomposição nos diferentes comprimentos de onda apresentados na Tabela 3 
(PIROLA; GIUSTI, 2010). 
Potência: é a quantidade de energia liberada por segundo, sendo medida 
em Watts (W) e equivale a 1,0 Joule (J) por segundo (s). Dessa forma, 1,0 W = 1,0 
J/s. A potência pode ser definida pela seguinte fórmula: 
 
𝑃𝑜𝑡ê𝑛𝑐𝑖𝑎 (𝑊) =
𝐸𝑛𝑒𝑟𝑔𝑖𝑎(𝐽)
𝑇𝑒𝑚𝑝𝑜(𝑠)
 
 
Energia: é a quantidade de potência entregue ao tecido em um dado 
intervalo de tempo, sendo medida em J. É importante notar que este parâmetro 
governa a resposta térmica do tecido. A energia é calculada pela seguinte fórmula: 
 
𝐸𝑛𝑒𝑟𝑔𝑖𝑎 (𝐽) = 𝑃𝑜𝑡ê𝑛𝑐𝑖𝑎 (𝑊) 𝑋 𝑇𝑒𝑚𝑝𝑜(𝑠) 
 
Fluência/Dose: é a quantidade de energia (J) liberada sobre uma área 
(cm2), sendo expressa em J/cm2. Quanto maior a fluência, mais rápido ocorrerá o 
aumento da temperatura no tecido e, consequentemente, a intensidade do efeito 
desejado. A fluência é dada pela seguinte fórmula: 
 
 
 
22 
 
Laserterapia 
𝐹𝑙𝑢ê𝑛𝑐𝑖𝑎 (
𝐽
𝑐𝑚2
) = 𝐸𝑛𝑒𝑟𝑔𝑖𝑎 (𝐽) 𝑋 Á𝑟𝑒𝑎(𝑐𝑚2) 
 
Tempo de exposição: é o tempo que o tecido irradiado será exposto ao 
LASER ou fonte de luz. Dessa forma, para uma mesma fluência é a variação do tempo 
de exposição (duração de pulso) que irá determinar o grau de injúria de uma 
determinada estrutura-alvo (cromóforo). Para controlar essa injúria, é necessário 
controlar também o tempo de resfriamento do alvo. Consegue-se um aquecimento 
mais seletivo da estrutura-alvo quando a energia é aplicada em uma taxa maior do 
resfriamento da estrutura-alvo (PIROLA; GIUSTI, 2010). 
Tempo de relaxamento térmico (TRT): é o tempo necessário para que a 
estrutura-alvo irradiada pelo LASER perca 50% do calor pelo processo de dissipação 
térmica. Na prática, se a duração do pulso for menor ou igual ao TRT, menor será a 
dissipação de energia para as estruturas adjacentes (Figura 9). Isto resultará em 
menor risco de intercorrências. O tempo de relaxamento da melanina da epiderme é 
de 3 a 10 ms, enquanto que o da melanina do folículo piloso é de 40 a 100 ms (HEE 
LEE et al., 2006; KUAVAR; HRUZA, 2005). 
 
 
Figura 9. Imagem representativa da difusão térmica após aquecimento seletivo 
de um alvo. Duração de pulso longa promove aquecimento por difusão térmica de 
estruturas adjacentes, enquanto, duração de pulso curta há menor dissipação de 
energia para as estruturas adjacentes. Adaptado de (KUAVAR; HRUZA, 2005). 
 
2.3 Biofísica dos Lasers: Princípios de óptica 
 
 
 
23 
 
Laserterapia 
A luz é uma forma de energia gerada, emitida ou absorvida por átomos ou 
moléculas. Um átomo emite energia quando seu nível de excitação molecular é 
elevado acima de seu estado natural de repouso, no qual existe excesso de energia 
para ser descarregada. Os átomos não conseguem se manter de forma estável em 
um nível energético alto. A consequência é que o excesso de energia é liberado na 
forma de emissão de partículas denominados fótons (pacotes de ondas luminosas). 
Esta é a definição do fenômeno emissão espontânea da luz ou decaimento 
espontâneo (BOECHAT, 2017a). Einstein descreveu teoricamente que um átomo 
absorve um fóton incidente e o reemite após um certo tempo (emissão espontânea), 
mas que também esse mesmo átomo deve reemitir seu fóton absorvido se um 
segundo fóton interage com ele em estado excitado. Dessa forma, o fóton reemitido 
tem a mesma frequência e mesma fase que o fóton que o estimulou (Figura 10) 
(SISTER, 2011). Essa é a definição de emissão estimulada da radiação, e processo 
pela qual os equipamentos de LASER utilizam para geração do feixe de luz LASER. 
 
 
Figura 10. Representação de níveis energéticos de um átomo. (a) Dois átomos 
em estado de repouso (estado fundamental). (b) Excitação ao estado singlete com 
absorção de energia. (c) Transição para o estado singlete. (d) Um átomo decai 
espontaneamente ao estado fundamental, emitindo um fóton que estimula o segundo 
átomo a decair para o estado fundamental. Ambos os fótons (representados por setas 
amarelas) dos átomos 1 e 2 têm o mesmo comprimento de onda. Adaptado de 
(KUAVAR; HRUZA, 2005). 
 
Como representando nas Figuras 10 e 11, os átomos que estão no estado 
excitado tendem a voltar rapidamente para um estado intermediário, denominado 
 
 
24 
 
Laserterapia 
estado metaestável. Quando um átomo que está em estado metaestável retorna ao 
estado fundamental (inversão de população) ocorre a emissão de um fóton 
(decaimento espontâneo). A emissão estimulada ocorre quando um átomo em estado 
metaestável é estimulado com outro fóton, retorna ao seu estado fundamental e emite 
um novo fóton. Esse é um princípio básicoda física de que dois fótons que vem de 
níveis energéticos idênticos tem o mesmo comprimento de onda, movimentam-se 
paralelamente entre si e em fase um com o outro. O ponto chave para este fenômeno 
ocorra nos equipamentos de LASER é a inversão da população, portanto, devem-se 
ter mais moléculas no estado excitado do que no estado fundamental (SISTER, 2011). 
 
 
Figura 11. Emissão espontânea e estimulada da radiação. Retirado de 
(BOECHAT, 2017a). 
 
Para ilustrar o mecanismo de geração da luz por um equipamento de 
LASER, imagine uma caixa retangular contendo uma grande quantidade de átomos 
idênticos. Em cada extremidade da caixa são colocados espelhos refletores paralelos 
entre si, sendo que o espelho de uma extremidade é totalmente refletor, enquanto, o 
espelho localizado na outra extremidade é parcialmente refletor (Figura 12). Os 
átomos contidos nessa caixa retangular são excitados a um nível energético elevado 
através de uma fonte de energia. De forma aleatória inicia-se o mecanismo de 
emissão espontânea, os átomos começam a emitir fótons que viajam em várias 
direções dentro da caixa, enquanto, os fótons que viajam paralelos entre si encontram 
átomos em estado excitado e estimulam a emissão de fótons adicionais coerentes 
com o fóton estimulado e viajando na mesma direção. Dessa forma é caracterizado o 
fenômeno de emissão estimulada que ocorre em um equipamento de LASER. Este 
 
 
25 
 
Laserterapia 
fenômeno é caracterizado por um processo de amplificação luminosa que gera um 
alto fluxo de luz na direção longitudinal da caixa (BOECHAT, 2017a; FRANCK; 
HENDERSON; ROTHAUS, 2016). 
 
 
Figura 12. Amplificação luminosa e formação do feixe de luz LASER dentro de 
um ressonador. Observe a reação em cadeia produzindo fótons dentro de um 
equipamento de LASER. Adaptado de (BOECHAT, 2017a). 
 
2.4 Composição de um equipamento de LASER 
 
Um equipamento de LASER é composto pelos seguintes itens, como 
representado na Figura 13: 
• Meio gasoso, líquido ou sólido que pode ser excitado a emitir luz LASER por 
emissão estimulada da radiação; 
 
 
26 
 
Laserterapia 
• Uma fonte de energia para excitar o meio ativo; 
• Espelhos no final do LASER, formando a “cavidade” ou ressonador óptico; 
• Sistema de entrega do feixe de luz LASER (BOECHAT, 2017a; FRANCK; 
HENDERSON; ROTHAUS, 2016; SISTER, 2011). 
 
 
Figura 13. Componentes essenciais de um equipamento de LASER. A fonte de 
energia irá estimular os elétrons de um determinado meio que irá liberar fótons, que 
serão refletidos em um espelho, sendo assim, liberado como um feixe de luz colimado. 
Adaptado de (FRANCK; HENDERSON; ROTHAUS, 2016). 
 
Os diferentes tipos de LASER que temos disponíveis hoje no mercado são 
identificados pelo tipo de material (meio ativo) que é utilizado para o processo de 
produção do feixe de luz LASER, o qual está localizado em sua cavidade (SISTER, 
2011). Um exemplo é o LASER de CO2 que utiliza o gás dióxido de carbono como 
meio de produção do feixe de luz. Sendo assim, podem classificar os LASERs de 
acordo com o meio ativo utilizado para produção do feixe de luz: 
• Sólido: Laser de rubi. Laser Nd:YAG; 
• Semicondutor: Laser de diodo (utilizam camadas de material semicondutor, como 
gálio e arsênio); 
• Gás: Laser de excímero, Laser de argônio, Laser de CO2; 
• Líquido: LASERs de corante ou pulsed dye Laser (PDL). Estes LASERs utilizam 
complexos orgânicos como corante em solução ou em suspensão. 
 
 
27 
 
Laserterapia 
Por convenção, um LASER é identificado pelo comprimento de onda 
expresso em nanômetros (nm). O Laser de CO2 apresenta comprimento de onda de 
10600 nm, enquanto, o Laser de rubi apresenta comprimento de onda de 694 nm. 
Existem maneiras de modificar o comprimento de onda emitido por um 
LASER, sendo que, a maneira mais simples é dobrando a frequência a sua frequência. 
Para isso é utilizado um cristal assimétrico não-linear que gera um LASER com o 
dobro de sua frequência original. Um exemplo clássico é o LASER Nd:YAG 1064 nm, 
que tem sua frequência dobrada quando a luz passa por um cristal de KTP (potássio-
titânio-fósforo) colocado dentro da cavidade do LASER, focalizando o feixe para 
dentro do cristal. Devido à frequência da luz ser inversamente proporcional ao seu 
comprimento de onda, a luz resultante emitida terá o dobro da frequência e metade 
do comprimento de onda original. Dessa forma, o LASER resultante terá 532 nm 
(FRANCK; HENDERSON; ROTHAUS, 2016; SISTER, 2011). 
 
2.5 Características do feixe de luz LASER 
 
Conforme o que foi discutido até o momento na apostila, verificamos que a 
luz gerada por um LASER apresenta propriedades únicas que as diferenciam de 
outras fontes luminosas, como o exemplo da luz incandescente. As características 
únicas de um feixe de luz gerado por um LASER são: 
• Monocromático: Os raios LASER são monocromáticos na medida em que eles 
são compostos de fótons que todos têm o mesmo comprimento de onda. Isso 
contrasta com uma lanterna, que emite fótons de vários comprimentos de onda. 
Essa característica possibilita a absorção seletiva da energia de um LASER por 
um cromóforo-alvo na pele humana. Estruturas (alvo) com alta capacidade de 
absorção em determinado comprimento de onda podem ser seletivamente 
alteradas ou destruídas (SISTER, 2011); 
• Coerente: Os fótons dentro de um raio laser são coerentes, em que as ondas 
estão em fase em termos de espaço e tempo; 
• Colimado: O raio LASER é colimado, na medida em que todos os fótons são 
paralelos entre si. Esse é um resultado direto da coerência espacial e temporal. A 
consequência disso é que um raio laser pode viajar extremamente longas 
distâncias com distorção mínima. Como resultado, o raio LASER tem uma alta 
 
 
28 
 
Laserterapia 
densidade de energia (BOECHAT, 2017a; FRANCK; HENDERSON; ROTHAUS, 
2016; SISTER, 2011). 
Dessa forma, a luz do LASER difere da luz incandescente na forma como 
os fótons estão organizados (Figura 14). Uma lâmpada incandescente irradia luz em 
todas as direções e o feixe de luz é policromático, portanto, existe uma relação direta 
entre a perda da intensidade de energia e a distância da lâmpada (SISTER, 2011). 
Dessa forma, a luz incandescente possui uma coloração branca ou amarelada, visto 
que é formada por todas as diferentes cores e comprimentos de onda (policromática) 
da porção visível e do infravermelho próximo do espectro eletromagnético. 
Diferentemente da luz LASER, a luz incandescente não é coerente e não é colimada. 
Por outro lado, os fótons de uma luz incandescente ou de um LASER obedecem às 
mesmas leis e princípios que governam a sua interação com a pele humana. 
 
 
Figura 14. Diferenças entre luz incandescente e um feixe de LASER. Adaptado de 
(FRANCK; HENDERSON; ROTHAUS, 2016). 
 
Outra diferença nas duas fontes de luz está na intensidade do feixe gerado. 
O número de fótons por unidade de área de emissão produzido por um LASER é muito 
maior do que em qualquer outra fonte de luz. Por exemplo, podemos atingir picos de 
potência de 10 a 12 W com alguns LASERs operados no modo pulsado. 
 
 
29 
 
Laserterapia 
2.6 Efeitos biológicos da interação LASER e tecidos 
 
Os LASERs podem ser classificados em relação à sua potência. Dessa 
forma, LASERs que são operados em potência acima de 1,0 W são classificados como 
Lasers de alta potência. Enquanto, àqueles que são operados abaixo de 1,0 W são 
classificados como LASERs de baixa potência. Assim, a potência dos equipamentos 
de LASER pode variar em um amplo espectro com a finalidade de produzir diferentes 
efeitos no tecido biológico. Por exemplo, um LASER de baixa potência pode ser 
utilizado para aquecer suavemente o tecido (calor não perceptível) gerando alterações 
metabólicas. Enquanto que, um LASER de alta potência pode ser utilizado para 
produzir efeitos ópticos não lineares causando destruição nos tecidos (SISTER, 2011). 
Em relação à interação como tecido biológico, apresentam as mesmas propriedades, 
uma vez que a luz interage com o tecido e sofre absorção, reflexão, dispersão e 
transmissão na superfície irradiada (Figura 15). É importante lembrar que essas 
interações são um fenômeno complexo influenciado não apenas pelos parâmetros 
selecionados no equipamento de LASER como também pelas propriedades 
intrínsecas do tecido. 
 
 
Figura 15. Diferentes interações da luz emitida por um equipamento de LASER 
com a pele. Adaptado de (KUAVAR; HRUZA, 2005). 
 
 
30 
 
Laserterapia 
As moléculas que absorvem a energia emitida pelo LASER no tecido 
biológico são os cromóforos. As definições das propriedades ópticas da pele são 
descritas abaixo: 
• Absorção: Fóton cede sua energia para o átomo ou para a molécula, que são 
conhecidos como cromóforo ou estrutura-alvo; 
• Reflexão: Quando a luz atinge a pele em um ângulo oblíquo, uma proporção dela 
salta dessa superfície e é redirecionada em uma direção diferente; isso é chamado 
reflexão. Aproximadamente 5% da luz que atinge a superfície; 
• Dispersão: Fenômeno importante na derme e ocorre quando o fóton muda sua 
direção de propagação. Na pele humana, as fibras de colágeno são importantes 
no processo de dispersão da luz (SISTER, 2011); 
• Transmissão: A luz que não foi absorvida será transmitida para tecido mais 
profundo além da estrutura ou tecido alvo. De um modo geral, luz de maior 
comprimentos de onda e um tamanho maior transmite mais profundo nos tecidos 
(DE MAIO; ZEZELL, 2011; FRANCK; HENDERSON; ROTHAUS, 2016; SISTER, 
2011). 
A probabilidade de ocorrer absorção depende de transições específicas 
entre órbitas eletrônicas ou modos de vibração do átomo do cromóforo-alvo. Dessa 
forma, os átomos do cromóforo apresentam faixas características de absorção 
correspondente a certos comprimentos de onda (Figura 16). O espectro de absorção 
é um gráfico que indica a probabilidade da luz ser absorvida por determinado 
cromóforo. A definição de coeficiente de absorção é a probabilidade de um fóton ser 
absorvido por unidade de comprimento do trajeto percorrido, e é expresso em cm-1. O 
coeficiente de absorção depende da disponibilidade de concentração e profundidade 
do cromóforo, ou seja, cada composto tem um espectro de absorção diferente devido 
à sua estrutura única (DE MAIO; ZEZELL, 2011). Sendo assim, os espectros de 
absorção dos cromóforos na pele humana dominam muitas das interações do LASER 
com o tecido. 
O comprimento de onda adequado para o uso de um LASER deve ser 
aproximado ao pico de absorção do cromóforo-alvo. Os principais cromóforos na pele 
humana são hemoglobina, melanina e água. A hemoglobina tem uma absorção 
significativa nas porções violeta, azul/verde e amarelo do espetro eletromagnético, 
sendo que, essa absorção começa a diminuir próximo à região do vermelho. Já a água 
 
 
31 
 
Laserterapia 
não absorve energia na porção do espectro visível e tem mínima absorção no 
infravermelho próximo do espectro eletromagnético. Entretanto, a água tem 
significativa absorção acima de 2000 nm (CATORZE, 2009; SISTER, 2011). 
 
 
Figura 16. Coeficiente de absorção de diferentes cromóforos da pele. Retirado 
de (CATORZE, 2009). 
 
Demais modo geral, há aumento de profundidade de penetração para 
comprimentos de onda mais longos (Figura 17). Os comprimentos de onda mais 
penetrantes se encontram na região do vermelho e perto do infravermelho, entre 600 
e 1200 nm (DE MAIO; ZEZELL, 2011). Por exemplo, o Laser de CO2 apresenta 
comprimento de onda de 10600 nm e penetra aproximadamente 20 a 30 μm na água, 
sendo excelente para vaporização e corte. Enquanto, o Laser de érbio ítrio alumínio 
granada (Er:YAG) penetra apenas 2 a 5 μm, sendo ideal para tratamentos de 
rejuvenescimento leve a moderado. 
 
 
 
32 
 
Laserterapia 
 
Figura 17. Profundidade de penetração no tecido biológico de alguns LASERs. 
Retirado de (CATORZE, 2009). 
 
O efeito terapêutico de um LASER varia em função de: 1) comprimento de 
onda; 2) duração do impulso, 3) tamanho, tipo e profundidade do alvo; 4) interação 
entre a luz emitida pelo LASER e o cromóforo (CATORZE, 2009). Dessa forma, 
dependendo de como a luz atua sobre o tecido e o efeito produzido, temos as 
seguintes interações (BOECHAT, 2017b): 
• Fototérmica: a energia luminosa é absorvida e transformada em calor, 
provocando coagulação e/ou vaporização; 
• Fotomecânica: rompimento da estrutura-alvo por efeito mecânico. 
• Fotoquímica: quebra direta das ligações químicas entre átomos de uma molécula. 
• Fotobiomodulação: a luz é emitida para modulação de atividades intracelulares. 
Neste caso são utilizados os LASERs de baixa potência e LEDs. 
• Fototermólise seletiva: resulta da combinação de comprimento de onda e 
duração de pulso para obtenção do efeito desejado no tecido biológico com 
preservação do tecido adjacente. 
A Figura 18 representa as interações térmicas resultantes da irradiação da 
pele utilizando LASERs de alta potência. 
 
 
33 
 
Laserterapia 
 
Figura 18. Interação térmica da irradiação do LASER com o tecido biológico. 
Adaptado de (KUAVAR; HRUZA, 2005). 
 
O efeito térmico pode ser classificado de acordo com a faixa de temperatura 
e efeito produzido no tecido biológico (BOECHAT, 2017b): 
• 37º a 43ºC: aumenta metabolismo das células, estímulo e contração das fibras de 
colágeno. Este efeito é pequeno e reversível; 
• 44º a 45ºC: aumento exponencial na aceleração do metabolismo celular, 
alterações proteicas, neocolagênese. Cuidado, pois aplicações longas geram 
hipertermia com consequente morte celular; 
• 50º a 70ºC: desnaturação proteica, coagulação das fibras de colágeno, ruptura de 
membranas celulares; 
• 90º a 100ºC: formação de vacúolos extracelulares e evaporação de líquidos; 
• Acima de 100ºC: carbonização e vaporização do tecido. 
 
2.7 Modos de emissão do feixe de luz LASER 
 
Os LASERs podem ser operados de diferentes formas para se obter o 
efeito desejado do tratamento (Figura 19). A seguir são apresentados os diferentes 
modos de operação de um equipamento de LASER (BOECHAT, 2017b): 
• Modo contínuo (CW, do inglês continuous wave): Neste modo de operação o 
Laser permanece ligado e emite um feixe de luz de energia constante enquanto 
 
 
34 
 
Laserterapia 
mantivermos o sistema acionado através do pedal ou botão de acionamento. Este 
modo é muito utilizado em cirurgias para coagulação ou vaporização de tecidos. 
• Modo Pulsado: Este modo funciona como se ligássemos e desligássemos um 
interruptor de uma lâmpada, o feixe laser é pulsado eletronicamente com os 
tempos ligados e o intervalo entre os pulsos controlados pelo computador do 
equipamento e selecionados pelo painel. A velocidade (frequência de repetição 
dos pulsos) é dada em Hertz (Hz) e também pode ser programada. Este modo é 
bastante utilizado para efeito de Fototermólise seletiva, pois são minimizados os 
danos aos tecidos adjacentes. Ainda, de acordo com a duração do pulso os 
LASERs podem ser classificados em: 
• Pulsos longos: duração do pulso em milissegundos (ms) (0,001 s). Exemplo: 
epilação a LASER e tratamento de vasos. 
• Quase-CW: duração do pulso em microssegundos (μs) (0,000001 s). Exemplo: 
rejuvenescimento, onicomicose, acne inflamatória. 
• Q-Switched: duração do pulso em nanossegundos (ns) (0,000000001 s). 
Exemplo: remoção de tatuagens e tratamento de melasma. 
• Mode-Locked: duração de pulso em picossegundos (ps) (0,000000000001 s). 
Exemplo: remoção de tatuagens e melanoses. 
• Femto: duração do pulso em fentossegundos (fs) (0,000000000000001 s). 
Exemplo: uso em oftalmologia. 
O modo pulsado Q-Switched é muito utilizado para remoção de tatuagens 
e tratamento de melasma. Este modo é conseguido ao se inserir dentro do ressonador, 
ao lado do cristal do Laser, um acessório cujo objetivo é pulsar opticamente a luz. O 
objetivo é acumular energia do laser em níveis bem altos e liberar em pulsosextremamente rápidos (na ordem de 5 a 50 ns). O resultado é um pulso de Laser de 
altíssima potência de pico, que consegue penetrar profundamente no tecido com um 
mínimo de efeito colateral. 
 
 
35 
 
Laserterapia 
 
Figura 19. Modos de emissão de um LASER. (A) LASER convencional. (B) LASER 
pulsado em milissegundos (ms). (C) LASER pulsado Q-Switched em nanossegundos 
(ns). Adaptado de (FRANCK; HENDERSON; ROTHAUS, 2016; KUAVAR; HRUZA, 
2005). 
 
Além disso, os LASERs podem ser emitidos de forma convencional ou 
fracionada (Figura 20) dependendo do grau de lesão no tecido biológico que o 
profissional deseja atingir. O LASER operado em modo contínuo tem o potencial de 
gerar calor suficiente para danificar de forma colateral o tecido adjacente, causando 
danos excessivo. Os métodos de entrega (pulsos e fracionamento) que interrompem 
esse feixe contínuo convertendo-o em uma série de pulsos de energia LASER 
intermitentes resultam em intensidades de pico mais altas por um período de tempo 
mais curto. Outro método de entrega do feixe de luz LASER que é usado para reduzir 
o risco de hiperpigmentação e hipopigmentação, formação de bolhas e cicatrizes é o 
“fracionamento” do feixe. Neste modo são tratatadas apenas uma porção (ou fração) 
do tecido causando injúria térmica (não-ablativo) ou destruição da epiderme (ablativo) 
através de colunas inteiras de dado térmico no tecido, incluindo a epiderme. Os 
LASERs que utilizam o sistema fracionado podem ser ablativos ou não-ablativos. Os 
LASERs fracionários não ablativos (por exemplo, 1540 e 1550 nm) resultam em 
colunas subepidérmicas do tecido termicamente lesionado. Embora na conclusão do 
tratamento a epiderme possa parecer eritematosa, ela está intacta. A resposta 
inflamatória resultante é responsável pela melhora observada na pigmentação, textura 
e rugas (FRANCK; HENDERSON; ROTHAUS, 2016). 
 
 
36 
 
Laserterapia 
LASERs fracionados ablativos causam a destruição de colunas estreitas de 
tecido. Em torno dessas colunas, estão as zonas de tecido lesionado termicamente 
(Figura 20 – LASER fracionado). 
 
 
Figura 20. Representação do sistema de fracionamento do feixe de luz de um 
LASER. Retirado de (FRANCK; HENDERSON; ROTHAUS, 2016). 
 
O fracionamento da energia do LASER oferece algumas vantagens ao 
profissional e ao cliente, como: formação de colunas de dano térmico; tecido não 
danificado ao redor de tecido danificado; e menor tempo de afastamento das 
atividades de rotina. 
 
2.8 Aplicações clínicas na Biomedicina Estética e Saúde Estética 
 
Os LASERs apresentam diversas aplicações na área da saúde estética, 
entre elas podemos citar: 
• Epilação; 
• Rejuvenescimento facial; 
 
 
37 
 
Laserterapia 
• Flacidez; 
• Tratamento de manchas senis e melanoses; 
• Redução de poros dilatados; 
• Tratamento de telangiectasias; 
• Tratamento de melasma (avaliação rigorosa, pois nem todos os casos são 
indicados. LASER Nd:YAG QS 1064 nm tem melhor resposta nestes casos); 
• Remoção de tatuagens; 
• Remoção de micropigmentação; 
• Tratamento de cicatrizes atróficas; 
• Terapia fotodinâmica; 
• Fotobioestimulação e suas associações. 
 
2.9 Biossegurança no uso de LASERs 
 
Quando surgiram os primeiros equipamentos de LASERs eram pouco 
conhecidas as informações sobre riscos inerentes ao seu uso, ou seja, o quanto 
podem ser lesivos a determinados órgãos do nosso corpo, principalmente aos olhos 
e à pele. Hoje os conceitos de biossegurança nessa área são específicos e difundido 
para os profissionais da saúde que utilizam essas fontes de energia (MATTOS, 2017). 
Os conceitos apresentados a seguir devem ser seguidos para todos os aparelhos 
emissores de luz (LASER de alta potência e LASER baixa potência), Luz Intensa 
Pulsada (LIP) e emissores de luz por diodos (LEDs). 
Lembre-se que os fótons emitidos por um emissor de luz (LASER, LIP ou 
LED) de acordo com o seu comprimento de onda são absorvidos por determinados 
cromóforos. Dessa forma, as substâncias que forem capazes de absorver esta luz 
poderão sofrer danos (MATTOS, 2017). No corpo humano os olhos e a pele são os 
locais mais sujeitos à danos causados por fontes emissoras de luz, sendo que, os 
olhos são os mais vulneráveis e que podem apresentar lesões mais graves (LEE et 
al., 2011). Estas lesões podem ocorrer de modo direto ou indireto, devido à reflexão 
em superfícies como espelhos, metais, tintas refletoras e etc. (BARKANA; BELKIN, 
2000; KIM; RA, 2019; SHUM et al., 2016). 
As circunstâncias da exposição à fonte de luz é que determinarão os 
diversos tipos de lesões oculares. Assim, há a possibilidade de exposição direta aos 
 
 
38 
 
Laserterapia 
feixe de luz e exposição indireta ao feixe de luz refletido em superfícies espelhadas 
ou não (BARKANA; BELKIN, 2000). A Tabela 4 ilustra alguns exemplos de alterações 
teciduais devido à exposição a radiações por diferentes comprimentos de onda. As 
lesões provocadas por fontes emissoras de luz são devido ao efeito térmico gerado 
por esses aparelhos nos tecidos biológicos que foram irradiados. Os LASERs que 
estão no espectro da luz visível e infravermelho curto são os mais agressivos, pois 
nossos olhos têm a capacidade de focar esta luz na retina. Quando um feixe incide na 
córnea, pode ocorrer desenvolvimento de ceratite e, em casos mais graves os danos 
são irreversíveis. Portanto, para todas as fontes emissoras de luz (LASER de alta 
potência, LASER de baixa potência, LED e LIP) nunca deve-se olhar o feixe 
diretamente com os olhos (CHARLES STURT UNIVERSITY, 2001). Recomendamos 
o uso de proteção ocular adequada para cada comprimento de onda que será 
irradiado. 
 
Tabela 4. Alterações teciduais causadas pelas radiações de diferentes 
comprimentos de onda. 
 
Espectro Comprimento de 
onda (nm) 
Olhos Pele 
Ultravioleta C 200 a 280 Fotoceratite Eritema e câncer de 
pele 
Ultravioleta B 280 a 315 Fotoceratite Eritema, 
fotoenvelhecimento, 
aumento da 
pigmentação 
Ultravioleta A 315 a 400 Catarata Aumento da 
pigmentação, 
queimaduras, câncer 
Visível 400 a 780 Dano termal e 
fotoquímico da 
retina 
Reações de 
fotossensibilidade, 
queimaduras 
Infravermelho A 780 a 1400 Catarata e queima 
da retina 
Queimaduras 
Infravermelho B 1400 a 3000 Catarata e queima 
de córnea 
Queimaduras 
Infravermelho C 3000 a 10000 Queima de córnea Queimaduras 
Adaptado de (MATTOS, 2017). 
 
Existem alguns sintomas associados com o uso de aparelhos geradores de 
energia que podem passar despercebidos. Os seguintes sinais e/ou sintomas indicam 
uma exposição acima do recomendado: lacrimejamento, vermelhidão dos olhos, rash 
 
 
39 
 
Laserterapia 
cutâneo, irritações inespecíficas da pele. Existem também os perigos relacionados 
aos aparelhos e seus constituintes (fontes de risco associadas aos LASERs), entre 
eles: ruídos, incêndios, choques, explosões, produtos voláteis gerados pelos LASERs, 
poeira metálica, gases, fragmentos biológicos (HIV, HPV e outros), bioaerossóis, 
hidrocarbonetos, metais pesados e fibras naturais que são tóxicas para as vias 
aéreas. O acidente mais comum é o incêndio com aproximadamente 7,3% dos casos 
(CHARLES STURT UNIVERSITY, 2001; MATTOS, 2017). 
Os LASERs seguem uma classificação para a padronização dos aparelhos. 
Há diferentes classificações com pequenas diferenças de acordo com os países que 
as adotam, mas há um padrão básico internacional que integra um consenso geral. 
Na parte traseira de cada equipamento de LASER encontra-se a classificação 
internacional de acordo com o risco biológico que o produto apresenta (Figura 21). A 
Tabela 5 apresenta uma classificação internacional dos equipamentos de LASER. 
 
Figura 21. Classificação de equipamentos de LASER de acordo com o risco 
oferecido. (A) Equipamento de LASER para apresentação (“pointer”) classificado 
como Classe 2: Seguros para exposições não intencionais e observações não 
prolongadas (menor que 0,25 segundo). (B)Equipamento de LASER de CO2, 
classificado como Classe 4: Perigosos para pele e olhos, inclusive na observação de 
reflexões difusas. Queimaduras e lesões oculares. Fonte: cortesia arquivo pessoal Profª 
Dra. Anna K. A. Fleuri. 
 
 
40 
 
Laserterapia 
Tabela 5. Classificação de equipamentos de LASER no padrão IEC 60825-1:2001 
 
Classe Riscos LASER Limite de emissão 
acessível 
1 Não perigosos mesmo 
para longas exposições e 
com o uso de instrumentos 
ópticos de aumento 
Potência muito baixa 
ou encapsulados 
40 μW 
1M Potencialmente perigosos 
aos olhos se observados 
por meio de instrumentos 
ópticos 
Potência muito 
baixa, colimado e de 
diâmetro grande ou 
altamente divergente 
40 μW 
2 Seguros para exposições 
não intencionais e 
observações não 
prolongadas (menor que 
0,25 segundo) 
Potência baixa e 
visível 
1 mW 
2M Potencialmente perigosos 
aos olhos se observados 
por meio de instrumentos 
ópticos 
Potência baixa, 
visível, colimado e 
de diâmetro grande 
ou altamente 
divergente 
1 mW 
3R Seguros quando 
manipulados com cuidado 
e potencialmente 
perigosos aos olhos se 
observados por meio de 
instrumentos ópticos 
Potência baixa 200 μW a 5 mW 
3B Perigosos aos olhos 
quando observados 
diretamente (feixe e 
reflexões especulares) 
Potência média 5 mW a 500 mW 
4 Perigosos para pele e 
olhos, inclusive na 
observação de reflexões 
difusas. Queimaduras e 
lesões oculares 
Potência alta Maior que 500 mW 
Adaptado de (CHARLES STURT UNIVERSITY, 2001; MATTOS, 2017) 
 
A seguir são apresentados alguns cuidados para prevenção de 
acidentes ao se trabalhar com equipamentos de LASER (MATTOS, 2017): 
• Checar a classe à qual pertence o aparelho a ser utilizado; 
• A sala na qual será utilizado o equipamento deve contemplar as seguintes 
especificações: sistema elétrico corretamente instalado, proteção contra 
incêndios, ausência ou mínima presença de superfícies refletoras (espelhos e 
metais) e de substâncias explosivas (álcool e oxigênio), chave de desligamento de 
 
 
41 
 
Laserterapia 
emergência no equipamento, avisos de perigo na entrada da sala, ventilação 
adequada; 
• Uso correto da ponteira do LASER no momento da aplicação; 
• Uso de óculos de proteção adequado ao comprimento de onda do LASER; 
NUNCA, SOB HIPÓTESE ALGUMA, DEIXAR DE UTILIZAR ÓCULOS DE 
PROTEÇÃO! 
• Uso de luvas e máscaras de filtração para os equipamentos de LASER que 
promovem vaporização da pele. Exemplo: LASER de CO2 e LASER Nd:YAG; 
• NUNCA, SOB HIPÓTESE ALGUMA, OBSERVAR DIRETAMENTE O FEIXE DO 
LASER! 
• Os dentes também podem ter alterações em sua estrutura caso haja contato direto 
com o feixe do Laser. Os dentes podem ser protegidos com gaze ou protetores 
especiais. 
 
3 Laser de baixa potência, LEDs e terapia fotodinâmica 
 
A fototerapia utilizando LASERs em baixa intensidade ou baixa potência 
(LILT, low-intensity laser therapy) entrou no arsenal da medicina moderna e 
fisioterapia como um componente eficiente para auxiliar no tratamento de um grande 
número de enfermidades, como feridas e úlceras indolentes, úlceras de estômago e 
duodeno, situações pós-cirúrgicas, contusões, artrite crônica, dermatose, isquemia, 
dor crônica, entre outras. 
O uso dessa terapia na área da saúde estética é relativamente recente, 
constituindo-se num campo de pesquisa a ser explorado e que levará ainda muitos 
anos para que seus mecanismos de ação sejam completamente esclarecidos. Na 
metade da década de 1970, iniciou-se o emprego da fototerapia neste ramo. 
Atualmente vários artigos podem ser encontrados na literatura para o tratamento de 
queimaduras, queloides, cicatrizes hipertróficas, alopecia, acnes, celulite e estrias 
(RIBEIRO et al., 2004). 
Como mencionado do tópico 1, os LASERs podem ser classificados em 
relação à sua potência. Dessa forma, àqueles que são operados abaixo de 1,0 W são 
classificados como LASERs de baixa potência. Assim, a potência dos equipamentos 
de LASER pode variar em um amplo espectro com a finalidade de produzir diferentes 
 
 
42 
 
Laserterapia 
efeitos no tecido biológico. Por exemplo, um LASER de baixa potência pode ser 
utilizado para aquecer suavemente o tecido (calor não perceptível) gerando alterações 
metabólicas (SISTER, 2011). 
Os emissores de luz por diodo (LED) são dispositivos compostos por um 
cristal semicondutor (alumínio, gálio, arsênio, silício ou germânio) envolto por uma 
película cristalina (Figura 22). Os elementos semicondutores podem ser tratados 
quimicamente para transmitir e controlar uma corrente elétrica (SISTER, 2011). 
 
 
Figura 22. Representação de geração de luz por LEDs. (A) Esquema de um diodo 
que consiste numa junção de semicondutores com cargas positivas e negativas. (B) 
Diagrama simplificado da estrutura de bandas eletrônicas de um semicondutor. A 
energia do fóton emitido na recombinação banda a banda corresponde ao hiato de 
energia Eg do semicondutor. (C) Esquema de um LED baseado em semicondutores. 
(D) Representação esquemática de uma estratégia para produzir “luz branca” 
utilizando LED. Aproximação que considera um LED azul revestido por um material 
luminescente que emite luz amarela. Adaptado de (LORENZ; MARQUEZ; 
MONTEIRO, 2015). hv: fóton emitido. 
 
Os elétrons do material semicondutor são excitados por corrente elétrica e, 
assim vão para uma camada de nível energético maior. Ao voltar à sua camada 
eletrônica de repouso, emite a energia excedente na forma de luz (fóton). Um LED 
pode transformar mais de 90% de energia consumida em luz. As pequenas lâmpadas 
 
 
43 
 
Laserterapia 
do LED se ajustam no circuito elétrico para emitir uma luz de baixa intensidade em 
miliwatts (mW). A cor da luz emitida depende da composição e da condição do 
material semicondutor utilizado para fabricação do LED, podendo ser infravermelho 
visível ou ultravioleta próximo (SISTER, 2011). 
Estes equipamentos apresentam algumas vantagens, como: 
• Baixo risco de complicações; 
• Permite associação com outros tratamentos; 
• Pode ser mantida por longos períodos; 
• Com os LEDs tornaram possível a elaboração de aparelhos para uso domiciliar; 
• Mantém a pele intacta e funcional após aplicação; 
• Indolor; 
• A aplicação é rápida; 
• Utilizado sozinho ou em combinação com outras terapias; 
• Tratamento de grandes áreas em uma única aplicação; 
• Permite agrupar vários LEDs, com comprimento de onda iguais ou diferentes; 
• Equipamentos apresentam manuseio simples. 
 
 
3.1 Mecanismo de ação 
 
A fototerapia não se baseia em aquecimento, ou seja, a energia dos fótons 
absorvidos não é transformada em calor. Nesse caso, a energia absorvida é utilizada 
para produzir efeitos fotoquímicos, fotofísicos e/ou fotobiológicos nas células e no tecido, 
como representado na Figura 23. 
 
 
 
44 
 
Laserterapia 
 
Figura 23. Representação esquemática do mecanismo de ação da fototerapia 
utilizando LASER de baixa potência e/ou LED. Adaptado de (RIBEIRO et al., 2004). 
 
Quando a luz administrada na dose adequada interage com as células ou o 
tecido, certas funções celulares poderão ser estimuladas. Esse efeito é conhecido 
como fotobioestimulação ou fotomodulação. Esse efeito é particularmente evidente se 
a célula em questão tem a sua função debilitada (RIBEIRO et al., 2004). A 
fotomodulação é um processo que procura modificar a atividade celular usando fontes 
de luz sem o efeito térmico. Embora o exato mecanismo de ação deste tipo de luz 
ainda esteja em estudo, os estudos publicados até o momento mostram que a 
irradiação da luz atua sobre proteínas e/ou receptores celulares. O resultado é a 
ativação ou inibição da função de determinados tipos celulares, dependendo da 
fluência e do comprimento de onda utilizado (SISTER, 2011). 
É importante ressaltar que em fototerapia não basta apenas a emissão de 
luz em um determinado comprimento de onda, mas também o uso de uma fluência 
adequada para cada indicação. Umafonte de LED produz uma banda espectral 
relativamente estreita, de mais ou menos 10 – 10 nm em torno do comprimento de 
onda dominante da luz emitida (SISTER, 2011). Entre os efeitos da fototerapia, 
podem-se citar o estímulo à atividade celular, conduzindo à liberação de fatores de 
 
 
45 
 
Laserterapia 
crescimento por macrófagos, proliferação de queratinócitos, aumento da população e 
desgranulação de mastócitos e angiogênese. Esses efeitos podem provocar 
aceleração no processo de cicatrização de feridas. Essa aceleração é devida, em 
parte, à redução na duração da inflamação aguda, resultando em uma entrada mais 
rápida no estágio proliferativo de reparo, quando o tecido de granulação é produzido 
(RIBEIRO et al., 2004). Estes efeitos são apresentados na Figura 24. 
 
 
Figura 24. Efeitos atribuídos ao LASER de baixa potência. Retirado de (RIBEIRO 
et al., 2004). 
 
A seguir são apresentados efeitos de algumas luzes e suas respectivas 
associações: 
• Luz azul: Alcança somente a epiderme, tendo função bactericida, viricida ou 
fungicida. A luz azul tem grande utilização no tratamento da acne. Além disso, os 
radicais livres de oxigênio hidrolisam a água intracelular, produzindo grande 
quantidade de água, e consequentemente maior hidratação do tecido. A luz azul 
também é capaz de destruir ligações químicas da melanina, transformando suas 
 
 
46 
 
Laserterapia 
ligações menos absorvedoras de luz, e consequentemente produzindo efeito de 
clareamento. 
Este comprimento de onda pode ser associado nos seguintes casos: 
1. Limpeza de pele (após extração - efeito bactericida); 
2. Associado ao tratamento da acne (efeito bactericida em Propionibacterium 
acnes); 
3. Hidratação e iluminação tecidual; 
4. Clareamento de manchas (melanoses solares, manchas senis, 
hiperpigmentação pós-inflamatória, olheiras por depósito de melanina). 
• Luz vermelha: Atua na derme como ativadora de fibroblastos e células de 
reorganização e firmeza da pele. Atua na síntese de fibroblastos, aumentando a 
deposição de colágeno e reduzindo a atividade da colagenase nas papilas 
dérmicas. Descreve-se que a ação deste comprimento de onda atua modulando a 
energia celular, a adenosina trifosfato (ATP), aumentando a produção de colágeno 
e elastina da derme. 
Este comprimento de onda pode ser associado nos seguintes casos: 
1. Associado ao tratamento da acne (efeito analgésico e anti-inflamatório); 
2. Recuperação em pós-laser fracionado ablativo e peelings profundos (auxílio na 
cicatrização – produção de colágeno); 
3. Redução de hematomas em pós-cirúrgico (efeito anti-inflamatório); 
4. Associação à tratamentos para rejuvenescimento; 
5. Combinado à tratamentos para recuperação de estrias brancas; 
6. Tratamento de gordura localizada e celulite (i-LIPO: aumento do metabolismo, 
produção de colágeno); 
7. Associado à terapias para queda capilar (Aumento da circulaçãolocal e 
metabolismo folicular). 
• Luz infravermelha: Age desde a derme profunda até a camada muscular, fazendo 
ativação dos fibroblastos, degranulação de mastócitos (ação antinflamatória) e 
analgesia temporária. Também possui efeito antiedematoso. Consegue alterar a 
permeabilidade celular, tanto para água e oxigênio que o sangue carreia para as 
células, tanto para cosméticos, melhorando a absorção. 
Este comprimento de onda pode ser associado nos seguintes casos: 
 
 
47 
 
Laserterapia 
1. Associado ao tratamento da acne (efeito anti-inflamatório e drenagem linfática 
nos linfonodos do local); 
2. Recuperação em pós-laser fracionado ablativo e peelings profundos (efeito 
anti-inflamatório e aumento do metabolismo de fibroblastos); 
3. Redução de hematomas em pós cirúrgicos (efeito anti-inflamatório); 
4. Associação à tratamentos para rejuvenescimento (aumento do metabolismo de 
fibroblastos); 
5. Combinado à tratamentos para recuperação de estrias brancas (aumento do 
metabolismo de fibroblastos); 
6. Tratamento de gordura localizada e celulite (i-LIPO: aumento do metabolismo 
e efeito drenante); 
7. Associado à drenagem linfática. 
 
3.2 Indicações da Fototerapia 
 
A fototerapia utilizando LASER de baixa potência ou LEDs pode ser 
indicada nas seguintes disfunções estéticas: 
• Acne em qualquer grau; 
• Alopecia; 
• Bioestimulação tecidual; 
• Clareamento de manchas (face, axilas, virilhas); 
• Associada à drenagem linfática; 
• Estrias; 
• Associação no tratamento de gordura localizada; 
• Hidratação; 
• Iluminação facial; 
• Associação no tratamento de lipodistrofia ginóide; 
• Marcas de expressão; 
• Cicatrização de micropigmentação; 
• Clareamento de olheiras; 
• Pós-operatório; 
• Terapia antiaging. 
 
 
 
48 
 
Laserterapia 
3.4 Efeitos colaterais e contraindicações 
 
A literatura mostra que não há efeitos colaterais relacionados à fototerapia 
ou à terapia fotodinâmica, desde que estas terapias sejam administradas 
corretamente. Também não há efeitos prejudiciais relacionados a essas terapias, 
excetuando-se a incidência do feixe, direta ou indireta, nos olhos (RIBEIRO et al., 
2004). 
A terapia tem as seguintes contraindicações: 
• Imunodeficiências; 
• Áreas com sangramento; 
• Doença que piore e/ou possa desencadeada pela exposição à luz; 
• Período gestacional; 
• Após peelings químicos superficiais e médios; 
• Histórico de fotossensibilidade (dermatoses); 
• Tratamento com ácidos sintetizados a partir da vitamina A (ácido retinóico, retinol 
A, vitanol A, isotretinoína) e/ou antibióticos com tetraciclina; 
• Histórico de neoplasias cutâneas na região; 
• Glaucoma. 
 
3.5 Aplicação e cuidados durante a fototerapia 
 
• Deve-se realizar uma criteriosa anamnese e exame clínico detalhado, sendo que, 
é importante a busca por contraindicações; 
• Ante de iniciar a aplicação utilizando LASER de baixa potência e/ou LED, a 
superfície a ser irradiada deverá estar necessariamente limpa, seca e hidratada; 
• O ângulo de incidência do raio LASER e/ou LED deverá ser o mais perpendicular 
possível para minimizar o espalhamento do feixe de luz no tecido; 
• Evitar a aplicação em áreas metálicas (remoção de brincos, piercings, etc.); 
• O profissional, o cliente e qualquer outro indivíduo que esteja na sala de 
tratamento, devem fazer o uso de óculos de proteção fornecida; 
• Utilizar somente nas áreas designadas e evitar emitir o feixe de luz em superfícies 
refletoras. Por exemplo, espelhos e metais; 
 
 
49 
 
Laserterapia 
• O equipamento apenas deverá ser ligado apenas quando o aplicador já estiver em 
contato com a pele que será irradiada; 
• Não irradiar sobre o útero gravídico ou ovário, pois seus efeitos não estão 
totalmente esclarecidos. 
 
4 Luz Intensa Pulsada (LIP) 
 
4.1 Fundamentação teórica e componentes da Luz Intensa Pulsada 
 
A LIP foi desenvolvida por Goldberg, é caracterizada por ser uma fonte 
emissora de luz que não é LASER, portanto, é uma luz não coerente, que abrange 
comprimento de onda amplo para ser absorvido pelo cromóforo desejado. Dessa 
forma trata o alvo com um feixe de luz específico, por meio da utilização de filtros de 
corte e regulagem do tempo de exposição do pulso de luz e intervalo entre estes 
pulsos (GOLDBERG; CUTLER, 2000; PATRIOTA; RODRIGUES; CUCÉ, 2011). Os 
equipamentos de LIP consistem em uma lâmpada do tipo flash armazenada em um 
cabeçote óptico, em que espelhos refletores projetados para emitir a luz através de 
um guia de luz óptico. As lâmpadas do tipo flash são, normalmente, resfriadas com o 
uso de água para maximizar a vida útil da lâmpada e possibilitar a emissão de altos 
níveis de energia. A maioria dos equipamentos de LIP utilizam guias de luz 
intercambiáveis de quartzo ou de safira cobertos com múltiplas camadas de material 
dielétrico reflexivo para transmitir energia para a pele. Além disso, esse tipo de 
cobertura nesses guias de luz é altamente eficaz na transmissão de determinados 
comprimentos de onda, mas elessão ângulo dependentes (SISTER, 2011), portanto, 
atenção durante a aplicação, pois a mesma deve acontecer em ângulo perpendicular 
à pele. 
Estes diferentes comprimentos de onda podem atuar em diferentes 
cromóforos. Este fato permite o tratamento de diferentes disfunções estéticas, desde 
lesões pigmentadas ou vasculares, e até realização de epilação e 
fotorrejuvenescimento. 
Por se tratar de um sistema versátil, resulta em uma opção bastante 
utilizada, uma vez que os pacientes muitas vezes não estão dispostos a assumir os 
efeitos adversos de outros procedimentos que requerem maior tempo de recuperação. 
 
 
50 
 
Laserterapia 
A LIP funciona com pulsos e a emissão em forma de corrente de pulsos 
permite cortar um flash luminoso em vários pulsos para distribuir a energia. O tempo 
entre cada pulso corresponde ao tempo de relaxamento térmico (TRT) e permite que 
a pele dissipe o calor. 
A Tabela 6 apresenta as vantagens e desvantagens no uso da LIP. 
 
Tabela 6. Vantagens e desvantagens no uso da LIP. 
 
Vantagens Desvantagens 
Atua em diversos cromóforos Não é seletiva 
Tempo de recuperação mínimo ou 
ausente 
Necessário mais de uma sessão para obter 
resultados excelentes 
Ótimos resultados em lesões vasculares Risco de queimaduras aumentado em 
menores comprimentos de onda 
Tratamento rápido devido à grande 
dimensão do spot 
Peso da ponteira 
Adaptado de (IZIDORO; MILMAN, 2017) 
 
4.2 Seleção do comprimento de onda na LIP 
 
Como já mencionado a LIP é um equipamento que nos disponibiliza uma 
versatilidade de tratamentos, sendo que, utilizando diferentes parâmetros (como 
comprimento de onda, fluência e duração de pulso) é possível atingir diferentes 
cromóforos. Dessa forma, deve-se escolher o comprimento de onda adequado para 
que o mesmo seja absorvido preferencialmente pelo cromóforo-alvo. A duração do 
pulso deve ser mais curta que o TRT do cromóforo e a fluência devem ser suficientes 
para promover a destruição deste cromóforo em um intervalo de tempo apropriado 
(IZIDORO; MILMAN, 2017). 
A escolha do comprimento de onda adequado deve ser realizada com base 
no pico de absorção de cada cromóforo-alvo. A Tabela 7 ilustra alguns comprimentos 
de onda comumente utilizados e suas respectivas sugestões de tratamento. 
 
 
51 
 
Laserterapia 
Tabela 7. LIP: comprimentos de onda e sugestões de tratamento de acordo com 
o cromóforo-alvo. 
 
Comprimento de onda (nm) Tratamento 
415 Acne 
Rosácea 
540 Lesões vasculares 
Lesões pigmentares superficiais 
580 Lesões pigmentares profundas 
640 Epilação 
695 Rejuvenescimento 
Adaptado de (IZIDORO; MILMAN, 2017). 
 
Quando há a presença de lesões pigmentares epidérmicas, o comprimento 
de onda mais curto é o mais eficaz. No entanto, quanto maior o fototipo do paciente 
maior será o risco de lesões epidérmicas. Sendo assim, é orientado utilizar filtros de 
maior comprimento de onda, menor fluência e maior duração de pulso em fototipos IV 
e V (IZIDORO; MILMAN, 2017). 
 
4.3 Diferenças entre LIP e LASER 
 
Os aparelhos de LIP emitem uma luz que é policromática (ou seja, com 
vários comprimentos de onda), não coerente e não colimada, portanto, é uma luz 
difusa. Tem características diferentes dos LASERs (Figura 25), que são raios 
colimados, coerentes e sempre com um único comprimento de onda. Assim, a LIP, 
por ter vários comprimentos de onda, em geral de 500 a 1.200 nm, trata lesões 
melanocíticas (MORENO ARIAS; FERRANDO, 2001) e vasculares (CLEMENTONI et 
al., 2006), além de estimular a neocolagênese (GOLDBERG; CUTLER, 2000; LUO et 
al., 2009). Porém, por não ser coerente nem colimada, tem uma ação mais limitada 
que os LASERs. 
 
 
 
52 
 
Laserterapia 
 
Figura 25. Diferenças entre LASER e LIP. IPL: do inglês, Intense Pulsed Light. 
Retirado de (SISTER, 2011). 
 
A Tabela 8 apresenta as principais características e diferenças entre 
LASER e LIP em relação à fonte de luz, comprimento de onda, feixe de luz, 
versatilidade e especificidade de tratamento. 
 
Tabela 8. Características e diferenças de equipamentos de LASER e LIP. 
Características LASER LIP 
Fonte de luz Meio ativo (sólido, líquido, gasoso) Xenônio 
Comprimento onda Geralmente único Diversos (filtros) 
Feixe coerente Sim Não 
Feixe colimado Sim Não 
Versatilidade Pouca Grande 
Especificidade e precisão Grande Pouca 
Custo Maior Menor 
Adaptado de (SISTER, 2011). 
 
 
53 
 
Laserterapia 
4.4 Indicações da LIP 
 
• Lesões pigmentares; 
• Melanoses solares; 
• Manchas senis; 
• Hiperpigmentação infraorbitária; 
• Lesões vasculares; 
• Telangiectasia; 
• Rosácea. A LIP é o tratamento de escolha para o estágio eritemato-
telangiectásico, embora não atue na hiperreatividade vascular; 
• Microvasos nos membros inferiores; 
• Mancha do vinho do porto; 
• Poiquilodermia de Civatte; 
• Epilação; 
• Acne; 
• Rejuvescimento; 
• Cicatrizes de acne; 
• Estrias; 
• Cicatrizes hipertróficas. 
Acne: a LIP atua na acne por dois mecanismos. O primeiro é a ação 
bactericida, o Propionibacterium acnes produz porfirinas que atuam como cromóforos 
havendo liberação de radicais livres com efeito bactericida e estímulo de citocinas anti-
inflamatórias. O segundo é a ação da Fototermólise seletiva dos vasos sanguíneos 
que nutrem as glândulas sebáceas, levando à diminuição do tamanho da glândula e 
redução da taxa de excreção de sebo (IZIDORO; MILMAN, 2017). 
Telangiectasia: O mecanismo de ação da LIP em telangiectasias é por 
Fototermólise seletiva e indução de coagulação intravascular. As lesões são tratadas 
com um ou dois pulsos. O efeito adverso esperado (tratamento em fototipos III e IV) é 
a púrpura, com duração de 2 a 4 dias, e descamação epidérmica. 
Lesões pigmentares: várias sessões são necessárias para um ótimo 
clareamento. O resultado esperado imediatamente após a aplicação de LIP é o 
escurecimento das melanoses tratadas. 
 
 
54 
 
Laserterapia 
Epilação: O pelo na fase anágena é o mais responsivo à epilação por LIP. 
Estudos comparativos com LASERs vêm demonstrando eficácia e segurança da LIP 
nesse tratamento (RIBEIRO et al., 2010). 
 
4.5 Contraindicações absolutas e relativas do uso da LIP 
 
São contraindicações absolutas para aplicação da LIP: 
• Infecção herpética ativa (herpes simples); 
• Acne ativa; 
• Gravidez; 
• Doenças do colágeno (esclerodermia); 
• Vitiligo; 
• Áreas submetidas à radioterapia ou queimadura; 
• Histórico de queloides ou cicatrização anormal; 
• Uso de medicamentos fotossensibilizantes; 
• Uso de isotretinoína (Roacutan) nos últimos doze meses. 
São contraindicações relativas para a aplicação de LIP: 
• Pele bronzeada; 
• História de herpes-zóster; 
• Pacientes com pele sensível; 
• Peles de tipo Fitzpatrick V e VI (hipo ou hiperpigmentação); 
• Aspectos psicológicos. 
 
4.6 Cuidados durante a aplicação de LIP 
 
• Fazer a anamnese completa do cliente (Atenção ao fototipo), espessura da pele 
e do pelo, a cor do pelo ou da lesão pigmentada e verificar os critérios de 
exclusão ao tratamento de acordo com as contraindicações; 
• A região a ser tratada deverá estar limpa e seca, sem o uso de cosméticos. Antes 
de iniciar a sessão, utilize álcool ou clorexidina; 
• Em áreas maiores, para auxiliar com os disparos, faça um gabarito com lápis de 
maquiagem branco. NUNCA UTILIZE LÁPIS NA COR ESCURA! Risco de 
queimaduras e discromias; 
 
 
55 
 
Laserterapia 
• Aplicar o gel em uma área pequena e já efetuar os disparos. Não aplicar o gel em 
áreas grandes para não correr risco de aquecimento; 
• Reavaliar o local tratado a cada sessão e ajustar os parâmetros caso necessário; 
• Para a execução dos disparos, é necessário ter cautela e atenção em não sobrepô-
los sem que haja resfriamento da pele; 
• Em sessões de epilação (fotodepilação), os pelos devem ser cortados com lâmina 
de barbear, antecipadamente à sessão, ou poderão ser raspados no momento da 
aplicação; 
• Avisar aos

Continue navegando