Buscar

CONTEÚDO 8 - METABOLISMO DE AMINOÁCIDOS E PROTEÍNAS

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Estrutura dos Aminoácidos e Proteínas
 
As proteínas, além de constituírem o componente celular mais abundante, são as moléculas mais diversificadas
quanto a sua forma e função. Praticamente todos os processos vivos dependem dessa classe de moléculas.
 
Alguns exemplos:
 
- Colágeno e Elastina - formam os componentes do esqueleto celular e estrutura de sustentação.
- Enzimas - catalisadores biológicos
- Transporte de moléculas - ex: hemoglobina - transporta oxigênio
- atuam no mecanismo contrátil dos músculos- actina e miosina
- controlam a atividade dos genes (expressão gênica), entre outros.
 
1.1- Estrutura química dos aminoácidos
 
As proteínas são sintetizadas a partir de 20 aminoácidos diferentes:
 Os aminoácidos são compostos que apresentam, na sua molécula, um grupo amino (-NH2) e um grupo
carboxila (-COOH); a única exceção é a prolina, que contem um grupo imino (-NH-) no lugar do grupo amino.
 
 
 
 
 
 
Classificação dos aminoácidos
 
As propriedades das cadeias laterais dos aminoácidos.
 
 As cadeias laterais dos aminoácidos são importantes para a conformação das proteínas e, portanto, para sua
função.
 Os aminoácidos são classificados, de acordo com a polaridade do grupo R, em duas grandes categorias:
aminoácidos apoIares (com grupo R hidrofóbico) e aminoácidos polares (com grupo R hidrofílico).
 Os aminoácidos apoIares -Têm geralmente uma localização interna na molécula de proteína.
 Os aminoácidos classificados como polares são os que têm, nas cadeias laterais, grupos com carga elétrica
líquida que os capacitam a interagir com a água. São geralmente encontrados na superfície da molécula proteica.
 
Estes aminoácidos são subdivididos em três categorias:
 
 - aminoácidos básicos – (grupo R carregado positivamente)
 - aminoácidos ácidos - (grupo R carregado negativamente)
 - aminoácidos polares sem carga.
 
 
Algumas observações sobre os aminoácidos:
 
 Grupo dos aminoácidos apolares - têm grupos R constituído por cadeias orgânicas com caráter de
hidrocarboneto, que não interagem com a água. Têm geralmente uma localização interna na molécula de proteína.
 
 A glicina é um aminoácido de estrutura mais simples, permitindo assim um mínima restrição estérica na
estrutura de uma proteína.
 
 A prolina é um aminoácido de estrutura mais complexa o que reduz a flexibilidade estrutural da proteína.
 
 Os grupos R aromáticos - são relativamente não polares (hidrofóbicos). 
 
 
Grupo R polar, mas não carregado - são hidrofílicos, porque eles contêm grupos funcionais que formam ponte de
hidrogênio com a água.
 
Ligação Dissulfeto. A cadeia lateral da cisteína(contêm o grupo sulfidrila (-SH), o qual é um componente importante
do sítio ativo de muitas enzimas. Nas proteínas, os grupos-SH de duas cisteínas podem torna-se oxidados e formar
um dímero (união de duas moléculas de cisteínas por uma ponte de dissulfeto (-S-S), formando a cistina).
 
Podemos notar que em todos os aminoácidos, exceto a glicina, o carbono α é assimétrico, ligado a quatro grupos
diferentes:
- um grupo carboxila
- um grupo amino
- um grupo R (radical)
- hidrogênio
 
 O átomo do carbono α é um carbono quiral ou opticamente ativo. A glicina é é exceção, pois seu carbono
 Os centros quirais geram enantiômeros - moléculas que não sobreponíveis às suas imagens espetaculares.
 Em geral os bioquímicos usam a convenção de Fischer para descrever as diferentes formas de moléculas quirais.
L - (levorrotatório) rotação da luz polarizada para a esquerda
D - (dextrorrotatório) rotação da luz polarizada para a direita
 
 
A molécula protéica é formada por mais de 50 aminoácidos ligados entre si através das ligações peptídicas.
 
 Os aminoácidos encontrados nas proteínas têm configuração esteroquímica L, são L- aminoácidos.
 
 Os D-aminoácidos foram encontrados apenas em pequenos peptídios da parede de células bacterianas e alguns
peptídios com função de antibióticos.
 
Em solução aquosa os aminoácidos estão ionizados, e podem agir como ácidos e bases
 
 
Os aminoácidos que têm um único grupo amino e um único grupo carboxíla, são conhecidos como “zwitterions”,
moléculas que carregam grupos de polaridades opostas. Um aminoácido zwitterions em pH fisiológico, tem o grupo
amino protonado e o grupo carboxila desprotonado
 
 Ligação peptídica
 
Os aminoácidos são ligados através de ligações peptídicas:
 
 
 
 
 
 
 
 
 
 
 
PROTEÍNAS
 
As Proteínas: são macromoléculas polipeptídicas, isto é, são moléculas muito grandes, formadas pela união do
grupo carboxila de um aminoácido com o grupo amina do outro aminoácido, chamada de ligações peptídicas.
 
Um dipeptídeo formado continua tendo um grupo amina numa das terminações e um grupo carboxila na outra.
 Nestas terminações podem ser adicionadas novos aminoácidos originado:
- tripeptídeo, tetrapeptídeo, até chagar em oligopeptídio.
 
polipeptídeos.- mais de 10 aminoácidos na molécula denominamos
 
1.2 - Níveis de Estruturas das Proteínas:
 
 
- Estrutura primária: è a seqüência de aminoácidos ao longo da cadeia polipeptídica. Cada proteína é diferente das
outras por sua estrutura primária.
 
Exemplo: Arg - Leu - Ala – Arg - Asp - Ala - Gly -...
 
 
- Estrutura secundária:As moléculas de proteínas são formadas de longas cadeias de aminoácidos que podem se
enrolar sobre si mesma em forma de α-hélice ou folha β-pregueada.
 
 
Estrutura terciária:A cadeia polipeptídica pode apresentar dobras sobre si mesma adquirindo uma conformação
espacial própria.
 
 
 
Estrutura quaternária:é um grau de organização mais alto, determinado pela combinação de duas ou mais cadeias
polipeptídicas Exemplo: A Hemoglobina que é um tetrâmero, formado por duas cadeias α-hélice e duas cadeias β-
pregueada.
 
 Digestão e absorção e transporte de proteínas
 
 
 Existem mais de 300 aminoácidos diferentes, dos quais apenas 20 aminoácidos são ditos padrão, pois são
comumente encontrados em proteínas.
 A primeira etapa da digestão das proteínas ocorre no estômago, as proteínas nativas são desnaturadas pela
mudança de pH no estômago e, posteriormente, hidrolisadas por enzimas específicas denominadas genericamente
peptidases ou proteases (pois quebram as ligações peptídicas que unem os aminoácidos entre si).
 Essas enzimas são encontradas no sulco gástrico, entérico e pancreático.
 As peptidases dependendo do local da proteína em que agem, podem ser classificadas em:
 Endopeptidases – são aquelas que hidrolisam as ligações peptídicas internas quebrando as proteínas em
fragmentos peptídicos cada vez menores
 No suco gástrico há: a pepsina e no sulco pancreático, tripsina e quimotripsina.
 Pepsina – Uma endopeptidase, estável em meio ácido, é secretada pelas células do estômago.
 Exopeptidases: - São enzimas que só agem nas extremidades da molécula proteica, isto é, nas primeiras
ligações peptídicas, retirando o último aminoácido da extremidade. Dependendo do extremidade que atuam, podem
ser sub-classificados em:
 Carboxipeptidase: - secretada pelo pâncreas, efetua a hidrólise somente na extremidade carboxilada, liberando
o aminoácido e refazendo na proteína o grupo carboxílco, onde a enzima age novamente.
 Aminopeptidase: secretada pelas células da mucosa intestinal, efetua a hidrólise na extremidade amínica,
liberando os aminoácidos e refazendo na proteína o grupo amínico, onde a enzima age novamente.
 As Endo e exopeptidase agem simultaneamente e uma vez totalmente hidrolisada a proteína até aminoácidos,
estes são absorvidos e transportados para o fígado. Do fígado, parte deles são lançados novamente na corrente
circulatória e outra parte usada para produção de novas proteínas.Tais proteínas podem ser lançadas na circulação e
distribuídas para todos os tecidos do organismo.
 
 
 
 
 
 
 
 
 
 Absorção dos aminoácidos
 
 Os aminoácidos livres e dipeptídeos são captados pelas células epiteliais do intestino. Ali, os dipeptídeos
são hidrolisados no citosol, produzindo aminoácidos, antes de serem liberados para o sistema porta. Desse modo,
apenas os aminoácidos livres são encontrados na veia porta após a refeição.
Sã São chamados de aminoácidos nutricionalmente essenciais aqueles que o nosso organismo não consegue
“sintetizar”, ou não o faz na velocidade e em quantidade suficientes, sendo obrigatório sua presença na dieta. Os
aminoácidos não essenciais são aqueles que de alguma maneira são sintetizados no nosso organismo.
 
Estado nativo da proteína - A forma espacial de cada proteína é a principal responsável por suas propriedades
biológicas (enzimáticas ou estruturais).
 
 
Desnaturação da proteína.Quando ocorre a sua desorganização espacial, a proteína perde suas propriedades
biológicas.
 
 O dobramento das cadeias e, portanto, a conformação das moléculas, depende:
 
- atrações eletrônicas entre cadeias laterais de aminoácidos
- formação de pontes de hidrogênio ou pontes de dissulfeto entre eles;
- ligações hidrofóbicas entre cadeias laterais de aminoácidos que não se misturam com a água.
 
 
 
 
 
 
 
 
Degradação e Excreção de Aminoácidos
 
 
Os aminoácidos contêm nitrogênio além dos átomos de carbono, hidrogênio e oxigênio. Este nitrogênio não pode ser
armazenado e os aminoácidos em excesso às necessidades de biossíntese das células são imediatamente
degradados.
A primeira fase do catabolismo (degradação) dos aminoácidos envolve a remoção dos grupos alfa-aminos por
transaminação e desaminação oxidativa, formando amônia e ceto-ácidos correspondentes. Uma porção da amônia
livre é excretada na urina, mas a maior parte é usada na síntese de uréia.
Os esqueletos de carbonos dos ceto-ácidos são convertidos em produtos intermediários de rotas produtoras de
energia.
 A seguir estudaremos os processos citados acima.
 
 
 Transaminação
 
 É o processo pelo qual um aminoácido (aa) transfere seu grupo amino para um cetoácido (ka). Desta forma,
o aminoácido converte-se em um cetoácido e o cetoácido converte-se um aminoácido, formando assim outro
aminoácido com outra cadeia lateral (R2).
 
As enzimas que catalisam estas reações são chamadas de transaminases ou aminotransferases. Cada aminoácido
depende de uma enzima específica (transaminase) que catalisa a sua conversão em cetoácido. Duas transaminases
mais largamente distribuídas no tecido é a TGP (transaminases –glutamico-pirúvica) e a TGO (transaminase-
glutâmico-oxalética).
 Portanto, a transaminação é uma das maneiras pelo quais os aminoácidos não essenciais são produzidos,
desde que exista o cetoácido de cadeia lateral correspondente.
 Os grupos amino na sua maioria dos aminoácidos são, conseqüentemente, direcionados para a formação de
glutamato e de aspartato.
 No processo de transaminação, o piridoxal fosfato (PAL), ao se ligar com o grupo amina do aminoácido, com
a função de transportará a amina para o cetoácido, torna-se momentaneamente em piridoxamina (PAM), e após
realizar o transporte o piridoxamina (PAM) retorna a sua condição original, ou seja, piridoxal fosfato (PAL).
 
As aminotransferases são enzimas intracelulares, havendo, baixo níveis dessas enzimas no plasma que representam
a liberação dessas enzimas durante a renovação celular normal.
Quando há um aumento dos níveis plasmático dessa enzimas indica lesão em células ricas nessas enzimas.
Exemplos:
-Trauma físico e processos patólógico que podem provocar lise celular, resultando na liberação das enzimas
aminotransferases para o sangue.
 Doenças Hepáticas – Os níveis sanguíneos de TGO e TGP estão elevados em quase todas as doenças
hepáticas, mas estão especialmente altos em doenças que causam necrose celular como a hepatite viral grave, lesão
tóxica e colapso circulatório prolongado.
A TGO (AST) é mais específica para as doenças hepáticas, pois, o fígado contém maiores quantidades dessa enzima.
Doenças não hepática – As aminotransferases podem estar elevadas em doenças não hepáticas, como infarto do
miocárdio e doenças musculares. Essas doenças, no entanto, são geralmente clinicamente distintas das doenças
hepáticas.
 
 
Desaminação Oxidativa
 
Para que o aminoácido seja degradado é necessário que ocorra a eliminação da sua fração amínica. A este processo
chamamos de desaminação oxidativa.
 A desaminação é o processo pelo qual o aminoácido libera o grupo amina (NH3+) na forma de amônia
(NH4+) e se transforma em um cetoácido. Estas reações são catalisadas pelas enzimas desidrogenases, ou
desaminases que possuem como coenzima o NADP.
 
 O glutamato será desaminado, ou seja, o grupo amina (originário dos aminoácidos) foi liberado na forma de
amônia. Esta reação foi catalisada pela enzima Glutamato desidrogenase.
Alguns aminoácidos são desaminados por reações especiais, tais como: glicina, histidina, lisina, prolina, serina e
treonina que não participam de reações de trasaminação e seu grupo amina é removido reações particulares de cada
um deles.
 
 
 
 
 
Destinos da cadeia carbônica dos aminoácidos
 
Após a retirada da parte nitrogenada (como amônia no processo de desaminação oxidativa), a cadeia carbônica
remanescente do aminoácido será encaminhada para o metabolismo energético, integrando-se com o metabolismo
de carboidrato e lipídios. Aqueles que produzem glicose são chamados glicogênios e os que produzem Acetil-CoA
serão chamados de cetogênicos.
São considerados Glicogênicos – Alanina Arginina, Aspartato, Cisteína, Glutamato, Glicina, Histidina, Metionina,
Prolina, Serina, Treonina e Valina.
 
 São considerados Cetogênicos – Leucina
 
 São considerados Glicogênicos e Cetogênicos – Isoleucina, Lisina, Fenilalamina, tirosina e Triptofano.
 
 
Ciclo da Uréia
 
A uréia é o principal composto nitrogenado encontrado na urina, é altamente solúvel em água. Os dois átomos
presentes na fórmula da uréia são provenientes da amônia (NH3+) e aspartato.
 A síntese da uréia é feita no fígado, através do processo chamado de ciclo da uréia. A síntese se inicia na
matriz mitocondrial, até a formação do carbamoil-fosfato e depois é transportado para o citossol originando a
citrulina, até a formação da uréia.
 
 
 
As enzimas envolvidas são: carbamoil-fosfato sintetase, ornitina transcabamoilase, arginossucinato sintetase,
arginossucinato liase, arginase.
 A conversão da maior parte da amônia em uréia é fundamental para manter baixa a concentração desse íon
nos tecidos, pois a amônia é tóxica para os tecidos, principalmente para o cérebro.
 
 
O balanço Nitrogenado
 
A quantidade de aminoácido ingerido diariamente através de proteínas por um indivíduo adulto e normal, é mais ou
menos constante. Não há reserva de aminoácido, se o indivíduo consumir mais proteína há um aumento da
excreção.
 
Balanço nitrogenado é a diferença entre o nitrogênio (N) ingerido e o excretado que deve ser igual a zero nos
indivíduos adultos e normais.
 
Balanço nitrogenado positivo ( mais N ingerido é maior que o N excretado).
 
– acontece em criança em crescimento
- durante a gravidez
- convalescência de doenças
- recuperação pós-cirurgica
Em todos os casos os nutricionistas recomendam dietas especiais, ricas em proteínas.
 
Balanço nitrogenado negativo ( mais N ingerido é menor que o N excretado). Significa perda excessiva
de proteínas, pode ocorrer:
- Doenças degenerativas (tumores)
- Processos hemorrágicos
- queimaduras (graves)
- Inanição prolongada
 
O nitrogênio da urina é principalmente representada pelauréia excretada.
Há outras formas de perda de nitrogênio no suor, sêmem, catarro, saliva, descamação de pele, corte de cabelo,
unhas, etc…
 
 
 
 
Enzimas
 
 
Enzimas -são catalisadores biológicos de alta especificidade. Catalisar uma reação química é alterar a sua
velocidade. A presença de enzimas nas reações celulares aumenta a velocidade da reação por serem altamente
específicas.
 
Propriedades gerais das enzimas:
 
1- Velocidade das reações mais rápida - as reações catalisadas por enzimas são de 106 a 1012 vezes mais
rápidas que as correspondentes não catalisadas.
 
2- Condições de reações mais brandas – as reações catalisadas por enzimas ocorrem em temperaturas
inferiores a 100 °C e pH quase neutro.
 
3- Maior especificidade da reação
 
4- Capacidade de regulação – As atividades catalíticas de muitas enzimas pode ser regulada na sua
concentração celular e sua atividade, permitindo assim ajuste em diferentes condições fisiológicas. Os mecanismos
desses processos regulatórios incluem o controle alostérico, a modificação covalente de enzimas e a variação nas
quantidades de enzimas sintetizadas.
 
Classificação e nomenclatura das enzimas:
 
 As enzimas são comumente denominadas adicionando o sufixo ase ao nome do substrato da enzima ou a uma
expressão que descreva a sua ação catalítica. Esta denominação apresenta exceções como é o caso das enzimas
digestivas: tripsina, pepsina, etc...
 
 Especificidade de enzima- substrato.
 As forças não-covalentes por meio das quais os substratos e outras moléculas se ligam às enzimas são similares
em caráter às forças que regem a conformação das próprias proteínas. Ambas envolvem interações de van der
Waals, interações eletrostáticas, pontes de hidrogênio e interações hidrofóbicas. Em geral o sítio de ligação do
substrato a enzimas consiste em um sulco na superfície da enzima, complementar ao formato do substrato
(complementaridade geométrica). Além disso, os resíduos de aminoácidos que formam o sítio de ligação estão
organizados de modo a formar interações de atração específicas com o substrato (complementaridade
eletrônica).
A ligação do substrato na enzima se dá em uma pequena e bem definida região da enzima chamada de centro ativo
(ou sítio ativo da enzima). O substrato deve ter a forma espacial adequada para se se alojar no centro ativo da
enzima. Com isto esta ligação permite uma especificidade para a catálise. Há enzima que aceitam como substrato
qualquer açúcar de 6 carbono, enquanto outras só reconhecem em desses substrato, a glicose.
 
 
 
Os fatores que interferem na atividade enzimática:
 
1- pH
A maioria das enzimas apresenta um valor de pH para qual a atividade da enzima é máxima. A velocidade diminui a
medida que o pH se afasta do valor ótimo, que é característico para cada enzima. Geralmente o pH é neutro.
O pH ótimo depende do número e tipo de grupos ionizáveis que uma enzima apresenta e da seqüência em que estão
organizados, ou seja,dependem de sua estrutura primária.
 
2- Temperatura
 
A temperatura também interfere na atividade da enzima. Se aumentarmos muito a temperatura a enzima pode
perder sua forma nativa que permite desempenhar sua função levando a um processo de desarranjo estrutural
(perda da estrutura terciária) chamado de Desnaturação. A desnaturação provoca drásticas alterações
conformacionais na molécula, acarretando na perda da catálise.
Ex: acima de 50 a 55 °C a maioria das proteínas globulares são desnaturadas.
 
3- Concentração do Substrato.
 
 
 
INTERAÇÃO ENZIMA-SUBSTRATO
 Geralmente há uma grande diferença de tamanho entre as moléculas de enzimas e as de seus substratos. As
enzimas são macromoléculas protéicas - mesmo as mais simples são formadas de mais de uma centena de
aminoácidos - e seus pesos moleculares variam de 10.000 a alguns milhões, enquanto o peso molecular dos
substratos é muitas ordens de grandeza inferior.
Embora o total da molécula enzimática seja necessário para o papel catalítico, a ligação com o substrato dá-se
apenas em uma região pequena e bem definida da enzima. Esta região à qual o substrato se liga é chamada centro
ativo (ou sítio ativo) da enzima. O centro ativo é formado por resíduos de aminoácidos, trazidos à proximidade uns
dos outros pelos dobramentos da cadeia polipeptídica que definem a estrutura terciária da proteína. O centro ativo,
assim organizado, constitui uma cavidade com forma definida, que permite à enzima "reconhecer" seu substrato. De
fato, uma molécula, para ser aceita como substrato, deve ter a forma espacial adequada para alojar-se no centro
ativo e grupos químicos capazes de estabelecer ligações precisas com os radicais do centro ativo.
Co-fatores:
Muitas enzimas necessitam de associação com co-fatores não protéicos (moléculas ou íons) para exercer seu papel
catalítico.
Os cofatores comumente encontrados incluem íons metálicos (Cu2+, Fe3+ ou Zn2+ etc) ou moléculas orgânicas,
não protéicas, de complexidade variada, que recebem o nome de coenzimas, tal com o NAD+.
As coenzimas são co-fatores que se associam temporariamente com uma dada molécula enzimática, de maneira que
elas funcionam como co-substratos.
 Outros co-fatores são conhecidos como grupos prostéticos, que estão permanentemente ligados a sua
proteína geralmente através de ligações covalentes. Ex: heme o citrocromo c é fortemente ligado a proteína por uma
extensa rede de interações hidrofóbicas e pontes de hidrogênio junto a ligações covalentes entre o heme e regiões
específicas das proteínas.
 O conjunto da enzima com o seu co-fator apropriado e cataliticamente ativo é o chamado de holoenzima. A
proteína enzimaticamente inativa resultante da remoção do co-fator da holoenzima é chamada de apoenzima;
portanto a apoenzima é a porção protéica da holoenzima.
 
Apoenzima (inativa) + co-fator « holoenzima (ativa)
 
As enzimas aceleram a velocidade da reação por diminuir sua energia de ativação.
A velocidade das reações é explicada pela teoria das colisões. Esta teria estabelece que, para a molécula reagir, as
moléculas presentes em uma solução devem colidir com orientação apropriada e que a colisão deve levá-las a
adquirir uma quantidade mínima de energia que lhes permita atingir os estados reativos, chamados de estado de
transição. Para levar todas as moléculas de um mol até o estado de transição necessita uma quantidade de energia,
chamada de energia de ativação.
A energia de ativação é, portanto a barreira que separa os reagentes dos produtos. A velocidade de uma
reação será diretamente proporcional ao número de moléculas com energia de ativação igual ou maior
do que a energia do estado de transição.
Pode-se aumentar a velocidade de uma reação de 3 maneira:
1- aumentando a concentração de moléculas em solução
2- elevando a temperatura
3- diminuição da energia de ativação – pode ser usados catalisadores.
 
Os catalisadores são substâncias que aceleram a velocidade de uma reação, sem alterar a proporção entre reagente
e produtos encontrada no final da reação e sem serem efetivamente consumidos durante o processo.
 A presença de um catalisador pode alterar essa velocidade e pode alte rar também a quantidade de energia
que deve ser emprestada ao sistema para início das reações (energia de ativação).
 
Cinética da reação enzimática.
 
O estudo da cinética das reações baseia-se na velocidade das reações, que é diretamente proporcional a
concentração do reagente. Como a medida que se processa a reação a concentração do reagente diminui e portanto
a velocidade também, passando a ser proporcional a nova concentração, estabeleceu-se a velocidade inicial (v0)
proporcional a concentração inicial de A.
A reação enzimática processa-se em duas etapas:
1- A enzima (E) e substrato (S) formam um complexo transitório (ES)
 
O produto é liberado (P) e a enzima volta na forma
 
 
 E + S → ES → P + E
 
Os pressupostos acima foram estabelecidos por Michaellise Menten, que com tratamento matemático desvendaram
a cinética de um grupo de enzimas chamadas de enzimas michaelianas.
 As enzimas estão muito mais diluídas em solução do que o substrato e os números de moléculas de enzimas
é muito inferior ao do substrato
 Com maiores concentrações de substrato, a velocidade de formação do Produto é cada vez maior, porque
estará formando cada vez mais complexo ES.
 Se a quantidade de substrato for muito grande, a quantidade, a concentração de E será praticamente nula,
encontrando-se toda a enzima disponível sob a forma de ES.
Maior concentração possível do complexo ES é na situação onde há formação de 100% e a reação será processada
na maior velocidade possível. Esta concentração é dita saturante e, a partir dela novas concentrações de substrato
não terá efeito sobre a velocidade da reação, que atingiu seu valor máximo – Velocidade máxima (Vmax). Assim a
velocidade da reação é sempre proporcional à concentração de ES.
 A velocidade inicial é obtida medindo-se a quantidade de produto formado em tempos suficientemente
curtos para que no máximo 5% do substrato tenha sido transformado em produto.
 
Constante de Michaelis (Km)
 
 Km é a concentração do substrato na qual a velocidade da reação corresponde a metade da velocidade
máxima.Portanto uma enzima que tiver o menor valor de Km, ela atingirá a máxima eficiência catalítica em baixas
concentrações do substrato.
 Ex: a hexoquinase pode aceitar a glicose ou a frutose como substrato. Mas o Km para a glicose é 0,15 mM e
para a frutose é 1,5 mM. Isto significa que para a frutose ser substrato para a hexoquinase é necessário uma
concentração de 10 vezes maior (1,5 mM) do que a glicose (0,15mM), portanto a hexoquinase tem uma maior
afinidade pela glicose do que pela frutose
 
 
 
 
Equação de Michaelis – Menten
 
 
 Vo = Vmáx [S]
 Km + [S]
 
 
 
Inibidores da atividade enzimática.
 
A atividade enzimática pode ser diminuída por um grande número de substância, genericamente chamadas de
inibidores. A atividade da enzima depende da concentração do inibidor em um determinado instante, portanto como
os inibidores são produzidos pelas próprias células, a variação da sua concentração é um recurso usado para
controlar as velocidades das reações enzimáticas.
 
Inibidores Irreversíveis – são aqueles que reagem geralmente através de ligações covalentes com as moléculas
das enzimas, destruindo-as parcialmente.
Um exemplo de inibidores irreversíveis é a penicilina seu inibidor liga-se especificamente a enzimas da via de síntese
da parede bacteriana, inibindo-as, desprovidas de parede as células ficam sujeita a lise bacteriana.
 
Inibidores reversíveis – são aqueles em que a inibição está relacionada com um equilíbrio entre enzima- inibidor.
Podem ser competitivo e não competitivo.
 
Inibição competitiva ( Ic )- ocorre quando o inibidor e o substrato tem estruturas semelhantes entre si e
competem pelo centro ativo da enzima. Neste caso a velocidade máxima permanecerá inalterada e o valor de Km
(afinidade da enzima pelo substrato) será aumentada. 
 O complexo EI não gera produto e, portanto, a atividade enzimática estará diminuída de acordo com a fração
de enzima que estiver ligada ao inibidor, mas se a molécula estiver ligada ao substrato formará o complexo ES e
haverá produto, ou seja, nesta situação encontramos frações de enzimas ligadas ao substratos e outras enzimas
ligadas ao inibidor.
 A velocidade máxima da reação será a mesma da reação efetuada sem a presença do inibidor, porem irá
necessitar de uma maior concentração do substrato do que as reações sem a presença do inibidor, isto mostra que
aparentemente há uma alteração no Km.
 
 
Inibição não competitiva (INC) - o inibidor combina-se reversivelmente com a molécula da enzima em um outro
ponto da estrutura, que não seja o seu centro ativo. Estes inibidores não são semelhantes estruturalmente à
molécula do substrato. Neste caso a velocidade será alterada e o valor de Km (afinidade da enzima pelo substrato)
permanecerá inalterado.
 
O ponto de ligação do inibidor não competitivo é a cadeia lateral do aminoácido. Ex: o grupo OH da serina e o SH da
cisteína.
 Com a ligação do inibidor na enzima, ela se comporta como se houve menor quantidade de enzima (neste
caso enzima ativa) o que faz com que a velocidade da reação diminua em comparação a ausência do inibidor para
qualquer concentração de substrato. O valor de Km parece coincidir com o valor do novo km proporcionado pela
diminuição da velocidade.
 
 
Inibição alostérica não obedecem à cinética de Mochaellis-Menten
 
 As enzimas alostéricas apresentam normalmente 2 centros ativos: um para o substrato a ser transformado e
outro para um inibidor que regula sua atividade, daí o seu nome. Geralmente as enzimas alostéricas possuem
estrutura quaternária, e não seguem a cinética de Michaelis-Menten, mostrando-se uma curva sigmóide.
 Nas enzimas alostéricas, a ligação do substrato a um centro ativo pode afetar as propriedades dos outros
centros ativos na mesma molécula de enzima. A atividade destas enzimas pode ser regulada por inibidores, que se
ligam a locais que não são os centros catalíticos.
 
 Ex: A ligação do oxigênio à hemoglobina é afetada por H+ e CO2.
 
 
 
Enzimatologia Clinica
 
As enzimas plasmáticas podem ser classificadas em dois grupos principais.
Enzimas que são secretadas no plasma por certos tipos celulares, um exemplo é o zimogênio (enzima envolvida na
coagulação sanguínea), essas enzimas estão em pequeno número.
Um grande número de enzimas é liberado das células durante a renovação celular. Essas enzimas têm função
somente dentro das células. Os níveis dessas enzimas são baixos no plasma sanguíneo. Quando há uma elevação
dos níveis enzimáticos no plasma pode indicar uma lesão tecidual.
Muitas doenças que causam lesão tecidual resultam no aumento da liberação das enzimas no plasma sanguíneo,
portanto essas enzimas plasmáticas são usadas como ferramenta para o diagnóstico de doenças.
 
Enzima TGP (ALT)
Um exemplo é a Transaminase glutâmico pirúvica (TGP), também conhecida como Alania aminotransferase (ALT),
 em que o aparecimento dos níveis elevados no plasma sinaliza uma possível lesão do tecido hepático, um exemplo
é a hepatite.
 
Enzima TGO (AST)
Um exemplo é a Transaminase glutâmico oxalacética (TGO), também conhecida como Aspartato aminotransferase
(AST), é liberada pelo músculo cardíaco após lesão decorrente do infarto do miocárdio.
 
Isoenzimas ou isozimas
As isoenzimas ou isozimas são enzimas que diferem na sequência de aminoácidos, mas que catalisam a mesma
reação química. Estas enzimas podem ter propriedades cinéticas diferentes (exemplo Km), ou propriedades de
regulação diferentes.
As enzimas lactato desidrogenase (LDH) e creatina quinase (CK) apresentam várias isoenzimas diferentes.
 
Creatina-quinase (CK)
Há várias isoenzimas, mas a presença de uma em particular, a CK2, no plasma, é indicativo de infarto do miocárdio.
Esta enzima é liberada nas primeiras horas que seguem o infarto, atingido o seu pico até 24 horas depois do infarto.
 
Lactato desidrogenase (LDH)
A lactato desidrogenase (LDH) tem 5 isoenzimas, mas a isoenzima LDH5 é predominante no músculo esquelético e
fígado e a LDH1 no músculo cardíaco. No infarto, a LDH1 apresenta-se elevada no plasma cerca de 36 a 40 horas
após o infarto.
 
 
Exercício 1:
As proteínas têm papel fundamental no organismo. Agindo na construção e reparação de tecidos. A molécula de proteína é
construída a partir da ligação das moléculas de aminoácidos, dos quais 20 são metabolizados pelo organismo humano. Entre estes,
há nove que são chamados essenciais, isto é, não sendo sintetizados pelo nosso organismo, devem ser fornecidos pelos alimentos.
Os demais que são produzidos no organismo são chamados de não essenciais. Estes são compostos orgânicos que apresentam um
grupoácido carboxílico (COOH) e um grupo amina (NH2) ligados a um carbono assimétrico. As proteínas são os constituintes dos
organismos e estão sendo continuamente renovadas (pool de proteínas) pelos processos de síntese e degradação. Precisam ser
continuamente supridas, principalmente através da alimentação e estão no grupo dos macronutrientes por serem um dos nutrientes
que podem fornecer energia ao organismo. Porém, além dessa função, elas também exercem funções plásticas no organismo.
Dentre as funções das proteínas, a reconstrução muscular, após atividade física é a mais visada por praticantes de musculação com
objetivo de hipertrofia e de aumento de força. O texto acima descreve a importância dos aminoácidos e proteínas, também cita
um pool que supre as nossas necessidades e descreve a presença de aminoácidos não essenciais. Aponte a afirmativa que
explique as palavras grifadas.
A)
As proteínas tem papel fundamental na estrutura de nosso organismo, seus constituintes os aminoácidos devem permanecer no
sangue e os não essenciais são produzidos por desaminação
B)
As proteínas tem papel fundamental na regulação de nosso organismo, seus constituintes estão os aminoácidos devem permanecer
no sangue e os não essenciais são produzidos por glicosilação
C)
As proteínas tem papel fundamental na estrutura de nosso organismo, seus constituintes devem permanecer no sangue e aqueles
não essenciais são produzidos por transaminação
D)
As proteínas tem papel fundamental na estrutura de nosso organismo, seus constituintes os aminoácidos devem permanecer nos
óssos e fígado, e os não essenciais são produzidos por desaminação
E)
As proteínas tem papel fundamental na produção de ATP de nosso organismo, seus constituintes os aminoácidos devem
permanecer no sangue e os não essenciais são produzidos por desaminação
O aluno respondeu e acertou. Alternativa(C)
Comentários:
C) 
Exercício 2:
Os 23 pares de cromossomos humanos apresentam a grande maioria de nossos genes. Tais genes são responsáveis por darem
origem a moléculas de RNA, as quais dão origem a cadeias polipeptídicas conhecidas como proteínas. Tais proteínas apresentam
diversas funções em nosso organismo, como por exemplo, estrutural e funcional. A partir das informações anteriores e de seus
conhecimentos, julgue as proposições abaixo:
(I) A distrofina é uma proteína de função estrutural. A deficiência de sua função pode levar a distrofias musculares, tais como na
Distrofia Muscular de Duchenne, distrofia que se inicia com a deficiência de membros inferiores e em fase progressiva acomete a
musculatura respiratória
(II) O colágeno é uma proteína de função estrutural. A deficiência de sua função pode levar a diferentes tipos de colagenoses,
podendo resultar em anomalias esqueléticas, já que é uma molécula que faz parte da matriz orgânica do tecido ósseo
(III) As proteínas são polímeros formados por uma sequência de outras moléculas menores, conhecidas como aminoácidos, as quais
estão unidas através de ligações peptídicas
Assinale a alternativa correta:
A)
Apenas a proposição I está correta
B)
Apenas a proposição II está correta
C)
Apenas a proposição III está correta
D)
As proposições I, II e III estão corretas
E)
Apenas as proposições I e III estão corretas
O aluno respondeu e acertou. Alternativa(D)
Comentários:
D) 
Exercício 3:
Um aminoácido é uma molécula orgânica formada por átomos de carbono, hidrogênio, oxigênio, e nitrogênio unidos entre si de
maneira característica. Alguns aminoácidos também podem conter enxofre. Os aminoácidos são divididos em quatro partes: o grupo
amina (NH2), grupo carboxílico (COOH), hidrogênio, carbono alfa (todas partes se ligam a ele), e um radical característico de cada
aminoácido. Os aminoácidos se unem através de ligações peptídicas, formando as proteínas. Para que as células possam produzir
sua proteínas, elas precisam de aminoácidos, que podem ser obtidos a partir da alimentação ou serem fabricados pelo próprio
organismo. Os aminoácidos podem ser classificados nutricionalmente, quanto ao radical e quanto ao seu destino. Sobre o
metabolismo dos aminoácidos, julgue as asserções a seguir:
 (I) O aminoácido glutamina corresponde ao aminoácido central na via de conversão de íons amônio para serem transportados pela
corrente sanguínea
(II) Os aminoácidos que estão em excesso no organismo são desaminados, ou seja, são decompostos por desaminação e
convertidos em intermediários do Ciclo de Krebs
(III) O metabolismo dos aminoácidos faz conexão com o metabolismo dos carboidratos em vários pontos possíveis, à medida que os
aminoácidos são transformados em intermediários do Ciclo de Krebs
Assinale a alternativa correta:
A)
Apenas a asserção I está correta
B)
Apenas a asserção II está correta
C)
Apenas a asserção III está correta
D)
As asserções I, II e III estão corretas
E)
As asserções I e II estão corretas
O aluno respondeu e acertou. Alternativa(D)
Comentários:
D) 
Exercício 4:
As proteínas são compostos orgânicos de estrutura complexa e de alto peso molecular (de 5.000 a 1.000.000 ou mais unidades de
massa atômica), sintetizadas pelos organismos vivos através da condensação de um grande número de moléculas de alfa-
aminoácidos, através de ligações denominadas ligações peptídicas. Uma proteína é um conjunto de no minimo 80 aminoácidos, mas
sabemos que uma proteína possui muito mais que essa quantidade, sendo os conjuntos menores denominados polipeptídeos. Sobre
o metabolismo protéico, julgue as afirmações:
(I) O catabolismo protéico resulta em maior síntese de amônia
(II) O catabolismo protéico tem maior probabilidade de ocorrer em situações de hiperglicemia
(III) O catabolismo protéico tem maior probabilidade de ocorrer em situações de hipoglicemia
Assinale a alternativa correta:
A)
Apenas a afirmação I está correta
B)
Apenas a afirmação II está correta
C)
Apenas a afirmação III está correta
D)
Apenas as afirmações I e II estão corretas
E)
Apenas as afirmações I e III estão corretas
O aluno respondeu e acertou. Alternativa(E)
Comentários:
E) 
Exercício 5:
A manutenção da estrutura de uma proteína é essencial para que esta macromolécula desempenhe sua função biológica no
organismo. Uma alteração nas estruturas secundária e terciária de uma proteína pode resultar em falhas funcionais, em que o
organismo deixa de realizar funções importantes como, por exemplo, o transporte de oxigênio. Várias ligações e interações químicas
são responsáveis por permitir uma estabilidade química a proteína. A esse respeito, assinale a alternativa que apresenta uma
informação incorreta:
A)
As ligações de hidrogênio presentes na estrutura secundária não envolvem os radicais dos aminoácidos, enquanto que na estrutura
terciária há a participação dos radicais na formação das pontes de hidrogênio
B)
Temos como exemplo de proteínas fibrosas a miosina, a tropomiosina, a queratina, o fibrinogênio. As proteínas fibrosas nunca
apresentam a estrutura quaternária. Entretanto, as proteínas globulares como a hemoglobina, têm sua estrutura próxima a esférica
devido a sua compactação e podem apresentar a estrutura quaternária
C)
Fatores como temperatura, pH e pressão são responsáveis por alterar a estrutura terciária da proteínas e, consequentemente, sua
função biológica
D)
Hemoglobina é um exemplo de proteína que apresenta estrutura quaternária, ou seja, esta proteína é fruto da união de quatro
estruturas terciárias. Esta conformação é importante, pois aumenta a eficiência da função da proteína
E)
Todas as proteínas precisam ter uma estrutura quaternária estável para desencadear sua função. Tal estrutura é mantida por
ligações químicas entre os radicais dos aminoácidos e mudanças na estrutura terciária de uma proteína acarretam na perda da
função
O aluno respondeu e acertou. Alternativa(E)
Comentários:
E) 
Exercício 6:
A deficiência de argininosuccinase liase (ASL), responsável pela acidemia argininosuccínica, é uma das deficiências enzimáticas
mais comuns no ciclo da uréia. A deficiênciadessa enzima acarreta num aumento do nível de amônia plasmática, podendo provocar
lesões graves e irreversíveis ao recém-nascido. Se o diagnóstico e o tratamento não forem realizados a tempo o paciente pode
apresentar níveis de amônia de até duas ou três vezes os valores normais. Neste caso, deve-se suspender o aporte proteico e
seguir com uma dieta hiper-hidrocarbonada, associada ao benzoato de sódio e arginina oral. A partir dessas informações e de seus
conhecimentos, assinale a alternativa errada:
A)
É necessária uma dieta hipoproteica para portadores da deficiência em ASL para que não haja uma sobrecarga de amônia no ciclo
da ureia
B)
Apenas o nitrogênio precisa de vias especiais de catabolismo. Os alfacetoácidos resultantes do processo de degradação de
aminoácidos são utilizados pelo ciclo de Krebs
C)
A função do ciclo da ureia é a neutralização da amônia, convertendo-a em ureia que é menos tóxica e facilmente excretada pela
urina
D)
Alterações hepáticas têm como reflexo alterações no balanço nitrogenado, uma vez que o ciclo da uréia ocorre no fígado
E)
Apenas os aminoácidos obtidos pela síntese endógena são degradados pelo ciclo da ureia, enquanto que aqueles provenientes da
dieta são degrados diretamente pelo ciclo de Krebs
O aluno respondeu e acertou. Alternativa(E)
Comentários:
E)

Continue navegando