Buscar

Trabalho, energia e potencia

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 29 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 29 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 29 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
2 
SUMÁRIO 
 
TRABALHO – ENERGIA – POTÊNCIA ______________________________________________ 3 
ENERGIA POTENCIAL DE UM CORPO DE MASSA M __________________________________ 6 
ENERGIA POTENCIAL ELÁSTICA __________________________________________________ 8 
SISTEMAS NÃO CONSERVATIVOS _______________________________________________ 10 
POTÊNCIA __________________________________________________________________ 10 
POTÊNCIA MECÂNICA ________________________________________________________ 11 
POTÊNCIA TÉRMICA __________________________________________________________ 12 
ENERGIA POTENCIAL ELÉTRICA _________________________________________________ 13 
POTÊNCIA ELÉTRICA __________________________________________________________ 14 
RENDIMENTO _______________________________________________________________ 16 
EXERCÍCIOS DE COMBATE _____________________________________________________ 18 
GABARITO __________________________________________________________________ 28 
 
 
 
 
 
 
 
 
 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
3 
TRABALHO – ENERGIA – POTÊNCIA 
Vamos imaginar que temos um livro em cima de uma mesa, em repouso em relação ao solo. Para que o livro 
comece a se deslocar em relação ao solo, deve sofrer a ação de uma força externa. Como a velocidade de 
corpo varia com a ação de uma força externa, dizemos que esse corpo está sofrendo uma variação de energia. 
Podemos imaginar também um carro em movimento. É a força gerada pelo motor que faz a velocidade do 
carro aumentar, aumentando, consequentemente, a sua energia. Quando os freios são acionados, o atrito 
entre o pneu e o asfalto faz a velocidade diminuir, ou seja, a energia do carro começa a diminuir. 
Quando um agente externo realiza uma força sobre um sistema fazendo com que a velocidade do sistema 
sofra variações, dizemos que esse agente externo está realizando um trabalho (W) sobre o sistema. 
Essa variação de velocidade pode ser traduzida como variação de energia (cinética) do sistema. A energia total 
de um corpo chama-se energia mecânica (E), que é a soma de duas outras energias: energia potencial (Ep) e 
energia cinética (Ec): 
p cE E E  e c rE W  
Ou seja, energia cinética é a que muda quando há um trabalho sendo realizado pelo sistema (W > 0) ou sobre 
o sistema (W < 0). Supondo que haja n forças atuando em um corpo, se a velocidade aumentar, o trabalho 
resultante (Wr) é positivo, se diminuir, é negativo. Essa equivalência entre trabalho e energia cinética é 
chamada de teorema trabalho – energia. 
Energia Cinética de um corpo de massa m: 
2
c
mv
E
2
 
Então: 
 2 2c 0
m m
E v v 2a . S F . S
2 2
       
 
 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
4 
Lembrando-se de produto escalar, temos que: 
cE W θS sF co   
E que todo produto escalar gera um escalar. Ou seja, trabalho é uma grandeza escalar. 
Onde θ é o ângulo entre os vetores força  F e deslocamento  S . 
 A unidade de energia do S.I. é J (Joule). 
EXEMPLO 1: 
Uma bolinha de 2 kg é abandonada a uma altura de 5 m. Desprezando a resistência do ar, responda as 
perguntas abaixo: 
a) Qual a variação de energia cinética da bolinha do instante inicial até o momento em que toca no solo? 
b) Qual a velocidade final da bolinha? 
RESOLUÇÃO: 
a) A variação de energia cinética corresponde ao trabalho da força resultante. Como a única força que atua 
 no corpo é a força peso, podemos dizer que: 
cW E . .cos0°P H 20.5 100J    
Note que o ângulo entre os vetores peso  P e deslocamento  H vale zero. 
 
 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
5 
a)  2 2 2 2c 0
m 2
E v v v v 100 v 10m / s
2 2
        
 
EXEMPLO 2: 
Um bloco de pedra, de 40 kg, desce um plano inclinado a partir do repouso, deslizando sobre rolos de 
madeira, sem atrito. 
 
 Sabendo-se que o plano inclinado mede 12 m, calcule o trabalho resultante das forças que atuam no bloco. 
RESOLUÇÃO: 
As forças que atuam no bloco são peso e normal. Como a normal é perpendicular ao vetor deslocamento, ela 
não irá realizar trabalho (a normal não altera o módulo da velocidade do bloco). Então a força responsável 
pela variação da velocidade é a força peso. Temos que: 
r P
1
W W . . cos60° 400 . 12 .S 400JP 2
2
    
E se o bloco fosse abandonado na altura do plano inclinado (H = 12/sen30˚ = 6 m), qual seria o trabalho 
resultante? 
Nesse caso a única força atuante é o peso. Então: 
r P P HW W . 400 . 6 2400J    
O que podemos concluir com isso? Algo notável! Não importa a trajetória do corpo, a variação dasua energia 
cinética e, consequentemente, o trabalho resultante,só dependem do desnível (altura) entre as suas posições 
inicial e final: 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
6 
 
A B CW W W  
O trabalho resultante nas três trajetórias é o mesmo. 
Esses sistemas sem atuação de forças dissipativas (atrito, resistência do ar) são chamados de sistema 
conservativos. A energia mecânica do corpo é constante durante a trajetória. Conforme o corpo ganha 
velocidade (energia cinética), perde energia potencial. 
c pE E E constante   
ENERGIA POTENCIAL DE UM CORPO DE MASSA M 
Vamos estudar ao longo do curso três tipos de energias potencias: gravitacional, elástica e elétrica. Quando 
estiver falando de um corpo de massa m sofrendo um desnível h, sofrerá uma variação de energia potencial 
gravitacional. 
Vamos pegar o exemplo da situação anterior, dos corpos A, B e C caindo de uma altura h. A velocidade inicial 
dos corpos era zero. Então, inicialmente, suas energias mecânicas valiam: 
0 0 00 p c p
E E E E   
Como é um sistema conservativo, a energia total se conserva, ou seja: 
2 2
p 0 p0 p
mv mv
E E E E E
2 2
      
 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
7 
A energia potencial não tem um valor fixo. Não podemos calcular a energia potencial de um ponto, mas 
podemos medir a variação de energia potencial entre dois pontos! O que se faz nos exercícios é escolher um 
ponto para a energia potencial ser zero, e aí, achar a energia em outro ponto qualquer. Mas, de fato, o que 
calculamos é a sua variação. 
2
p0 p c
mv
E E E W P. H mgh
2
       
EXEMPLO 3: 
Uma bolinha de massa 80 g é arremessada do solo e alcança uma altura de 5 m, em relação ao solo. Qual foi a 
sua variação de energia potencial gravitacional? 
RESOLUÇÃO: 
Como a energia mecânica é constante: 
2 22
0 0
c p p p
mv mvmv
E E E E
2 2 2
         
Usando Torricelli: 
3
pE mgh 80 . 10 . 10 . 5 4J
    
Com isso conseguimos descobrir a sua velocidade inicial: 
2
20
0 03
mv 8
4 v v 10m / s
2 80 . 10
     
 
 
 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
8ENERGIA POTENCIAL ELÁSTICA 
Quando um corpo está atado a uma mola/ elástico, pode sofrer uma diferença de energia potencial elástica. 
Vamos imaginar um objeto preso a uma mola encolhida, em uma superfície horizontal. Ao soltar a mola, ela 
começara a se esticar, tendendo a voltar para a posição de equilíbrio. Durante esse movimento oscilatório, o 
objeto sofre variações de velocidade, ou seja, a sua energia cinética muda o tempo todo. A energia cinética 
mudando, há realização de trabalho. A força que faz a velocidade mudar é a força elástica  elF : 
elF c
W E  
O problema é que, como a força elástica depende da deformação da mola, durante o movimento oscilatório, a 
força elástica muda a cada instante de tempo. Como fazer para medir o trabalho da força elástica? 
Sabemos que, quando a mola estica sofrendo uma deformação x, a força elástica vale F –kx . Se a mola for 
esticada para a direita, a força elástica apontará a para esquerda (basta soltá-la que veremos para onde a 
mola começará a se mover). Façamos um gráfico F x x: 
 
A cada infinitésimo de deslocamento da mola, temos uma força elástica. Quanto melhor esse deslocamento, 
mais precisa será a força elástica instantânea. Somando todos os infinitésimos de trabalho teremos: 
0
x
x
W F . dx 
Para forças constantes: 
W F . x  
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
9 
Mas, no caso de forças que dependem de x ( F = F(x)) teríamos que resolver a integral acima. Mas, conforme 
já discutimos em cinemática, basta calcularmos a área do gráfico F x x. A área nada mais é do que a própria 
integral. Então, pelo gráfico, temos que: 
elF
Fx
W
2
 
Onde x é a deformação da mola (seu deslocamento). Então: 
el
2
F
kx
W
2

 
Usando o Teorema Trabalho – Energia: 
cW E  
E, como estamos em um sistema conservativo: 
c pE E   
Temos que a variação de energia potencial elástica quando um elástico é deformado de x vale: 
2
p
kx
E
2
  
EXEMPLO 4: 
Um bloco de massa m parte do repouso a uma altura h0 em relação ao solo. Ao final do movimento irá colidir 
com uma mola de constante elástica k. Qual será a máxima deformação sofrida pela mola? 
 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
10 
RESOLUÇÃO: 
Como é um sistema conservativo, a energia mecânica se conserva, ou seja, conforme o bloco vai caindo, como 
a sua energia cinética vai aumentando, podemos inferir que sofre uma queda de energia potencial 
gravitacional. Como o bloco é parado pela mola, toda a sua energia cinética é reduzida a zero, indicando que o 
sistema massa-mola vai ganhando energia potencial elástica. Logo: 
2
0
0
2mghkx
mgh x
2 k
   
SISTEMAS NÃO CONSERVATIVOS 
Um homem descendo de paraquedas e um carro que freia são exemplos de sistemas que a energia mecânica 
diminui com o tempo, ou seja, há dissipação de energia. A força que o vento faz no paraquedas faz com que a 
velocidade de queda seja praticamente constante durante um certo período, ou seja, o homem perde energia 
potencial (está caindo), mas a cinética fica constante, portanto sofre perda de energia mecânica. No caso do 
carro, a força de atrito dissipa energia cinética do sistema. 
No 1° caso, então, o trabalho do peso é igual, em módulo, ao trabalho da força do vento. Como não há 
variação de energia cinética, o trabalho total é nulo. Então: 
P VentoW W 0  
Já no 2° caso, o trabalho da força de atrito é igual a variação de energia cinética do carro: 
2 2
0 0
fat c
mv mv
W E 0
2 2
      
POTÊNCIA 
A grandeza potência (P) de um elemento (motor, por exemplo) mede o módulo da variação de sua energia 
cada intervalo de tempo. 
E
P
t



 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
11 
Unidade de potência do S.I. : W (Watts). 
Vamos estudar três tipos de potências: mecânica, térmica e elétrica. 
 
POTÊNCIA MECÂNICA 
É a potência exercida por uma força motriz ou por uma força dissipativa em um corpo de massa m. 
E W
P
t t

 
 
 
EXEMPLO 5: 
Um guindaste faz com que um corpo de massa 1,0 tonelada suba uma altura de 2,4 m em 2 minutos, com 
velocidade constante. Qual a potência do motor (ideal) do guindaste? 
RESOLUÇÃO: 
Como o corpo sobe com velocidade constante podemos inferir que o módulo do vetor peso é igual ao da força 
que o motor faz para levantá-lo (podemos pensar que há um cabo puxando-o, sendo assim, a tração seria a 
força motriz). 
4
TW T . S 2,4 . 10 J   
Então, a potência do motor será: 
42,4 . 10W
P 200W
t 120
  

 
Repare que colocamos o intervalo de tempo em segundos (S.I.). 
 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
12 
 
 
 
 
Perceba que potência também é uma grandeza escalar. 
 
POTÊNCIA TÉRMICA 
É o calor liberado para um sistema em um intervalo de tempo. 
E Q
P
t t

 
 
 
A unidade do S.I. continua sendo W, que equivale a J/s. Porém, nesse tipo de assunto, é comum a unidade 
cal/s ou Kcal/s. Lembrando que 1 cal ≈ 4,18 J. 
EXEMPLO 6: 
Um micro-ondas cuja potência vale 800 W é usado para aquecer 200 ml de água de 20C até 100C. 
Considerando que o sistema está no nível do mar, qual é o intervalo de tempo necessário para que a água 
sofra essa variação de temperatura? 
RESOLUÇÃO: 
Q mc T 200.4.80
P 800 t 80s
t t t

     
  
 
Usamos 1 cal = 4 J e que o calor específico da água vale 1 cal/g˚C, ou seja, 4 J/g˚C. E sua densidade, 1 g/cm3. 
Para deslocamentos com velocidade constante, podemos ver que: 
 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
13 
APROFUNDANDO (OPCIONAL) 
ENERGIA POTENCIAL ELÉTRICA 
Uma partícula eletrizada, livre de atuação de quaisquer outras forças, sofre variação de energia cinética 
quando submetida a uma região de atuação de um campo elétrico (E). Qual força realiza trabalho sobre a 
partícula? Ao entrar em uma região com campo elétrico, uma partícula carregada eletricamente sofre uma 
força chamada de força elétrica (FE). Podemos dizer que: 
EF q . E 
Sabemos também que: 
EF c
W E  
Para haver campo elétrico, a região deve estar submetida a uma diferença de potencial (U). Quando temos 
um campo elétrico uniforme E em um local, quanto maior a distância entre dois pontos, maior será a d.d.p., 
ou seja: 
AB ABE . d U 
Combinando as três equações, teremos: 
E EF E FB AA B cAB
d E .W dF . q W qU E     
A variação de velocidade da partícula só depende das suas posições finais e iniciais, e não da trajetória. 
EXEMPLO 7: 
Um elétron sofre um d.d.p. de 100 V. sabendo-se que partiu praticamente do repouso, qual será a sua 
velocidade final? 
 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
14 
RESOLUÇÃO: 
2
AB c AB
m
qU E qU v
2
    
31
19 2 2 14 69,1 . 101,6 . 10 . 100 v v 0,35 . 10 v 5,9 . 10 m / s
2

      
 
POTÊNCIA ELÉTRICA 
É a energia elétrica gerada/consumida por um ou mais elemento(s) de um circuito em um intervalo de tempo. 
Também podemos nos referir a potência elétrica quando uma partículasofre uma d.d.p., mudando a sua 
energia cinética. Sendo assim, o trabalho da força elétrica por intervalo de tempo também é potência elétrica. 
Nos circuitos, os elétrons se locomovem, sofrendo uma d.d.p.. De fato, as duas definições são equivalentes. 
E W qU
P
t t t

  
  
 
A quantidade de carga q que passa em um fio em um intervalo de tempo chama-se corrente elétrica (i): 
q
i
t


, poderíamos, sendo mais rigorosos, falar em variação de carga, aí 
q
i
t



 
Mas, para os nossos objetivos, são sinônimos. 
Então: 
P = i . U 
Ou seja, a potência elétrica de um elemento de um circuito só depende da corrente que passa neste elemento 
e da d.d.p. que o elemento está submetido. 
 Vamos discutir esse assunto com maior clareza em circuitos elétricos. 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
15 
EXEMPLO 8: 
Quando uma corrente elétrica passa por um resistor (R) parte de sua potência elétrica vira térmica. Isso se 
chama Efeito Joule. 
Suponha que um chuveiro elétrico sob d.d.p. de 220 V faz com que a água que estava na caixa d` água a 25C 
fique a 35C. Isso acontece porque, quando a água passa pela resistência elétrica dentro do chuveiro, ela 
aquece rapidamente a água. Sabendo-se que a vazão do chuveiro é de 3 litros por minuto, qual será a 
potência do chuveiro? 
RESOLUÇÃO: 
A potência elétrica absorvida pelo resistor vira integralmente térmica, nesse exemplo (o que, na prática, é 
impossível). Então: 
ELÉTRICA TÉRMICA
mc T
P P U . i
t

  

 
Vazão (z), como a questão informa, é a variação de volume de certo líquido por unidade de tempo: 
V
z
t



 
Como a densidade ( )de um líquido é a relação entre a sua massa e o seu volume: 
V m /    
Então: 
m /
z
t
 


 
 
 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
16 
Nesse caso, dizer que 3 l de água passam por minuto significa dizer que 3 kg de água passam por minuto no 
chuveiro, ou seja: 
33 . 10m m
50g / s
t t 60

  
 
 
Onde a variação de massa que passa pelo chuveiro é equivalente a massa m aquecida pelo mesmo. Agora 
(usando 1 cal = 4J): 
mc T
P 50 . 4 . 10 2000W ou 2kW
t

  

 
 
 
 
 
 
Para acharmos a corrente que passa no circuito do chuveiro: 
P U . i 2000 220. i i 9,1A    
RENDIMENTO 
Nenhum motor tem 100% de rendimento (η), ou seja, a potência útil será sempre menor que a potência 
nominal ou total. O rendimento é a relação entre a potência útil e a nominal. 
U
T
P
P
  
 
Perceba que, diminuindo a vazão do chuveiro a variação de temperatura da água é maior, 
já que a sua potência é constante. Conclusão, para tomar banho quente em chuveiro 
elétrico, devemos fechar um pouco a torneira. Pouca vazão, água quentinha. 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
17 
EXEMPLO 9: 
Vamos voltar ao nosso guindaste que levantou 1 tonelada a 2,4 m de altura em 2 minutos. Se o motor tivesse 
um rendimento de 25%, qual seria a sua potência nominal? 
RESOLUÇÃO: 
Achamos que a potência útil foi de 200 W. Então a sua potência nominal vale 800 W. Apenas 1/4 é 
aproveitado: 
U
T
P 200
0,25 P 800 W
P P
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
18 
 
1. (FUVEST 2015) A figura abaixo mostra o gráfico da energia potencial gravitacional U de uma esfera em 
uma pista, em função da componente horizontal x da posição da esfera na pista. 
 
 
 
A esfera é colocada em repouso na pista, na posição de abscissa 1x x , tendo energia mecânica E 0. A partir 
dessa condição, sua energia cinética tem valor 
 
Note e adote: 
– desconsidere efeitos dissipativos. 
a) máximo igual a 0U . 
b) igual a E quando 3x x . 
c) mínimo quando 2x x . 
d) máximo quando 3x x . 
e) máximo quando 2x x . 
 
 
 
 
 
 
 
 
 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
19 
2. (FUVEST 2015) No desenvolvimento do sistema amortecedor de queda de um elevador de massa m, o 
engenheiro projetista impõe que a mola deve se contrair de um valor máximo d, quando o elevador cai, a 
partir do repouso, de uma altura h, como ilustrado na figura abaixo. Para que a exigência do projetista seja 
satisfeita, a mola a ser empregada deve ter constante elástica dada por 
 
 
 
Note e adote: 
– forças dissipativas devem ser ignoradas; 
– a aceleração local da gravidade é g. 
a)   22mg h d / d 
b)   22mg h d / d 
c) 22 m g h / d 
d) mgh/ d 
e) mg / d 
 
 
3. (FUVEST 2014) Em uma competição de salto em distância, um atleta de 70 kg tem, imediatamente antes do 
salto, uma velocidade na direção horizontal de módulo 10 m/s. Ao saltar, o atleta usa seus músculos para 
empurrar o chão na direção vertical, produzindo uma energia de 500 J, sendo 70% desse valor na forma de 
energia cinética. Imediatamente após se separar do chão, o módulo da velocidade do atleta é mais próximo de 
a) 10,0 m/s 
b) 10,5 m/s 
c) 12,2 m/s 
d) 13,2 m/s 
e) 13,8 m/s 
 
 
 
 
 
 
 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
20 
4. (EsPCEx (AMAN) 2012) Uma força constante F de intensidade 25N atua sobre um bloco e faz com que 
ele sofra um deslocamento horizontal. A direção da força forma um ângulo de 60° com a direção do 
deslocamento. Desprezando todos os atritos, a força faz o bloco percorrer uma distância de 20 m em 5 s. 
 
 
 
A potência desenvolvida pela força é de: 
Dados: Sen60 0,87; Cos60 0,50. 
a) 87 W 
b) 50 W 
c) 37 W 
d) 13 W 
e) 10 W 
 
5. (EsPCEx (AMAN) 2012) Um corpo de massa 4kg está em queda livre no campo gravitacional da Terra e 
não há nenhuma força dissipativa atuando. Em determinado ponto, ele possui uma energia potencial, em 
relação ao solo, de 9 J, e sua energia cinética vale 9 J. A velocidade do corpo, ao atingir o solo, é de: 
a) 5m s 
b) 4 m s 
c) 3m s 
d) 2 m s 
e) 1m s 
 
6. (EsPCEx (AMAN) 2011) Um bloco, puxado por meio de uma corda inextensível e de massa desprezível, 
desliza sobre uma superfície horizontal com atrito, descrevendo um movimento retilíneo e uniforme. A corda 
faz um ângulo de 53 com a horizontal e a tração que ela transmite ao bloco é de 80 N. Se o bloco sofrer um 
deslocamento de 20 m ao longo da superfície, o trabalho realizado pela tração no bloco será de: 
(Dados: sen 53 = 0,8 e cos 53 = 0,6) 
a) 480 J 
b) 640 J 
c) 960 J 
d) 1280 J 
e) 1600 J 
 
 
 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
21 
7. (FUVEST 2011) Usando um sistema formado por uma corda e uma roldana, um homem levanta uma caixa 
de massa m, aplicando na corda uma força F que forma um ângulo  com a direção vertical, como mostra a 
figura. O trabalho realizadopela resultante das forças que atuam na caixa 
– peso e força da corda –, quando o centro de massa da caixa é elevado, com velocidade constante v, desde a 
altura ya até a altura yb, é: 
 
 
a) nulo. 
b) F (yb – ya). 
c) mg(yb – ya). 
d) F cos   (yb – ya). 
e) mg (yb – ya) + mv
2/2. 
 
8. (EPCAr (AFA) 2011) Duas esferinhas A e B, de massas 2m e m, respectivamente, são lançadas com a 
mesma energia cinética do ponto P e seguem as trajetórias indicadas na figura abaixo. 
 
 
 
Sendo a aceleração da gravidade local constante e a resistência do ar desprezível, é correto afirmar que a 
razão A
B
V
V
 
 
 
 entre as velocidades das esferinhas A e B imediatamente antes de atingir o solo é 
a) igual a 1 
b) maior que 1 
c) maior que 2 
d) menor que 1 
 
 
 
 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
22 
9. (FUVEST 2011) Um esqueitista treina em uma pista cujo perfil está representado na figura abaixo. 
O trecho horizontal AB está a uma altura h = 2,4 m em relação ao trecho, também horizontal, CD. 
O esqueitista percorre a pista no sentido de A para D. No trecho AB, ele está com velocidade constante, de 
módulo v = 4 m/s; em seguida, desce a rampa BC, percorre o trecho CD, o mais baixo da pista, e sobe a outra 
rampa até atingir uma altura máxima H, em relação a CD. A velocidade do esqueitista no trecho CD e a altura 
máxima H são, respectivamente, iguais a 
 
 
 
NOTE E ADOTE 
g = 10 m/s2 
Desconsiderar: 
– Efeitos dissipativos. 
– Movimentos do esqueitista em relação ao esqueite. 
a) 5 m/s e 2,4 m. 
b) 7 m/s e 2,4 m. 
c) 7 m/s e 3,2 m. 
d) 8 m/s e 2,4 m. 
e) 8 m/s e 3,2 m. 
 
10. (EsPCEx (AMAN) 2011) A mola ideal, representada no desenho I abaixo, possui constante elástica de 256 
N/m. Ela é comprimida por um bloco, de massa 2 kg, que pode mover-se numa pista com um trecho 
horizontal e uma elevação de altura h = 10 cm. O ponto C, no interior do bloco, indica o seu centro de massa. 
Não existe atrito de qualquer tipo neste sistema e a aceleração da gravidade é igual a 210m/ s . Para que o 
bloco, impulsionado exclusivamente pela mola, atinja a parte mais elevada da pista com a velocidade nula e 
com o ponto C na linha vertical tracejada, conforme indicado no desenho II, a mola deve ter sofrido, 
inicialmente, uma compressão de: 
 
 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
23 
a) 31,50 10 m 
b) 21,18 10 m 
c) 11,25 10 m 
d) 12,5 10 m 
e) 18,75 10 m 
 
11. (FUVEST 2007) Uma bola chutada horizontalmente de cima de uma laje, com velocidade V0, tem sua 
trajetória parcialmente registrada em uma foto, representada no desenho a seguir. A bola bate no chão, no 
ponto A, voltando a atingir o chão em B, em choques parcialmente inelásticos. 
 
 
 
NOTE E ADOTE 
Nos choques, a velocidade horizontal da bola não é alterada. 
 
Desconsidere a resistência do ar, o atrito e os efeitos de rotação da bola. 
a) Estime o tempo T, em s, que a bola leva até atingir o chão, no ponto A. 
b) Calcule a distância D, em metros, entre os pontos A e B. 
c) Determine o módulo da velocidade vertical da bola VA, em m/s, logo após seu impacto com o chão no 
 ponto A. 
 
12. (FUVEST 2005) Um sistema mecânico faz com que um corpo de massa M0, após um certo tempo em 
queda, atinja uma velocidade descendente constante V0, devido ao efeito do movimento de outra massa m, 
que age como freio. A massa m é vinculada a uma haste H, presa ao eixo E de um cilindro C, de raio R0, 
conforme mostrado na figura a seguir. 
Quando a massa M0 cai, desenrola-se um fio que movimenta o cilindro e o eixo, fazendo com que a massa m 
descreva um movimento circular de raio R0. A velocidade V0 é mantida constante, pela força de atrito, entre a 
massa m e a parede A, devido ao coeficiente de atrito ì entre elas e à força centrípeta que age sobre essa 
massa. Para tal situação, em função dos parâmetros m, M0, R0, V0, ì e g, determine: 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
24 
 
 
NOTE E ADOTE: 
O trabalho dissipado pela força de atrito em uma volta é igual ao trabalho realizado pela força peso, no 
movimento correspondente da massa M0, com velocidade V0. 
 
a) o trabalho Tg, realizado pela força da gravidade, quando a massa M0 percorre uma distância vertical 
 correspondente a uma volta completa do cilindro C. 
b) o trabalho TA, dissipado pela força de atrito, quando a massa m realiza uma volta completa. 
c) a velocidade V0, em função das demais variáveis. 
 
13. (FUVEST 2004) Nos manuais de automóveis, a caracterização dos motores é feita em CV (cavalo-vapor). 
Essa unidade, proposta no tempo das primeiras máquinas a vapor, correspondia à capacidade de um cavalo 
típico, que conseguia erguer, na vertical, com auxílio de uma roldana, um bloco de 75 kg, à velocidade de 
1 m/s. Para subir uma ladeira, inclinada como na figura, um carro de 1000 kg, mantendo uma velocidade 
constante de 15 m/s (54 km/h), desenvolve uma potência útil que, em CV, é, aproximadamente, de 
 
 
 
a) 20 CV 
b) 40 CV 
c) 50 CV 
d) 100 CV 
e) 150 CV 
 
 
 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
25 
14. (FUVEST 2003) Uma criança estava no chão. Foi então levantada por sua mãe que a colocou em um 
escorregador a uma altura de 2,0m em relação ao solo. Partindo do repouso, a criança deslizou e chegou 
novamente ao chão com velocidade igual a 4m/s. Sendo T o trabalho realizado pela mãe ao suspender o filho, 
e sendo a aceleração da gravidade g = 10 m/s2, a energia dissipada por atrito, ao escorregar, é 
aproximadamente igual a 
a) 0,1 T 
b) 0,2 T 
c) 0,6 T 
d) 0,9 T 
e) 1,0 T 
 
15. (FUVEST 1999) Um objeto de massa 8,0kg e volume 1,0 litro está imerso em um líquido de densidade 
igual à da água, contido num grande recipiente, como mostra a figura. O objeto se move para baixo com 
velocidade constante v=0,20m/s, devido à ação conjunta da gravidade, do empuxo e da resistência viscosa do 
líquido ao movimento. Podemos afirmar que a quantidade de energia transformada em calor, a cada segundo, 
no sistema "objeto-líquido" é de: 
 
a) 0,0 J 
b) 0,14 J 
c) 0,16 J 
d) 14 J 
e) 16 J 
 
16. (FUVEST 1998) Um brinquedo é constituído por um cano (tubo) em forma de 
3
4
de arco de circunferência, 
de raio médio R, posicionado num plano vertical, como mostra a figura. O desafio é fazer com que a bola 1, ao 
ser abandonada de uma certa altura H acima da extremidade B, entre pelo cano em A, bata na bola 2 que se 
encontra parada em B, ficando nela grudada, e ambas atinjam juntas a extremidade A. As massas das bolas 1 
e 2 são M1 e M2, respectivamente. Despreze os efeitos do ar e das forças de atrito. 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
26 
 
 
a) Determine a velocidade v com que as duas bolas grudadas devem sair da extremidade B do tubo para 
 atingir a extremidade A. 
b) Determine o valor de H para que o desafio seja vencido. 
 
17. (FUVEST 1998) Uma esteira rolante transporta 15 caixas de bebida por minuto, de um depósito no sub-
solo até o andar térreo.A esteira tem comprimento de 12m, inclinação de 30° com a horizontal e move-se 
com velocidade constante. As caixas a serem transportadas já são colocadas com a velocidade da esteira. 
Se cada caixa pesa 200N, o motor que aciona esse mecanismo deve fornecer a potência de: 
a) 20 W 
b) 40 W 
c) 300 W 
d) 600 W 
e) 1800 W 
 
18. (FUVEST 1996) Um pequeno corpo de massa m é abandonado em A com velocidade nula e escorrega ao 
longo do plano inclinado, percorrendo a distância d = AB . Ao chegar a B, verifica-se que sua velocidade é igual 
a gh . Pode-se então deduzir que o valor da força de atrito que agiu sobre o corpo, supondo-a constante, é 
 
 
a) zero. 
b) mgh. 
c) mgh/2. 
d) mgh/2d. 
e) mgh/4d. 
 
 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
27 
19. (FUVEST 1995) Um corpo de massa m está em movimento circular sobre um plano horizontal, preso por 
uma haste rígida de massa desprezível e comprimento R. A outra extremidade da haste está presa a um ponto 
fixo P, como mostra a figura a seguir (em perspectiva). O coeficiente de atrito entre o corpo e o plano é ì, 
constante. Num dado instante, o corpo tem velocidade de módulo V e direção paralela ao plano e 
perpendicular à haste. 
 
 
 
a) Qual deve ser o valor de V para que o corpo pare após 2 (duas) voltas completas? 
b) Qual o tempo gasto pelo corpo para percorrer a última volta antes de parar? 
c) Qual o trabalho realizado pela força de atrito durante a última volta? 
 
20. (FUVEST 1992) Adote: g = 10 m/s2 
Uma mola pendurada num suporte apresenta comprimento igual a 20 cm. Na sua extremidade livre 
dependura-se um balde vazio, cuja massa é 0,50 kg. Em seguida, coloca-se água no balde até que o 
comprimento da mola atinja 40 cm. O gráfico a seguir ilustra a força que a mola exerce sobre o balde, em 
função do seu comprimento. Pede-se: 
a) a massa de água colocada no balde; 
b) a energia potencial elástica acumulada na mola no final do processo. 
 
 
 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
28 
 
1. 
RESPOSTA: E 
 
2. 
RESPOSTA: A 
 
3. 
RESPOSTA: B 
 
4. 
RESPOSTA: B 
 
5. 
RESPOSTA: C 
 
6. 
RESPOSTA: C 
 
7. 
RESPOSTA: A 
 
8. 
RESPOSTA: D 
 
9. 
RESPOSTA: E 
 
10. 
RESPOSTA: C 
 
 
 
FÍSICA 
 
 
Prof. RICARDO FAGUNDES PROMILITARES  COLÉGIO NAVAL/EPCAR  MÓDULO 10 
 
 
 
29 
11. 
a) 0,8 s 
b) 2,4 m 
c) 6,0 m/s. 
 
12. 
a) M0g . 2πR0 
b) – M0g . 2πR0 
c) 0 0
M gR
m
 
 
 
 
 
13. 
RESPOSTA: A 
 
14. 
RESPOSTA: C 
 
15. 
RESPOSTA: D 
 
16. 
a) v =  Rg / 2 
b) H = [(M1 + M2)/M1]
2 . 
R
4
 
17. 
RESPOSTA: C 
 
18. 
RESPOSTA: D 
 
19. 
a) 2 (2. . .g.R) 
b) 
2 ( .R)
.g


 
c) – μ.m.g.2.π.R. 
 
20. 
a) 9,5 kg. 
b) 10 J.

Outros materiais