Buscar

Cópia de APG 24

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 13 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 13 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 13 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

1. Compreender a diferenciação do remodelamento ósseo (composição,formação,reparação, processo de 
crescimento) 
2. Discutir a histologia dos ossos (caracteristica e função) 
 
HISTOLOGIA ÓSSEA 
Examinaremos agora a estrutura do osso em nível microscópico. Como os outros tecidos conjuntivos, o osso, ou tecido 
ósseo, contém uma matriz extracelular abundante entre células bem separadas. A matriz extracelular é formada por cerca 
de 15% de água, 30% de fibras colágenas e 55% de sais minerais cristalizados. O sal mineral mais encontrado é o fosfato 
de cálcio [Ca3(PO4)2], que se combina com outro sal mineral, o hidróxido de cálcio [Ca(OH)2], para formar cristais 
de hidroxiapatita [Ca10(PO4)6(OH)2]. Os cristais se combinam ainda com outros sais minerais, como carbonato de cálcio 
(CaCO3), e íons como magnésio, fluoreto, potássio e sulfato. Conforme esses sais são depositados na estrutura formada 
pelas fibras de colágeno da matriz extracelular, eles cristalizam e o tecido endurece. Esse processo, chamado calcificação, 
é iniciado por células formadoras de osso chamadas osteoblastos (descritos a seguir). 
Acreditava-se que a calcificação ocorresse simplesmente quando havia sais minerais suficientes para formar cristais. 
Hoje sabemos que o processo demanda fibras de colágeno. Os sais minerais começam a cristalizar primeiro nos espaços 
microscópicos entre as fibras de colágeno. Depois do preenchimento dos espaços, cristais minerais se acumulam ao redor 
das fibras de colágeno. A combinação de sais cristalizados e fibras colágenas é responsável pelas características do osso. 
Embora a solidez de um osso dependa de sais minerais inorgânicos cristalizados, sua flexibilidade depende das fibras 
de colágeno. Como as barras de metal de reforço em concreto, as fibras de colágeno e outras moléculas orgânicas 
conferem resistência à tração, ou seja, resistência ao estiramento ou à separação. A imersão do osso em solução ácida, 
como vinagre, dissolve seus sais minerais, fazendo com que o osso fique mole e flexível. Como você verá a seguir, quando 
surge a necessidade por minerais específicos ou como parte da formação ou degeneração óssea, células ósseas chamadas 
osteoclastos produzem enzimas e ácidos que degradam tanto os sais minerais quanto as fibras de colágeno da matriz 
extracelular óssea. 
Quatro tipos de células são encontrados no tecido ósseo: células osteogênicas (osteoprogenitoras), osteoblastos, 
osteócitos e osteoclastos (Figura 6.2). 
1. As células osteogênicas (osteoprogenitoras) são células-tronco ósseas não especializadas derivadas do 
mesênquima, tecido a partir do qual quase todos os tecidos conjuntivos são formados. São as únicas células 
ósseas que sofrem divisão celular; as células resultantes se tornam osteoblastos. As células osteoprogenitoras são 
encontradas ao longo da parte interna do periósteo, no endósteo e nos canais internos ósseos que contêm vasos 
sanguíneos. 
2. Os osteoblastos são células formadoras de osso. Elas sintetizam e secretam fibras de colágeno e outros 
componentes orgânicos necessários para formar a matriz extracelular do tecido ósseo e iniciam a calcificação 
(descrita a seguir). Uma vez que os próprios osteoblastos são recobertos por matriz extracelular, tornam-se 
aprisionados em suas secreções e transformam-se em osteócitos. (Observação: O sufixo blasto em uma célula 
óssea ou qualquer outra célula de tecido conjuntivo quer dizer que a mesma produz matriz extracelular.) 
Figura 6.2 Tipos de células no tecido ósseo. MEV, microscopia eletrônica de varredura. 
As células osteoprogenitoras sofrem divisão celular e se desenvolvem nos osteoblastos, que produzem a matriz 
extracelular óssea. 
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter06.html#ch6fig2
 
3. Os osteócitos, células ósseas maduras, são as principais células do tecido ósseo, responsáveis pelo metabolismo 
ósseo diário, como a troca de nutrientes e resíduos com o sangue. Assim como os osteoblastos, os osteócitos não 
sofrem divisão celular. (Observação: O sufixo cito uma célula óssea ou qualquer outra célula tecidual quer dizer 
que a célula mantém e monitora o tecido.) 
4. Os osteoclastos são células enormes derivadas da fusão de cerca de 50 monócitos (um tipo de leucócito), que se 
concentram no endósteo. No lado da célula que faz contato com a superfície óssea, a membrana plasmática do 
osteoclasto apresenta dobras profundas, formando uma borda pregueada. Aqui, a célula libera poderosos ácidos e 
enzimas lisossômicas que digerem os componentes minerais e proteicos da matriz extracelular óssea subjacente. 
Essa degeneração da matriz extracelular óssea, chamada reabsorção, é parte do desenvolvimento, da manutenção 
e do reparo ósseos. (Observação: O sufixo clasto quer dizer que a célula degrada matriz extracelular óssea.) 
Conforme será abordado posteriormente, em resposta a certos hormônios, os osteoclastos ajudam a regular o 
nível sanguíneo de cálcio (ver Seção 6.7). Além disso, são as células-alvo da terapia medicamentosa de 
osteoporose (ver Distúrbios | Desequilíbrios homeostáticos ao final deste capítulo). 
Os ossos não são completamente compactos e apresentam muitos espaços minúsculos entre suas células e os 
componentes da matriz extracelular. Alguns espaços servem de canais para vasos sanguíneos que suprem as células 
ósseas com nutrientes. Outros espaços atuam como áreas de armazenamento para a medula óssea vermelha. Dependendo 
do tamanho e da distribuição dos espaços, as regiões de um osso podem ser classificadas como compactas ou esponjosas 
(ver Figura 6.1). Em geral, cerca de 80% do esqueleto é de osso compacto e 20% é de osso esponjoso. 
TECIDO ÓSSEO COMPACTO 
 O tecido ósseo compacto apresenta poucos espaços (Figura 6.3A) e é a forma de tecido ósseo mais resistente. É 
encontrado abaixo do periósteo de todos os ossos e constitui a maior parte das diáfises dos ossos longos. O tecido ósseo 
compacto oferece proteção e suporte e resiste aos estresses produzidos pelo peso e movimento. 
O tecido ósseo compacto é composto por unidades estruturais repetidas – os ósteons ou sistemas de Havers. Cada 
ósteon é constituído por lamelas concêntricas distribuídas ao redor de um canal central ou canal de Havers. Lembrando os 
anéis de crescimento de uma árvore, as lamelas concêntricas são lâminas circulares de matriz extracelular mineralizada, 
de diâmetro crescente, que circundam uma pequena rede de vasos sanguíneos e nervos localizada no canal central 
(Figura 6.3A). Essas unidades de osso similares a tubos geralmente formam uma série de cilindros paralelos que, nos 
ossos longos, tendem a ser paralelos ao eixo longitudinal do osso. Entre as lamelas concêntricas, são encontrados 
pequenos espaços chamados lacunas, contendo osteócitos. Irradiando para todas as direções a partir das lacunas, 
observamos canalículos cheios de líquido extracelular. Nos canalículos, são encontrados finos processos digitiformes dos 
osteócitos (ver ilustração na Figura 6.3A). Os osteócitos vizinhos se comunicam por junções comunicantes (ver Seção 4.2). 
Os canalículos conectam as lacunas umas às outras e aos canais centrais, formando um complexo sistema miniatura de 
canais interconectados por todo o osso. Esse sistema oferece muitas rotas para os nutrientes e oxigênio chegarem aos 
osteócitos e para a remoção de resíduos. 
Os ósteons no tecido ósseo compacto são alinhados na mesma direção e paralelos ao comprimento da diáfise. Por 
isso, a diáfise de um osso longo resiste à envergadura ou à fratura mesmo quando uma força considerável é aplicada nas 
extremidades. O tecido ósseo compacto tende a ser mais espesso nas partes do osso onde as tensões são aplicadas em 
relativamente poucas direções. As linhas de tensão em um osso não são estáticas. Elas mudam conforme a pessoa 
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter06.html#ch6-7
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter06.html#ch6fig1https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter06.html#ch6fig3
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter06.html#ch6fig3
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter06.html#ch6fig3
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter04.html#ch4-2
aprende a andar e em resposta à atividade física extrema repetitiva como treinamento com peso. As linhas de tensão em 
um osso também podem mudar por conta de fraturas ou deformidades físicas. Dessa forma, a organização dos ósteons 
não é estática e muda ao longo do tempo em resposta às demandas físicas aplicadas ao esqueleto. 
As áreas entre os ósteons vizinhos contêm lamelas chamadas lamelas intersticiais, as quais também apresentam 
lacunas com osteócitos e canalículos. As lamelas intersticiais são fragmentos de ósteons mais antigos parcialmente 
destruídos durante o crescimento ou a reconstrução óssea. 
Os vasos sanguíneos e nervos do periósteo penetram no osso compacto através de canais perfurantes transversos 
ou canais de Volkmann. Os vasos e nervos dos canais perfurantes se conectam àqueles da cavidade medular, do periósteo 
e dos canais centrais. 
As lamelas chamadas lamelas circunferenciais se encontram distribuídas ao redor de toda a circunferência interna e 
externa da diáfise de um osso longo. Elas se desenvolvem durante a formação óssea inicial. As lamelas circunferenciais 
diretamente profundas ao periósteo são chamadas lamelas circunferenciais externas, as quais se conectam ao periósteo 
pelas fibras perfurantes (Sharpey). As lamelas circunferenciais que revestem a cavidade medular são chamadas lamelas 
circunferenciais internas (Figura 6.3A). 
TECIDO ÓSSEO ESPONJOSO 
 Em contraste com o tecido ósseo compacto, o tecido ósseo esponjoso, também chamado tecido ósseo 
reticular ou trabecular, não contém ósteons (Figura 6.3B, C). O tecido ósseo esponjoso está sempre localizado 
no interior do osso, protegido por uma camada de osso compacto. O tecido ósseo esponjoso consiste em lamelas dispostas 
em um padrão irregular de finas colunas chamadas trabéculas. Entre as trabéculas, é possível observar espaços a olho nu. 
Esses espaços macroscópicos são preenchidos por medula óssea vermelha nos ossos que produzem células sanguíneas e 
por medula óssea amarela (tecido adiposo) em outros ossos. Os dois tipos de medula óssea contêm numerosos e 
pequenos vasos sanguíneos que fornecem nutrição aos osteócitos. Cada trabécula consiste em lamelas concêntricas, 
osteócitos que repousam nas lacunas e canalículos que se irradiam para fora das lacunas. 
Figura 6.3 Histologia do osso compacto e esponjoso. A. Cortes através da diáfise de um osso longo, a partir do periósteo 
circundante, à direita, até o osso compacto, no meio, e osso esponjoso e cavidade medular à esquerda. A ilustração menor 
no canto superior direito mostra um osteócito em uma lacuna. B, C. Detalhes do osso esponjoso. Ver a Tabela 4.7 para 
analisar uma fotomicrografia de tecido ósseo compacto e a Figura 6.11A para examinar uma micrografia eletrônica de 
varredura de tecido ósseo esponjoso. 
O tecido ósseo é organizado em lamelas concêntricas ao redor de um canal central (de Havers) no osso compacto e em 
lamelas irregularmente dispostas nas trabéculas no osso esponjoso. 
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter06.html#ch6fig3
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter06.html#ch6fig3
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter04.html#ch4tab7
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter06.html#ch6fig11
 
O tecido ósseo esponjoso compõe a maior parte do tecido ósseo interno dos ossos curtos, planos, sesamoides e 
irregulares. Nos ossos longos, ele constitui o cerne da epífise abaixo da fina camada, como de papel, de osso compacto e 
forma uma borda estreita variável que margeia a cavidade medular da diáfise. O osso esponjoso é sempre coberto por 
uma camada de osso compacto para efeito de proteção. 
A princípio, as trabéculas do tecido ósseo esponjoso podem parecer menos organizadas que os ósteons do tecido 
ósseo compacto. Entretanto, estão precisamente orientadas ao longo das linhas de tensão, uma característica que ajuda os 
ossos a resistir a estresses e transferir forças sem quebrar. O tecido ósseo esponjoso tende a se localizar onde os ossos 
não são fortemente tensionados ou onde os estresses são aplicados a partir de muitas direções. As trabéculas não 
atingem sua disposição final até que a locomoção seja completamente aprendida. Na verdade, a distribuição pode ainda 
ser alterada, já que as linhas de tensão podem mudar em decorrência de uma deformidade ou fratura mal reparada. 
O tecido ósseo esponjoso é diferente do tecido ósseo compacto em dois aspectos. Primeiro, o tecido ósseo esponjoso 
é leve, o que reduz o peso geral do osso. Essa redução de peso possibilita a movimentação mais ágil quando o osso é 
tracionado pelo músculo esquelético. Segundo, as trabéculas do tecido ósseo esponjoso suportam e protegem a medula 
óssea vermelha. O osso esponjoso nos ossos do quadril, nas costelas, no esterno, nas vértebras e nas extremidades 
proximais do úmero e do fêmur é onde medula óssea vermelha é armazenada e, portanto, o local onde ocorre a 
hematopoese (produção de células sanguíneas) em adultos. 
 
FORMAÇÃO DO OSSO 
O processo pelo qual o osso se forma é chamado ossificação ou osteogênese. A formação óssea ocorre em quatro 
situações principais: 
(1) na formação inicial dos ossos no embrião e feto, 
(2) no crescimento dos ossos durante a infância e adolescência até chegar ao tamanho adulto, 
(3) na remodelação do osso (substituição de tecido ósseo velho por novo ao longo da vida) e 
(4) no reparo de fraturas que acontecem ao longo da vida. 
 
FORMAÇÃO ÓSSEA INICIAL NO EMBRIÃO E NO FETO 
 Primeiramente, vamos considerar a formação óssea inicial no embrião e no feto. O “esqueleto” embrionário, composto, 
em princípio, por mesênquima na forma geral de ossos, é o local onde a formação de cartilagem e a ossificação ocorrem 
durante a sexta semana do desenvolvimento embrionário. A formação óssea segue um de dois padrões. 
 Os dois padrões de formação óssea, que envolvem a substituição de um tecido conjuntivo preexistente por osso, não 
produzem diferenças na estrutura dos ossos maduros, e são simplesmente métodos diferentes de desenvolvimento ósseo. 
No primeiro tipo de ossificação, chamado ossificação intramembranosa, o osso se forma diretamente dentro do 
mesênquima, o qual é disposto em camadas finas como folhas de papel que lembram membranas. No segundo 
tipo, ossificação endocondral, o osso se forma dentro da cartilagem hialina que se desenvolve a partir do mesênquima. 
OSSIFICAÇÃO INTRAMEMBRANOSA 
A ossificação intramembranosa é o mais simples dos dois métodos de formação óssea. Os ossos planos do crânio, a 
maioria dos ossos faciais, a mandíbula e a parte medial da clavícula são formados dessa maneira. Além disso, os fontículos 
(moleiras) que ajudam o crânio fetal a passar pelo canal vaginal endurecem posteriormente à medida que vão sofrendo 
ossificação intramembranosa, que ocorre da seguinte maneira (Figura 6.5): 
 Desenvolvimento do centro de ossificação. No local em que o osso vai se desenvolver, mensagens 
químicas específicas fazem com que as células do mesênquima se agrupem e se diferenciem, 
primeiramente em células osteogênicas e, depois, em osteoblastos. O local dessa aglomeração é 
chamado centro de ossificação. Os osteoblastos secretam a matriz extracelular orgânica do osso até 
ficarem circundados por ela. 
 Calcificação. Em seguida, a secreção de matriz extracelular cessa e as células, agora chamadas 
osteócitos, encontram-se nas lacunas e estendem seus processos citoplasmáticos estreitos pelos canalículos 
que irradiam para todas as direções.Em poucos dias, cálcio e outros sais minerais são depositados e a 
matriz extracelular endurece ou calcifica (calcificação). 
 Formação das trabéculas. Conforme a matriz extracelular óssea vai se formando, ela se desenvolve 
em trabéculas que se fundem umas com as outras para formar osso esponjoso ao redor da rede de vasos 
sanguíneos no tecido. O tecido conjuntivo associado aos vasos sanguíneos nas trabéculas se diferencia em 
medula óssea vermelha. 
 Desenvolvimento do periósteo. Junto com a formação das trabéculas, o mesênquima se condensa na 
periferia do osso e se transforma em periósteo. Por fim, uma fina camada de osso compacto substitui as 
camadas superficiais do osso esponjoso, porém o osso esponjoso permanece no centro. Muito do osso 
recém-formado é remodelado (destruído e reformado) pelas transformações que o osso sofre para chegar 
a seu tamanho e forma adultos. 
A ossificação intramembranosa envolve formação de osso no mesênquima organizado em camadas laminares semelhantes 
a membranas. 
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter06.html#ch6fig5
 
OSSIFICAÇÃO ENDOCONDRAL 
A substituição da cartilagem por osso é chamada ossificação endocondral. Embora a maioria dos ossos do corpo seja 
formada dessa maneira, o processo é observado melhor no osso longo, ocorrendo da seguinte maneira (Figura 6.6): 
 Desenvolvimento do modelo de cartilagem. No local onde o osso será formado, mensagens químicas 
específicas fazem com que células no mesênquima se aglomerem no formato do futuro osso e, em 
seguida, se desenvolvam em condroblastos. Os condroblastos secretam matriz extracelular cartilaginosa, 
produzindo um modelo de cartilagem que consiste em cartilagem hialina. Uma cobertura 
chamada pericôndrio se desenvolve em torno do modelo de cartilagem. 
 Crescimento do modelo de cartilagem. Quando os condroblastos se encontram profundamente 
imersos na matriz extracelular cartilaginosa, eles passam a ser chamados condrócitos. O comprimento do 
modelo de cartilagem cresce pela divisão celular contínua dos condrócitos, acompanhada por mais secreção 
de matriz extracelular cartilaginosa. Este tipo de crescimento cartilaginoso, chamado crescimento 
intersticial (endógeno) (crescimento a partir de dentro), resulta em crescimento em comprimento. Em 
contraste, o crescimento da cartilagem em espessura decorre principalmente pelo depósito de material de 
matriz extracelular na superfície cartilaginosa do modelo por novos condroblastos que se desenvolvem a 
partir do pericôndrio. Esse processo é chamado crescimento por aposição (exógeno), o que quer dizer 
crescimento na superfície externa. Os crescimentos intersticial e por aposição da cartilagem estão 
descritos em mais detalhes na Seção 4.5. 
 Com o crescimento do modelo de cartilagem, os condrócitos na sua região média 
hipertrofiam (aumentam de tamanho) e a matriz extracelular cartilaginosa circundante 
começa a calcificar. Os outros condrócitos dentro da cartilagem em calcificação morrem 
porque os nutrientes não podem mais ser difundidos com rapidez suficiente pela matriz 
extracelular. Os espaços deixados pelos condrócitos mortos formam pequenas cavidades 
chamadas lacunas. 
 Desenvolvimento do centro de ossificação primário. A ossificação primária ocorre para dentro, a partir 
da superfície externa do osso. Uma artéria nutrícia penetra no pericôndrio e no modelo de cartilagem em 
calcificação por um forame nutrício na região média do modelo cartilaginoso, estimulando as células 
osteoprogenitoras no pericôndrio a se diferenciarem em osteoblastos. Uma vez que o pericôndrio começa a 
formar osso, passa a ser chamado periósteo. Próximo ao meio do modelo, capilares periosteais crescem pela 
cartilagem calcificada em desintegração, induzindo o crescimento do centro de ossificação primário, que 
consiste em uma região onde tecido ósseo vai substituir a maioria da cartilagem. Em seguida, os 
osteoblastos começam a depositar matriz extracelular óssea sobre os remanescentes da cartilagem 
calcificada, formando trabéculas de osso esponjoso. A ossificação primária se espalha a partir dessa 
localização central em direção às duas extremidades do modelo cartilaginoso. 
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter06.html#ch6fig6
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter04.html#ch4-5
Figura 6.6 Ossificação endocondral. 
Durante a ossificação endocondral, o osso gradativamente substitui um modelo de cartilagem. 
 
 Desenvolvimento da cavidade medular. Enquanto o centro de ossificação primário cresce em sentido às 
extremidades ósseas, os osteoclastos degradam parte das recém-formadas trabéculas de osso esponjoso. 
Essa atividade deixa na diáfise uma cavidade, a cavidade medular. Por fim, grande parte das paredes da 
diáfise é substituída por osso compacto. 
 Desenvolvimento dos centros de ossificação secundários. Quando ramos da artéria epifisial penetram na 
epífise, são desenvolvidos centros de ossificação secundários, em geral próximo ao momento do nascimento. 
A formação óssea é similar àquela que ocorre nos centros de ossificação primários. Entretanto, nos centros 
de ossificação secundários, o osso esponjoso permanece no interior das epífises (não ocorre formação de 
cavidades medulares). Em contraste à ossificação primária, a ossificação secundária procede para fora, a 
partir do centro da epífise, em sentido à superfície externa do osso. 
 Formação da cartilagem articular e da lâmina epifisial (de crescimento). A cartilagem hialina que reveste 
as epífises se torna a cartilagem articular. Antes da idade adulta, a cartilagem hialina permanece entre a 
diáfise e as epífises como lâmina epifisial (de crescimento), região responsável pelo crescimento em 
comprimento dos ossos longos, o que será abordado em um momento posterior. 
Crescimento ósseo durante a infância e a adolescência 
Durante a infância e a adolescência, a espessura dos ossos por todo o corpo aumenta por crescimento por aposição e o 
comprimento dos ossos longos por meio da adição de material ósseo no lado diafisário da lâmina epifisial por crescimento 
intersticial. 
CRESCIMENTO EM COMPRIMENTO 
O crescimento em comprimento dos ossos longos envolve dois eventos: (1) o crescimento intersticial da cartilagem no 
lado epifisário da lâmina epifisial e (2) a substituição da cartilagem no lado diafisário da lâmina epifisial por osso na 
ossificação endocondral. 
Para entender como o comprimento de um osso cresce, é preciso conhecer alguns detalhes da estrutura da lâmina 
epifisial. A lâmina epifisial (de crescimento) é uma camada de cartilagem hialina na metáfise de um osso em crescimento 
que consiste em quatro zonas (Figura 6.7B): 
1. Zona de cartilagem em repouso. Camada mais próxima da epífise que consiste em pequenos condrócitos 
espalhados. O termo “repouso” é usado porque as células não atuam no crescimento ósseo. Em lugar disso, 
elas prendem a lâmina epifisial à epífise do osso. 
2. Zona de cartilagem em proliferação. Os condrócitos discretamente maiores nessa zona estão distribuídos 
como pilhas de moedas. Esses condrócitos sofrem crescimento intersticial conforme vão se dividindo e 
secretando matriz extracelular. Os condrócitos nessa zona se dividem para substituir aqueles que morrem 
no lado diafisário da lâmina epifisial. 
3. Zona de cartilagem hipertrófica. Essa camada consiste em condrócitos grandes em amadurecimento 
distribuídos em colunas. 
4. Zona de cartilagem calcificada. A zona final da lâmina epifisial tem a espessura de algumas células apenas 
e consiste, principalmente, em condrócitos mortos, pois a matriz extracelular circunjacente calcificou. Os 
osteoclastos dissolvem a cartilagem calcificada e os osteoblastos e capilares da diáfise invadem a área. Os 
osteoblastos formam matriz extracelular óssea, substituindo a cartilagem calcificada por meio do processo 
de ossificação endocondral. Não se pode esquecer que ossificaçãoendocondral é a substituição da 
cartilagem por osso. Em consequência disso, a zona de cartilagem calcificada se torna a “nova diáfise” 
firmemente cimentada ao resto da diáfise do osso. 
A atividade da lâmina epifisial é a única maneira pela qual a diáfise consegue crescer em comprimento. Conforme o 
osso cresce, condrócitos proliferam no lado epifisário da lâmina. Novos condrócitos substituem os antigos, os quais são 
destruídos por calcificação. Assim, a cartilagem é substituída por osso no lado diafisário da lâmina. Dessa maneira, a 
espessura da lâmina epifisial permanece relativamente constante, porém o osso no lado diafisário cresce em comprimento 
(Figura 6.7C). Se uma fratura óssea danifica a lâmina epifisial, o osso fraturado pode ficar mais curto que o normal ao 
chegar à estatura adulta. Isso porque o dano à cartilagem, que é avascular, acelera a ossificação da lâmina epifisial devido 
à interrupção da divisão das células de cartilagem, inibindo, desse modo, o crescimento em comprimento do osso. 
Quando a adolescência chega ao fim (por volta dos 18 anos nas meninas e 21 nos meninos), as lâminas epifisiais se 
ossificam; isto é, as células da cartilagem epifisial param de se dividir e osso substitui toda a cartilagem restante . A 
lâmina epifisial desaparece, deixando uma estrutura óssea chamada linha epifisial. Com o surgimento da linha epifisial, o 
crescimento ósseo em comprimento cessa por completo. 
A ossificação da lâmina epifisial é um processo gradual e a determinação do seu estágio é útil na determinação da 
idade óssea, prevendo a altura adulta e estabelecendo a idade na hora da morte pelo esqueleto restante, especialmente 
de lactentes, crianças e adolescentes. Por exemplo, uma lâmina epifisial em atividade indica uma pessoa mais jovem, 
enquanto uma lâmina epifisial parcial ou completamente ossificada indica uma pessoa mais velha. Além disso, não 
podemos esquecer que a ossificação da lâmina epifisial, em média, ocorre 1 ou 2 anos antes nas mulheres. 
 
CRESCIMENTO EM ESPESSURA 
Assim como a cartilagem, a espessura (diâmetro) do osso pode aumentar apenas por crescimento por aposição (Figura 
6.8A): 
 Na superfície óssea, células periosteais se diferenciam em osteoblastos, que secretam fibras colágenas e outras 
moléculas orgânicas que formam matriz extracelular óssea. Os osteoblastos ficam rodeados por matriz extracelular e 
passam a ser osteócitos. Esse processo forma elevações ósseas nos dois lados de um vaso sanguíneo periosteal. As 
elevações lentamente crescem e criam um sulco para o vaso sanguíneo periosteal. 
 Por fim, as elevações se dobram e se fundem, e o sulco torna-se um túnel que encerra o vaso sanguíneo. Agora, o 
periósteo anterior é o endósteo que reveste o túnel. 
 Os osteoblastos no endósteo depositam matriz extracelular óssea, formando novas lamelas concêntricas. A formação de 
lamelas concêntricas adicionais ocorre para dentro, no sentido do vaso sanguíneo periosteal. Dessa maneira, o túnel se 
completa e um novo ósteon é criado. 
 Ao mesmo tempo que o ósteon está sendo formado, os osteoblastos debaixo do periósteo depositam novas lamelas 
circunferenciais, aumentando ainda mais a espessura do osso. Com mais vasos sanguíneos periosteais sendo encerrados 
como na etapa, o processo de crescimento continua. 
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter06.html#ch6fig7
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter06.html#ch6fig7
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter06.html#ch6fig8
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter06.html#ch6fig8
Figura 6.7 Lâmina epifisial (de crescimento). A lâmina epifisial (de crescimento) se revela na radiografia como uma faixa 
radiolúcida (escura) presente entre as áreas calcificadas radiopacas (esbranquiçadas), mostrada na parte A. 
A lâmina epifisial (de crescimento) possibilita que a diáfise do osso cresça em comprimento. 
 
Ao mesmo tempo que osso novo é depositado na superfície externa do osso pelos osteoblastos, o tecido ósseo que 
reveste a cavidade medular é destruído pelos osteoclastos no endósteo. 
 
Lembre-se de que, enquanto tecido ósseo novo está sendo depositado na superfície externa do osso, o tecido ósseo 
que reveste a cavidade medular é destruído pelos osteoclastos no endósteo. Dessa maneira, a cavidade medular aumenta 
conforme o osso cresce em espessura (Figura 6.8B). 
REMODELAÇÃO ÓSSEA 
 Assim como a pele, os ossos se formam antes do nascimento, porém se renovam de maneira contínua depois 
disso. Remodelação óssea é a substituição contínua do tecido ósseo antigo por tecido ósseo novo. Esse processo 
envolve reabsorção óssea, que consiste na remoção de minerais e fibras de colágeno do osso pelos osteoclastos, 
e deposição óssea, que é a adição de minerais e fibras de colágeno ao osso pelos osteoblastos. Dessa maneira, a 
reabsorção óssea resulta em destruição de matriz extracelular óssea, enquanto a deposição óssea ocasiona formação de 
matriz extracelular óssea. O tempo todo, cerca de 5% da massa óssea total no corpo está sendo remodelada. A taxa de 
renovação de tecido ósseo compacto é de cerca de 4% ao ano e a do tecido ósseo esponjoso é de cerca de 20% por ano. 
A remodelação também ocorre em velocidades distintas nas diferentes regiões do corpo. A porção distal do fêmur é 
substituída a cada 4 meses aproximadamente. Em contraste, o osso em determinadas áreas da diáfise do fêmur não é 
substituído por completo durante toda a vida do indivíduo. Mesmo após os ossos alcançarem forma e tamanho adultos, o 
osso antigo é continuamente destruído e substituído por osso novo. A remodelação também remove osso lesionado, 
substituindo-o por tecido ósseo novo. A remodelação pode ser influenciada por fatores como exercício, estilo de vida 
sedentário e alterações na dieta. 
 A remodelação oferece vários outros benefícios. Uma vez que a resistência do osso está relacionada ao grau de tensão a 
que é submetido, se o osso recém-formado for submetido a cargas intensas, ele cresce mais espesso e, portanto, mais 
resistente que o osso antigo. Além disso, a forma do osso pode ser alterada para suporte apropriado com base nos 
padrões de tensão sofridos durante o processo de remodelação. Por fim, o osso novo é mais resistente à fratura do que o 
osso antigo. 
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter06.html#ch6fig8
 Durante o processo de reabsorção óssea, um osteoclasto se fixa firmemente à superfície óssea no endósteo ou 
periósteo e forma uma vedação impermeável nas margens da sua borda pregueada (ver Figura 6.2). Em seguida, libera 
enzimas lisossômicas que digerem proteína e vários ácidos na bolsa selada. As enzimas digerem fibras de colágeno e 
outras substâncias orgânicas enquanto os ácidos dissolvem os minerais ósseos. Trabalhando juntos, diversos osteoclastos 
cavam um pequeno túnel no osso antigo. As proteínas ósseas degradadas e os minerais da matriz extracelular, sobretudo 
cálcio e fósforo, entram no osteoclasto por endocitose, atravessam a célula em vesículas e sofrem exocitose no lado 
oposto da margem pregueada. Agora no líquido intersticial, os produtos da reabsorção óssea se difundem para os capilares 
sanguíneos vizinhos. Uma vez que uma pequena área de osso foi reabsorvida, os osteoclastos saem de cena e os 
osteoblastos chegam para reconstruir o osso naquela área. 
FATORES QUE AFETAM O CRESCIMENTO ÓSSEO E A REMODELAÇÃO ÓSSEA 
O metabolismo ósseo normal – crescimento no jovem e remodelação óssea no adulto – depende de vários fatores, como a 
ingestão por meio de dieta adequada de minerais e vitaminas, além de níveis suficientes de vários hormônios. 
1. Minerais. Grandes quantidades de cálcio e fósforo são necessárias durante o crescimento dos ossos, assim 
como quantidades menores de magnésio, fluoreto e manganês. Esses minerais também são necessários 
durante a remodelaçãoóssea. 
2. Vitaminas. A vitamina A estimula a atividade dos osteoblastos. A vitamina C é necessária para a síntese de 
colágeno, a principal proteína óssea. De acordo com o que será abordado posteriormente, a vitamina D 
ajuda a construir osso aumentando a absorção do cálcio proveniente dos alimentos do trato gastrintestinal 
para o sangue. As vitaminas K e B12 também são necessárias para a síntese de proteínas ósseas. 
3. Hormônios. Durante a infância, os hormônios mais importantes para o crescimento ósseo são os fatores de 
crescimento insulina-símiles (IGFs), produzidos pelo fígado e tecido ósseo (ver Seção 18.6). Os IGFs 
estimulam os osteoblastos, promovem a divisão celular na lâmina epifisial e no periósteo e intensificam a 
síntese das proteínas necessárias para construir osso novo. Os IGFs são produzidos em resposta à secreção 
do hormônio de crescimento do lobo anterior da glândula hipófise (ver Seção 18.6). Os hormônios da 
tireoide (T3 e T4) secretados pela glândula tireoide também provocam o crescimento ósseo por estimulação 
dos osteoblastos. Além disso, o hormônio insulina do pâncreas promove o crescimento ósseo pelo aumento 
da síntese de proteínas ósseas. 
Na puberdade, a secreção de hormônios conhecidos como hormônios sexuais causa um efeito profundo sobre o 
crescimento ósseo. Os hormônios sexuais englobam os estrogênios (produzidos pelos ovários) e androgênios como a 
testosterona (produzido pelos testículos). Embora as mulheres apresentem níveis muito mais elevados de estrogênios e os 
homens níveis mais altos de androgênios, as mulheres também apresentam baixos níveis de androgênios e os homens 
baixos níveis de estrogênios. As glândulas suprarrenais de ambos os sexos produzem androgênios. Outros tecidos, como o 
tecido adiposo, conseguem converter androgênios em estrogênios. Esses hormônios são responsáveis pela intensificação 
da atividade dos osteoblastos, pela síntese de matriz extracelular óssea e pelo “estirão de crescimento” que ocorre 
durante a adolescência. Os estrogênios também promovem alterações no esqueleto típicas das mulheres, como 
alargamento da pelve. Por fim, os hormônios sexuais, sobretudo os estrogênios nos dois sexos, cessam o crescimento nas 
lâminas epifisiais (de crescimento), interrompendo o alongamento dos ossos. Em geral, o crescimento em comprimento 
dos ossos termina mais cedo nas mulheres do que nos homens devido aos níveis mais elevados de estrogênios. 
A secreção excessiva ou deficiente de hormônios que normalmente controlam o crescimento ósseo pode fazer com 
que a pessoa se torne anormalmente alta ou baixa. A secreção excessiva de GH durante a infância produz gigantismo, no 
qual a pessoa se torna muito mais alta e mais pesada que o normal. A baixa secreção de GH produz nanismo hipofisário, 
no qual a pessoa apresenta estatura baixa. (A altura de uma pessoa anã adulta é de menos de 1,5 m.) Embora a cabeça, o 
tronco e os membros do indivíduo com nanismo pituitário sejam menores que o normal, a pessoa é proporcional. A 
condição pode ser tratada de maneira conservadora com GH até o fechamento da lâmina epifisial. A secreção excessiva 
de GH durante a idade adulta é chamada acromegalia. Embora o GH não possa mais promover o crescimento em 
comprimento dos ossos longos porque as lâminas epifisiais (do crescimento) já estão fechadas, os ossos das mãos, dos 
pés e a mandíbula se espessam e outros tecidos aumentam. Ademais, as pálpebras, os lábios, a língua e o nariz crescem e 
a pele sofre espessamento e desenvolve sulcos, sobretudo na testa e nas plantas dos pés. A acondroplasia é uma condição 
hereditária na qual a conversão de cartilagem em osso é anormal, o que resulta no tipo mais comum de nanismo, o 
chamado nanismo acondroplásico. Em geral, esses indivíduos apresentam aproximadamente 1,20 m, possuem tronco de 
tamanho normal, membros curtos e cabeça ligeiramente grande, com testa proeminente e nariz achatado na junção com 
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter06.html#ch6fig2
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter18.html#ch18-6
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter18.html#ch18-6
o frontal. Essa condição é essencialmente intratável, embora alguns indivíduos optem pela cirurgia de alongamento de 
membros. 
Durante a idade adulta, os hormônios sexuais contribuem para a remodelação óssea retardando a reabsorção de osso 
antigo e promovendo o depósito de osso novo. A apoptose (morte programada) dos osteoclastos é uma maneira pela qual 
os estrogênios retardam a reabsorção. Como veremos brevemente, o paratormônio, calcitriol (forma ativa da vitamina D) e 
calcitonina são outros hormônios que podem afetar a remodelação óssea. 
Exercícios com sustentação do peso do próprio corpo moderados mantêm tensão suficiente sobre os ossos para 
aumentar e manter sua densidade. 
FRATURA E REPARO ÓSSEO 
Fratura é qualquer perda da continuidade óssea. As fraturas são nomeadas de acordo com a gravidade, formato, posição 
da linha de fratura ou, até mesmo, com o nome do médico que a descreveu pela primeira vez. 
Em alguns casos, um osso pode estar fraturado sem haver ruptura visível. A fratura por estresse é uma série de 
fissuras microscópicas no osso que se forma sem qualquer evidência de lesão em outros tecidos. Em adultos saudáveis, as 
fraturas por estresse resultam de atividades extenuantes e repetitivas como corrida, saltos ou dança aeróbica. As fraturas 
por estresse são bastante dolorosas e também são resultado de processos patológicos que interrompem a calcificação 
óssea normal como a osteoporose (discutida em Desequilíbrios homeostáticos ao final deste capítulo). Cerca de 25% das 
fraturas por estresse envolvem a tíbia. Embora as imagens radiográficas padrão muitas vezes não consigam revelar a 
presença de fraturas por estresse, a cintigrafia óssea as mostra com clareza. 
O reparo de uma fratura óssea envolve as seguintes fases (Figura 6.9): 
1. Fase reativa. Fase inflamatória inicial. Os vasos sanguíneos que cruzam a linha de fratura estão rompidos. Com o 
extravasamento sanguíneo das extremidades rompidas dos vasos, uma massa de sangue (normalmente coagulado) 
se forma ao redor do local da fratura. Essa massa de sangue, chamada hematoma de fratura, em geral se forma 
6 a 8 h depois da lesão. Visto que a circulação sanguínea no local onde o hematoma de fratura se desenvolve é 
interrompida, as células ósseas circunvizinhas morrem. O edema e a inflamação que ocorrem em resposta às 
células ósseas mortas produzem mais resíduos celulares. Os fagócitos (neutrófilos e macrófagos) e osteoclastos 
começam a remover o tecido morto ou danificado dentro e ao redor do hematoma de fratura. Este estágio pode 
durar até algumas semanas. 
2. Fase de reparação. Formação do calo fibrocartilaginoso . A fase de reparação é caracterizada por dois eventos: 
formação de um calo fibrocartilaginoso e de um calo ósseo para preencher o intervalo entre as extremidades 
ósseas fraturadas. Vasos sanguíneos começam a crescer no hematoma da fratura e fagócitos começam a limpar 
as células ósseas mortas. Os fibroblastos do periósteo invadem o local da fratura e produzem fibras de colágeno. 
Além disso, as células do periósteo se desenvolvem em condroblastos e começam a produzir fibrocartilagem 
nessa região. Esses eventos promovem o desenvolvimento de um calo fibrocartilaginoso (mole), que consiste em 
massa de tecido de reparação composta por fibras de colágeno e cartilagem que une as extremidades do osso. A 
formação do calo fibrocartilaginoso leva cerca de 3 semanas. 
3. Fase de reparação. Formação do calo ósseo. Nas áreas mais próximas ao tecido ósseo saudável bem vascularizado, 
células osteogênicas se desenvolvem em osteoblastos, os quais começam a produzir trabéculas de osso esponjoso. 
As trabéculas unem as porções vivas e mortas dos fragmentos ósseos originais. Por fim, a fibrocartilagem é 
convertida em osso esponjoso e o calopassa a ser chamado calo ósseo (duro). O calo ósseo persiste por 3 a 4 
meses. 
4. Fase de remodelação óssea. A fase final do reparo da fratura é a de remodelação óssea do calo. As porções 
mortas dos fragmentos originais do osso fraturado são gradativamente reabsorvidas pelos osteoclastos. Osso 
compacto substitui osso esponjoso na periferia da fratura. Às vezes, o processo de reparo é tão completo que a 
linha de fratura é indetectável, mesmo na radiografia. Entretanto, uma área espessada na superfície do osso 
permanece como evidência da fratura consolidada. 
Figura 6.9 Etapas do reparo de uma fratura óssea. 
Osso consolida mais rápido que cartilagem porque sua irrigação sanguínea é mais abundante. 
https://jigsaw.minhabiblioteca.com.br/books/9788527728867/epub/OEBPS/Text/chapter06.html#ch6fig9
 
 Embora os ossos apresentem irrigação sanguínea generosa, muitas vezes, o processo de consolidação demora meses. O 
cálcio e o fósforo necessários para fortalecer e endurecer o osso novo são depositados apenas de maneira gradativa e as 
células ósseas geralmente crescem e se reproduzem devagar. A interrupção temporária da irrigação sanguínea também 
ajuda a explicar a lentidão da consolidação de ossos com fraturas significativas.

Continue navegando