Dados dois vetores, e, o produto escalar entre eles é representado e definido por , em que é o ângulo subentendido entre eles. Suponha os pontos de coordenadas P(10k, 10, 0), Q(10k -1, 20K, 20) e R(10, 30, -10) em um sistema de eixos cartesianos. Com base no exposto, analise as afirmativas a seguir e assinale V para a(s) verdadeira(s) e F para a(s) falsa(s). I. ( ) Os pontos P, Q e R são distintos para qualquer k. II. ( ) Os pontos P, Q e R definem um triângulo. III. ( ) Se k = 1, o triângulo é retângulo no vértice P. IV. ( ) Se k = 1, a área do triângulo é aproximadamente 500 u.a. V, V, V, F. V, V, V, F.
No cálculo vetorial, a função gradiente é definida como a taxa de variação de uma grandeza escalar por unidade de espaço. Dada uma função escalar , o seu gradiente é definido por , em que , e são vetores canônicos. A partir do exposto, analise as asserções a seguir e a relação proposta entre elas. 1. O gradiente de uma função escalar é um vetor. 2. A grandeza possui módulo, direção e sentido. As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I. As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I.
Material
páginas com resultados encontrados.
páginas com resultados encontrados.
Crie sua conta grátis para liberar esse material. 🤩
Dados dois vetores, e, o produto escalar entre eles é representado e definido por , em que é o ângulo subentendido entre eles. Suponha os pontos de coordenadas P(10k, 10, 0), Q(10k -1, 20K, 20) e R(10, 30, -10) em um sistema de eixos cartesianos. Com base no exposto, analise as afirmativas a seguir e assinale V para a(s) verdadeira(s) e F para a(s) falsa(s). I. ( ) Os pontos P, Q e R são distintos para qualquer k. II. ( ) Os pontos P, Q e R definem um triângulo. III. ( ) Se k = 1, o triângulo é retângulo no vértice P. IV. ( ) Se k = 1, a área do triângulo é aproximadamente 500 u.a. V, V, V, F. V, V, V, F.
No cálculo vetorial, a função gradiente é definida como a taxa de variação de uma grandeza escalar por unidade de espaço. Dada uma função escalar , o seu gradiente é definido por , em que , e são vetores canônicos. A partir do exposto, analise as asserções a seguir e a relação proposta entre elas. 1. O gradiente de uma função escalar é um vetor. 2. A grandeza possui módulo, direção e sentido. As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I. As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I.