Buscar

topografia-aplicada-ao-georreferenciamento

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 51 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 51 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 51 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

AUPES - Associação Unificada Pirassununguense de Ensino SuperiorAUPES - Associação Unificada Pirassununguense de Ensino Superior
FEAPFEAP – Faculdade de Engenharia Agrimensura de Pirassununga – Faculdade de Engenharia Agrimensura de Pirassununga
TOPOGRAFIA APLICADA AOTOPOGRAFIA APLICADA AO
GEORREFERENCIAMENTOGEORREFERENCIAMENTO
Prof. Engº. Paulo Augusto F. Prof. Engº. Paulo Augusto F. BorgesBorges
Engenheiro AgrimensorEngenheiro Agrimensor
CUIABÁ – MTCUIABÁ – MT
MARÇO 2005MARÇO 2005
22
SUMÁRIOSUMÁRIO
1.1. INTRODUÇÃOINTRODUÇÃO.............................................................................................................................................................................................................................. 33
2.2. OBJETIVOSOBJETIVOS........................................................................................................................................................................................................................................ 44
3.3. CONCEITOS GERAICONCEITOS GERAIS SOBRE CARTOGRAFIS SOBRE CARTOGRAFIA E GEODÉSIAA E GEODÉSIA...................................................... 44
3.1. 3.1. Generalidades Generalidades sobre sobre Geodésia Geodésia e e Cartografia.Cartografia. ...................................................................................................................... 44
3.2. 3.2. Superfície Superfície Física, Física, Elipsóide, Elipsóide, Esferóide Esferóide e e Geóide.Geóide. .......................................................................................................... 44
3.3. 3.3. Distinção Distinção entre entre Mapas, Mapas, Cartas Cartas e e PlantasPlantas ...................................................................................................................................... 55
3.4. 3.4. Projeções Projeções de de MapasMapas...................................................................................................................................................................................................... 66
4.4. TOPOGRAFIA..............................TOPOGRAFIA.................................................................................................................................................................................................. 88
4.1. 4.1. Definições............Definições........................................................................................................................................................................................................................ 88
4.2. 4.2. Objetivos Objetivos e e o o Problema Problema da da Topografia...........................Topografia................................................................................................................. 88
4.3. 4.3. Divisão Divisão da da Topografia.........................................Topografia..................................................................................................................................................... 99
4.4. 4.4. Sistemas Sistemas de de CoordenadasCoordenadas................................................................................................................................................................................ 1111
4.5. 4.5. Medidas Medidas de de Ângulos Ângulos e e DistânciasDistâncias ...................................................................................................................................................... 1515
4.6. Orientação4.6. Orientação .............................................................................................................................................................................................................................. 1919
5.5. PLANO PLANO TOPOGRÁFICO TOPOGRÁFICO LOCALLOCAL ........................................................................................................................................................ 2323
5.1. 5.1. Definição Definição do do Plano Plano Topográfico Topográfico LocalLocal ......................................................................................................................................2323
5.2. 5.2. Extensão Extensão do do Sistema Sistema Topográfico Topográfico Local..........................Local........................................................................................................ 2424
5.3. 5.3. O O Sistema Sistema Topográfico Topográfico LocalLocal .................................................................................................................................................................. 2727
6.6. TRANSFORMAÇÕES TRANSFORMAÇÕES DE DE COORDENADASCOORDENADAS .................................................................................................................... 3535
6.1. 6.1. Transformações Transformações de de Coordenadas Coordenadas Geodésicas Geodésicas em em Topográficas Topográficas Locais..................Locais.................. 3535
6.1.1. 6.1.1. Problema.............Problema............................................................................................................................................................................................................... 3535
6.1.2. 6.1.2. Fórmulas..................................Fórmulas.......................................................................................................................................................................................... 3535
6.2. 6.2. Transformações Transformações de de Coordenadas Coordenadas Topográficas Topográficas Locais Locais em em Geodésicas............Geodésicas........................ 3838
6.3. 6.3. Determinação Determinação do do Norte Norte geográfico geográfico a a partir partir das das coordenadas coordenadas plano plano retangulares retangulares nono
sistema topográfico sistema topográfico local de pontos delocal de pontos definidores dos azimfinidores dos azimutes planos (topográutes planos (topográficos)ficos) ................ 4040
6.4. 6.4. Exemplo Exemplo de de Transformação Transformação de de coordenadas coordenadas Geodésicas Geodésicas em em plano plano retangulares retangulares nono
sistema sistema topográfico topográfico local:......................local:.................................................................................................................................................................................. 4242
6.5. 6.5. Exemplo Exemplo de de transformação transformação de de coordenadas coordenadas planoretangulares planoretangulares - - sistema sistema topográficotopográfico
local em local em coordenadas geodésicas...............................coordenadas geodésicas................................................................................................................................................. 4646
7.7. BIBLIOGRAFIA....................................BIBLIOGRAFIA.................................................................................................................................................................................. 5151
33
1.1. INTRODUÇÃOINTRODUÇÃO
A obtenção das coordenadas geodésicas de pontos na Superfície física da Terra,A obtenção das coordenadas geodésicas de pontos na Superfície física da Terra,
utilizando o posicionamento por satélites através da técnica de posicionamento global GPS,utilizando o posicionamento por satélites através da técnica de posicionamento global GPS,
tem se tornado uma tarefa comum em vários campos de aplicação, inclusive para fins detem se tornado uma tarefa comum em vários campos de aplicação, inclusive para fins de
levantamentos topográficos.levantamentos topográficos.
A prática deste tipo de posicionamento tem demonstrado que é possível obterA prática deste tipo de posicionamento tem demonstrado que é possível obter
resultados com diferentes níveis de precisão, dependendo do equipamento utilizado, daresultados com diferentesníveis de precisão, dependendo do equipamento utilizado, da
metodologia adotada e do processamento empregado. Com a evolução dos receptoresmetodologia adotada e do processamento empregado. Com a evolução dos receptores
geodésicos, melhores técnicas de observação disponível e dos modernos e sofisticadosgeodésicos, melhores técnicas de observação disponível e dos modernos e sofisticados
métodos de ajustamento empregados, pôde-se alcançar precisões (estatísticas) dasmétodos de ajustamento empregados, pôde-se alcançar precisões (estatísticas) das
coordenadas na casa de centímetros, e em alguns casos, de milímetros, desde que ocoordenadas na casa de centímetros, e em alguns casos, de milímetros, desde que o
rastreamento das portadoras seja efetuado por períodos longos, e se utilizem técnicas de pós-rastreamento das portadoras seja efetuado por períodos longos, e se utilizem técnicas de pós-
 processamento  processamento dos dados.dos dados.
Assim, o advento do uso de receptores GPS para fins de levantamentos topográficosAssim, o advento do uso de receptores GPS para fins de levantamentos topográficos
trouxe grandes facilidades para as práticas detrouxe grandes facilidades para as práticas de georreferenciamentogeorreferenciamento de glebas, que se tornou de glebas, que se tornou
uma tarefa comum aos engenheiros do mensuramento e profissionais de áreas afins, devido àuma tarefa comum aos engenheiros do mensuramento e profissionais de áreas afins, devido à
regulamentação da atual Lei de Registro de Terras 10.267 através do decretoregulamentação da atual Lei de Registro de Terras 10.267 através do decreto 4.449 de 30 de4.449 de 30 de
outubro de 2002outubro de 2002. Segundo a nova Lei, nos casos de desmembramento, parcelamento ou. Segundo a nova Lei, nos casos de desmembramento, parcelamento ou
remembramento de imóveis rurais, a identificação de um imóvel rural será obtida a partir doremembramento de imóveis rurais, a identificação de um imóvel rural será obtida a partir do
memorial descritivo, contendo as coordenadas dos vértices definidores dos limites dosmemorial descritivo, contendo as coordenadas dos vértices definidores dos limites dos
imóveis rurais, georreferenciadas ao Sistema imóveis rurais, georreferenciadas ao Sistema Geodésico Brasileiro.Geodésico Brasileiro.
Com isso, tornou-se cotidiano a manipulação (transformação) de coordenadas entreCom isso, tornou-se cotidiano a manipulação (transformação) de coordenadas entre
diferentes sistemas, cabendo a nós, profissionais da área do mensuramento, dominar comdiferentes sistemas, cabendo a nós, profissionais da área do mensuramento, dominar com
desenvoltura o processo de transformação de pontos geodésicos caracterizados por suasdesenvoltura o processo de transformação de pontos geodésicos caracterizados por suas
coordenadas geodésicacoordenadas geodésicas para s para coordenadas plano-retangucoordenadas plano-retangulares no lares no Sistema Topográfico Local eSistema Topográfico Local e
vice-versa. Para tal fim, cabe salientar, portanto, que é primordial o conhecimento e ovice-versa. Para tal fim, cabe salientar, portanto, que é primordial o conhecimento e o
domínio dos métodos e as técnicas convencionais aplicados aos levantamentos topográficos.domínio dos métodos e as técnicas convencionais aplicados aos levantamentos topográficos.
É também de extrema importância, dominar o Sistema de Projeção UTM, evitando-se o seuÉ também de extrema importância, dominar o Sistema de Projeção UTM, evitando-se o seu
emprego generalizado, tal como a transformação das Coordenadas Planas no Sistema UTMemprego generalizado, tal como a transformação das Coordenadas Planas no Sistema UTM
 para  para Coordenadas Coordenadas Planas Planas no no Sistema Sistema Topográfico Topográfico Local, Local, com com aplicações aplicações das das correçõescorreções
relativas ao fator de deformação linear (fator K) e ao fator de elevação, porém, sem orelativas ao fator de deformação linear (fator K) e ao fator de elevação, porém, sem o
44
estabelecimento de uma origem, abstraindo-se o efeito da curvatura terrestre, o que ocasionaestabelecimento de uma origem, abstraindo-se o efeito da curvatura terrestre, o que ocasiona
erros além do limite erros além do limite de precisão requerido pelo levantamento topográfico.de precisão requerido pelo levantamento topográfico.
2.2. OBJETIVOSOBJETIVOS
O objetivo desta disciplina é fornecer aos alunos do curso de Topografia Aplicada, osO objetivo desta disciplina é fornecer aos alunos do curso de Topografia Aplicada, os
conhecimentos necessários para dominar e manipular com desenvoltura os trabalhosconhecimentos necessários para dominar e manipular com desenvoltura os trabalhos
relacionados à execução de serviços de Levantamentos Topográficos voltados para orelacionados à execução de serviços de Levantamentos Topográficos voltados para o
georreferenciamento de imóveis rurais em atendimento à Lei 10.267. Pretende-se apresentargeorreferenciamento de imóveis rurais em atendimento à Lei 10.267. Pretende-se apresentar
os conceitos e as os conceitos e as técnicas convencionais empregatécnicas convencionais empregadas na Topografia bem como das na Topografia bem como explorar o usoexplorar o uso
de novas tecnologias. Em função do grande salto no desenvolvimento tecnológico dasde novas tecnologias. Em função do grande salto no desenvolvimento tecnológico das
técnicas de posicionamento através de satélites, a técnicas de posicionamento através de satélites, a partir da introdução do partir da introdução do sistema NAVSTAR-sistema NAVSTAR-
GPS, cabe aos profissionais habilitados aos serviços de medição, demarcação eGPS, cabe aos profissionais habilitados aos serviços de medição, demarcação e
georreferenciamento conhecer os procedimentos necessários para mesclar o uso dosgeorreferenciamento conhecer os procedimentos necessários para mesclar o uso dos
levantamentos coletados com receptores Geodésicos (GPS) levantamentos coletados com receptores Geodésicos (GPS) com os levantamentos executadoscom os levantamentos executados
 pelas técnicas c pelas técnicas convencionais donvencionais de Topografia, aplicane Topografia, aplicando-se as transformdo-se as transformações necesações necessárias para asárias para a
geração de uma representação em geração de uma representação em planta decorrente destes levantamentos.planta decorrente destes levantamentos.
3.3. CONCEITOS GERAIS SOBRE CARTOGRAFIA E GEODÉSIACONCEITOS GERAIS SOBRE CARTOGRAFIA E GEODÉSIA
3.1.3.1. Generalidades sobre Geodésia e Cartografia.Generalidades sobre Geodésia e Cartografia.
GeodésiaGeodésia é a ciência que determina por meio de observações, a forma e o tamanho da é a ciência que determina por meio de observações, a forma e o tamanho da
terra, as coordenadas dos pontos, comprimentos e direções de linhas da superfície da Terra eterra, as coordenadas dos pontos, comprimentos e direções de linhas da superfície da Terra e
as variações do campo gravitacional terrestre. Esta se subdivide emas variações do campo gravitacional terrestre. Esta se subdivide em Geodésia GeométricaGeodésia Geométrica,,
Geodésia FísicaGeodésia Física e e Geodésia por SatéliteGeodésia por Satélite ou ou Geodésia CelesteGeodésia Celeste..
CartografiaCartografia é a ciência e a  é a ciência e a arte de expressar graficamente, por meio de cartas e mapasarte de expressar graficamente, por meio de cartas e mapas
o conhecimento humano da superfície da Terra.o conhecimento humano da superfície da Terra.
3.2.3.2.  Superfície Física, Elip Superfície Física, Elipsóide, Esferóide e sóide, Esferóide e Geóide.Geóide.
1ª - Superfície Física: Superfície ao longo da qual são realizadas as operações1ª - Superfície Física: Superfície ao longo da qual são realizadas as operações
Topográficas, Geodésicas, etc.Topográficas, Geodésicas, etc.
2ª - Elipsóide: Superfície ao longo do qual são realizadas as operações geodésicas,2ª - Elipsóide: Superfície ao longo do qual são realizadas as operações geodésicas,correspondentes a um modelo matemático, o Elipsóide.correspondentes a um modelo matemático, o Elipsóide.
55
Entre os diferentes tipos de se elipsóides o Elipsóide de Revolução é o mais usado naEntre os diferentes tipos de se elipsóides o Elipsóide de Revolução é o mais usado na
geodésia em função do tratamento matemático ser menos sofisticado, o qual corresponde ageodésia em função do tratamento matemático ser menos sofisticado, o qual corresponde a
uma superfície gerada pela rotação de uma elipse em torno de seu eixo menor. Para definir umuma superfície gerada pela rotação de uma elipse em torno de seu eixo menor. Para definir um
elipsóide é necessário conhecer os seus parâmetros, ou seja, o seu semi-eixo maior (elipsóide é necessário conhecer os seus parâmetros, ou seja, o seu semi-eixo maior ( aa) e o) e o
semi-eixo menor (semi-eixo menor (bb) ou o achatamento () ou o achatamento (αα) onde) onde
aa
 b b--aa
==α α 
Figura 3.1 – Figura 3.1 –  Elipsóide de Revolução: Elipsóide de Revolução:
3ª - Esferóide: Em algumas ocasiões, como é o caso da topografia, substitui-se o3ª - Esferóide: Em algumas ocasiões, como é o caso da topografia, substitui-se o
Elipsóide pelo Esferóide com a finalidade de facilitar as operações matemáticas. EstaElipsóide pelo Esferóide com a finalidade de facilitar as operações matemáticas. Esta
superfície corresponde a uma esfera com o raio médio do Elipsóide, que pode ser calculadosuperfície corresponde a uma esfera com o raio médio do Elipsóide, que pode ser calculado
 por por  N  N  M  M  R R ••== , onde M é o raio da seção meridiana e N é o raio da seção primeiro vertical., onde M é o raio da seção meridiana e N é o raio da seção primeiro vertical.
O esferóide também pode ser calculado com o raio médio da região.O esferóide também pode ser calculado com o raio médio da região.
Os valores de M Os valores de M e N podem ser e N podem ser calculados através das seguintes expressões:calculados através das seguintes expressões:
( ( ))
( ( ))33002222
22
11
11
ϕ ϕ  sen senee
eeaa
 M  M 
××−−
−−××
==
00
222211 ϕ ϕ  sen senee
aa
 N  N 
××−−
==
4ª - Geóide: É a superfície que mais se aproxima da forma da terra ou ao nível médio4ª - Geóide: É a superfície que mais se aproxima da forma da terra ou ao nível médio
dos mares.dos mares.
3.3.3.3.  Distinção entre Ma Distinção entre Mapas, Cartas e Ppas, Cartas e Plantaslantas
Para estes diferentes tipos de representações podem-se estabelecer os seguintesPara estes diferentes tipos de representações podem-se estabelecer os seguintes
conceitos:conceitos:
aa
bb
6
Mapa:  É a representação da Terra nos seus aspectos geográficos (naturais ou
artificiais) que se destina a fins culturais ou ilustrativos. Este, portanto, não tem caráter
científico específico e é elaborado em escala pequena cobrindo um território mais extenso.
Carta:  É a representação dos aspectos naturais ou artificiais da superfície terrestre
destinada a fins práticos, permitindo a determinação precisa de distâncias, direções e
localização geográfica de pontos, áreas e detalhes. É similar ao mapa, porém mais
especializado, com caráter científico e construída em escalas maiores.
Plantas: São representações da superfície terrestre em grandes escalas, usadas com a
finalidade de mostrar limites verdadeiros e elementos cadastrais, podendo omitir elevações e
detalhes naturais ou artificiais desnecessários. É um desenho puramente topográfico, e em
geral de pequenas regiões, normalmente menor que 100 Km 2.
Para salientar a diferença entre desenho topográfico e cartográfico, pode-se citar:
1- A dimensão da área a ser representada: Para pequenas áreas não se leva em
consideração a esfericidade da Terra, enquanto que para as grandes áreas a esfericidade não
 pode ser negligenciada.
2- O desenho topográfico fornece uma planta topográfica enquanto o cartográfico nos
fornece mapas ou cartas.
3.4.  Projeções de Mapas
A confecção de uma carta exige o estabelecimento de um método, segundo o qual, a
cada ponto da superfície terrestre corresponde a um ponto da carta, e vice-versa. Os métodos a
serem utilizados para representar a superfície da terra em um plano são chamados sistemas de
projeções. As projeções podem ser classificadas quanto às propriedades que conservam como
sendo:
 Eqüidistante: Não apresenta deformações lineares em umas ou algumas direções,
 portanto conserva as distâncias.
 Equivalentes: Não apresenta deformações superficiais, portanto conserva as áreas.
Conforme ou Ortomórfica: Não apresenta deformações angulares, portanto preserva a
forma.
 Afilática: Não preserva uma propriedade específica, porém minimiza as deformações
em conjunto.
7
Quanto à Superfície de Projeção adotada, as projeções se classificam em:
 Planas ou Azimutais: O nome azimutal é utilizado por se tratar de uma projeção
conforme onde os azimutes são mantidos. Pode-se ter uma superfície de projeção plana
tangente ou secante.
 Desenvolvimento: Este tipo de projeção pode ser classificado em projeções Cônicas
ou Policônicas, Cilíndricas e Poliédricas.
O sistema de Projeção Universal Tranverso de Mercator (UTM), é resultado da
modificação da Projeção Transversa de Mercator (TM) também conhecida como projeção de
Gauss-Kruger.
É um sistema de projeção conforme, cilíndrica, que procura dar continuidade nas áreas
cobertas, com um número mínimo de zonas. Possui uma referência única num sistema de
coordenadas plano-retangular para todas as zonas.
Já o plano topográfico se trata de uma projeção plana ou azimutal, onde a superfície de
 projeção é tangente ao ponto que determina a referência (origem) do sistema.
8
4. TOPOGRAFIA
4.1. Definições
A palavra topografia deriva etimologicamente do grego TOPOS, que significa “lugar” e
de GRAPHEN, que significa “descrição”. Desta derivação surge as definições atribuídas à
Topografia:
Segundo UZEDA (1963), a Topografia “é a arte de representar em uma folha de papel,
determinada superfície do solo terrestre, com todos os detalhes naturais e artificiais que aí se
encontrem, dando, ao mesmo tempo, uma representação expressiva e rigorosa do seu relevo”.
“A Topografia tem por finalidade determinar o contorno, dimensão e posição relativa
de uma porção limitada da superfície terrestre, sem levar em conta a curvatura resultante da
esfericidade terrestre” (ESPARTEL, 1987).
Cita-se ainda definições mais elaboradas como:
Topografia é “a ciência aplicada, baseada na geometria e na trigonometria plana, que
utiliza medidas de distâncias horizontais, de diferenças de nível, de ângulos e de orientação,
com o fim de obter a representação, em projeção ortogonal sobre um plano de referência, dos
 pontos que definem a forma, as dimensões e a posição relativa de uma porção limitada do
terreno, sem considerar a curvatura da terra” (LOCH e CORDINI, 1995).
4.2. Objetivos e o Problema da Topografia
O objetivo final da topografia é a representação em planta de parte da superfície
terrestre visando a definição de limites naturais, dimensões e a posição relativa dos pontos e
também a representação da própria superfície topográfica (representação do relevo) realizado
através das curvas de nível.
Em função deste objetivo surge o problema da topografia, que é a representação do
geóide (uma superfície curva) em um plano. O geóide por se tratar de uma superfície que,
apesar de obedecer a certas leis topológicas, não se aproxima de nenhum sólido geométrico
9
regular. Sendo assim, um ponto qualquer da superfície terrestre deveria ser representado pelas
suas três coordenadas X, Y e Z, de forma que sua representação plana se torna impossível sem
que haja deformações.
Assim o artifício utilizado é a projeção ortogonal de todos os pontos da superfície
sobre uma superfície horizontal de referência e em nível. Tal superfície plana é definida pelo
 plano tangente ao geóide no ponto de origem do sistema (1). Segundo LISTING (in GEMAEL,
1987) o geóide é caracterizado por ser, em todos os seus pontos, normalà direção da
gravidade e coincidente com a superfície média dos mares prolongada através dos
continentes.
Assim, todo ponto A na Superfície Topográfica corresponderá:
a) um ponto a  que é a projeção do ponto  A  sobre a superfície de projeção
(plano topográfico local).
 b) Um valor correspondente à distância A - a que representa a cota Z  do ponto
 A em relação à superfície de comparação (ver Figura 3.1).
Figura 4.1 –  Superfícies de Referência: Topográfica, Geóide e Elipsóide.
Por se tratar de uma projeção ortogonal têm-se como conseqüência, a não
consideração da superfície curva da terra fazendo com que as projetantes (verticais) sejam
 paralelas entre si e normais (ortogonais) a este plano tangente (LOCH e CORDINI, 1995).
4.3. Divisão da Topografia
A Topografia Clássica é dividida em dois segmentos: Topometria e Topologia.
 A
a
10
4.3.1. Topometria:
4.3.2.
Este segmento da Topografia procura estudar os procedimentos utilizados
 para determinação de distância, ângulos e diferenças de nível com o intuito de
determinar a posição relativa dos pontos da superfície topográfica. È sub-dividida
em Planimetria e Altimetria.
A Planimetria estabelece os procedimentos necessários à determinação de
distância e ângulos no plano horizontal de referência que permitirá a localização
 planimétrica de pontos do terreno. Essa determinação é obtida a partir da
referência dos pontos desconhecidos a um ou mais pontos do terreno já
determinados (arbitrariamente ou georreferenciados).
A Altimetria visa estabelecer a relação vertical entre pontos do terreno, ou
seja, a determinação das diferenças de nível entre eles. Para isso utiliza-se de
medidas diretas (nivelamento geométrico) ou indiretas (nivelamento
trigonométrico) obtidas a partir da medição de ângulos verticais.
Segundo LOCH e CORDINI (1995), a topometria pode alcançar seus
objetivos mediante três procedimentos distintos:
a) tomando-se medidas de grandezas angulares e lineares em
relação a um plano horizontal de referência –  planimetria  ou a
um plano vertical de referência – altimetria.
 b) efetuando conjuntamente medidas de grandezas angulares e
lineares em relação aos dois planos de referência, possibilitando
a determinação planimétrica e altimétrica – taqueometria  (ou
levantamentos planialtimétricos).
c) efetuando medidas de grandezas angulares, lineares e
altimétricas a partir de fotografias de pontos do terreno –
 fotogrametria terrestre ou a partir de aeronaves –
aerofotogrametria.
4.3.3. Topologia:
A topologia visa o estudo das formas exteriores do terreno e os processos
empregados para representação das formas do terreno. Esta representação se dá
 pelas curvas de nível ou por meio de pontos cotados.
11
4.4. Sistemas de Coordenadas
Após um levantamento topográfico o próximo passo é representar o terreno em um
sistema de eixos coordenados. Qualquer trabalho que envolva topografia ou geodésia deve ser
representado em um sistema único de referência, representação esta, realizada por meio de um
 par ordenado X e Y (representação planimétrica).
O sistema de coordenadas baseadas em coordenadas ortogonais foi introduzido por
René Descartes (1596-1650) que o denominou de sistemas cartesianos.
Mundialmente, o sistema mais usado é o sistema de coordenadas geográficas ou
Latitude / Longitude, mas devido às necessidades de representação em um plano surgiram os
sistemas de projeção, que visam a transformação da superfície do elipsóide não desenvolvível
em uma superfície plana.
Dentre os diversos sistemas de projeção destacaremos o Sistema Universal Transverso
de Mercator e o Sistema de Coordenadas Topográficas, representado pelo Plano Topográfico
Local (PTL).
4.4.1.  Sistema de Coordenadas Geográficas.
A astronomia de campo é a Ciência que determina as coordenadas Geográficas ou
Astronômicas representadas pela latitude (φ) e longitude (λ ). Como referência, toma-se a
Linha do Equador (que divide a Terra em Hemisfério Norte e Hemisfério Sul) e a linha que
 passa pelos pólos e pela cidade inglesa de Greenwich (Meridiano de Greenwich), que divide a
Terra em Hemisfério Oeste (W, de West) e Hemisfério Leste (E, de East). As linhas
imaginárias paralelas à do Equador são chamadas de Paralelos e suas perpendiculares, de
Meridianos. Convencionou-se que a linha do Equador é a linha 0 º de Latitude e o meridiano
de Greenwich, a linha 0º  de Longitude. O meridiano oposto, a 180 º, é chamado de
"International Date Line" (Linha Internacional de Mudança de Data). A latitude varia de 0º no
Equador a ± 90º nos pólos, tendo-se latitudes positivas para pontos no hemisfério Norte e
latitudes negativas para pontos no hemisfério Sul.
12
Figura 4.2 –  Representação dos Meridianos e Paralelos.
Definições:
Latitude geodésica
forma com sua projeção equatorial. É contado ao longo do meridiano de P.
Longitude geodésica
geodésicos do ponto considerado de Greenwich, contada a partir deste positivamente por
leste.
Altura geométrica h:  ou altura elipsoidal, é o segmento da normal compreendida
entre o ponto P e o elipsóide. Pode ser positiva ou negativa conforme P esteja acima ou
abaixo da superfície elipsoidal.
Figura 4.3 –  Latitude e Longitude Geodésica:
Meridiano de
Greenwich
: ângulo, que a normal ao elipsóide, passante por um ponto P,
:  ângulo que mede o diedro formado pelos meridianos
13
4.4.2.  Sistema de Projeção UTM
Segundo LIBAULT (1975), o Sistema Transverso de Mercator foi calculado
inicialmente por J. H. LAMBERT e ficou mundialmente conhecido como sistema de GAUSS.
A Projeção Universal Transverso de Mercator (UTM), é um sistema de representação
 plana do elipsóide que adota a projeção conforme de GAUSS. Este sistema de projeção
representa o elipsóide dividido em 60 cilindros secantes à superfície da Terra ao longo de
meridianos em zonas múltiplas de 6º de longitude e estendendo-se de 80º de latitude Sul a 80º
de latitude norte.
Cada uma das zonas UTM de 6º (semelhantes a gomos de laranja) é numerada
seqüencialmente a partir do antimeridiano de Greenwich, ou seja, de 180º para E, tendo um
meridiano central que se projeta no mapa em UTM como uma linha reta N-S enquanto que os
meridianos extremos da zona (múltiplos de 6º) mostram a curvatura desses meridianos que
acabam se encontrando nos pólos N e S geográficos.
Figura 4.4 –  O Sistema Universal Transverso de Mercator.
Com o objetivo de reduzir as deformações, é introduzido nos cálculos o fator de
redução de escala, onde para o meridiano central assume o valor calculado pela expressão:
14
 5 
 0 
 0 
 . 0 
 0 
 0 
m
10.000.000 m
6º Amplitude
Equador
MC
O sistema UTM apresenta dois eixos cartesianos ortogonais: um representado pela
 projeção da linha geodésica correspondente ao meridiano central sobre o cilindro secante e o
outro pela transformada do equador.
As coordenadas neste sistema são representadas pelas letras N (norte) e E (Este). Com
o intuito de sempre obter coordenadas UTM positivas estabeleceu-se o valor de 500.000 m
 para o eixo correspondente ao meridiano central e 10.000.000 m para o eixo correspondente à
linha do Equador.
Figura 4.5 –  Representação da Projeção dos pontos da Superfície do Elipsóide sobre o Cilindro Secante.
Figura 4.6 –  Representação do Fuso UTM.
15
4.5. Medidas de Ângulos e Distâncias
Em levantamentos por meio de técnicas convencionais (a partir de estações totais e
teodolitos), a medição de ângulos e distâncias se torna uma das tarefas mais importantes da
topografia. A qualidade de um trabalho topográfico está intrinsecamente relacionado com a
capacidade de se obter, através de métodos e equipamentos de medição adequados, um nível
de precisão tolerável para os fins a que se destina o levantamento.
Em se tratando de levantamentos topográficos para fins de georreferenciamento de
imóveis rurais, as medições angulares e lineares devem ser realizadas obedecendo-se às
diretrizes estabelecidas pela Norma Técnica de Georreferenciamento.
Em poligonais para finsde apoio básico e de apoio à Demarcação deve-se atentar à
 precisão do equipamento utilizado.
4.5.1. Teodolitos
Segundo a Norma, os “teodolitos são classificados de acordo com o desvio padrão de
uma direção observada em duas posições da luneta (CE/CD). O valor da precisão interna de
cada modelo é normalmente definido pelo fabricante. Não havendo indicação deste, a
 precisão angular poderá ser aferida por entidade oficial habilitada a partir de testes
efetuados em campo de prova ou laboratório de aferição”.
Classe de teodolitos Desvio-padrão
(precisão angular)
precisão baixa ≤ 30”
precisão média ≤ 07”
precisão alta ≤ 02”
Tabela 4.1 - Classificação dos teodolios de acordo com sua precisão angular (ABNT-
 NBR-13.133/DIN).
16
4.5.2.  Med’s (Medidores Eletrônicos de Distâncias)
Classe de MEDs Desvio-padrão
precisão baixa (10 mm + 10 ppm x D)
precisão média (5 mm + 5 ppm x D)
precisão alta (3 mm + 2 ppm x D)
Tabela 4.2 - Classificação dos medidores eletrônicos de distância – MEDs (ABNT-NBR-
13.133).
4.5.3.  Estações Totais
Classes de
Estações Totais
Desvio padrão
(precisão angular)
Desvio-padrão
(precisão linear)
precisão baixa ≤ 30” (10 mm + 10 ppm x D)
precisão média ≤ 07” (5 mm + 5 ppm x D)
precisão alta ≤ 02” ( 3 mm + 3 ppm x D)
Tabela 4.3 - Classificação das estações totais de acordo com a precisão interna (ABNT-
 NBR-13.133).
Pela Norma, as Poligonais deverão ser desenvolvidas linearmente, sem mudanças
substanciais de sentido, com deflexão superior a 60° visando minimizar os erros de
orientação.
O controle azimutal deverá ser rigorosamente observado. Nas medições angulares,
metade das observações será efetuada no ângulo interno e metade no ângulo externo, com
discrepâncias máximas de 360° ± 4”, 360° ± 5” respectivamente para poligonais de precisão
(CONTRÔLE BÁSICO) e apoio ao levantamento e à demarcação (CONTROLE
IMEDIATO).
Importante:  Nos desenvolvimentos poligonais os pontos de partida e chegada
deverão ser distintos, qualquer que seja a técnica de levantamento utilizada. Sob nenhuma
hipótese será admitido o fechamento de desenvolvimentos poligonais em torno de um mesmo
 ponto.
Dentre os tipos de poligonais definidos em Norma, daremos ênfase às poligonais de
demarcação, tendo em vista que o transporte de coordenadas por meio de técnicas
convencionais se torna um trabalho muito oneroso e que demanda tempo e cuidados do
 profissional para que não se recorra em erros graves. Normalmente, em sua grande maioria e
de preferência, aconselha-se que os pontos de apoio básico sejam determinados por meio de
técnicas de rastreamento de sinais de satélites do GPS com as convenientes técnicas de
 processamento e redução ao elipsóide.
17
 No caso de Poligonais Geodésicas para levantamento e demarcação, as quais serão
muito utilizadas principalmente em áreas cobertas e que impossibilitam o uso de receptores
GPS, deve-se utilizar poligonais que permitam a verificação dos erros de fechamento, e neste
caso, poderão ser utilizadas poligonais fechadas, com referência em um ponto que não faça
 parte da poligonal, ou poligonais apoiadas em dois pontos. O primeiro caso se deve ao fato da
exigência do não fechamento em torno de um mesmo ponto. A determinação das poligonais
deve manter uma configuração como apresentado nas Figuras a seguir:
Figura 4.7 –  Exemplo de Poligonal Fechada com Ponto de Apoio.
Figura 4.8 –  Exemplo de Poligonal Apoiada em dois Pontos.
Quanto ao levantamento angular das poligonais, deve-se tomar medidas pelo método
das direções, que consiste em medir um ângulo α  entre dois alinhamentos OA e OB   (Ver
Figura 4.9), por meio de uma série de repetições.
18
Figura 4.9 –  Medição de ângulos.
O processo consiste em instalar o aparelho no ponto O, visa-se o ponto de ré (Ponto A)
com a luneta na posição direta medindo-se uma primeira direção com o limbo horizontal
 próximo a 0º00’00”. Em seguida mede-se a direção do ponto de vante (Ponto  B). Assim,
inverte-se a luneta, visa-se novamente o Ponto  A  (que agora terá uma direção próximo a
180º00’00”) e mede novamente a direção para o Ponto  B, completando-se assim a primeira
série de leitura (CD e CE, conforme estabelecido pela Norma Técnica). Repete-se o processo,
alterando-se apenas a próxima direção inicial, que para 4 séries de leitura, por exemplo, seria
 próxima a 45º00’00”, depois próximo a 90º00’00” e finalizando-se com a direção próxima a
135º00’00”. Para atendimento à Norma, exige-se apenas um ciclo à direita (CD) e um ciclo à
esquerda (CE). Assim, pode-se iniciar a 1ª leitura à RÉ com qualquer direção.
Segue abaixo uma tabela com as especificações do INCRA para poligonais de
demarcação.
Descrição Taqueométrica Eletrônica
1 Desenvolvimento
Espaçamento entre estações
Comprimento máximo do desenvolvimento
(recomendável)
 Até 150 m
15 km
(recomendável)
 Até 500 m
15 km
2 Edição Angular Horizontal
Método
Instrumento (classificação ABNT)
Número de Séries
Número de posições p/ série
das direções
precisão baixa
1 (CE e CD)
2
das direções
precisão baixa
1 (CE e CD)
2
3 Medição dos lados
Número mínimo de séries de leituras recíprocas 1 (FI, FM, FS) 2 leituras válidas
4 Controle Azimutal
Número máximo e lados sem controle
Erro de fechamento máximo em azimute para direções de controle
25
1’ 
15
1’ 
5 Medição angular vertical
Número de séries
 Valor máximo da diferença entre leituras verticais
Número máximo de lados entre pontos de altitudes conhecidas
 Valor máximo do erro de fechamento altimétrico
1
20”
25
20 mm/Km
1
20”
15
20 mm/Km
6 Fechamentos:
 Angular
Linear (coordenadas)
 Valor máximo para o erro relativo em coordenadas após a compensação
em azimute.
 N '1
1/1000
 N '1
1/2000
Tabela 4.4 - Poligonais Geodésicas para Levantamento e Demarcação (CONTROLE IMEDIATO).Fonte:
 Norma Técnica de Georreferenciamento – INCRA.
19
4.6. Orientação
Outra determinação de extrema importância em trabalhos para fins de
georreferenciamento é a determinação da orientação precisa. Segundo UZÊDA (1963),
dizemo-nos orientados toda vez que conhecemos a direção do Norte Geográfico.
A determinação da orientação exata em relação ao Norte Geodésico era uma tarefa
muito difícil antes do surgimento de novas tecnologias (GPS) e consistia na determinação
 precisa por meio de processos astronômicos, do azimute de uma direção qualquer. Em
levantamentos realizados por meio das técnicas convencionais, a determinação precisa do
azimute inicial de partida da poligonal é primordial para que se consiga o
georreferenciamento de um imóvel. Os processos de determinação deste azimute serão
apresentados nos tópicos seguintes.
4.6.1.  Determinação pelo Método da Distância Zenital Absoluta
Segundo GEMAEL (1971), este método é especialmente indicado para observações a
um astro fixo. Entretanto, com algumas correções pode-se aplicá-lo em observações ao Sol.
Observando-se a Figura 4.10 , temos que  Hn0ºHsME 1  representa o plano do horizonte do
observador. 0º  é a direção da graduação zero do limbo horizontal do aparelho.  M  é uma mira e
 ZE  é a vertical de um astro.
Figura 4.10 –  Determinação do Azimute por visando-se o Sol..
20
Vamos considerar também a seguinte notação:
 L E    Leitura Horizontal do Astro
 L M    Leitura Horizontal da Mira.
 A E    Azimute do Astro.
 A M    Azimute da Mira.
 Nos procedimentos de campo o observador deve realizar uma leitura na mira
 L M , em seguida deve-se visar o astro obtendo a leitura  L E   e no limbo vertical a
distância zenital z . Sabendo-se que a graduações do limbo azimutal crescem no sentido
horário, têm-se da geometria que:
 M  M  E  E   A L A L −=−  e logo  E  E  M  M   A L L A +−=
Se o aparelho nos fornece LM e LE, além da distância zenital z, nos resta
determinar o azimute do astro (AE) para o momento da observação.
A trigonometria esférica possibilita a solução de um triângulo esférico cujos
lados são conhecidos, assim segundo GEMAEL (1981), utiliza-se a seguinte
expressão:
 senz
 sen z sen
 A E  ×
−×
=
φδ φ 
cos
)cos(
cos
onde:
φ  = Latitude do Local da Observação
δ   = Declinação do Astro
 z  = Distância zenital medida e corrigida
Ao final dos cálculos teremos dois azimutes que satisfazem a equação, de forma que
elimina-se a ambigüidade a partir do conhecimento do horário da observação: o astro nasce a
leste e oculta a oeste.
De forma resumida este é o método para determinação do azimute verdadeiro de uma
direção pelo método da distância zenital absoluta. O processo de cálculo completo pode ser
consultado no Livro TOPOGRAFIA COMTEMPORÂNEA, de Carlos Loch e Jucilei Cordini.
21
4.6.2.  Determinação do Azimute Geodésico por meio de Observações GPS
Com a utilização de sistemas receptores de sinais GPS, nosso trabalho de
determinação da orientação se torna muito mais fácil. Conhecendo-se as coordenadas
geodésicas dos pontos de partida e referência da poligonal a determinação do azimute
geodésico pode ser realizada a partir da transformação dessas coordenas para topográficas
locais, item do próximo Capítulo 6 .
]
Figura 4.11 –   Determinação do Azimute através das
coordenadas topográficas.
Este método consiste em determinar o azimute calculando-se o ângulo α pela seguinte
expressão:
Y 
 X 
∆
∆
= arctanα 
Assim o azimute será calculado da seguinte forma:
1º QUADRANTE α = AZ 
2º QUADRANTE α −=180 AZ 
3º QUADRANTE α +=180 AZ 
4º QUADRANTE α −= 360 AZ 
Para que o azimute calculado seja igual ao azimute geodésico, deve-se definir o ponto
A como sendo a origem do sistema topográfico local, que será visto em detalhes no próximo
αα
αα
1º
2º3º
4º
22
capítulo. Este ponto de origem deverá ser também o ponto de partida da poligonal de modo
que o azimute calculado deste ponto para qualquer que seja o ponto de referência ( P1, P2, P3
e P4) seja também o azimute geodésico.
23
5. PLANO TOPOGRÁFICO LOCAL
5.1.  Definição do Plano Topográfico Local
É definido por um sistema plano-retangular X,Y que representa as posições de pontos
de um levantamento topográfico. Uma terceira grandeza, a altura (cota ou altitude) junta-se às
coordenadas planas X e Y, determinando a posição tridimensional dos pontos. A origem deste
sistema de coordenadas planas é um vértice geodésico com coordenadas geodésicas
conhecidas e o plano de referência é tangente, neste ponto, ao geóide, ou matematicamente, à
superfície de referência (elipsóide de referência) do sistema geodésico adotado.
Figura 5.1–  Definição do Plano Topográfico Local.
Assim, todas as distâncias e ângulos determinados nas operações topográficas são
 pressupostos como sendo a projeção em verdadeira grandeza sobre o Plano Topográfico
Local. Neste caso há uma coincidência da superfície de referência com o plano tangente a esta
superfície, o que permite concluir que há uma desconsideração da curvatura da Terra.
Entretanto, esta desconsideração só é admitida desde que os erros desta abstração não
ultrapassem os erros provenientes das operações topográficas, face à precisão dos
instrumentos de medição e processos de cálculo empregados.
24
5.2.  Extensão do Sistema Topográfico Local
A extensão do Sistema Topográfico Local é limitada pela precisão requerida para a
determinação das posições dos pontos no processo de levantamento e do erro ocasionado pela
desconsideração da curvatura terrestre, em um alinhamento definido pela distância do ponto
mais afastado do levantamento em relação à origem do sistema.
Seja a Figura 2.1, onde SF é um trecho da Superfície Física, PT é o plano tangente ao
geóide na origem do Sistema Topográfico (ponto A 1), R é o raio da Terra, supostamente
esférica. Seja B um ponto da superfície física, cuja projeção sobre o plano tangente é definida
 pelo ponto B1, e sobre o geóide é o ponto B2.
Sejam D e D1 as distâncias entre os pontos A e B referidas ao geóide A 1B2 e ao plano
tangente A1B1, respectivamente.
Figura 5.2 –  Erro devido à curvatura da Terra.
Verifique que:
D1 = A1B1 = R . tan α  (1)
Admitindo-se que α é um ângulo muito pequeno, pode-se escrever:
D = arco A1B2 = R.α  (2)
25
A diferença entre D1 e D é denominada de erro planimétrico (∆D) devido à curvatura
da Terra, portanto:
∆D = D1 – D (3)
∆D = R . tan α – R.α = R (tan α – α) (4)
Sendo o ângulo central α muito pequeno, convém desenvolver a função tangente em
série de potências:
tan α = α + α3/3 + 2α5/15 + 17α7/315 + ... (5)
Limitando a expressão ao segundo termo deste desenvolvimento e substituindo a
expressão (5) na equação (4) tem-se:
∆D = R. α3  (6)
3
Da expressão (2) tem-se α em função de R e D:
α = D/R α3 = D3/R 3  (7)
Inserindo a equação (7) na equação (6) tem-se:
∆D = D3/3R 2 (8)
Esta é a expressão do erro planimétrico devido à curvatura da Terra. O erro ∆D
corresponde a um erro ε na escala E da planta, ou seja:
∆D = ε/E (9)
Fazendo E = 1/M, onde M é o “módulo da escala”, tem-se:
∆D = ε x M (10)
O erro ε é a menor dimensão que se pode perceber em uma planta topográfica, ou à
espessura do traço mais fino do desenho. A seguir, estão consignados na Tabela abaixo,
26
diversos valores de distâncias calculadas sobre o geóide e sobre o plano tangente de
referência, incluindo também os erros planimétricos “absolutos” e “relativos”.
R = Raio Médio da Terra = 6370 Km
δ = erro relativo aproximado
• Os valores ideais para a extensão do Sistema Topográfico Local são admitidos como
sendo de 80 km para um erro relativo máximo de 1:15.000;
• Para cartografia de âmbito municipal: 70 km para em erro relativo máximo de 1:20.000;
• Para cartografia, em áreas urbanas e especiais: 35 km para um erro relativo máximo de
1:100.000
Entretanto, pode-se reduzir estes valores considerando-se o relevo do terreno. A
altitude da maioria dos pontos do terreno não deve variar de ± 150 m da altitude média do
terreno conforme a finalidade do levantamento topográfico. Tanto no caso dos valores ideais
 para a determinação da área de abrangência do sistema como no de suas reduções em função
do relevo do terreno, deve-se estabelecer novos planos tangentes de modo que cada sistema
apresentará uma origem distinta, porém “amarrados” entre si em pontos comuns cujas
coordenadas geodésicas são conhecidas.
 Nos levantamentos topográficos regulares, em função dos instrumentos utilizados no
 processo de medição e das metodologias de cálculo empregadas, admite-se erros relativos da
ordem de 1:200.000. Isto equivale a um erro de aproximadamente 10 cm em 20 km. Logo
 pode-se concluir que não há a necessidade de correção do erro devido à curvatura nestas
circunstâncias, sendo que a partir deste limite a curvatura da terra já não se torna desprezível.
Convém, entretanto, verificar a escala da planta e o erro admissível conseqüente, e assim
α D1 = R . tan α D = R.α ∆D (m) δ
8’ 14823,690 14823,663 0,027 1 : 550.000
9’ 16676,659 16676,621 0,038 1 : 430.000
10’ 18529,631 18529,579 0,052 1 : 350.000
12’ 22235,585 22235,495 0,090 1 : 250.000
12,5’ 23007,661 23007,560 0,100 1 : 230.000
13’ 24088,567 24088,453 0,115 1 : 210.000
13,1’ 24335,632 24335,514 0,118 1 : 205.000
13,25’ 24551,814 24551,692 0,122 1 : 201.000
13.5’ 25015,060 25014,932 0,129 1 : 190.000
15’ 27794,545 27794,368 0,176 1 : 150.000
27
efetuar ou não a correção ∆D. Por outro lado, na maioria dos casos o levantamento
topográfico não excede o espaço do terreno limitado por uma malha do canevas geodésico
(lados entre 5 e 6 km), o que permite admitir a hipótese de que em uma porção do terreno
nestas circunstâncias, a curvatura terrestre é desprezível.
5.3. O Sistema Topográfico Local
O sistema topográfico local, conforme consta na NBR 13133 (1994), pode ser descrito
 pelas seguintes características:
a) as projetantes são ortogonais à superfície de projeção, ou seja, o centro de projeção
está localizado no infinito;
 b) a superfície de projeção é um plano normal à vertical do lugar no ponto da
superfície terrestre considerado como origem do levantamento, sendo seu referencial
altimétrico referido ao datum vertical brasileiro;
c) as deformaçõesmáximas inerentes a desconsideração da curvatura terrestre e a
refração atmosférica podem ser definidas (de forma aproximada) pelas seguintes expressões:
l = - 0,004 mm/3 Km;
h = + 78,5 mm/2 Km;
h’ = + 67,0 mm/2 Km;
onde:
l = deformação planimétrica devido à curvatura da Terra, em mm
h = deformação altimétrica devido à curvatura da Terra em mm
h’=  deformação altimétrica devido ao efeito conjunto da curvatura da Terra e da
refração atmosférica, em mm/distância considerada no terreno, em Km.
d) o plano de projeção tem a sua dimensão máxima limitada a 80 Km a partir da
origem de maneira que o erro relativo, decorrente da desconsideração da curvatura terrestre,
não ultrapasse 1/35000 nesta dimensão e 1/15000 nas imediações da extremidade desta
dimensão.
28
e) a localização planimétrica dos pontos, medidos no terreno e projetados no plano de
 projeção, se dá por intermédio de um sistema de coordenadas cartesianas, cuja origem
coincide com a do levantamento topográfico.
Conforme a alínea (e), temos que, em um levantamento topográfico a posição relativa
dos pontos da superfície terrestre é caracterizada pelas coordenadas num sistema cartesiano
ortogonal, em duas dimensões (Ver Figura 2.2). A origem dos dois eixos cartesianos coincide
com a origem do sistema topográfico local, onde o eixo das ordenadas (Y) está orientado
segundo a direção Norte-Sul verdadeira coincidindo-se com a linha do meridiano na origem.
O eixo positivo das abscissas (X) forma 90º na direção Leste.
Figuras 2.2 – Coordenadas Plano Retangulares no plano topográfico local.
29
O sistema topográfico local, face às suas limitações quanto à sua extensão (conforme
visto no item 5.2), permite tratar a superfície matemática da terra, dada pelo elipsóide de
revolução, como sendo supostamente uma esfera (esfera de adaptação de Gauss), onde o raio
da Terra é dado pelo raio médio do elipsóide de referência no ponto definido como sendo a
origem do sistema topográfico local (ver Figura 2.3).
Figuras 2.3 – O sistema topográfico local.
Para que todas as distâncias e ângulos determinados nas operações topográficas sejam
considerados como sendo a projeção em verdadeira grandeza sobre o Plano do Horizonte
Local, faz-se necessário elevar o plano à altitude média do terreno, transformando-se assim no
 plano topográfico local (ver Figura 2.4).
30
Figuras 2.4 – Conceitos básicos do sistema topográfico local.
Dessa forma, as coordenadas plano retangulares do ponto origem (apoio geodésico ao
levantamento topográfico), devem ser afetadas por um fator de elevação, determinado pela
seguinte expressão:
• c= (Rm+Ht)/Rm.
ou aproximadamente:
• c = 1 + 1,57 x 10
 -7 x Ht.
As coordenadas plano retangulares da origem do sistema são dadas por X = 0 e Y = 0.
Entretanto, para evitarmos pontos no plano topográfico com coordenadas negativas, é comum
arbitrar um valor inicial para o ponto de origem, lembrando-se sempre do valor máximo para
a extensão do plano topográfico local (80 Km). Dessa forma as coordenadas do ponto de
31
origem se apresentarão somadas de termos constantes (exemplo, X = 150.000 e Y = 250.000)
KX e KY, para os os eixos X e Y respectivamente.
Logo, temos que:
X = 0 + KX = KX
Y = 0 + KY = KY
Para orientação dos alinhamentos utiliza-se o azimute plano de suas direções. Este
azimute é dado pelo ângulo formado por uma direção de um determinado alinhamento com o
norte da quadrícula (NQ), sendo o vértice, o ponto inicial deste alinhamento. As linhas
 paralelas ao eixo Y no canevas do plano topográfico local se referem às projeções de linhas
geodésicas (meridianos) paralelas ao meridiano da origem (O). Logo, enquanto as direções
 Norte e Sul geodésicas, convergem para os pólos, no plano topográfico local as direções são
representadas paralelamente ao meridiano central e representam as direções Norte e Sul de
quadrícula. A diferença angular entre as direções norte-sul geodésica (NG)e norte-sul na
quadrícula (NQ) é definida como a convergência meridiana, que é utilizada para transformar
azimute verdadeiro, determinado pela astronomia, em azimute topográfico que é refereido ao
norte de quadrícula e vice-versa (ver Figura 2.5).
A convergência meridiana (γ) só deve considerada no caso de utilização de elementos
colhidos em planta para locação em campo com a finalidade de aviventação de rumos ou para
elaboração de memoriais descritivos de perímetros de propriedades em registros públicos ou
em ações judiciais. Em plantas de projetos e obras de engenharia, a consideração da
convergência meridiana é irrelevante
A Figura 2.5 representa o comportamento da convergência meridiana em algumas
direções indicadas nos vértices iniciais de cada direção, para um plano topográfico local
situado no hemisfério sul. A convergência meridiana nos pontos situados a leste da origem do
sistema topográfico local, apresenta valores negativos, enquanto à oeste apresenta valores
 positivos.
32
Figuras 2.5 – Exemplo da convergência meridiana no hemisfério
Sul.
A Figura 2.6 a seguir representa o comportamento da convergência meridiana para um
 plano topográfico local, situado no hemisfério norte. A convergência meridiana nos pontos
situados a leste da origem do sistema topográfico local, apresenta valores positivos, enquanto
à oeste apresenta valores negativos.
33
Figuras 2.6 – Exemplo da convergência meridiana no hemisfério
 Norte.
Para o caso da origem do sistema se situar exatamente no equador, conforme pode ser
visto pela Figura 2.7, tem-se as seguintes situações.
Pontos situados no eixo dos X (linha do equador): γ = 0;
Pontos situados no primeiro quadrante: γ > 0;
Pontos situados no segundo quadrante: γ < 0;
Pontos situados no terceiro quadrante: γ > 0;
Pontos situados no quarto quadrante: γ < 0.
 Nos dois hemisférios, pontos situados exatamente no mediano da origem têm valores
nulos para a convergência meridiana γ.
NQ
NG
34
Figuras 2.7 – Exemplo da convergência meridiana quando a origem
se situa na linha do equador.
Para estabelecer um sistema topográfico local,deve-se, inicialmente, calcular as
coordenadas plano retangulares dos pontos geodésicos utilizados como apoio geodésico ao
levantamento topográfico. Estas coordenadas são obtidas a partir das coordenadas geodésicas
destes pontos (ϕ,λ) e das coordenadas geodésicas da origem (O) do sistema ( ϕo, λo), por
intermédio das fórmulas da solução inversa do problema geodésico de transporte de
coordenadas geodésicas, cujas coordenadas plano retangulares são objetos de determinação.
A origem do sistema (O) pode ser, ou não, um ponto do apoio geodésico. Neste caso
recomenda-se que o mesmo esteja próximo ao centro da área do levantamento.
Caso contrário, pode ser escolhido um ponto qualquer, não necessariamente
identificado e materializado no terreno, sendo as suas coordenadas geodésicas impostas,
convenientemente, a fim de que o ponto mais afastado da área de abrangência do sistema não
 proporcione um erro devido à negligência da curvatura da terrestre que exceda o erro possível
de ser cometido pela operação topográfica. A partir das coordenadas plano retangulares dos
 pontos de apoio geodésico, calcula-se as demais coordenadas pelo processo convencional da
topografia.
35
6. TRANSFORMAÇÕES DE COORDENADAS
6.1. Transformações de Coordenadas Geodésicas em Topográficas Locais
6.1.1. Problema
Calcular as coordenadas plano retangulares (x, y) de um ponto P de
coordenadas geodésicas (ϕ,λ), a partir das coordenadas geodésicas da origem do
sistema topográfico local ( ϕ o,λo) cujas coordenadas plano retangulares são  X Y 0 0,
(arbitrárias).
6.1.2. Fórmulas
 X k 
Y y k 
 x
 y
0 0
0 0
= +
= +
 x y0 0 0= =
k  x , k  y  = constantes arbitrárias
 X k 
Y y k 
 x
 y
= +
= +
( ) ( )[ ]
 x N arc c
 y
 B
C x D E x E C x c
 p= −
= + + + +
∆λ 
∆ϕ ∆ϕ ∆ϕ  
1 0
1
2
1
2
1
2 4
1
1
.cos . . " .
. . . . . .
ϕ 
 A
 x
 y
=
 
 


 
−tan 1
∆
∆
∆
∆
 x x x x
 y y y y
= − =
= − =
0
0
∆λ∆ϕ 
= −
= −
λ λ 
ϕ ϕ 
0
0
∆ ∆λ λ 1 = ×" correção arco-seno =
( )






∆×−×∆ 2
2
)"(
6
"1sen
1" λ λ 
∆ ∆1 = ×"  correção arco-seno =
36
( )
( )[ ]∆ϕ ∆ϕ ∆ϕ ∆ϕ ∆ϕ  1
2
2 12 21
1
6
1 39173 10" " 
 sen " 
( " ) " , "  = × − ×








= × − × ×−
( )∆ ∆λ 
∆ϕ 
∆λ 
∆
 A F 
 A A A
m
o
= − +



= + ±
" .sen .sec . "  
' 
ϕ 
2
180
3
 N A N A p0 0× × = − × × sen cos sen ' cos   (prova)
 B
 M arc
=
×
1
10 "
C 
 M N arc
=
× × ×
tan
" 
ϕ 0
0 02 1
( )
 D
e arc
e
=
× × × ×
× −
3 1
2 1
2
0 0
2 2
0
3
 sen cos " 
.sen
ϕ ϕ 
ϕ 
 E 
 N 
=
+ ×
×
1 3
6
2
0
0
2
tan ϕ 
 F  m m=
× × sen cos sen " ϕ ϕ  21
12
c
 M N H 
 M N 
t =
× +
×
0 0
0 0
ϕ 
ϕ 
m =
+ 0
2
( )
( )
 M 
a e
e
0
2
2 2
0
3
1
1
=
× −
− × sen ϕ 
37
 N 
a
e
0 2 2
01
=
− × sen ϕ 
 N 
a
e
 p =
− ×1 2 2 sen ϕ 
( )e
a b
a
 f f =
−
= × −
2 2
2 2
 f 
a b
a
b
a
=
−
= −1
onde:
0 - raio de curvatura da seção normal ao plano meridiano do elipsóide em O
(origem);
 N  p - raio de curvatura da seção normal ao plano meridiano do elipsóide em P;
0 - raio de curvatura das seção meridiana do elipsóide em O (origem);
a - semi-eixo maior do elipsóide de referência;
 b - semi-eixo menor do elipsóide de referência;
e - primeira excentricidade do elipsóide de referência;
f - achatamento do elipsóide de referência;
A - azimute topográfico e geodésico da direção OP;
A' - azimute geodésico recíproco de A (somente para utilização na PROVA);
γ - convergência meridiana em P;
c - fator de elevação;
 H t  - altitude ortométrica do plano topográfico.
6.1.3. Na aplicação das fórmulas considerar ϕ negativo no hemisfério sul, λ
crescendo positivamente para oeste.
6.1.4. Os coeficientes C, D e F são negativos no hemisfério sul.
38
6.1.5. O eixo das ordenadas é o eixo dos Y e o das abscissas é X.
6.1.6. O azimute A é topográfico e também geodésico pois em O a
convergência meridiana é nula e A' é elipsóidico, estes azimutes servem para a prova
(detecção de erros grosseiros nos cálculos).
O azimute recíproco no sistema topográfico local é igual a A 180°, não
levando em conta a convergência meridiana.
6.2. Transformações de Coordenadas Topográficas Locais em Geodésicas
6.2.1. Problema
Calcular as coordenadas geodésicas ϕ e λ  de um ponto P dado por suas
coordenadas plano retangulares X e Y, a partir destas e das coordenadas geodésicas φ 0
e λ 0  e plano retangulares  X 0 e Y 0 da origem O do sistema topográfico local.
6.2.2. Fórmulas
 X x k 
Y y k 
 x
 x
0 0
0 0
= +
= +
 x y0 0 0= =
k  x , k  y  = constantes arbitrárias
 x X k 
 y Y k 
 x
 y
= −
= −
 x
 x
c
 y
 y
c
' 
' 
=
=
c
 M N H 
 M N 
t =
× +
×
0 0
0 0
 H t  = altitude ortométrica do plano topográfico
39
( )
( )
 M 
a e
e
0
2
2 2
0
3
1
1
=
× −
− × sen ϕ 
 N 
a
e
0 2 2
01
=
− × sen ϕ 
 N 
a
e
 p =
− ×1 2 2 sen ϕ 
 s x y= +' ' 2 2 ⇒  s = distância topográfica OP
A = azimute topográfico da direção OP = tan
'
'
−1
 y
ϕ  = +0 ∆
Correção de ∆ ∆′′ = ϕ 1 ⇒ ∆ ∆ϕ 1 1= ′′×  correção arco seno
( )
( ) 
 
 

 
 
∆×+×∆=∆− 21
2
1 "6
"1
1"" ϕ ϕ ϕ 
arc
( )∆ϕ 1
2
" " " = − − ×δϕ δϕ   D  (em segundos)
δϕ 1
2 2 3 2" . .cos . .sen . . .sen .cos= + − B s A C s A B E s A A
λ λ λ = +0 ∆
∆λ ∆λ  " " = ×1 correção arco-seno
( )
( ) 
 
 

 
 
∆×+×∆= 21
2
1 "6
"1
1" λ λ 
arc
∆λ 1
1
1
" 
" 
 sen sec=
×
× × ×
 N arc
 s A
 p
ϕ 
( )− = ×
+
× + ×∆ ∆λ 
∆
∆λ  A F " sen sec "  
ϕ  0 3
2 2
 A A A o'= + ±∆ 180 = azimute geodésico da direção PO
PROVA:  N A N A p0 0× × = − × × sen cos sen ' cos
onde a e c p0 0, , , , ,
têm as mesmas definições apresentadas em 5.2. e os coeficientes B, C, D, E e F têm
também as mesmas expressões.
40
6.2.3.  Na aplicação das fórmulas fazer as mesmas considerações contidas em
6.1.3, 6.1.4 e 6.1.5.
5.2.4. A prova serve apenas para detectar erros grosseiros no cálculo dos valores
de A e A' que são, neste caso, o azimute geodésico direto da direção OP e o seu
azimute geodésico recíproco, respectivamente, cuja diferença é a convergência
meridiana em P.
6.3.  Determinação do Norte geográfico a partir das coordenadas plano
retangulares no sistema topográfico local de pontos definidores dos azimutes
 planos (topográficos)
6.3.1. Problema
Calcular a convergência meridiana no vértice do azimute plano (topográfico)
de uma direção, dado por suas coordenadas plano retangulares no sistema topográfico
local e a partir deste azimute determinar a direção do norte geográfico (verdadeiro)
com a aplicação da convergência meridiana. O problema tem como dados: as
coordenadas plano retangulares dos pontos definidores da direção conhecida ou seja P
(vértice do azimute) e Q (ponto visado); as coordenadas plano retangulares e as
coordenadas geodésicas da origem do sistema topográfico local e a altitude do plano
topográfico.
6.3.2. Fórmulas
( ) P x y p p, ( )Q x yq q, ( )O x y0 0, ( )O  φ λ 0 0,
( ) PQ
 x x
 y yt 
q p
q p
=
−
−
−tan 1
( ) ( ) PQ PQ g t   p= + γ 
 x y0 0 0= =
41
 X k  x0 0= + ∴ =k X  x 0
Y y k  y0 0= + ∴ =k Y  y 0
k  x , k  y  = constantes arbitrárias
 x X k  p p x= −
 y Y k  p p y= −
( ) ( )




 
 




 
 
∆×+

 
 

 
  ∆
××∆−= 3"
2
cos
1
sen("  pm p p  F  λ 
ϕ 
ϕ λ γ 
onde
( ) PQ t  - azimute topográfico da direção PQ;
( ) PQ  g  - azimute geodésico da direção PQ;
γ  p - convergência meridiana em P com valor dado em segundos
42
6.4.  Exemplo de Transformação de coordenadas Geodésicas em plano
retangulares no sistema topográfico local:
6.4.1. Dados
- Origem O
ϕ0= 22°42’34.87698” S
λ0= 50°38’14.56789” W
X0= 150.000,000 m
Y0= 250.000,000 m
• Altitude do plano topográfico Ht= 567,00 m
• Elipsóide de referência: Elipsóide Internacional de 1967 (UGGI-67)
a = 6378160,000
e = 0.081820180369054
1-e2= 0.993305458
- Ponto P
S o "67892.23'3422=ϕ 
W o "43874.23'3250=λ 
6.4.2. Cálculos preliminares
 N 
a
e
0 2 2
01
=
−
=
.sen ϕ 
6381344,3852
 N 
a
e
 p =
−
=
1 2 2.sen ϕ 
 6381308,20401 m
( )
( )
 M 
a e
e
0
2
2 2
0
3
1
1
=
−
−
=
.
.sen ϕ 
6344955,0806
∆ = − =ϕ ϕ 0 0.136443905556°
43
∆ ∆ϕ " = × =3600 491.198060002”
∆λ  = − =λ λ 0  0.097535875°
∆λ ∆λ  " = × =3600 351.12915”
ϕ 
ϕ 
m =
+
=0
2
 - 22.6414660972°
6108481368111,4"1 −×=arc
 B
 M arc
= =
1
10 . " 
0,0325084738389772
C 
 M N arc
= =
tan
. . . "  
ϕ 0
0 02 1
 -1.066 × 10-9
( )
 D
e arc
e
=
−
=
3 1
2 1
2
0 0
2 2
0
3
. .sen .cos . "  
. .sen
ϕ ϕ 
ϕ 
-1.73639281055 × 10-8
 E 
 N 
=
+
=
1 3
6
2
0
0
2
.tan
.
ϕ 
 6.24340176535 × 10-15
 F  m m= =
 sen .cos .sen " ϕ ϕ 2 2 1
12
−6.95917 × 10-13
=∆ 1λ   351.12915”
=∆ 1 491.198060002”
c
 M N H 
 M N 
t =
+
=0 0
0 0
.
.
1.000089107
6.4.3. Cálculo de x
=∆= carc N  x  p ".1..cos.1 ϕ λ  10031.704379
44
6.4.4. Cálculo de X
 X x k  x= + = 160031.704379
6.4.5. Cálculo de y
( ) ( )[ ]c xC  E  x E  D xC 
 B
 y .......
1 42
1
2
1
2
1 +∆+∆++∆= ϕ ϕ ϕ 
 y = 15107.761308
6.4.6. Cálculo de Y
Y y k  y= + = 265107.761308
6.4.7. Cálculo de A (azimute topográfico da direção OP)
OBS.: Neste caso A é também o azimute geodésico da direção OP, porque a convergência
meridiana (
"407234.04'3533584557565.33
115107,7613
7910031,7043
tan 01 ⇒==
 
 

 
 
= −
 y
 x
 A
1° quadrante
6.4.8. Cálculo de (convergência meridiana em P)
( )
"171983668,15200
".
2
sec.".
0
3
′−=∆






∆+
 
 

 
  ∆∆−=∆
 A
 F  sen A m λ 
ϕ 
ϕ λ 
) em O é nula.
45
6.4.9. Cálculo de A' (somente para aplicação na PROVA)
OBS.: A’ é o azimute geodésico da direção PO
"83525.34'32213180' 0=±∆+= o A A A
OBS.: ∆ A  P = γ 
6.4.10. Prova
 N A N A p0 0.cos .sen .cos .sen '  ϕ  = −
38522,63813440 = N  20401,308.381.6= p N 
φ 0 = -22°42’34,87698” ϕ  = -22°34’23’,67892”
= 33°35’04.407234”  A' = 213°32’34,83525”
 N A0 0 5749919316.cos .sen . . ,=  N A p .cos .sen ' . . ,= 5749919323
A diferença 0.007 se deveàs aproximações nos cálculos.
6.4.11. Conclusões
O ponto P está no 1° quadrante do sistema topográfico local, a leste do meridiano do
 ponto O (origem-datum) do sistema, o que acarreta para γ  p o sinal negativo.
46
6.5.  Exemplo de transformação de coordenadas planoretangulares - sistema
topográfico local em coordenadas geodésicas
6.5.1. Dados
- Origem O
ϕ 0 22 48 0388906=
o S ' . " 
λ 0 42 28 03 25712=
o ' , " 
 X m0 150 000 000= . ,
Y m0 250 000 000= . ,
- Altitude do plano topográfico
 H mt  = 40
- Elementos do elipsóide de referência
a = 6378160.0
e = 0.081820180369054
1-e2 = 0.993305458
- Ponto P
X = 158.896,891 m
Y = 248076.972 m
6.5.2. Cálculos preliminares
=
−
=
0
220 .1 ϕ  sene
a
 N  6381345,6263
( )
( )
=
−
−
=
3
0
22
2
0
.1
1.
ϕ  sene
ea
 M  6345005,5774
6108481368,4"1 −×=arc
47
( )
72760000062861.1
.
.
1037862626746369.6
.6
tan.31
1072787418169569.1
.1.2
"1.cos...3
1070460707631580.1
"1...2
tan
512005130,03250821
"1.
1
00
00
15
2
0
0
2
8
3
0
22
00
2
9
00
0
0
=
+
=
×=
+
=
×−=
−
=
×−==
==
−
−
−
 N  M 
 H  N  M 
c
 N 
 E 
 sene
arc sene
 D
arc N  M 
C 
arc M 
 B
t 
ϕ 
ϕ 
ϕ ϕ 
ϕ 
 x X k 
 y Y k 
 x
 y
= − =
= − = −
8896 8556
19230280
.
.
 x
 x
c
 y
 y
c
' .
' .
= =
= = −
8896 779636
1923015912
 s x y= + =' ' .2 2 9102 28897100275
 A
 x
 y
=
 
 


 
 = ′ ′′−tan
' 
' 
.1 0102 11 47864 ( 2° Quadrante topográfico)
(azimute topográfico da direção OP)
48
6.5.3. Cálculo de δ  " 
δϕ " . .cos . .sen . . .sen .cos= + − B s A C s A B E s A A2 3 2
( )∆ϕ 1
2
" " " = − − ×δϕ δϕ   D  (em segundos)
∆ 1 62 42873649= −  ,
6.5.4. Correção de
( )
( )− = ′′× +
′′ 
 

 
 
 × ′′








=∆ϕ ∆ ∆" .ϕ ϕ 1
2
2
1
1
6
62 4287446828721
arc
∆ϕ  = ′ ′′0 01 02 42874o .
6.5.5. Cálculo de
ϕ  = +0 ∆ϕ 
ϕ 
ϕ 
ϕ 
0
0
0
22 48 0388906
22 48 03 88906 0 01 0242874 22 49 06 31781
22 49 0631781
=
= + =
=
o
o
S 
' , " 
' , " ' ' ' . "  
' ' . "  
o
6.5.6. Cálculo de  p
 N 
a
e
 p =
−
=
1
63813334075575
2 2.sen
.
ϕ 
6.5.7. Cálculo de ∆λ 1"
∆λ 1
1
1
311886389415" 
. " 
 sen .sec . " = × × = −
 N arc
 s A
 p
ϕ 
6.5.8. Cálculo de ∆λ "
"99887628552.311"=∆λ 
49
6.5.9. Cálculo de λ 
λ λ λ = +0 ∆
λ  = ′′42 22512683460 ' . W 
6.5.10. Cálculo de F
 F  m m= =
 sen .cos .sen " ϕ ϕ  2 1
12
131099953.6 −×−= F 
6.5.11. Cálculo de ∆ A
( )∆ ∆λ 
∆ϕ 
∆λ  A F m= − +




 = − ′′" .sen .sec . " ' .ϕ 
2
0 02 00 9448
3 0
6.5.12. Cálculo de A'
 A A A o' = + ±∆ 180
 A' .= ′ ′′282 09 46 9150
6.5.13. Prova:  N A N A p0 0.cos .sen .cos .sen '  ϕ  = −
 N A0 0 5749919 617.cos .sen .ϕ  =  N A p .cos .sen ' .= −5749919 617
6.5.14. Resumo
Coordenadas geodésicas de P
ϕ 
λ 
= ′ ′′
= ′
22 49 06 31781
42 22 5126834
0
0
.
. " 
S 
W 
50
• Azimute geodésico da direção OP ⇒ Ag = A + , porem, γ = 0
Ag = 102°11’47,864”
• - Azimute geodésico recíproco (direção PO) ⇒ A’g = (A + )
A’g = (102°11’47,864” - 0°02’00,94948”) + 180°
A'g = 282°09’46.915”
• - Convergência meridiana em P
γ  p  A= = − ′ ′′∆ 0 02 00 94948
0 .
6.5.15 Conclusões
• Estando o ponto P no hemisfério sul verifica-se que está no 2 ° quadrante do sistema
topográfico com origem em O, a leste do meridiano deste ponto, o que acarreta
 para γ  p  A= ∆ o sinal negativo
 180

Outros materiais