Buscar

Cálculo Diferencial e Integral II Final Objetiva

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 4 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Disciplina:
	Cálculo Diferencial e Integral II (MAD103)
	Avaliação:
	Avaliação Final (Objetiva) - Individual Semipresencial ( Cod.:638082) ( peso.:3,00)
	Prova:
	15819850
	Nota da Prova:
	10,00
	
	
Legenda:  Resposta Certa   Sua Resposta Errada   Questão Cancelada
Parte superior do formulário
	
	No cálculo integral, podemos delimitar e calcular áreas que anteriormente seriam inacessíveis para a Geometria Clássica. Muitas vezes, podemos modelar funções em que suas intersecções definam uma área desejada. Baseado nisto, a partir da área do 2º quadrante limitada pelas parábolas y = x² e x = y² - 18, analise os gráficos a seguir e assinale a alternativa CORRETA:
	
	 a)
	Apenas a figura 1 representa corretamente a área solicitada.
	 b)
	Apenas a figura 2 representa corretamente a área solicitada.
	 c)
	Ambas figuras representam a mesma indicação de área.
	 d)
	Não há intersecção entre as curvas indicadas, logo não há figura correta.
	 *
	Observação: A questão número 1 foi Cancelada.
	2.
	O estudo da derivação parcial permite que estendamos os conceitos estudados no Cálculo Diferencial e Integral para duas dimensões, para o espaço tridimensional. Com isto, podemos generalizar vários casos existentes e que antes não eram acessados. Baseado nisto, dada a função f(x,y) = x² - 3y², analise as sentenças a seguir:
I- f(x,y) é diferenciável em todos os pontos do plano.
II- A soma de suas derivadas parciais é 2x - 6y.
III- A soma de suas derivadas parciais é x² - y².
IV- O limite da função quando (x,y) tende a (0,0) é zero.
Assinale a alternativa CORRETA:
	 a)
	As sentenças II e III estão corretas.
	 b)
	As sentenças I, II e IV estão corretas.
	 c)
	As sentenças I e III estão corretas.
	 d)
	As sentenças III e IV estão corretas.
	3.
	No cálculo, a integral de uma função foi criada originalmente para determinar a área sob uma curva no plano cartesiano e também surge naturalmente em dezenas de problemas de Física. Calcule a área limitada por y = 2x, o eixo x e as retas x = 1 e x = 4 através da integração.
	 a)
	Área = 16.
	 b)
	Área = 12.
	 c)
	Área = 15.
	 d)
	Área = 10.
	4.
	No cálculo, a integral de uma função foi criada originalmente para determinar a área sob uma curva no plano cartesiano e também surge naturalmente em dezenas de problemas de Física. Calculando a área entre as curvas y = 4 - x² e y = x + 2, obteremos:
	 a)
	Área igual a 11/2 u.a.
	 b)
	Área igual a 14/3 u.a.
	 c)
	Área igual a 9/2 u.a.
	 d)
	Área igual a 8 u.a.
	5.
	As integrais constituem-se em poderosa ferramenta de cálculo nas mais diversas áreas. Aplicando suas propriedades, resolva a questão a seguir e assinale a alternativa CORRETA:
	
	 a)
	A opção I está correta.
	 b)
	A opção III está correta.
	 c)
	A opção IV está correta.
	 d)
	A opção II está correta.
	6.
	O teorema fundamental do cálculo é a base das duas operações centrais do cálculo, diferenciação e integração, que são considerados como inversos um do outro. Isto significa que, se uma função contínua é primeiramente integrada e depois diferenciada (ou vice-versa), volta-se na função original. Sobre as integrais imediatas, classifique V para as opções verdadeiras e F paras as falsas, depois assinale a alternativa que apresenta a sequência CORRETA:
	
	 a)
	V - V - F - V.
	 b)
	V - V - V - F.
	 c)
	F - V - V - V.
	 d)
	V - F - V - V.
	7.
	Em dada aula, um professor repassou a seus alunos a proposta para a resolução da integral descrita na imagem a seguir. Analisando as propostas de resolução dos alunos A, B e C, assinale a alternativa CORRETA:
Aluno A: A integral pode ser resolvida substituindo x³ por u e fazendo os cálculos corretos.
Aluno B: A integral pode ser resolvida substituindo x² por u e fazendo os cálculos corretos.
Aluno C: A integral não pode ser resolvida pelo método da substituição.
	
	 a)
	Os alunos A e B estão corretos.
	 b)
	Apenas o aluno B está correto.
	 c)
	Apenas o aluno C está correto.
	 d)
	Apenas o aluno A está correto.
	8.
	Uma das aplicações do conceito de integração é o cálculo da área entre curvas. Este procedimento permite que sejam calculadas áreas que antes, com a utilização da geometria clássica, eram inacessíveis. Sendo assim, determine a área entre as curvas y = x² e y = x:
I- A área entre as curvas é 1/3.
II- A área entre as curvas é 1/2.
III- A área entre as curvas é 1/6.
IV- A área entre as curvas é 1/4.
Assinale a alternativa CORRETA:
	 a)
	Somente a opção II está correta.
	 b)
	Somente a opção IV está correta.
	 c)
	Somente a opção III está correta.
	  d)
	Somente a opção I está correta.
	9.
	A função T(x,y) = 16x² + 32x + 40y² representa a temperatura em graus Celsius de uma placa de metal no plano cartesiano xy. Usando o teste da segunda derivada para funções de várias variáveis, assinale a alternativa CORRETA:
	 a)
	A função temperatura T tem um ponto de mínimo.
	 b)
	A função temperatura T tem um ponto de mínimo e um ponto de máximo.
	 c)
	A função temperatura T tem um ponto de máximo.
	 d)
	A função temperatura T tem um ponto sela.
	10.
	O diferencial total de uma função real de várias variáveis reais corresponde a uma combinação linear de diferenciais, cujos coeficientes compõem o gradiente da função. O que é realizado é a soma das derivadas parciais em cada direção dada na função de várias variáveis. Dada a função f(x,y) = 3x²y + 5xy², analise as sentenças a seguir:
I- O diferencial total de f é 6xy + 5xy.
II- O diferencial total de f é 6xy² + 10xy.
III- O diferencial total de f é 3x² + 5y² + 16xy.
IV- O diferencial total de f é x² + y² + 8xy.
Assinale a alternativa CORRETA:
	 a)
	Somente a sentença III está correta.
	 b)
	Somente a sentença II está correta.
	 c)
	Somente a sentença I está correta.
	 d)
	Somente a sentença IV está correta.
	
	
	11.
	(ENADE, 2011).
	
	 a)
	II, apenas.
	 b)
	I e III, apenas.
	  c)
	III, apenas.
	 d)
	I e II, apenas.
	12.
	(ENADE, 2014) No estudo de funções de variáveis reais, buscam-se informações sobre continuidade, diferenciabilidade, entre outras. Considere uma função de duas variáveis f: R²-->R, definida por
	
	 a)
	I e II, apenas.
	 b)
	III, apenas.
	 c)
	I e III, apenas.
	 d)
	II, apenas.
Parte inferior do formulário

Continue navegando