Buscar

01-mat_financeira

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 91 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 91 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 91 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

MATEMÁTICA
FINANCEIRA
1a Edição - 2007
SOMESB
SOCIEDADE MANTENEDORA DE EDUCAÇÃO SUPERIOR DA BAHIA S/C LTDA.
GERVÁSIO MENESES DE OLIVEIRA
PRESIDENTE
WILLIAM OLIVEIRA
VICE-PRESIDENTE
SAMUEL SOARES
SUPERINTENDENTE ADMINISTRATIVO E FINANCEIRO
GERMANO TABACOF
SUPERINTENDENTE DE ENSINO, PESQUISA E EXTENSÃO
PEDRO DALTRO GUSMÃO DA SILVA
SUPERINTENDENTE DE DESENVOLVIMENTO E PLANEJAMENTO ACADÊMICO
FTC-EAD
FACULDADE DE TECNOLOGIA E CIÊNCIAS – ENSINO A DISTÂNCIA
REINALDO DE OLIVEIRA BORBA
DIRETOR GERAL
MARCELO NERY
DIRETOR ACADÊMICO
JEAN CARLO NERONE
DIRETOR DE TECNOLOGIA
ANDRÉ PORTNOI
DIRETOR ADMINISTRATIVO E FINANCEIRO
RONALDO COSTA
GERENTE ACADÊMICO
JANE FREIRE
GERENTE DE ENSINO
LUÍS CARLOS NOGUEIRA ABBEHUSEN
GERENTE DE SUPORTE TECNOLÓGICO
ROMULO AUGUSTO MERHY
COORD. DE SOFTWARES E SISTEMAS
OSMANE CHAVES
COORD. DE TELECOMUNICAÇÕES E HARDWARE
JOÃO JACOMEL
COORD. DE PRODUÇÃO DE MATERIAL DIDÁTICO
MATERIAL DIDÁTICO
PRODUÇÃO ACADÊMICA PRODUÇÃO TÉCNICA
JANE FREIRE JOÃO JACOMEL
GERENTE DE ENSINO COORDENAÇÃO
ANA PAULA AMORIM CARLOS MAGNO BRITO ALMEIDA SANTOS
SUPERVISÃO REVISÃO DE TEXTO
GECIARA DA SILVA CARVALHO PAULO HENRIQUE RIBEIRO DO NASCIMENTO
COORDENADOR DE CURSO REVISÃO DE CONTEÚDO
ADRIANO PEDREIRA CATTAI
MAURÍCIO PORTO SILVA PAULO HENRIQUE RIBEIRO DO NASCIMENTO
AUTOR(A) EDIÇÃO EM LATEX 2ε
EQUIPE
ALEXANDRE RIBEIRO, ANGÉLICA JORGE, CEFAS GOMES, CLAUDER FILHO, DELMARA BRITO, DIEGO DORIA ARAGÃO, FÁBIO
GONÇALVES, FRANCISCO FRANÇA JÚNIOR, HERMÍNIO FILHO, ISRAEL DANTAS, LUCAS DO VALE, MARCIO SERAFIM, MARIUCHA
PONTE, RUBERVAL FONSECA E TATIANA COUTINHO.
Copyright c© 2.007 FTC-EAD
Todos os direitos reservados e protegidos pela lei 9.610 de 19/02/98.
É proibida a reprodução total ou parcial, por quaisquer meios, sem autorização prévia, por escrito, da
FTC-EAD - Faculdade de Tecnologia e Ciências - Ensino a distância.
www.ead.ftc.br
Sumário
Bloco 1: A Matemática e o Cálculo Financeiro 6
Tema 1: Progressões Aritméticas e Geométricas, Juros Simpl es e Compostos 6
1.1 Progressões Aritméticas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.1 Classificação das Progressões Aritméticas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 Termo Geral de uma Progressão Aritmética . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 Representações Especiais de uma PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.4 Soma dos n Primeiros Termos de uma PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.5 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Progressões Geométricas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Termo Geral de um Progressão Geométrica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2 Representação Especial de uma PG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.3 Soma dos n Primeiros Termos de uma PG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Soma dos Infinitos Termos de uma PG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.5 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Juros Simples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.2 Capitalização Simples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.3 Taxas Equivalentes em Juros Simples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.4 Análise Gráfica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.5 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4 Juros Compostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.1 Capitalização Composta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.2 Taxas Equivalentes em Juros Compostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.3 Análise Gráfica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4.4 Juros Simples × Juros Compostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4.5 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4.6 Taxa Nominal × Taxa Efetiva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4.7 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Tema 2: Descontos e Equivalência de Capitais 33
2.1 Fluxo de Caixa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Equivalência de Capitais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.1 Equivalência de Capitais a Juros Compostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.2 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Desconto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 Desconto Racional Simples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.1 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 Desconto Comercial Simples ou Bancário . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.1 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6 Relação entre os Descontos: Racional Simples e Comercial Simples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.7 Desconto Bancário . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.8 Desconto Racional Composto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.8.1 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
MATEMÁTICA FINANCEIRA 3
2.9 Desconto Comercial Composto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.9.1 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Bloco 2: Pagamentos, Financiamentos e Análise de Investime ntos 45
Tema 3: Série de capitais, Inflação e Depreciação 45
3.1 Série de Capitais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.1 Série Postecipada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.2 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.3 Séries Antecipadas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.4 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.1.5 Séries Diferidas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.6 Séries Diferidas Postecipadas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.7 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.8 Séries Diferidas Antecipadas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.9 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Inflação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.1 Atualização de Preços . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.2 Taxa Nominal e Taxa Real . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.3 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3 Depreciação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.1 Método de Depreciação Linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.2 Plano de Depreciação. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.3 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Tema 4: Sistemas de Amortização e Análise de Investimentos 6 5
4.1 Sistemas de Amortização . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Sistema de Amortização Constante - SAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.1 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Sistema de Amortização Francês - SAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.1 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Sistema de Amortização Americano - SAA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4.1 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 Sistema de Amortização Variável - SAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5.1 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6 Análise de Investimentos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6.1 Métodos de Avaliação de Investimentos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6.2 Método do Valor Presente Líquido - VPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6.3 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.6.4 Método da Taxa Interna de Retorno - TIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.6.5 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.6.6 Método do Prazo de Retorno - “PayBack ” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.6.7 Exercícios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Referências Bibliográficas 89
FTC EaD | LICENCIATURA EM MATEMÁTICA4
Caro aluno,
Poderíamos afirmar, sem equívoco algum, que, em forma resumida, a matemática financeira
possui, basicamente, dois aspectos importantes: Os juros simples e os juros compostos.
A matemática financeira poderia ser definida como a matemática do cotidiano, do dia-a-dia de
cada um de nós. No simples ato de adquirir um certo bem de consumo, um televisor numa compra
a prazo ou, então, pedir um desconto por estar comprando algo a vista, são exemplos práticosda
influência da matemática financeira, seja por meios diretos ou indiretos, na vida de todos nós.
O interessante na leitura deste material é que o aluno possa adquirir conhecimento suficiente ao
ponto de questionar situações cotidianas como, por exemplo, saber se tal financiamento na hora de
comprar um carro é, realmente o melhor dentre as opções fornecidas.
No tema 1, as progressões aritméticas e geométricas, tão importantes no ensino médio, junta-
mente com os princípios básicos da matemática financeira, que são os juros simples e compostos.
No tema 2, estudaremos equivalência de capitais e descontos, onde daremos bastante ênfase a
situações do cotidiano. No tema 3, estudaremos todos os tipos de séries de pagamentos: posteci-
pada, diferida e antecipada. Tais séries são utilizadas em situações como financiamento de imóveis,
carros, compras a prazo, etc. No tema 4, abordaremos os principais sistemas de amortização,
falaremos um pouco sobre inflação e depreciação.
O estudo a distância é feito com base no estudante. Aqui o material apresenta a teoria de modo
didático. Faça uma leitura de efeito, ou seja, com atenção e muita paciência, de modo que, todo
conceito aqui escrito possa ser compreendido e assimilado.
Agradecemos a ajuda de todos os professores que, exerceram, de algum modo, influência na
construção desse material e, também, aos alunos leitores que nos ajudarão, continuamente, a
aprimorá-lo.
Desejamos uma boa leitura, e que Deus nos abençoe nesta caminhada.
Prof. Maurício Porto Silva.
APRESENTAÇÃO DA DISCIPLINA
BLOCO 01
A Matemática e o Cálculo Financeiro
TEMA 01
Progressões Aritméticas e Geométricas,
Juros Simples e Compostos
Apresentação
Os conceitos de capitalização simples (Juros Simples) e de capitalização composta (Juros Compostos)
estão presentes no dia-a-dia, seja de forma direta ou indireta. Adquirir um certo bem de consumo numa loja
comercial qualquer, aplicar um certo valor em dinheiro numa caderneta de poupança são exemplos práticos da
utilização da matemática financeira no cotidiano. Assim sendo, alguns questionamentos importantes se fazem
presentes neste momento. Por exemplo: “Qual será a melhor forma de investir o nosso dinheiro?”, ou então:
“Será que essa forma de pagamento é a melhor dentre todas as disponíveis?”. A resposta de tais perguntas não
é tão difícil quanto parece; contudo, a compreensão dos conceitos e aplicações dos juros simples e compostos
serão de fundamental importância para que possamos encontrar as respostas.
Os conceitos de juros simples e compostos serão abordados neste tema; aplicações e exercícios para a
fixação de todos os conceitos que serão apresentados se fazem presentes também. A matemática financeira
possui uma linguagem ou forma de apresentação bastante simples e direta, tornando o estudo mais atrativo e
interessante.
Antes do estudo dos juros simples e compostos, faremos uma breve revisão sobre as progressões, um caso
particular das seqüências numéricas. Entender os conceitos sobre progressões aritméticas e geométricas será
muito importante dentro do contexto dos juros simples e compostos.
1.1 Progressões Aritméticas
Introdução
Bissexto é o ano em que ao mês de fevereiro é atribuído 29 dias ao invés de 28. Eles foram introduzidos no
nosso calendário e são contados de quatro em quatro anos. Na realidade, um ano possui 365 dias e 6 horas
e, para que possamos definir um ano com uma quantidade exata de dias, foi necessário criar o ano bissexto
e, assim, a cada 4 anos as 24 horas acumuladas seriam compensadas. Sendo assim, os anos passaram a ter
365 dias exceto os bissextos, com 366 dias.
Suponha que, a partir do ano de 2000, estivéssemos interessados em contar os anos bissextos. Assim,
podemos escrever:
2.000, 2.004, 2.008, 2.012, . . .
e, dessa forma, percebemos que todos os anos bissextos, a partir do ano de 2.000, formam uma seqüência
numérica. Observa-se, também, que os elementos dessa seqüência são acrescidos em 4 unidades a partir
do primeiro termo que no caso em questão seria o ano de 2.000. Podemos visualizar a relação entre esses
elementos de uma outra maneira, por exemplo, denotando por:
a1 = 2.000, a2 = 2.004, a3 = 2.008 e a4 = 2.012
FTC EaD | LICENCIATURA EM MATEMÁTICA6
temos que a diferença entre um termo qualquer e o seu antecessor será sempre constante e igual a 4, ou seja,
a2 − a1 = a3 − a2 = a4 − a3 = 4.
Seqüências numéricas que possuem tal característica são chamadas de progressões aritméticas. A definição
formal de uma progressão aritmética, ou PA por abreviação é dado a seguir:
1.1 Definição. Uma progressão aritmética (PA) é uma seqüência de números reais em que a diferença entre
um termo qualquer (a partir do 2◦ termo) e do seu antecessor é um valor constante. A este valor constante
dá-se o nome razão da PA e é, geralmente, representado pela letra r .
Exemplo 1.1. (a) (2, 4, 6, . . .) é uma PA de razão r = 2;
(b) (1, 1, 1, . . .) é uma PA de razão r = 0;
(c) (4, 3, 2, . . .) é uma PA de razão r = −1.
1.1.1 Classificação das Progressões Aritméticas
Podemos classificar as progressões aritméticas, de acordo com o sinal da razão r , em 3 tipos. Se a razão
é positiva (r > 0), a PA é crescente. O exemplo (a) ilustra tal situação. Quando r = 0, significa que todos os
elementos da PA são iguais entre si, e a PA é constante (exemplo (b)). Finalmente, se r < 0 (exemplo (c)) a PA
é decrescente.
Identificar se uma dada seqüência numérica é uma PA, não é uma tarefa difícil, uma vez que ela é uma
seqüência numérica que possui um “termo geral”, ou seja, uma fórmula que relaciona qualquer um dos seus
termos. O mais interessante é que o termo geral de uma PA, depende de um de seus termos e da razão r , que
é facilmente calculada.
1.1.2 Termo Geral de uma Progressão Aritmética
Suponha que uma certa PA (a1, a2, a3, a4, . . .) possua razão igual a r . Já sabemos que a diferença entre
qualquer termo (começando pelo 2◦ termo) pelo seu antecessor será sempre igual a razão r , assim:
a2 − a1 = r ⇔ a2 = a1 + r
a3 − a2 = r ⇔ a3 = a2 + r ⇔ a3 = (a1 + r) + r ⇔ a3 = a1 + 2 · r
a4 − a3 = r ⇔ a4 = a3 + r ⇔ a4 = (a1 + 2 · r) + r ⇔ a4 = a1 + 3 · r
...
...
...
...
Observe que a2 = a1 + r , a3 = a1 + 2 · r , a4 = a1 + 3 · r . Seguindo essa lógica chegamos ao termo geral, ou
n-ésimo termo da seqüência:
an = a1 + (n − 1) · r , n ∈ N.
Dessa forma, de posse do primeiro termo da seqüência a1 e da razão r , podemos encontrar qualquer outro
termo que desejarmos.
Nota 1. Uma outra fórmula para o termo geral de uma progressão aritmética é dada por:
an = ak + (n − k) · r , n ∈ N; k ∈ N.
Exemplo 1.2. Encontrar o 50◦ termo da PA (−3, 1, 5, 9, . . .).
Solução: Observe que o primeiro termo da PA é igual a −1, para encontrarmos a razão, basta fixar um
termo (exceto o primeiro) e subtrairmos o seu antecessor. Por exemplo, r = a2 − a1 = 1 − (−3) = 4. Observe
MATEMÁTICA FINANCEIRA 7
ainda, que poderíamos calcular a razão utilizando a3 e a4 sem qualquer tipo de problema, pois neste caso
r = a4 − a3 = 9 − 5 = 4. Assim, de posse de a1 = −3 e r = 4 pelo termo geral da PA para n = 50 temos que:
a50 = a1 + 49 · r = −3 + 49 · 4 = 193.
Exemplo 1.3. Encontre uma PA onde o 10◦ termo é igual a 48 e a soma do 5◦ termo com o 20◦ é igual a 121.
Solução: Como a10 = 48, temos a1 + 9 · r = 48. A soma a5 + a20 é igual a 121, ou seja, (a1 + 4 · r) + (a1 +
19 · r) = 121. Segue que, 2 · a1 + 23 · r = 121. Para encontrarmos a PA devemos resolver o sistema:(
a1 + 9 · r = 48
2 · a1 + 23 · r = 121
Multiplicando-se a primeira equação por −2, temos que:(
−2 · a1 − 18 · r = −96
2 · a1 + 23 · r = 121
Adicionando-se as equações, temos: 5 · r = 25 ⇔ r = 25
5
⇒ r = 5. Para encontrar o primeiro termo, podemos
escolher qualquer uma das equações anteriores. Para simplificar os cálculos, escolhemos a1 + 9 · r = 48.
Isolando a1 nesta equação temos: a1 = 48 − 9 · 5 = 3. Assim, a PA é (3, 8, 13, . . .).
Exemplo 1.4. Quantos meios aritméticos devem ser inseridos entre 15 e 160, de modo que a razão da
interpolaçãoseja igual a 5?
Solução: Neste exemplo, devemos encontrar a quantidade de elementos entre os termos a1 = 15 e
an = 160 para algum valor de n. Utilizando a expressão para o termo geral de uma PA, temos que:
160 = 15 + (n − 1) · 5 ⇒ n − 1 = 160 − 15
5
⇒ n − 1 = 29 ⇒ n = 30
Observe que entre a quantidade total de elementos será 30, como já temos dois, ou seja, a1 e a30 significa
que entre eles existem um total de 28 elementos.
1.1.3 Representações Especiais de uma PA
Em algumas situações, faz-se necessário o uso de uma notação ou representação especial para pro-
gressões aritméticas. Tal representação visa equacionar, de forma simples e eficiente, situações que envolvem
progressões aritméticas as quais o número de termos é conhecido. Por exemplo, suponha que estejamos
procurando três termos em uma PA tais que a soma deles é igual a 33 e o produto igual a 440. Poderíamos
modelar a situação da seguinte forma: Suponha que os termos a1, a2 e a3 são de uma PA. Portanto, a2 = a1 + r ,
a3 = a1 + 2 · r . Assim, utilizando os dados fornecidos, temos que:
a1 + (a1 + r) + (a1 + 2 · r) = 33 e a1 · (a1 + r) · (a1 + 2 · r) = 440.
Observe que, agindo desta forma, transformamos um problema, a princípio simples, num sistema de equações
não linear, cuja solução não é tão simples assim. Como devemos proceder então?
Lembrando que podemos selecionar uma quantidade de termos em uma PA e que esta é um número
natural, a quantidade de termos é um número par ou ímpar. Caso este seja ímpar, existirá um termo central e,
assim, começaremos a equacionar, a partir dele. No exemplo em questão, n = 3 e, dessa forma, os termos em
progressão é representado por:
(x − r , x , x + r).
FTC EaD | LICENCIATURA EM MATEMÁTICA8
A representação especial mostrada anteriormente não poderá, em hipótese alguma, deixar de satisfazer as
condições de uma PA. Por exemplo, a diferença entre qualquer termo (começando pelo segundo termo) com
o seu antecessor é sempre igual a razão, chamando de a1 = x − r , a2 = x e a3 = x + r , é fácil perceber que
a2 − a1 = x − (x − r) = r e a3 − a2 = x + r − x = r .
Voltando a nosso exemplo: a soma dos três elementos é 33 e o produto dos meus elementos era igual a 44,
utilizando a notação especial, temos:
(x − r) + x + (x + r) = 33 ⇒ 3x = 33 ⇒ x = 11
(x − r) · x · (x + r) = 440 ⇒ 11 · (11 − r) · (11 + r) = 440
Observe que, na primeira equação, já encontramos uma das variáveis, ou seja, o valor de x . Substituindo na
segunda equação, ficamos apenas com uma equação com uma variável, no caso r , encontrando o valor de r
temos que:
(11 − r) · (11 + r) = 40 ⇒ 121 − r2 = 40 ⇒ r = ±
√
81 ⇒ r = 9
Como não existiu outra informação a respeito da PA, encontramos, para o problema, duas respostas, que são:
(2, 11, 20) e (20, 11, 2).
E, quando selecionarmos cinco elementos que estão em uma PA, como ficaria a sua representação espe-
cial?
Neste caso, a quantidade de elementos também é ímpar e, desta forma, existe um termo central que, por
razões óbvias, é o a3. Assim, a representação para cinco termos em uma PA é:
(x − 2r , x − r , x , x + r , x + 2r).
No caso em que a quantidade de números é par, não existirá mais o termo central da PA. Mesmo assim,
existirá uma representação especial. Supondo que a PA tenha quatro termos, uma representação é:
(x − 3y , x − y , x + y , x + 3y)
Observe que, neste caso, r = 2y (verifiquem!) e, somente desta forma, conseguimos uma representação
simétrica.
ER 1. Determine três números em PA crescente cuja soma seja 39 e o produto dos extremos seja 144.
Solução: O exemplo fala de uma PA de três termos. Assim, usaremos a notação especial dada por:
(x − r , x , x + r).
Observe que a soma dos termos é igual a 39, dessa forma temos:
(x − r) + x + (x + r) = 39 ⇒ 3x = 39 ⇒ x = 13.
Como o produto dos termos extremos é 144 e conhecendo o valor de x , ficamos com:
(13 − r) · (13 + r) = 144 ⇔ 132 − r2 = 144 ⇔ r = ±
√
25 ⇔ r = ±5.
A questão menciona o fato da PA ser crescente. Dessa forma, o valor negativo para a razão não nos interessa.
Portanto, r = 5. A PA procurada é (13 − 5, 13, 13 + 5) = (8, 13, 18).
ER 2. Num quadrilátero, os ângulos internos estão em PA e o maior deles mede 150◦. Quais são as medidas
dos outros ângulos internos?
MATEMÁTICA FINANCEIRA 9
Solução: Para este exemplo, utilizaremos a notação especial para uma PA de quatro elementos:
(x − 3y , x − y , x + y , x + 3y), onde r = 2y .
O exemplo informa que o maior, dentre os 4 ângulos do quadrilátero, mede 150◦. Por razões óbvias isto
significa que x + 3y = 150◦. A soma dos ângulos internos de qualquer quadrilátero é igual a 360◦. Portanto:
(x − 3y) + (x − y) + (x + y) + (x + 3y) = 360◦ ⇔ 4x = 360◦ ⇔ x = 90◦
Substituindo o valor de x em x + 3y = 150◦ com a finalidade de encontrar y chegamos a:
90◦ + 3y = 150◦ ⇒ y = 150
◦ − 90◦
3
⇒ y = 20◦
Dessa forma, os 4 ângulos do quadrilátero que formam a PA são: PA = (30◦, 70◦, 110◦, 150◦).
1.1.4 Soma dos n Primeiros Termos de uma PA
Pelo simples fato de ser um caso particular de uma seqüência numérica, podemos pensar em conceitos mais
sofisticados, tais como convergência. Com relação a uma PA (a1, a2, a3, . . .) de razão r , será que a soma dos
elementos converge? a resposta é não. Prove isso como exercício. Entretanto, se tomarmos uma determinada
quantidade de elementos da PA, a sua soma é facilmente obtida. Vamos demonstrar isso.
Considere os n termos de uma PA (a1, a2, a3, . . . , an−2, an−1, an) de razão r . A sua soma é dada por:
Sn = a1 + a2 + a3 + . . . + an−2 + an−1 + an
Suponha, para um certo índice k , com 1 < k < n, que todos os termos anteriores a ak e este, sejam escritos
em função do primeiro termo a1 e da razão r . Do termo de índice k + 1 em diante, todos serão escritos em
função do termo an e da razão r .
Através de um exemplo com 6 termos de uma PA visualizaremos o que foi dito anteriormente.
Considere os termos (a1, a2, a3, a4, a5, a6) de uma PA e tomemos k = 3. Assim, para n = 1, n = 2 e n = 3,
todos os termos serão escritos em função de a1, ou seja:
(a1, a1 + r , a1 + 2r , a4, a5, a6)
Para os demais termos, n = 4, n = 5 e n = 6, escreveremos em função do último termo da PA, que no caso em
questão é o a6. Assim, temos:
(a1, a1 + r , a1 + 2r , a6 − 2r , a6 − r , a6).
Observe que esta representação poderá ser feita com qualquer quantidade de termos de uma PA. Além disso,
a representação preserva as características dos termos que estão em uma PA. Por exemplo, a diferença entre
o quarto e o terceiro termo será igual a razão da PA. Observe:
a4 − a3 = (a6 − 2r) − (a1 + 2r) = (a1 + 5r − 2r) − a1 − 2r = 3r − 2r = r .
Retornemos à representação dos n termos de uma PA como sugerido, ou seja,
(a1, a1 + r , a1 + 2r , . . . , an − 2r , an − r , an).
Assim, a soma dos n primeiros termos da PA é:
(i) Sn = a1 + (a1 + r) + (a1 + 2r) + . . . + (an − 2r) + (an − r) + an
FTC EaD | LICENCIATURA EM MATEMÁTICA10
Podemos calcular a mesma soma, de uma outra maneira. Por exemplo, do último termo para o primeiro, afinal,
a ordem das parcelas não altera a soma.
(i i) Sn = an + (an − r) + (an − 2r) + . . . + (a1 + 2r) + (a1 + r) + a1.
Adicionando (i) a (i i) temos:
Sn = a1 + (a1 + r) + (a1 + 2r) + . . . + an − 2r + an − r + an
Sn = an + (an − r) + an − 2r + . . . + (a1 + 2r) + (a1 + r) + a1
2 · sn = (a1 + an) + (a1 + an) + (a1 + an) + . . . + (a1 + an) + (a1 + an) + (a1 + an)
Observe que a parcela (a1 + an) foi adicionada n vezes. Portanto,
2 · Sn = (a1 + an) · n ⇒ Sn =
(a1 + an) · n
2
.
Exemplo 1.5. Calcule a soma dos 15 primeiros termos da PA (−14,−10,−16, . . .).
Solução: Utilizando a fórmula para o cálculo da soma dos n termos de uma PA para n = 15, temos:
S15 =
(a1 + a15) · 15
2
.
Como o primeiro termo é a1 = −14 e a razão da PA é r = −10 − (−14) = −10 + 14 = 4, temos que
a15 = a1 + 14 · r = −10 + 14 · 4 = 46. Assim, a soma dos quinze primeiros termos é:
S15 =
(−14 + 46) · 15
2
⇒ S15 =
32 · 15
2
⇒ S15 = 240.
Exemplo 1.6. Dada a PA (ex , ex +1, ex +2, . . .), determine o valor de x tal que a soma dosseus dez primeiros
termos seja igual a 50.
Solução: A soma dos dez primeiros termos é:
S10 =
(a1 + a10) · 10
2
⇔ S10 = (a1 + a10) · 5.
Como a1 = ex e a razão da PA é r = a2 − a1 = ex + 1− ex = 1, então a10 = a1 + 9 · r = ex + 9. Substituindo-se
S10 = 50 em S10 = (a1 + a10) · 5, temos:
50 = (ex + ex + 9) · 5 ⇔ 10 = 2ex + 9 ⇔ 2ex = 1 ⇔ ex = 1
2
⇔ x = ln(1/2).
1.1.5 Exercícios Propostos
EP 1.1. Numa PA o primeiro termo é 12 e o décimo quinto termo é 30. Qual é o quarto termo dessa PA?
EP 1.2. Numa PA de 7 termos, a7 = 3 · a1 e o termo central é 6. Qual é a razão da progressão?
EP 1.3. Determine m de modo que a seqüência (m − 14, 2m + 2, m2) seja uma PA
EP 1.4. Interpole seis meios aritméticos entre −22 e 20.
EP 1.5. Quantos números inteiros x , tais que 23 ≤ x ≤ 432, não são múltiplos de 3?
EP 1.6. Determine três números que formam uma PA crescente cuja soma deles seja 39 e o produto dos
extremos seja 144.
EP 1.7. Num quadrilátero, os ângulos internos estão em PA e o maior deles mede 150◦.Quais são as medidas
dos outros ângulos internos?
MATEMÁTICA FINANCEIRA 11
EP 1.8. Uma gravadora observou, que em um ano, a venda de cd’s aumentava mensalmente segundo uma
PA de razão 400. Se em março foram vendidos 1.600 cd’s, quantos cd’s a gravadora vendeu naquele ano?
EP 1.9. Quantos termos devemos somar na PA = (−15,−12,−9, . . .) para obtermos uma soma igual a 270?
EP 1.10. Suponha que, em um certo mês, o número de queixas diárias registradas em um órgão de defesa
do consumidor aumente segundo uma PA Sabendo que nos 10 primeiros dias houve 245 reclamações e nos 10
dias seguintes houve mais 745 reclamações. Determine a seqüência do número de reclamações naquele mês.
1.2 Progressões Geométricas
Introdução
Uma lenda antiga retrata a história da criação do jogo de xadrez. Diz a lenda que, num certo reino, o rei,
todo poderoso, estava cansado de tanto governar. Assim, pediu a um dos seus servos mais inteligentes que
criasse um jogo, no qual ele pudesse se entreter. Levando em consideração um pedido muito especial, o jogo
tinha que representar, necessariamente, uma espécie de batalha, dado que o rei era um verdadeiro fã de tal
tipo de “atividade física”. Em retribuição à invenção de “tal jogo”, o rei deu a sua palavra ao servo, prometendo
que atenderia a qualquer pedido seu. Ele, que não era bobo, após a invenção do jogo, fez o seguinte pedido:
“Como o jogo que inventei se passa num tabuleiro contendo 8 × 8 quadradinhos, ao todo, peço-te, ó rei,
que, para cada quadradinho, eu ganhe uma certa quantidade de grãos, contados da seguinte forma: para o
primeiro quadrado, um grão apenas; para o segundo, o dobro; para o terceiro, o dobro do segundo, ou seja,
quatro grãos, e assim sucessivamente, até o último quadrado”.
O rei, que não era matemático, achou o pedido fácil de ser atendido, mas, desconfiado, como qualquer
rei, pediu a alguns de seus “braços direitos” que contabilizassem a quantidade total de grãos. Será que a
quantidade de grãos era pagável? vamos analisar da seguinte forma:
1◦ Quadrado ⇒ 1 grão = 20grão
2◦ Quadrado ⇒ 2 grãos = 21grãos
3◦ Quadrado ⇒ 4 grãos = 22grãos
...
...
...
64◦ Quadrado ⇒ 264grãos
Observe que a quantidade a ser paga é a soma de todas as quantidades por cada um dos quadradinhos do
tabuleiro de xadrez. Assim,
20 + 21 + 22 + . . . + 264
Só para se ter uma idéia da quantidade de grãos que deve ser pago, nos dias atuais, a quantidade mundial
de grãos, não seria capaz de chegar nem perto do valor obtido pela soma anterior. Nem tudo parece ser tão
simples quanto a forma com a qual se apresenta, o rei não sabia, mas o conjunto formado pela quantidade de
grãos em cada quadradinho do jogo, ou seja, (20, 21, 22, . . . , 264) são termos de um tipo especial de seqüência,
denominada progressão geométrica. Observe que, cada termo desta seqüência (exceto pelo primeiro termo) é
obtido do seu antecessor multiplicado por 2. A definição matemática de uma progressão geométrica, ou PG de
forma abreviada, é dada a seguir:
1.2 Definição. [Progressão geométrica] Uma progressão geométrica é uma seqüência de números reais
não nulos em que o quociente entre um termo qualquer (a partir do segundo) e o seu antecessor é sempre
constante. Essa constante é chamada de razão da PG e será indicada pela letra q.
São exemplos de progressões geométricas, as seqüências:
FTC EaD | LICENCIATURA EM MATEMÁTICA12
(a) (2, 6, 18, 54, . . .), onde q = 3;
(b) (−5, 15,−45, 135, . . .), onde q = −3;
(c) (20, 10, 5,
5
2
, . . .), onde q =
1
2
;
(d) (4,−4, 4,−4, . . .), onde q = −1;
(e) (−1,−1
3
,−1
9
,− 1
27
, . . .), onde q =
1
3
;
(f) (−1,−2,−4,−8, . . .), onde q = 2.
As progressões geométricas se dividem em três tipos:
⋄ Alternada ou oscilante: Quando a razão for negativa. Como exemplo, podemos citar as progressões ge-
ométricas em (b) e em (d).
⋄ Crescente: Quando a razão q for maior que 1 (q > 1), aliado ao fato do primeiro termo ser positivo (a1 > 0).
É o caso do exemplo em (a). Um outro caso é dado quando a razão q for um número real positivo menor
que 1, 0 < q < 1 e o primeiro termo for negativo. É o caso do exemplo em (e).
⋄ Decrescente: Quando o primeiro termo é positivo (a1 > 0) e a razão é um número positivo menor que um
(0 < q < 1). É o caso do exemplo em (b). Ou ainda, quando (a1 < 0) e a razão é maior do que 1 (q > 1).
É o caso do exemplo em (f).
1.2.1 Termo Geral de um Progressão Geométrica
Assim como foi visto nas progressões aritméticas, as geométricas possuem uma fórmula para o cálculo do
termo geral. A idéia que utilizaremos é bem simples e de fácil compreensão.
Suponha que uma certa PG (a1, a2, a3, a4, . . .) possua razão igual a q. Já sabemos que o quociente entre
qualquer termo (a partir do 2◦ termo) pelo seu antecessor é igual a razão q. Assim:
a2
a1
= q ⇔ a2 = a1 · q
a3
a2
= q ⇔ a3 = a2 · q ⇔ a3 = (a1 · q) · q ⇒ a3 = a1 · q2
a4
a3
= q ⇔ a4 = a3 · q ⇔ a4 = (a1 · q2) · q ⇒ a4 = a1 · q3
...
...
...
Observe que a2 = a1 · q, a3 = a1 · q2, a4 = a1 · q3. Seguindo essa lógica chegamos ao termo geral, ou n-ésimo
termo da seqüência:
an = a1 · qn−1, n ≥ 1
Dessa forma, de posse do primeiro termo da seqüência (a1) e da razão q, podemos encontrar qualquer outro
termo que desejarmos tal como aconteceu nas progressões aritméticas.
ER 3. Qual é o 8◦ termo da PG (800, 400, 200, . . .)?
Solução: Encontrar o 8◦ termo, significa fazer n = 8 na expressão do termo geral da PG. Portanto, a8 =
a1 ·q7. Como a1 = 800 e q =
400
800
=
1
2
, substituindo na expressão anterior, temos: a8 = 800·
�
1
2
�7
⇒ a8 =
800
27
.
Exemplo 1.7. O 2◦ termo de uma PG de termos positivos é 105 e o 10◦ termo é 1021. Qual é a razão dessa
PG?
Solução: O segundo termo de qualquer PG é obtido fazendo o índice n do termo geral igual a 2. Dessa
forma:
a2 = a1 · q como a2 = 105 ⇒ a1 =
a2
q
⇒ a1 =
105
q
MATEMÁTICA FINANCEIRA 13
O décimo termo é obtido do termo geral, fazendo o índice n igual a 10, assim:
a10 = a1 · q9 como a10 = 1021 e a1 =
105
q
⇒ 1021 = 10
5
q
· q9 ⇒ 10
21
105
= q8.
Assim, q8 = 1016 ⇒ q = ± 8
√
1016 = ±102. Como a PG é formada de termos positivos, então q = 102.
ER 4. Dada a PG (2x , 22x , 23x , . . .), determine o valor de x de modo que seu décimo termo seja
1
128
.
Solução: O décimo termo da PG será obtido, fazendo o índice n igual a 10. Portanto, a10 = a1 · q9. Como
a1 = 2
x , precisamos encontrar a razão da PG e com isso calcular o seu décimo termo. A razão será dada por
q =
a2
a1
=
22x
2x
⇒ q = 2x . Utilizando o fato de que a10 =
1
128
temos:
1
128
= 2x · (2x)9 ⇔ 210x = 1
27
⇒ 210x = 2−7 ⇔ 10x = −7 ⇔ x = −7
10
.
1.2.2 Representação Especial de uma PG
Assim como foi visto para os termos iniciais de uma progressão geométrica, temos, também, representações
simples e eficientes para os n termos iniciais de uma progressão geométrica. Por exemplo, suponha a seguinte
situação:
As idades de três irmãos são números inteiros que estão em PG. Se o produto dessas idades é 64 e a soma
das idades dos dois mais velhosé 20, quantos anos tem cada um dos irmãos?
Para resolver este problema, suponha que os três primeiros termos (a1, a2, a3) de uma PG representam as
idades procuradas. Observe que poderíamos escrever estes termos em função apenas do primeiro termo (a1)
e da razão q. Dessa forma,
(a1, a1 · q, a1 · q2)
Contudo, esta representação não é a ideal, pois quando formos utilizar as informações do problema, o sistema
de equações obtido será de resolução bastante complicada. Compare:¨
a1 · (a1 · q) · (a1 · q2) = 64
(a1 · q) + (a1 · q2) = 20
⇔
¨
a31 · q3 = 64
(a1 · q) + (a1 · q2) = 20
Resolver um sistema como o anterior é uma tarefa bastante árdua e complicada. Entretanto, existem “atal-
hos” que a matemática nos proporciona, fazendo com que possamos representar a mesma situação de uma
maneira muito mais atrativa e simplificada.
Considere 3 termos de uma PG (a1, a2, a3). Como a quantidade de elementos é ímpar, temos a presença
de um termo central. Sendo assim, consideraremos o termo central como sendo x , ou seja, a2 = x . Como
a2
a1
= q ⇔ a1 =
x
q
e
a3
a2
= q ⇔ a3 = x · q, Uma outra representação para os termos da PG é dado por:�
x
q
, x , x · q
�
Voltando ao problema, tinhamos que o produto das idades dos três irmãos era igual a 64 e a soma das
idades dos dois mais velhos era igual a 20. Assim,8<: �xq� · x · (x · q) = 64
x + (x · q) = 20
⇔
¨
x3 = 64
x · (q + 1) = 20
FTC EaD | LICENCIATURA EM MATEMÁTICA14
A primeira equação já nos fornece o valor de x , pois, se x3 = 64, então x = 4. Substituindo este valor na
equação x · (q + 1) = 20, encontramos o valor de q. De fato,
4 · (q + 1) = 20 ⇒ q + 1 = 20
4
⇒ q + 1 = 5 ⇒ q = 4
De posse do valor de x e de q, podemos, enfim, saber quais são as idades de cada um dos irmãos, que são
os termos (1, 4, 16).
Observe que podemos equacionar, de maneira análoga, qualquer quantidade ímpar de termos de uma PG.
Por exemplo, se tivermos cinco termos de uma PG, faremos o termos central a3 = x e sua representação
especial é: �
x
q2
,
x
q
, x , x · q, x · q2
�
.
No caso de progressões geométricas que possuem um número par de elementos, procedemos de uma
forma um pouco diferente, afinal não existe o “termo central”.
Tomemos, inicialmente, quatro termos iniciais de uma PG. Uma representação especial que apresenta uma
espécie de “simetria” dos elementos é dada por:�
x
y3
,
x
y
, x · y , x · y2
�
Observe que, assim como ocorreu com os termos iniciais de uma progressão aritmética, os de uma pro-
gressão geométrica, em número par de elementos, possui representação especial uma nova variável. Em am-
bos os casos, utilizamos y . Para encontrar a razão, basta dividir, por exemplo, o segundo termo pelo primeiro,
na representação especial de quatro termo de uma PG, a razão q = y2 (verifiquem!)
1.2.3 Soma dos n Primeiros Termos de uma PG
Considere os n primeiros termos de uma PG (a1, a2, a3, . . . , an−1, an), onde q 6= 1, e seja Sn a soma destes n
termos. Assim,
(i)Sn = a1 + a2 + a3 + . . . + an−1 + an
Multiplicando-se ambos os lados da igualdade pela razão q, temos:
(i i)q · Sn = q · (a1 + a2 + a3 + . . . + an−1 + an) = q · a1 + q · a2 + q · a3, . . . , q · an−1 + q · an
Sabemos que numa PG o quociente entre um termo qualquer, a partir do segundo, pelo seu antecessor é igual
a razão. Isto pode ser enunciado de outra maneira. A saber: um determinado termo (exceto o primeiro) é o
produto do seu antecessor pela razão. Dessa forma, a2 = a1 ·q, a3 = a2 ·q e, seguindo essa lógica, an = an−1 ·q.
Substituindo esses resultados em (i i), temos:
(i i i)q · Sn = a2 + a3 + a4 + . . . + an + an · q.
Subtraindo (i i i) de (i) temos:
q · Sn − Sn = (a2 + a3 + a4 + . . . + an + an · q) − (a1 + a2 + a3 + . . . + an−1 + an).
Fazendo as devidas simplificações, chegamos a:
(iv)q · Sn − Sn = an · q − a1.
Como an = a1 · qn−1 e substituindo em (iv), obtemos:
q · Sn − Sn = a1 · qn−1 · q − a1 ⇒ Sn · (q − 1) = a1 · (qn − 1) ⇒ Sn =
a1 · (qn − 1)
(q − 1) .
MATEMÁTICA FINANCEIRA 15
Observe que a condição para que a razão seja diferente de 1 se faz necessária para a existência da soma
dos termos.
Nota 2. Se uma PG possui razão igual a 1, por motivos óbvios, todos os termos são iguais. Assim, para
somar os n termos iguais, basta que multipliquemos n por qualquer um dos termos da PG.
(a1, a1, . . . , a1| {z }
n
) ⇒ Sn = a1 + a1 + . . . + a1| {z }
n
= n · a1
ER 5. Calcule a soma dos oito primeiros termos da PG (−2, 6,−18, . . .).
Solução: Para responder este exemplo precisamos fazer o índice n da expressão que calcula a soma
dos termos de uma PG igual a 8, dessa forma:
S8 =
a1 · (q8 − 1)
(q − 1) .
O termo a1 = −2, a razão da PG é encontrada dividindo-se o segundo termo pelo primeiro. Assim,
q =
a2
a1
⇒ q = 6−2 = −3.
Calculando a soma, temos:
S8 =
−2 · [(−3)8 − 1]
(−3 − 1) ⇒ S8 =
−2 · 6.560
−4 ⇒ S8 = 3.280.
1.2.4 Soma dos Infinitos Termos de uma PG
Vimos, na disciplina Cálculo III, que uma série é formada pela adição dos infinitos termos de uma seqüência.
Se podemos encontrar um resultado para esta adição (soma), a série é dita convergente. Estudamos vários
resultados, os quais garantem a convergência de uma série. Quando tratamos de uma PG que possui razão q,
−1 < q < 1, sua série converge para um valor s∞ que é dada por:
S∞ = lim
n→∞
Sn ⇒ S∞ = lim
n→∞
a1 · (qn − 1)
(q − 1) .
Observe que qn tende a zero à medida que o expoente n aumenta, uma vez que −1 < q < 1. Dessa forma,
S∞ =
a1 · (0 − 1)
q − 1 ⇔ S∞ =
−a1
q − 1 ⇔ S∞ =
a1
1 − q .
Em suma, dada uma PG (a1, a2, a3, . . .), com −1 < q < 1, temos que a adição de seus termos é dada por:
a1 + a2 + a3 + . . . =
a1
1 − q .
ER 6. Utilizando a fórmula da soma dos infinitos termos de uma progressão geométrica, encontre a fração
geratriz da dízima periódica 0, 777 . . .
Solução: Podemos decompor a dízima periódica através da adição de infinitas parcelas as quais são
termos de uma PG. Veja a seguinte decomposição:
0, 777 . . . = 0, 7 + 0, 07 + 0, 007 + . . . =
7
10
+
7
100
+
7
1000
+ . . . =
7
10
+
7
102
+
7
103
+ . . .
Observe que as parcelas determinam a PG
�
7
10
,
7
102
,
7
103
, . . .
�
de razão q =
7
102
7
10
=
7
102
· 10
7
=
1
10
.
FTC EaD | LICENCIATURA EM MATEMÁTICA16
Como −1 < 1
10
< 1, temos que S∞ =
a1
1 − q =
7
10
1 − 1
10
=
7
10
9
10
=
7
9
.
Portanto, a fração geratriz da dízima periódica é
7
9
.
ER 7. Resolva a equação x +
x2
2
+
x3
4
+
x4
8
+ . . . = 6, com x ∈ R.
Solução: Observe que as parcelas determinam uma PG de razão
q =
a2
a1
=
x2/2
x
=
x
2
,
e que temos que a soma é 6. Portanto,
S∞ = 6 ⇔ 6 =
x
1 − x
2
⇔ x = 6 ·
�
2 − x
2
�
⇔ x = 6 − 3x ⇔ 4x = 6 ⇔ x = 3
2
.
1.2.5 Exercícios Propostos
EP 1.11. Os termos
�
−2
3
,
4
9
,− 8
27
, . . .
�
estão em PG. Qual é o sexto termo?
EP 1.12. Determine x de modo que os termos (3x+1, 34−x , 33x+1) sejam de uma PG.
EP 1.13. Qual é o número de termos (
√
3,
√
6, . . . , 16
√
3) sabendo que estes estão em PG.
EP 1.14. Numa PG oscilante, a soma do 2◦ com o 5◦ termo é −210, e a soma do 4◦ com o 7◦ é −840. Qual
é o primeiro termo dessa PG?
EP 1.15. Subtraindo-se um mesmo número dos números 6, 14 e 38, obtemos, nessa ordem, os 3 termos
iniciais de uma PG. Qual a razão dessa PG?
EP 1.16. Quantos termos da PG = (2,−6, 18,−54, . . .) devemos considerar a fim de que a soma seja 9.842?
EP 1.17. Encontre a fração geratriz da dízima periódica 1, 777 . . ..
EP 1.18. A soma de três termos iniciais de uma PG crescente é 26 e o produto entre eles é 216. Encontre
essa PG.
EP 1.19. Sabendo que a seqüência (4y , 2y − 1, y + 1, . . .) é uma PG, determine:
(a) O valor de y (b) A razão da PG
EP 1.20. Os números que expressam as medidas do lado, da diagonal e da área de um quadrado podem
estar, nessa ordem, em PG? Em caso afirmativo, qual é a razão dessa PG?
1.3 Juros Simples
1.3.1 Introdução
Quando estudamos alguns conceitos, no ensino médio, como velocidade e aceleração, suas unidades de
medidas são dadas pelo quociente entre duas outras unidades de medidas.No caso da velocidade, a unidade
é
m
s
(metros por segundo). Já em respeito à aceleração, temos
m
s2
(metros por segundo ao quadrado). Existem
MATEMÁTICA FINANCEIRA 17
duas características presentes nas unidades mencionadas, nota-se que ambas são dadas como um quociente
entre medidas e a medida situada no denominador da fração é de natureza temporal, ou seja, uma grandeza
que mede unidade de tempo.
Uma taxa nada mais é do que um quociente entre medidas. A aceleração e a velocidade são exemplos de
taxas, onde a medida situada no denominador da fração é de natureza temporal. Uma taxa de juros representa
um valor monetário qualquer, em que a unidade de tempo pode ser dias, semanas, meses, semestres, anos e
etc. Representaremos a taxa de juro pela letra i admitindo, portanto, as formas: percentual e unitária.
Taxa de Juros Forma Percentual Forma Unitária
2 por cento ao dia i = 2% a.d. i = 0, 02 a.d.
24 por cento ao mês i = 24% a.m. i = 0, 24 a.m.
30 por cento ao semestre i = 30% a.s. i = 0, 30 a.s.
5 por cento ao ano i = 5% a.a. i = 0, 05 a.a.
Observe, na tabela anterior, que as taxas possuem uma forma simplificada na escrita. Ao invés de escrever-
mos “10 por cento ao bimestre”, escrevemos i = 10% a.b. Isso faz com que a representação da taxa de juros
seja de fácil compreensão. Agora que já sabemos como representar uma taxa, em qualquer unidade temporal,
podemos então começar a pensar em capitalizar, primeiramente, a juros simples.
1.3.2 Capitalização Simples
Andando pelo centro da cidade, um certo indivíduo se depara com a seguinte proposta:
“Invista R$ 1.000, 00 durante 4 meses aplicando uma taxa fixa de juros i = 10% am”
O primeiro questionamento a ser feito nesta situação é: quanto ele irá lucrar utilizando a taxa de juros
mencionada? Outra importante pergunta é: como o investimento inicial será capitalizado?
O investimento inicial será de R$1.000, 00. Assim, o “capital inicial” que denotaremos, a partir deste instante,
pela letra C será, exatamente, o valor de R$ 1.000, 00. Portanto C = R$ 1.000, 00. O capital inicial sofrerá
a ação da taxa de juros i = 10% durante quatro meses que agora chamaremos de “número de períodos”
e representaremos pela letra n. O primeiro período de capitalização sempre será representado por n = 0.
Dessa forma, capitalizar, durante quatro períodos, significa admitir quatro valores naturais, começando pelo
zero, ou seja, n ∈ {0, 1, 2, 3}. O juro do período, será representado pela letra J. A simulação é descrita de
forma detalhada na tabela abaixo. Observe, ainda, que em cada um dos períodos será calculado o juro e, em
seguida, o montante, representado pela letra M , é obtido. Obviamente, o montante é a soma do capital com os
juros do período corrente, ou seja:
M = C + J
Período Capital Juros Montante
0 1.000, 00 0 M = 1.000, 00 + 0 = 1.000, 00
1 1.000, 00 1.000, 00 · (0, 10) = 100, 00 M = 1.000, 00 + 100, 00 = 1.100, 00
2 1.000, 00 1.000, 00 · (0, 10) = 100, 00 M = 1.100, 00 + 100, 00 = 1.200, 00
3 1.000, 00 1.000, 00 · (0, 10) = 100, 00 M = 1.200, 00 + 100, 00 = 1.300, 00
É fácil perceber que os juros correntes durante toda a simulação é uma taxa fixa, exceto pelo período n = 0.
Dessa forma, podemos afirmar que os juros total é a soma de todos os juros encontrados em cada um dos
períodos. Chamando de Jn os juros do período n, com n ∈ {0, 1, 2, 3}, temos:
J = J0 + J1 + J2 + J3 = 0 + 1.000, 00 · (0, 10) + 1.000, 00 · (0, 10) + 1.000, 00 · (0, 10)
FTC EaD | LICENCIATURA EM MATEMÁTICA18
Simplificando os cálculos, os juros totais da simulação é dado por: J = 1.000, 00 · (0, 10) · 3.
Observe que se tivéssemos uma quantidade maior de períodos a capitalizar, o produto 1.000, 00 · (0, 10) se
manteria fixo, mudando-se apenas o número a ser multiplicado pela direita. Por exemplo, se capitalizarmos
durante 6 períodos, o juro total acumulado é dado por: J = 1.000, 00 · (0, 10) · 5. Assim, para uma capitalização
qualquer de um certo capital inicial C , submetido a uma taxa de juros i durante um período n, teremos que o
juro total acumulado pode ser calculado pela expressão:
J = C · i · n
De posse da expressão que calcula os juros fixos, durante todo o período de capitalização, podemos encontrar
a relação entre o montante M , o capital inicial C , a taxa de juros i e o número de períodos n. Observe o
seguinte desenvolvimento:
M = C + J, e J = C · i · n
Segue que,
M = C + C · i · n ⇔ M = C · (1 + i · n).
Para a simulação descrita anteriormente, o montante obtido depois de submeter o capital inicial de R$1.000, 00
a uma taxa i = 10% a.m., durante quatro meses de capitalização, é M = R$1.300, 00. Observe que este mesmo
valor poderá ser calculado utilizando a fórmula M = C · (1+ i ·n), onde C = R$1.000, 00, i = 10% e n = 4 meses
(verifiquem!).
1.3 Definição. [Juros Simples] Chamamos de capitalização simples ou regime à juros simples a toda movi-
mentação financeira em que a taxa de juros por período incide sempre sobre o capital inicial. Os juros, neste
caso, verificam a relação J = C · i · n e, além disso, o montante M , obtido depois de submeter um certo capital
C a uma taxa de juros i durante um certo número de períodos n é dado por M = C · (1 + i · n).
Nota 3. As unidades temporais da taxa de juros i , juntamente com o número de períodos n, devem ser
sempre as mesmas. Por exemplo, se i = 4% a.a. o número de períodos deverá, necessariamente, ser
dado em anos também. Suponha que, neste caso, n = 12 meses. Como proceder? Em alguns casos,
mudar a unidade temporal do número de períodos, é mais simples do que mudar a da taxa de juros. É
fácil perceber que, se n = 12 meses, então n = 1 ano e, dessa forma, colocamos a taxa de juros e o
número de períodos em sintonia no que diz respeito a unidade temporal de ambos.
Como mudaríamos a taxa de juros, então? Tal questionamento é simples de responder. Introduziremos, a
partir de agora, o conceito de taxas equivalentes e desta forma podemos alterar a unidade temporal da taxa
para qualquer outra unidade que quisermos.
1.3.3 Taxas Equivalentes em Juros Simples
Suponha que tenhamos um certo capital inicial C de R$ 500, 00 e desejamos submeter a regime de juros
simples utilizando duas taxas de juros ia = 12% a.a. e im = 1% a.m. durante n = 12 meses. Lembrando que
n = 12 meses pode ser reescrito como n = 1 ano, temos:
Para a primeira taxa de juros ia = 12% a.a. o montante M1 obtido é: M1 = 500 · (1 + (0, 12 · 1)) = 500 · 1, 12 =
560, 00.
Para a segunda, im = 1% a.m., o montante M2 é: M2 = 500 · [1 + (0, 01 · 12)] = 500 · 1, 12 = 560, 00.
Observe que M1 = M2, porque isso aconteceu? A resposta disso é mais simples do que parece, observe
atentamente as taxas utilizadas nesta simulação, ia = 12% a.a. e im = 1% a.m., a primeira foi dada em anos e
a segunda em meses, além disso ia = 12 · im ou se preferir, im =
ia
12
.
MATEMÁTICA FINANCEIRA 19
As taxas ia e im são chamadas de taxas equivalentes, em outras palavras, submetendo um mesmo capital
inicial C , num mesmo número de períodos, o montante encontrado será sempre o mesmo. De uma forma geral,
suponha que ia seja uma taxa qualquer dada em anos e que desejamos encontrar as taxas equivalentes em
semestre (is), bimestre (ib), meses (im), quinzenas (iq) e dias (id), supondo que o capital inicial e o número
de períodos são fixos, já sabemos de antemão que os montantes obtidos para cada umas das taxas será o
mesmo. Se n = 1 ano podemos afirmar que n = 2 semestres, n = 6 bimestres, n = 12 meses , n = 24
quinzenas e n = 360 dias. Dessa forma:
Ma = Ms = Mb = Mm = Mq = Md
(1 + ia · 1) = (1 + is · 2) = (1 + ib · 6) = (1 + im · 12) = (1 + iq · 24) = (1 + id · 360)
ia = 2 · is = 6 · ib = 12 · im = 24 · iq = 360 · id
Nota 4. A quantidade de dias em cada mês no regime comercial é sempre igual a 30 não importando se
o mês tem 31 dias ou menos de 30 no caso do mês de fevereiro.
1.3.4 Análise Gráfica
Uma outra forma de analisar o comportamento de um certo investimento, submetido ao regime de juros
simples seria através da análisegráfica. Observe que, uma vez fixados o capital inicial C e a taxa de juros
simples i , a expressão que relaciona essas variáveis juntamente com o montante M e o número de períodos n
torna-se uma função de variáveis M (dependente) e n (independente) como definida abaixo:
M(n) = C · (1 + i · n), onde C e i são fixos
O domínio dessa função está restrito apenas ao primeiro quadrante. Portanto, não estaremos interessados
em valores negativos tanto do montante quanto do número de períodos. Dessa forma Dom(M) = R+.
Outra fato importante é que o gráfico da função juros simples, pelo fato de ser
linear, é representado por uma reta, que não passa pela origem. Isto se deve ao fato
que partiremos sempre de um certo capital inicial C . Assim, quando n = 0 temos
no mínimo o valor do capital inicial C , haja visto que ainda não completamos um
mês de capitalização para que o juros obtido no primeiro período fosse incorporado
ao montante.
n
M
C · (1 + i)
C
1
ER 8. Quanto se deve aplicar hoje para obter um montante de R$ 10.000, 00 daqui a 19 meses a uma taxa de
juros simples de 50% a.a.
Solução: O capital inicial c =? não temos, o montante M = 10.000, 00, o número de períodos n = 19
meses que poderá ser transformado em anos através de uma simples regra de três:
Ano Meses
1 −−−−−−− 12
x −−−−−−− 19
=⇒ 12 · x = 19 ⇒ x = 19
12
.
A fórmula do montante para o regime de juros simples é dada por M = C · (1 + i · n). Portanto:
10.000 = C ·
�
1 +
�
0, 50 · 19
12
��
⇒ C = 10.000�
1 +
�
0, 50 · 19
12
�� ⇒ C ≈ 5.581, 39.
Poderíamos resolver a mesma questão mantendo o número de períodos fixo, ou seja, n = 19 meses, porém,
FTC EaD | LICENCIATURA EM MATEMÁTICA20
alterando a unidade temporal da taxa de juros simples.
ia = 12 · im ⇒ im =
ia
12
. Logoim =
0, 5
12
≈ 0, 0416 = 4, 16% a.m.
Encontrando o capital inicial C , utilizando a nova taxa de juros simples mensal i = 4, 16% temos:
10.000 = C · [1 + (0, 0416 · 19)] ⇒ C = 10.000
[1 + (0, 0416 · 19)] ⇒ C ≈ 5.581, 39
Portanto, o capital procurado é de R$ 5.581, 39.
ER 9. Qual o valor dos juros contidos no montante de R$ 100.000, 00, resultante da aplicação de um certo
capital à taxa de 42% a.a., durante 13 meses?
Solução: Para resolvermos estes exercícios, devemos lembrar, primeiramente, que os juros no regime
de capitalização simples é fixo durante todos os períodos e a fórmula para calcular o juro total acumulado
depende do capital inicial C , da taxa de juros simples i e do número de períodos n.
J = C · i · n
Precisamos encontrar o capital inicial C para depois calcular o juro total. Como o montante é de R$100.000, 00,
através da fórmula M = C · (1 + i · n), obteremos o valor do capital inicial. Observe ainda que as unidades
temporais da taxa e do número de períodos são incompatíveis, ou trocamos a taxa de juros de anos para
meses ou trocamos o número de períodos de meses para anos. Se n = 13 meses, então n =
13
12
anos.
100.000 = C ·
�
1 +
�
0, 42 · 13
12
��
⇒ C = 100.000�
1 +
�
0, 42 · 13
12
�� ⇒ C ≈ 68.728, 52.
Assim, o capital inicial é de R$ 68.728, 52. Calculando o juros total do período, temos que:
J = 68.728, 52 · 0, 42 · 13
12
≈ 31.271, 48.
Podemos encontrar, da mesma forma, o valor total dos juros utilizando uma outra relação que envolve o
montante M , o capital inicial C e o juros total J. A fórmula mencionada é dado por:
M = C + J ⇒ J = M − C .
Assim, subtrai-se o valor do montante pelo capital e, dessa forma, encontra-se o valor para o juro total J.
J = 100.000, 00− 68.728, 52 = 31.271, 48
O resultado do juro total, seria o mesmo, se mantivermos o número de períodos igual à 13 meses e
transformando a unidade temporal da taxa de juros de ano para meses? Fica a cargo do leitor responder tal
questionamento.
ER 10. Uma empresa aplicou R$ 4.000, 00 reais no dia 15/06/06 ao dia 21/06/06 e gerou um montante de
R$ 4.042, 00. Qual foi a taxa mensal de rendimento dessa operação?
Solução: Em primeiro lugar, precisamos descobrir o número de períodos existentes entre essas duas
datas. Seria muito comum que qualquer pessoa afirmasse que entre as datas 15/06/06 e 21/06/06 existem
apenas 6 dias e isto infelizmente é incorreto. Quando contabilizamos datas, a data de partida deverá também
ser levada em consideração, dessa forma não teremos apenas 6 dias, o correto, neste caso, é afirmar que
entra as datas 15/06/06 e 21/06/06 existem na verdade 7 dias. Dessa forma o número de períodos será n = 7
MATEMÁTICA FINANCEIRA 21
dias. Utilizando a fórmula de juros simples M = C · (1 + i · n), temos:
4.042 = 4.000 · (1 + i · 7) ⇒ 4.042
4.000
= 1 + i · 7 ⇒ 1, 0105 = 1 + 7 · i ⇒ i = 1, 0105− 1
7
= 0, 015.
Dessa forma, i = 0, 015 é a taxa de juros simples diária , lembrando que o exercício pede a taxa de juros
mensal. Assim devemos utilizar a equivalência de taxas, onde im = 30 · id .
im = 30 · id = 30 · 0, 015 = 0, 045 = 4, 5% a.m.
ER 11. Depositei a quantia de R$ 72.000, 00 em um banco que remunera seus clientes à taxa simples de 36%
a.a. Depois de um certo tempo, verifiquei que o meu saldo no banco era de R$ 73.800, 00. Por quantos dias
deu-se esta aplicação?
Solução: A questão pede para encontrarmos o número de períodos em dias, que o capital inicial C =
72.000, 00 foi aplicado a uma taxa de juros simples i = 36% a.a., resultando num montante M = 73.800, 00.
Observe que o número de períodos a ser encontrado deverá estar medido em dias, dessa forma devemos
fazer uma mudança na unidade temporal de ano para dias da taxa fornecida.
ia = 360 · id ⇒ id =
ia
360
⇒ id =
0, 36
360
⇒ id = 0, 001.
Utilizando a fórmula de juros simples M = C · (1 + i · n) temos que:
73.800, 00 = 72.000, 00 · (1 + 0, 001 · n) ⇒ 73.800, 00
72.000, 00
− 1 = 0, 001 · n ⇒ n = 1, 025− 1
0, 001
= 25
Assim, o número de períodos procurado é n = 25 dias.
1.3.5 Exercícios Propostos
EP 1.21. Uma empresa tomou emprestada a quantia de R$451.000, 00, se comprometendo a liquidar a dívida
em 45 dias, pagando por esta R$ 572.770, 00. Qual a taxa mensal de juros simples adotada nesta operação?
EP 1.22. Depositei a quantia de R$ 72.000, 00 em um banco que remunera seus clientes à taxa de juros
simples de 36% ao ano. Depois de um certo tempo, o meu saldo neste banco era de R$ 73.800, 00. Por quantos
dias deu-se essa aplicação?
EP 1.23. Uma loja oferece um aparelho um aparelho por R$ 500, 00 a vista. Na compra deste aparelho a
prazo, pede-se 20% do valor a vista como entrada, e mais um pagamento de R$ 550, 00 no prazo de 2 meses.
Que taxa de juros simples a loja está cobrando nessa operação?
EP 1.24. Um capital, aplicado por 5 meses, foi elevado a R$42.000, 00. Caso esse capital tivesse sido aplicado
por 10 meses, à mesma taxa de juros simples, teria se elevado R$ 54.000, 00. Encontre esse capital e a taxa
utilizada.
EP 1.25. Um capital aplicado por 2 meses, elevou-se a
2
3
de si próprio. Qual foi a taxa de juros simples
considerada?
EP 1.26. Um capital (C2) supera um outro (C1) em 20%. Os dois foram aplicados a juros simples a
taxas de 10% a.m. e 7% a.m. respectivamente, e produziram juntos, em um mesmo prazo, um montante
de R$ 205.000, 00. Determine esse prazo, sabendo que o juro do capital (C2) supera (C1) em R$ 25.000, 00
EP 1.27. Que taxa de juros simples faz com que um certo capital inicial C triplique de valor em 2 anos e 1
mês.
EP 1.28. A soma de um capital, aplicado durante 110 dias, à taxa de juros simples de 7% a.a., com seu juro,
é igual R$ 2.553, 47. Determine o valor do juro, considerando o ano com 360 dias.
FTC EaD | LICENCIATURA EM MATEMÁTICA22
EP 1.29. Um comerciante oferece a sues clientes um abatimento de 5% no caso de compras a vista. Em
contra partida, nas compras a prazo, suas mercadorias sofrem um acréscimo de 15% e dá-se ao cliente um
prazo de 3 meses para efetuar o pagamento. Qual a taxa mensal de juro simples adotada por essa loja?
EP 1.30. Uma pessoa aplicou um certo capital em um banco à taxa de juros simples de 96% a.a. Transcorridos
5 meses, essa pessoa retirou o capital mais o jurose aplicou-os em um outro banco por 3 meses, à taxa de
juros simples de 9% a.m. obtendo com isso um juro de R$ 4.536, 00. Qual o capital inicial aplicado por essa
pessoa?
1.4 Juros Compostos
Introdução
Agora que já sabemos lidar com os conceitos de juros simples, equivalência de taxas num regime de juros
simples, podemos começar a pensar como se comporta um capital inicial C num regime de juros compostos,
submetido a uma taxa de juros composto i durante um número de períodos n. Será que o resultado final, ou
seja, o montante M obtido durante a capitalização composta é sempre maior do que a capitalização simples?
A matemática nos reserva situações fascinantes, responder perguntas dessa natureza significa possuir um
conhecimento bastante sólido dentro do assunto proposto. Para introduzirmos o conceito de juros compostos
vamos utilizar como referência a mesma simulação usada para ilustrar o regime de juros simples.
A capitalização composta ou, simplesmente, juros compostos é a forma de movimentação financeira mais
utilizada no mercado. O simples ato de comprar algum bem de consumo parcelado, ou investir um certo capital
inicial numa caderneta de poupança, são exemplos práticos da utilização da capitalização composta no dia-
a-dia. Entender os conceitos e aplicações dos juros compostos é de fundamental importância no decorrer do
curso de matemática financeira, principalmente no estudo de séries de pagamentos.
1.4.1 Capitalização Composta
Lembrando do que foi visto com relação a juros simples, propusemos uma simulação baseada na seguinte
frase: “Invista R$ 1.000, 00 durante 4 meses aplicando uma taxa fixa de juros i = 10% am”.
Naquele instante, estávamos interessados em equacionar tanto a fórmula de juros, quanto a fórmula do
montante para o regime de juros simples. Observe que naquele momento os juros tinham uma característica
de ser fixo durante toda a capitalização. Vamos mudar a maneira de incidir a taxa de juros agora, ao invés de
incidirmos a taxa de juros sempre no capital inicial, incidiremos no montante do período anterior. Utilizaremos
a seguir de modo a ilustrar e melhorar a compreensão do que estamos dizendo.
Período Capital Juros Montante
0 1.000, 00 0 M = 1.000, 00 + 0 = 1.000, 00
1 1.000, 00 1.000, 00 · (0, 10) = 100, 00 M = 1.000, 00 + 100, 00 = 1.100, 00
2 1.000, 00 1.100, 00 · (0, 10) = 110, 00 M = 1.100, 00 + 110, 00 = 1.210, 00
3 1.000, 00 1.210, 00 · (0, 10) = 121, 00 M = 1.210, 00 + 121, 00 = 1.331, 00
Observamos, pela tabela, que nos períodos n = 0 e n = 1 os montantes obtidos foram exatamente iguais
aos calculados pelo regime de capitalização simples. No entanto, olhando para os períodos n = 2 e n = 3, nota-
se um acréscimo significativo se comparados as respectivos montantes dos períodos em questão no sistema
de capitalização simples.
MATEMÁTICA FINANCEIRA 23
O juro total, neste caso, também será a soma de todos os juros obtidos em cada período, o grande problema
é que pelo fato de não ser constante, não existirá uma fórmula para calcularmos diretamente assim como foi
visto no regime de juros simples.
J = J0 + J1 + J2 + J3 = 0 + 100 + 110 + 121 = 331
Contudo, a fórmula que envolve o montante M , o capital inicial C e o juros total J continua sendo válida para
este caso ou seja, M = C + J.
M = C + J ⇒ M = 1.000, 00 + 331, 00 ⇒ M = 1331, 00
Qual será a relação entre o montante M o capital inicial C , a taxa de juros composta i e o número de períodos
n para o regime de capitalização composta?
De uma forma geral, suponha que tenhamos um certo capital C submetido a uma taxa de juros composta i
durante um número de períodos n. A característica principal dos juros compostos é que a taxa de juros incidirá
sempre no montante anterior ao período em questão, dessa forma:
n = 0 ⇒ J0 = 0 ⇒ M0 = C + J0 = C + 0 ⇒ M0 = C
No período seguinte, a taxa incidirá sobre o montante M0 como M0 = C a capitalização ainda se comporta
de forma idêntica à juros simples, assim:
n = 1 ⇒ J1 = M0 · i = C · i ⇒ M1 = M0 + J1 = C + C · i ⇒ M1 = C · (1 + i)
Observe que se n = 2, a capitalização composta começa a ter um comportamento bastante diferente com
relação a simples, pois neste caso a taxa de juros i incide sobre o montante anterior e neste caso M1 6= C , pois
M1 = C · (1 + i).
n = 2 ⇒ J2 = M1 · i = C · (1 + i) · i ⇒ M2 = M1 + J2 ⇒ M2 = C · (1 + i) + C · (1 + i) · i
Podemos simplificar M2, pois o termo C · (1+ i) é um fator comum a expressão, dessa forma pode ser colocado
em evidência.
M2 = C · (1 + i) + C · (1 + i) · i ⇒ M2 = C · (1 + i) · (1 + i) ⇒ M2 = C · (1 + i)2
Seguindo essa lógica, é fácil perceber que o montante M3 será dado por M3 = C · (1 + i)3. Para um montante
qualquer Mn ou se preferir M(n) a expressão para o seu cálculo será:
M(n) = C · (1 + i)n
De modo a simplificar a notação, utilizaremos somente a variável M para representar o montante num período
qualquer, dessa forma:
M = C · (1 + i)n
1.4 Definição. [Juros Compostos] Chamamos de capitalização composta ou regime de juros compostos a
toda movimentação financeira em que a taxa de juros, para cada período, incide sempre sobre o montante do
período anterior. O montante M obtido depois de submeter um certo capital C a uma taxa de juros i durante
um certo período n é dado por:
M = C · (1 + i)n
Nota 5. Assim como no regime de juros simples, a taxa de juros compostos juntamente com o número
de períodos precisam estar sempre na mesma unidade temporal.
FTC EaD | LICENCIATURA EM MATEMÁTICA24
1.4.2 Taxas Equivalentes em Juros Compostos
De forma equivalente ao regime a juros simples, podemos encontrar as taxas equivalentes no regime à
juros compostos. A idéia é bastante parecida, exceto pela forma de capitalizar, lembrando que no caso dos
juros simples, a relação entre o montante M , o capital inicial C , o número de períodos n e a taxa de juros i é
representada pela expressão M = C · (1+ i ·n) enquanto que no regime de capitalização composta a expressão
obtida para o cálculo do montante foi M = C · (1 + i)n.
De uma forma geral, suponha que ia seja uma taxa qualquer dada em anos e que desejamos encontrar as
taxas equivalentes em semestre (is), bimestre (ib), meses (im), quinzenas (iq) e dias (id ), supondo que o capital
inicial e o número de períodos são fixos. Se n = 1 ano, podemos afirmar que n = 2 semestres, n = 6 bimestres,
n = 12 meses , n = 24 quinzenas e n = 360 dias. Dessa forma:
Ma = Ms = Mb = Mm = Mq = Md
(1 + ia)
1 = (1 + is)
2 = (1 + ib)
6 = (1 + im)
12 = (1 + iq)
24 = (1 + id)
360
Observe que, no caso dos juros compostos, o isolamento de uma taxa para efetuar os cálculos e dessa forma
encontrar a respectiva taxa equivalente em uma outra unidade de medida temporal não é tão óbvio. No regime
a juros simples as taxas equivalentes eram proporcionais e devido a isso, o cálculo se tornou mais simplificado.
Neste momento não temos mais a proporcionalidade mas isto em nada impedirá encontrarmos, por exemplo,
a taxa de juros compostos bimestral, possuindo a taxa de juros mensal, como proceder?
Devemos isolar a variável ib na igualdade (1 + ib)6 = (1 + im)12. Em hipótese alguma desenvolveremos as
potências de cada parêntesis, este procedimento é totalmente equivocado. Utilizaremos uma maneira mais
inteligente, simples e muito mais elegante. Observe que, se o expoente do fator (1 + ib) fosse 1, ao invés de 6
não teríamos problema algum em isolar a variável. Porque então, não tornamos o expoente igual a 1 através
de alguma propriedade matemática? Lembrando que pelo fato de ser uma igualdade, tudo o que for feito no
primeiro membro, deverá, necessariamente, ser feito no segundo membro de forma a preservar o sinal de
igualdade entre os dois fatores, dessa forma:
(1 + ib)
6 = (1 + im)
12 ⇒ 6
È
(1 + ib)6 =
6
È
(1 + im)12 ⇒ (1 + ib) = 6
È
(1 + im)12
Agora que “tornamos” o expoente igual a 1 no fator (1 + ib) podemos enfim isolar a variável ib.
ib =
6
È
(1 + im)12 − 1
Observe, ainda, que podemos simplificar os cálculos e sempre que isto for possível, serárealizado.
ib = (1 + im)
12
6 − 1 ⇒ ib = (1 + im)2 − 1.
ER 12. Suponha que um certo capital R$ 500, 00 tenha sido submetido a uma taxa de juros compostos i = 4%
a.m. Encontrar as taxas de juros equivalentes ao ano, ao semestre e ao dia. Encontre o montante para cada
um das referidas taxas supondo que o número de períodos da capitalização foi n = 6 meses.
Solução: Vamos encontrar por motivos óbvios, primeiro a taxa de juros equivalente ao ano, afinal o
expoente do fator (1 + ia) já é 1 e dessa forma os cálculos se tornam mais simples.
(1 + ia)
1 = (1 + im)
12 ⇒ ia = (1 + im)12 − 1 = (1 + 0, 04)12 − 1 ≈ 0, 6010 = 60, 10%a.a.
A taxa de juro equivalente ao semestre será:
(1 + is)
2 = (1 + im)
12 ⇒ is = (1 + im)6 − 1 = (1 + 0, 04)6 − 1 ≈ 0, 2553 = 26, 53%a.s.
Finalmente, a taxa de juros equivalente ao dia será:
(1 + im)
12 = (1 + id )
360 ⇒ id = 360
È
(1 + im)12 − 1 = (1 + 0, 04)
12
360 − 1 ≈ 0, 0013 = 0, 13%a.d.
MATEMÁTICA FINANCEIRA 25
Os montantes para cada uma das taxas encontradas são dados a seguir, lembrando que no regime de
capitalização a juros simples, a expressão utilizada será M = C · (1 + i)n.
O montante anual Ma, utilizando a taxa 60, 10% a.a., com n =
5
12
anos, será:
Ma = 500 · (1 + 0, 6010)
6
12 ≈ 632, 65
Utilizando a taxa de juros semestral i = 26, 53% a.s., o montante semestral Ms encontrado durante n = 1
semestre será:
Ms = 500 · (1 + 0, 2653)1 ≈ 632, 65
Finalmente, utilizando a taxa de juros 0, 13% a.d durante um número de períodos n = 180 dias, o montante
diário Md encontrado foi:
Md = 500 · (1 + 0, 0013)180 ≈ 631, 72
Observe que, dentre os três montantes calculados, o terceiro deles, o montante diário Md , possuiu uma
capitalização inferior aos outros dois valores. Em alguns casos isto poderá ocorrer, afinal no cálculo das
taxas estamos fazendo aproximações, pois os valores das mesmas não foram números exatos, desta forma
uma pequena variação nos montantes já era esperada.
1.4.3 Análise Gráfica
Assim como foi feito nos juros simples, podemos abordar graficamente os juros compostos. Fixando o capital
inicial C juntamente com a taxa de juros compostos i , a expressão do montante composto M = C · (1 + i)n
torna-se uma função nas variáveis M (dependente) e n (independente), assim:
M(n) = C · (1 + i)n, onde C e i são fixos
O domínio dessa função, também, está restrito apenas ao primeiro quadrante. Portanto, não estaremos
interessados em valores negativos, tanto do montante quanto do número de períodos. Dessa forma Dom(M) =
R
+.
O comportamento da função juros compostos é totalmente diferente se com-
parado ao da função juros simples. A função juros compostos é exponencial, visto
que a variável independente (n) está situada no expoente do fator (1 + i), uma vez
que a taxa de juros compostos está fixa.
Depois de verificar domínio e natureza dos gráficos de ambas as funções juros
simples e composto, será que somos capazes de responder a seguinte pergunta:
n
M
C · (1 + i)
C
1
“É melhor aplicar a juros simples ou a juros compostos ?”
A resposta, digamos intuitiva, seria obviamente achar que os juros simples fornecem sempre os maiores
montantes. Mas para a surpresa de todos, isto nem sempre será verdade. Em alguns casos investir um
certo capital a juros simples será mais vantajoso do que os juros compostos. Para entender melhor isto,
construiremos os gráficos das duas funções num mesmo plano cartesiano, identificando a situação onde ocorre
um montante maior pelo regime a juros simples.
1.4.4 Juros Simples × Juros Compostos
Suponha que um certo investidor dispõe da quantia de R$ 40.000, 00 e vai empregar o seu capital à uma
taxa de 12% ao ano, durante 6 meses. Qual é a melhor forma dele capitalizar o seu dinheiro, juros simples ou
composto?
FTC EaD | LICENCIATURA EM MATEMÁTICA26
Para responder esta pergunta, o mais correto será calcular os dois montantes, ou seja, utilizando ambos os
regimes de capitalização e depois comparar os valores obtidos. Lembrando que estamos comparando resul-
tados fornecidos por funções de natureza totalmente distintas, juros simples (função linear) e juros compostos
(função exponencial).
Primeiro, capitalizaremos o valor de R$ 40.000, 00 utilizando o regime de capitalização simples, a expressão
para o montante é M = C · (1 + i · n), o número de períodos n = 6 meses e a taxa de juros simples será de
i = 12% ao ano. Observe que a unidade temporal da taxa e do número de períodos não é compatível, utilizando
uma equivalência de taxas no regime de juros simples, encontraremos a taxa proporcional ao mês, assim:
ia = 12 · im ⇔ im =
ia
12
⇔ im =
12
12
⇔ im = 1
Calculando o montante obtido pelo juros simples, temos:
M = 40.000, 00 · (1 + (0, 01 · 6)) ⇔ M = 42.400, 00
Com a capitalização simples, obtivemos um montante igual a R$ 42.400, 00 será que a capitalização composta
proporcionará um montante maior? Vamos calcular agora o montante utilizando a capitalização composta.
Antes, precisamos encontrar a taxa equivalente em meses utilizando juros compostos, dessa forma:
(1 + ia)
1 = (1 + im)
12 ⇒ im = 12
È
(1 + 0, 12)1 − 1 ⇒ im ≈ 0, 0095
Calculando o montante obtido pelo juros compostos, temos:
M = 40.000, 00 · (1 + 0, 0095)6 ≈ 42.334, 84
Interessante, o montante obtido pela capitalização simples foi maior do que o obtido pela capitalização com-
posta. Observe, ainda, que o montante simples, excedeu o composto em R$ 65, 16. Porque isso aconteceu?
A pergunta anterior é fácil de ser respondida, através de uma análise gráfica.
Identificaremos, assim, porque o juros simples rendeu mais do que o juros com-
posto. Observe, na figura ao lado, os gráficos das funções juros simples e composto
construídos em um mesmo plano cartesiano.
É fácil perceber, pelo gráfico, que se o número de períodos estiver no intervalo
0 < n < 1, o gráfico da função juros simples está situado acima do gráfico da função
juros compostos, em termos de função, isto significa que as imagens dos elementos
que estejam nesta faixa do domínio, possuem valores maiores pela função juros
simples do que pela função juros compostos.
n
M
C · (1 + i)
C
1
Observe que n = 6 meses, poderia ser representado por n = 0, 5 ano, pois já sabemos que as unidades da
taxa e do número de períodos tem de ser compatíveis, como 0 < 0, 5 < 1 fica explicado porque a capitalização
simples superou a composta. Caso o número de períodos fosse igual a uma unidade temporal da taxa de
juros, ou seja, n = 1 ano, as capitalizações simples e composta seria absolutamente iguais e, neste caso,
poderíamos escolher qualquer uma das duas pois os montantes seriam os mesmo. Supondo n > 1, pelo
fato dos juros compostos possuir uma natureza exponencial, os montantes obtidos nesta faixa do domínio
seriam sempre maiores do que os obtidos pela função juros simples. Denotando por Js e Jc os juros simples e
compostos respectivamente, em resumo, o que ocorrerá sempre é o seguinte:
n = 1 ⇒ Js = Jc
0 < n < 1 ⇒ Js > Jc
n > 1 ⇒ Js < Jc
ER 13. Qual o montante produzido pela aplicação de R$ 58.000, 00 a uma taxa de 125% a.a. pelo prazo de
220 dias?
Solução: A resolução desta questão é bem simples, porém, vale a pena lembrar que a unidade temporal
da taxa de juros deve ser sempre igual a unidade do número de períodos. Dessa forma, devemos transformar
MATEMÁTICA FINANCEIRA 27
n = 220 dias em anos ou transformar 125% a.a. em dias. Utilizaremos a conversão de taxas para esta questão
e deixaremos a outra maneira de resolver a cargo do leitor. Transformando a taxa de juros composto ao ano
para dias, temos que:
(1 + ia)
1 = (1 + id)
360 ⇒ id = 360
È
(1 + ia) − 1 = 360
È
(1 + 1, 25) − 1 ≈ 0, 0022
Portanto, a taxa equivalente em dias ao mesmo período de capitalização será id = 0, 22%. Utilizando a
expressão de juros compostos, encontraremos o montante.
M = 58.000 · (1 + 0, 0022)220 ≈ 95.057, 98
Assim, o montante encontrado será de R$ 95.057, 98
ER 14. Uma pessoa recebe uma proposta de investir hoje uma quantia de R$1.000, 00 para receber R$1.343, 92

Continue navegando