Buscar

fad2c2bb4f0bbaf1283bff18d1247f8e(1)

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 84 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 84 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 84 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

1
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
2
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
3
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
3
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
Núcleo de Educação a Distância
R. Maria Matos, nº 345 - Loja 05
Centro, Cel. Fabriciano - MG, 35170-111
www.graduacao.faculdadeunica.com.br | 0800 724 2300
GRUPO PROMINAS DE EDUCAÇÃO.
Material Didático: Ayeska Machado
Processo Criativo: Pedro Henrique Coelho Fernandes
Diagramação: Heitor Gomes Andrade
PRESIDENTE: Valdir Valério, Diretor Executivo: Dr. Willian Ferreira, Gerente Geral: Riane Lopes, 
Gerente de Expansão: Ribana Reis, Gerente Comercial e Marketing: João Victor Nogueira
O Grupo Educacional Prominas é uma referência no cenário educacional e com ações voltadas para 
a formação de profi ssionais capazes de se destacar no mercado de trabalho.
O Grupo Prominas investe em tecnologia, inovação e conhecimento. Tudo isso é responsável por 
fomentar a expansão e consolidar a responsabilidade de promover a aprendizagem.
4
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
4
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
Prezado(a) Pós-Graduando(a),
Seja muito bem-vindo(a) ao nosso Grupo Educacional!
Inicialmente, gostaríamos de agradecê-lo(a) pela confi ança 
em nós depositada. Temos a convicção absoluta que você não irá se 
decepcionar pela sua escolha, pois nos comprometemos a superar as 
suas expectativas.
A educação deve ser sempre o pilar para consolidação de uma 
nação soberana, democrática, crítica, refl exiva, acolhedora e integra-
dora. Além disso, a educação é a maneira mais nobre de promover a 
ascensão social e econômica da população de um país.
Durante o seu curso de graduação você teve a oportunida-
de de conhecer e estudar uma grande diversidade de conteúdos.
Foi um momento de consolidação e amadurecimento de suas escolhas
pessoais e profi ssionais.
Agora, na Pós-Graduação, as expectativas e objetivos são
outros. É o momento de você complementar a sua formação acadêmi-
ca, se atualizar, incorporar novas competências e técnicas, desenvolver 
um novo perfi l profi ssional, objetivando o aprimoramento para sua atua-
ção no concorrido mercado do trabalho. E, certamente, será um passo
importante para quem deseja ingressar como docente no ensino supe-
rior e se qualifi car ainda mais para o magistério nos demais níveis de
ensino.
E o propósito do nosso Grupo Educacional é ajudá-lo(a) nessa 
jornada!
Conte conosco, pois nós acreditamos em seu potencial.
Vamos juntos nessa maravilhosa viagem que é a construção 
de novos conhecimentos.
Um abraço,
Grupo Prominas - Educação e Tecnologia
Olá, acadêmico(a) do ensino a distância do Grupo Prominas! .
É um prazer tê-lo em nossa instituição! Saiba que sua escolha 
é sinal de prestígio e consideração. Quero lhe parabenizar pela dispo-
sição ao aprendizado e autodesenvolvimento. No ensino a distância é 
você quem administra o tempo de estudo. Por isso, ele exige perseve-
rança, disciplina e organização. 
Este material, bem como as outras ferramentas do curso (como 
as aulas em vídeo, atividades, fóruns, etc.), foi projetado visando a sua 
preparação nessa jornada rumo ao sucesso profi ssional. Todo conteúdo 
foi elaborado para auxiliá-lo nessa tarefa, proporcionado um estudo de 
qualidade e com foco nas exigências do mercado de trabalho.
Estude bastante e um grande abraço!
Professora Daniela Pala
O texto abaixo das tags são informações de apoio para você ao 
longo dos seus estudos. Cada conteúdo é preprarado focando em téc-
nicas de aprendizagem que contribuem no seu processo de busca pela
conhecimento.
Cada uma dessas tags, é focada especifi cadamente em partes 
importantes dos materiais aqui apresentados. Lembre-se que, cada in-
formação obtida atráves do seu curso, será o ponto de partida rumo ao 
seu sucesso profi sisional.
Esta unidade abordará os princípios da bioenergética voltada à nutri-
ção esportiva e à realização de esportes. Especifi camente, terá enfoque 
em três vias energéticas: a) Sistema Imediato/Fosfagênico; b) Sistema 
Anaeróbico ou Glicólico; e c) Sistema Oxidativo ou Aeróbico. Trata-se 
de uma unidade que, além de conceitos básicos, oferece aplicabilida-
de prática para os profi ssionais da área de saúde e nutrição, para um 
melhor entendimento sobre de onde obtemos energia para o esporte 
e também para atividades do dia a dia, os substratos energéticos que 
utilizamos, as características individuais de cada via metabólica e a 
utilização dessas vias energéticas nas mais diferentes modalidades es-
portivas. 
Em seguida, no capítulo 2, iremos ampliar nossos conhecimentos acer-
ca de como o corpo regula nossa temperatura corporal, num processo 
denominado Termorregulação e suas respostas fi siológicas em condi-
ções extremas, como a prática esportiva no calor e no frio. Por último, 
traremos questões atuais e polêmicas sobre a importância da hidrata-
ção e o processo de reidratação na prática esportiva, perante alguns 
estudos científi cos atuais. Dessa forma, o objetivo desse módulo é au-
xiliar o profi ssional a ter domínio sobre alguns conceitos importantes e 
se tornar apto a acompanhar, de forma individualizada e personalizada, 
o atleta em seu consultório, e discutir baseado em evidências científi cas 
atuais a melhor conduta a ser prescrita e, assim, seguida pelo paciente. 
Bioenergética; Metabolismo; Termorregulação; Hidratação.
9
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
9
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
CAPÍTULO 01
INTERAÇÃO NUTRIÇÃO ENERGIA
Conceitos importantes_____________________________________
Apresentação do módulo __________________________________
11
10
Regulação da temperatura corporal__________________________ 35
CAPÍTULO 02
TERMORREGULAÇÂO
CAPÍTULO 03
DESIDRATAÇÃO E REIDRATAÇÃO
Respostas fi siológicas ao exercício no calor_____________________ 42
Mecanismos envolvidos no controle da termorregulação_________ 40
Recomendações de Recursos Ergogênicos para Hidratação______ 60
Bebidas para Hidratação: Tipos, quantidade e momentos de in-
gestão___________________________________________________ 60
Água e Desidratação_______________________________________ 55
Fontes de energia__________________________________________ 13
Respostas fi siológicas ao exercício no frio______________________ 47
Diretrizes atuais sobre hidratação____________________________ 63
Recapitulando_____________________________________________ 71
Considerações Finais_______________________________________ 77
Recapitulando_____________________________________________ 51
Sistemas energéticos_______________________________________ 16
Recapitulando_____________________________________________ 30
Fechando a Unidade_______________________________________ 78
Referências_______________________________________________ 81
10
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
A Bioenergética constitui um dos principais temas da Bioquími-
ca e Fisiologia do Esporte, sendo essencialmente dedicada ao estudo 
dos processos químicos que tornam possíveis, além da vida celular, a 
utilização de substratos específi cos à prática do esporte. Essa área, pro-
cura explicar os principais processos químicos que decorrem na célula 
e analisar as suas implicações fi siológicas, principalmente em relação 
ao modo como esses processos se enquadram no conceito de equilíbrio 
metabólico (homeostase). A compreensão daquilo que signifi ca “ener-
gia” e da forma como o organismo a pode adquirir, converter, armazenar 
e utilizar, é a chavepara compreender o funcionamento orgânico, tanto 
nos desportos de rendimento, como nas atividades do cotidiano. 
O estudo da bioenergética permite entender como a capaci-
dade para realizar trabalho (exercício) está dependente da conversão 
sucessiva, de uma em outra forma de energias. Por exemplo, a fi siolo-
gia do trabalho muscular e do exercício é, basicamente, uma questão 
de conversão de energia química em energia mecânica, energia essa 
que é utilizada, por exemplo, pelas miofi brilas, para provocar o deslize 
dos miofi lamentos, resultando em ação muscular e produção de força 
durante um arremesso de peso ou salto com vara. 
Em seguida, iremos explorar os temas de termorregulação e 
de hidratação no esporte. Apesar dos problemas causados pela eleva-
ção da temperatura corporal central decorrente de fatores ambientais 
e pessoais, esse tema ainda vem sendo trabalhado de maneira insufi -
ciente em pesquisa atuais. Em contra partida há um interesse maior no 
conhecimento das doenças térmicas em atletas, como a hipernatremi-
na, pois, é cada vez mais recorrente em provas e olimpíadas em países 
com climas extremos ou diferentes dos quais os atletas não estão acli-
matizados. Dessa forma, iremos abordar o estresse térmico e a desidra-
tação, e sua infl uência no desempenho do atleta, e a melhor conduta a 
ser adotada nessas situações.
Diante disso, iniciaremos o módulo com alguns conceitos im-
portantes, onde iremos rever três vias bioenergéticas e como a nutrição 
está envolvida nessas etapas e, em seguida, iremos conhecer os me-
canismos que nosso corpo utiliza para manter sua temperatura corporal 
e as implicações e os prejuízos que a desidratação pode causar no 
atleta. Lembre-se que para ampliar o conhecimento é importante não 
se restringir apenas ao conteúdo proposto, mas se dedicar à leitura dos 
materiais complementares e artigos científi cos da área, para garantir 
melhor efi cácia na conduta com o atleta, e formação de um profi ssional 
de referência na área de nutrição esportiva.
11
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
CONCEITOS IMPORTANTES
A Nutrição é uma das ciências mais antigas, tal fato pode ser 
comprovado a partir de citações de consideráveis autores da antiguida-
de, como Hipócrates, que é considerado o pai da medicina moderna, 
que há 2500 anos advertiu sobre a importância da relação da nutrição e 
doença, com a reconhecida frase “faça do alimento seu medicamento” 
(Hasler, 2000).
O termo “energia” deriva do grego “ergos”, cujo signifi cado ori-
ginal é literalmente “trabalho”. Em física, energia é a capacidade de 
algo, de realizar trabalho, ou seja, gerar força num determinado corpo, 
substância ou sistema físico. A palavra energia apareceu pela primeira 
vez em 1807, sugerida pelo médico e físico inglês Thomas Young (Wil-
son, 1968). A unidade de energia é o Joule (J).
INTERAÇÃO, NUTRIÇÃO E
ENERGIA
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
12
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
A fórmula da energia é E (energia) = m (massa) x v (velocida-
de) 2
2
Existem várias formas de energia, renováveis e não renová-
veis. São exemplos de energias não renováveis os combustíveis fós-
seis, como:
- Petróleo;
- Carvão mineral;
- Gás natural;
- Xisto betuminoso;
- Combustíveis nucleares. 
Já os tipos de energias renováveis são a energia eólica, a sola, 
a geotérmica, ondas e marés e advinda de biomassa (Yolanda, 2012; 
Ben, 2010)
A primeira lei da termodinâmica estabelece que a energia não 
é criada nem destruída, e sim transformada de uma forma para ou-
tra sem ser esgotada (Atwater, 1890). Por exemplo, no corpo a ener-
gia química armazenada dentro das ligações de macronutrientes não 
se dissipa imediatamente em forma de calor. Uma parte é conservada 
como energia química antes de ser transformada em energia mecânica 
e, a seguir, em energia mecânica e, fi nalmente, em energia térmica pelo 
sistema musculoesquelético.
Pela primeira lei da termodinâmica o corpo não produz energia, 
não consome e nem a esgota, apenas a transforma de uma forma para 
outra, à medida que os sistemas fi siológicos sofrem modifi cações. 
Dessa forma, frases como “Esse novo atleta de voleibol tem 
muita energia ao entrar nas quadras e com certeza será destaque na 
próxima temporada” estão sendo usadas de maneira errônea. O con-
ceito de energia é utilizado no sentido fi gurado para designar o vigor, a 
fi rmeza e a força.
Como toda energia, consequentemente, se degrada e gera ca-
lor, a quantidade de energia liberada em uma reação biológica pode ser 
calculada com base na quantidade de energia produzida. Caloria (cal) é 
13
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
também uma unidade de energia, que é defi nida como a quantidade de 
calor necessária para elevar a temperatura de um grama (g) de água de 
14,5º a 15,5ºC. Esta unidade equivale a 4,1855 J. Em seres humanos, 
a energia é expressa em quilocalorias (kcal).
Como vimos acima, a energia não pode ser criada, mas ape-
nas transformada, sendo cada um dos tipos de energia capaz de provo-
car fenômenos determinados e característicos nos sistemas físicos. Vá-
rias formas de trabalho físico, biológico e mecânico requerem energia, 
por exemplo, as contrações dos músculos cardíacos e esqueléticos. 
É essa energia que nos possibilita movimentar, trabalhar e 
exercitar, além de permitir o crescimento de novos tecidos na fase de 
crescimento em crianças, recuperação de doenças em adultos, condu-
ção de impulsos elétricos, como do coração e as sinapses no cérebro, 
liberação de hormônios, contração dos vasos sanguíneos, entre outras 
(McCardle,2001).
Saiba mais:
Artigo: Efi ciência bioenergética e efi ciência de trabalho – revi-
são de conceitos e limitações práticas. Revista Mackenzie de Educação 
Física e Esporte – v. 12, n. 2, 2013, p. 209-227.
FONTES DE ENERGIA
 A energia para todas as funções do corpo humano é adqui-
rida através da energia solar. Essa energia precisa primeiramente ser 
transformada em energia química, para depois ser utilizada pelo corpo 
humano. A transformação desta energia se inicia nas plantas verdes 
através da fotossíntese (Figura 1). Quando moléculas de dióxido de 
carbônio (6CO2) e água (6H2O) se transformam em glicose (C6H12O6), 
nosso “combustível”, o açúcar, mais oxigênio (6O2). Em suas estruturas 
chamadas cloroplastos, as plantas absorvem energia radiante solar e 
sintetizam glicose a partir de dióxido de carbono e da água, enquanto há 
liberação de oxigênio para o ambiente. Nas plantas os carboidratos são 
transformados em gorduras e proteínas. Os animais e seres humanos 
vão adquirir esta energia ingerindo os nutrientes vegetais para atender 
suas próprias demandas energéticas.
14
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
Figura 1. Esquema de fotossíntese.
Fonte: News Medical (2019)
Essa energia consumida será revestida em trabalho biológico 
ou estocada nos tecidos adiposo, muscular, esquelético e fígado, para 
ser utilizada posteriormente. De fato, os indivíduos usam ou estocam 
menos que a metade da energia que eles consomem do alimento. A 
energia que não foi utilizada, ou perdida, se dissipa em forma de calor.
Quando grandes quantidades de energia são liberadas durante 
o exercício, a energia utilizada para o calor é sufi cientemente grande 
para aumentar a temperatura corporal. A energia adquirida através dos 
alimentos precisa ser transformada em um composto, chamado trifosfa-
to de adenosina (ATP) antes que possa ser aproveitada pelo organismo 
(Williams, 1995). O ATP consiste em um componente de adenosina e 
3 radicais fosfato (Figura 2). Os 2 últimos radicais fosfato estão ligados 
ao restoda molécula através de ligações de alta energia. A quebra do 
ATP ocorre no terceiro fosfato, onde a energia é liberada com a reação 
de hidrolise, na presença de água. Com mais 2 fosfatos e adenosina, 
produz a molécula de ADP (adenosina difosfato). Essa energia é usada 
pelas células para as atividades do dia a dia e para o exercício físico, 
essa energia vem dos alimentos, principalmente dos açucares (glicose).
15
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
Figura 2.Esquema da liberação energética na molécula de ATP.
Fonte:Temas seletos de biofísica (2019)
O organismo processa três tipos diferentes de sistema, para a 
produção de energia, que serão abordados nos itens a seguir.
De forma geral, temos três sistemas de fornecimento de ener-
gia, que se diferem consideravelmente em complexidade, regulação, 
capacidade e força. Cada um é utilizado de acordo com o tipo, a inten-
sidade e duração dos exercícios. Eles são classifi cados em: Imediato 
ou Fosfagênico, que iremos utilizar principalmente como fontes energia 
ATP- CP, o sistema Anaeróbico ou Sistema Glicolítico que como a pró-
pria nomenclatura sugere, utiliza como fonte de energia glicose e glico-
gênio muscular e o sistema oxidativo ou aeróbio que utiliza como fonte 
de energia a glicose, o glicogênio (muscular e hepático), ácidos graxos 
e aminoácidos. 
O objetivo de cada sistema é liberar energia dos produtos quí-
micos ou alimentos e transformá-las em ATP, podendo assim ser utili-
zados nas contrações musculares e atividades físicas. Todos os siste-
mas fornecem energia, porém, o maior uso de um sistema ou de outro 
depende da duração, intensidade e tipo de atividade física (Wilmore & 
Costill, 1994).
16
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
Saiba mais:
Apostila: http://docentes.esalq.usp.br/luagallo/bioenergetica.
pdf
Artigo: Adaptação do músculo esquelético ao exercício físico: 
considerações moleculares e energéticas, disponível em http://www.
scielo.br/pdf/rbme/v23n1/1517-8692-rbme-23-01-00060.pdf
Vídeo: https://www.youtube.com/watch?v=Febfp5iI1K8
SISTEMAS ENERGÉTICOS
Sistema Imediato/Fosfagênico
Nos esportes de potência, como levantamento de peso, arre-
messo de peso, fi siculturismo, entre outros, em que a atividade se ca-
racteriza por esforços de intensidade máxima, o músculo recorre a fon-
tes energéticas imediatas, habitualmente designadas por fosfagénios, 
como a adenosina trifosfato (ATP) e a fosfocreatina (CP). 
As células têm obrigatoriamente de possuir mecanismos de 
conversão de energia. Por esta razão, necessitam da presença de uma 
substância que tenha a capacidade de acumular a energia provenien-
te das reações exergônicas (catabólicas). É igualmente imprescindível 
que esse composto seja posteriormente capaz de ceder essa energia 
às reações endergónicas (anabólicas). 
Defi nição de Catabolismo: Conjunto de reações químicas 
que transformam a matéria orgânica em energia. Nesta fase do proces-
so metabólico, as substâncias são degradadas e os nutrientes liberados 
para, em seguida, ocorrer a manutenção celular. 
Defi nição de Anabolismo: O conjunto de processos metabó-
licos que sintetizam as substâncias mais complexas a partir de outras 
mais simples. É o processo inverso ao catabolismo. O termo tem origem 
grega e, neste contexto, “ana” signifi ca acima.
Esta substância existe naturalmente nas nossas células e de-
signa-se por adenosina trifosfato, ATP. O ATP é um composto químico 
17
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
lábil que está presente em todas as células. A quantidade de energia 
libertada por cada uma dessas ligações por mol de ATP é de aproxi-
madamente 11kcal nas condições de temperatura e concentração de 
reagentes do músculo durante o exercício. Assim, como a remoção de 
cada radical fosfato libera uma grande quantidade de energia, a gran-
de maioria dos mecanismos celulares que necessitam de energia para 
operar obtêm-na, de um modo geral, via ATP.
Deste modo, os produtos fi nais da digestão dos alimentos são 
transportados até às células via sanguínea e aí oxidados, sendo a ener-
gia libertada utilizada para formar ATP. De fato, a respiração celular re-
presenta a conversão da energia química dos alimentos numa forma 
química de armazenamento temporário. 
A energia química armazenada (ATP) é transformada em ener-
gia mecânica, traduzida pelo deslize dos miofi lamentos durante o ciclo 
contráctil, durante o exercício.
O ATP funciona como uma “moeda de energia”, uma vez que 
pode acumular a energia liberada por compostos de mais elevado nível 
energético e, posteriormente, utilizá-la. 
A grande função dos três sistemas energéticos é, precisa-
mente, formar ATP para a contração muscular, uma vez que o músculo 
esquelético é incapaz de utilizar diretamente a energia advinda da de-
gradação dos grandes compostos energéticos, provenientes da alimen-
tação, como a glicose, os ácidos graxos (AG) ou os aminoácidos. A 
razão pela qual isso é impossível, tem a ver com o fato de só existir um 
único tipo de enzima nas pontes transversas de miosina - a ATPase – 
que hidrolisa ATP. Por isso, todas as outras moléculas energéticas têm 
de ser previamente convertidas em ATP, pois, é nessa forma que a mo-
lécula pode ser utilizada na contração muscular. 
Segundo Verkhonsnanski, no livro Treinamento Desportivo, 
18
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
Cap. 3, página 42 (colaboração: Maurício Raddi): esse mecanismo não 
dura muito, isto é, cerca de 6-10 segundos, aproximadamente. Todos os 
desportos, segundo McArdle e col.(1992), exigem a utilização dos fosta-
tos de alta energia (ATP e CP), porém, muitas atividades contam quase 
exclusivamente com esse meio para a transferência de energia como 
por exemplo sprints, saltos, lançamentos, exigindo um esforço breve e 
intenso durante o desempenho.
Sistema Anaeróbico ou Glicólico
Esse sistema metabólico gera o ATP para necessidades ener-
géticas de duração intermediárias, ou seja, as que duram de 45-90 se-
gundos. A característica das atividades que utilizam essa via energética 
é a sustentação de esforço de alta intensidade, que não ultrapassa dois 
minutos. A glicólise anaeróbica, assim como o sistema ATP-CP, não 
requer oxigênio e envolve a quebra incompleta do carboidrato em ácido 
lático. 
O organismo transforma os carboidratos imediatamente ou 
eles são depositados no fígado e no músculo, como glicogênio. A glico-
se anaeróbia refere-se à quebra do glicogênio na ausência do oxigênio. 
Esse processo é mais complexo do que o sistema ATP-CP e requer 
uma série mais longa de reações químicas.
O sistema anaeróbico ocorre em uma seqüência enzimática de 
11 reações, divididas em duas fases: a primeira fase vai até a formação 
de duas moléculas de gliceraldeído-3-fosfato caracteriza-se como uma 
fase de gasto energético de 2 ATPs nas duas fosforilações que ocorrem 
nesta fase; a segunda fase caracteriza-se pela produção energética de 
4 ATPs em reações oxidativas enzimáticas independentes de oxigênio, 
utilizando o NADH como transportador de hidrogênios da reação de de-
sidrogenação que ocorre. O rendimento energético líquido fi nal do me-
tabolismo anaeróbico da glicose, portanto, é de somente 2 ATPs livres 
(Figura 3).
19
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
Figura 3. Etapas do Sistema Anaeróbico para geração de 2 moléculas 
de ATPs.
Fonte: Lehninger (2000)
Nos tecidos animais sob condições aeróbicas, o piruvato é o 
produto da glicólise, e o NADH formado pela desidrogenação do gli-
ceraldeído-3-fosfato é reoxidado a NAD+ pelo O2. Entretanto, sob con-
Fonte: Lehninger (2000)
20
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
dições anaeróbias, como no músculo esqueléticoem alta atividade, o 
NADH gerado pela glicólise não pode ser reoxidado pelo O2 e precisa 
ser reoxidado pelo piruvato e, assim, este último é convertido em lac-
tato. O subproduto, o ácido lático, que causa fadiga muscular, usa so-
mente carboidratos. O sistema ácido lático também proporciona uma 
fonte rápida de energia, a glicose. Ele é a primeira fonte para sustentar 
exercícios de alta intensidade (McARDLE,1992).
Exemplos de exercícios físicos que utilizam a via glicolítica: 
corridas de 400-800 m., provas de natação de 100-200 m., também pro-
porcionando energia para piques de alta intensidade no futebol, hóquei 
no gelo, basquetebol, voleibol, tênis, badminton, entre outros esportes.
PARA SABER MAIS:
Site: http://bioquimicaufal.blogspot.com/2012/11/aula-02.html
Sistema Oxidativo ou Aeróbico
O sistema Oxidativo ou Aeróbico, chamado assim, pois, dife-
rente dos outros dois sistemas, utiliza o oxigênio para gerar ATP. Esse 
sistema produz uma quantidade signifi cativa de ATP e é ativado para 
produzir energia, durante períodos mais longos do exercício, como 
em exercícios de endurance (exemplo maratona). Ele fornece energia 
para exercícios de intensidade baixa a moderada. Atividades como fa-
zer compras, trabalhar em escritório e atividades mais intensas como 
caminhada e ciclismo, também são supridas, em parte, pelo sistema 
aeróbico, até que a intensidade atinja o nível moderado/alto (acima de 
75%-85% da Frequência Cardíaca Máxima). 
O ATP liberado da quebra da glicose e/ou dos ácidos graxos, 
em presença de O², passa por várias de reações químicas complexas, 
que envolvem inúmeras enzimas. A quebra de glicose ocorre em uma 
organela especializada da célula muscular, a mitocôndria. As mitocôn-
drias são consideradas as “usinas energéticas” da célula e são capazes 
de fornecer grandes quantidades de ATP para alimentar as contrações 
musculares.
21
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
Vídeo para relembrar a estrutura e função das mitocôndrias, 
vídeo https://pt.khanacademy.org/science/biology/structure-of-
-a-cell/tour-of-organelles/v/mitochondria-video
O sistema aeróbio possui 3 fases. A quebra do glicogênio na 
pres 
Figura 4. Produção de energia via cadeia respiratória (sistema oxidati-
vo). 
Fonte:Goulart (2019)
O glicogênio e os ácidos graxos são duas principais fontes de 
combustível utilizadas no sistema metabólico aeróbio. Ocasionalmente 
22
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
as proteínas, encontradas em alimentos como ovos, carnes e legumi-
nosas podem ser usadas como fonte de combustível metabólico, mas 
ocorre quando o organismo está fi siologicamente desgastado por ex-
cessos, por dietas ou por níveis extremamente baixos de gordura e gli-
cogênio.
O sistema metabólico aeróbio requer grande quantidade de 
O² para converter o glicogênio em 39 moléculas de ATP e os ácidos 
graxos, em 130 moléculas de ATP. O ácido graxo ou glicogênio são 
quebrados e preparados para o ciclo de krebs e o transporte de elé-
trons e, como resultado do processo, temos CO², H²O e energia. O CO² 
evapora; a água é eliminada através da evaporação e da radiação; e a 
energia é usada na segunda parte da reação ligada, para sintetizar o 
ATP (Lehninger, 2002). 
PARA SABER MAIS:
Artigo: https://www.efdeportes.com/efd54/metab.htm
Site: www.cdof.com.br/nutri2.htm
O sistema aeróbio é particularmente adequado para a produ-
ção de ATP durante o exercício prolongado tipo resistência (endurance). 
Nesses tipos de exercícios, o principal fornecedor de ATP é o sistema 
aeróbio. Os sistemas do ácido lático e do ATP-CP também contribuem, 
porém, apenas no início do exercício, antes de o consumo de O2 alcan-
çar um novo nível de estado estável, durante esse período contrai-se 
um défi cit de O2. Depois que o consumo de O2 alcança um novo nível 
de estado estável (em cerca de 2 ou 3 minutos), torna-se sufi ciente para 
fornecer toda a energia ATP exigida pelo exercício.
Exercício físico e saúde
O benefício do exercício aeróbio sobre a saúde do indivíduo, 
tem sido estudado e relatado em inúmeros trabalhos e pesquisas cienti-
fi cas, conduzidos ao longo das últimas décadas. Com efeito, muitos dos 
trabalhos que procuraram estudar as inter-relações entre a atividade 
física e a saúde, relatam que o exercício regular aeróbio é responsável 
por diminuir a taxa de mortalidade em sujeitos que iniciam a atividade 
física e se tornam ativos. De fato, os estudos epidemiológicos, observa-
ram que um indivíduo que faz atividade física regular, apresenta metade 
23
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
da taxa de mortalidade de um individuo sedentário. 
Foi com base nestas investigações, que o American College 
of Sports Medicine (ACSM) elaborou um conjunto de propostas para 
o desenvolvimento e manutenção cardiorrespiratório e da composição 
corporal em adultos saudáveis, que inclui entre 3-5 sessões semanais 
de atividade física rítmica e aeróbia, em que sejam recrutados, de for-
ma contínua, grandes grupos musculares. Já em relação à composição 
corporal, se um dos seus objetivos for, por exemplo, perder peso mobi-
lizando as suas reservas de triglicerídeos (TG) armazenadas no tecido 
adiposo, os dados da pesquisa sugerem como preferencial, a utilização 
de exercícios prolongados de intensidade baixa ou moderada, como 
caminhadas e ciclismo. 
A gordura armazenada representa a mais abundante fonte cor-
poral de energia potencial. A produção de energia é quase ilimitada. 
Representa cerca de 90.000 a 110.000 kcal de energia. A reserva de 
energia na forma de carboidratos é inferior a 2.000 kcal.
Conhecer as vias energéticas, de acordo com a modalidade 
esportiva que nossos atletas utilizam, para sabermos o que ele irá utili-
zar como fonte de energia.
METABOLISMO DE MACRONUTRIENTES NO EXERCÍCIO
Metabolismo de carboidrato durante o exercício
O metabolismo de carboidratos (CHO) é de grande importância 
durante o exercício, especialmente durante o exercício de alta intensida-
de, onde a energia é predominante extraída do músculo esquelético. O 
glicogênio é a forma de armazenamento de glicose, o CHO em animais 
e humanos. Os carboidratos são uma fonte muito limitada de energia, 
representando apenas cerca de 1-2% do total de reservas de energia 
corporal (Goodman, 1988). 
24
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
Aproximadamente 80% do CHO total é armazenado no mús-
culo esquelético, cerca de 14% é armazenado no fígado e cerca de 6% 
no sangue sob a forma de glicose, então isso representaria cerca de 
300-400g de glicogênio armazenado no músculo e cerca de 70 -100g 
armazenados no fígado (Sherman, 1995). 
O glicogênio não pode ser utilizado para fi ns energéticos pelo 
músculo, então ele precisa ser convertido em Glicose 1-Fosfato por 
uma enzima chamada enzima fosforilase. Este é o processo chamado 
glicogenólise, como visto no início do módulo. O processo de degrada-
ção da glicose no músculo para utilização de combustível é chamado 
de glicólise que, em repouso, é responsável por 15-20% da utilização 
de glicose periférica no músculo esquelético. Em uma intensidade de 
exercício de 55-60% do VO2max, a utilização de glicose pelo músculo 
esquelético aumenta para cerca de 80-85% 
Como o glicogênio muscular é crucial para a síntese de ATP 
durante o exercício, os estoques de glicogênio adequados são de gran-
de importância para o desempenho esportivo.Vários estudos mostram 
que a depleção de glicogênio está associada à fadiga e diminuição no 
desempenho e que atletas que possuem dietas com pouco carboidrato 
ou baixo estoque de glicogênio diminuem a capacidade de exercício 
(Coyle et al., 1983; 1986; Coggan e Coyle, 1991; McConell et al., 1999), 
bem como um aumento do risco de overtraining (Sherman e Wimer, 
1991). Dessa forma, fi ca claro a importânciado ajuste na rotina alimen-
tar, feito pelo profi ssional da nutrição, na dieta do atleta, para proporcio-
nal melhora em seu rendimento e saúde.
A glicólise ocorre principalmente no citosol e este processo 
pode ser aeróbico, através da oxidação completa do piruvato (fosfori-
lação oxidativa nas mitocôndrias) ou anaeróbico (fosforilação do subs-
trato no citosol). A intensidade do exercício determina as demandas de 
substrato do músculo esquelético para gerar ATP. Durante o exercício, 
os músculos esqueléticos usam principalmente gordura e CHO para 
fi ns energéticos e em baixas intensidades de exercício, a gordura é o 
substrato preferido, embora haja sempre alguma oxidação advinda da 
glicose. Em intensidades de exercício mais altas, de cerca de 50-60% 
do VO2max, a demanda de síntese de ATP aumenta e a gordura não 
25
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
consegue atingir inteiramente a taxa de síntese de ATP, de modo que a 
oxidação da glicose aumenta nessa fase. Embora a oxidação da gordu-
ra produza uma quantidade muito maior de ATP, a utilização de glicose 
é muito mais rápida e, portanto, necessária para a síntese de ATP du-
rante intensidades de exercício mais elevadas.
A intensidade do exercício é o principal regulador da utiliza-
ção de CHO no músculo esquelético e os mecanismos responsáveis 
pela utilização de CHO durante o exercício envolvem fatores hormonais 
e outros locais, bem como a disponibilidade de glicogênio. Epinefrina 
(adrenalina) é o principal hormônio envolvido no metabolismo de CHO 
durante o exercício. A atividade Beta-adrenérgica aumenta com a inten-
sidade do exercício e a Fosforilase, enzima responsável pela quebra do 
glicogênio para a glicose, é regulada pela epinefrina. A liberação de epi-
nefrina da medula adrenal é diretamente proporcional à intensidade do 
exercício. A epinefrina estimula a glicogenólise muscular aumentando a 
atividade da fosforilase e, portanto, é um importante regulador do meta-
bolismo de CHO durante o exercício. A disponibilidade de ácidos graxos 
livres (AGL) durante o exercício também é rigorosamente regulada pelo 
hormônio epinefrina. Durante altas intensidades de exercício, a epine-
frina reduz o fl uxo sangüíneo para o tecido adiposo, provocando um 
efeito restritivo no tecido adiposo, reduzindo a disponibilidade de AGL 
plasmático para os músculos (Romijn et al., 1993; Roberts et al., 1996). 
A duração do exercício também desempenha um papel impor-
tante no metabolismo de CHO durante o exercício. Como a capacidade 
de armazenamento de glicogênio é de cerca de 500g no músculo e 
no fígado, a duração da atividade física será muito importante para a 
regulação do metabolismo de CHO. A captação de glicose no múscu-
lo esquelético é dependente principalmente do conteúdo de glicogênio 
(Hargreaves et al., 1992) A duração do exercício está intimamente rela-
cionada aos estoques de glicogênio, pois, os baixos estoques de glico-
gênio durante eventos de endurance estão associados a hipoglicemia, 
fadiga e diminuição do desempenho Coyle et al., 1983; 1986; Sahlin et 
al. al., 1990; Maughan et al., 1997; McConell et al., 1999)
METABOLISMO DE LIPÍDIOS DURANTE O EXERCÍCIO
Os lipídios são uma fonte de energia muito importante para 
exercícios de resistência. Embora a geração de ATP a partir de lipídios 
para a contração muscular seja mais lenta do que carboidratos, a quan-
tidade de ATP produzida por lipídios é muito maior que a de CHO, tal 
fato faz os lipídios serem o combustível preferido pelo músculo esque-
lético durante exercícios de resistência, além de ter um efeito poupador 
de glicogênio. A principal fonte de metabolismo lipídico é o tecido adipo-
26
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
so subcutâneo. 
Mesmo os atletas mais magros têm mais de 100.000 kcal de 
energia potencial em seu tecido adiposo. Dessa forma, é de extrema 
importância acrescentar na dieta dos atletas, fontes adequadas de gor-
duras saudáveis.
 O metabolismo lipídico durante o exercício é um processo al-
tamente coordenado e integrado, começando no tecido adiposo e termi-
nando na mitocôndria no músculo esquelético. Esse processo envolve 
a mobilização ou quebra do tecido adiposo, a circulação dos lipídios do 
tecido adiposo para o músculo esquelético, a absorção e a oxidação 
mitocondrial fi nal realizada no músculo esquelético. 
A lipólise é o primeiro passo no metabolismo lipídico e é a que-
bra do tecido adiposo, bem como triglicérides intramusculares. Triglice-
rídeos no tecido adiposo e músculo são quebrados em ácidos graxos 
livres (AGL) e glicerol pela lipase sensível a hormônios (HSL). O con-
trole hormonal da lipólise é rigidamente regulado por vários hormônios, 
especialmente catecolaminas (Epinefrina e Norepinefrina), que são pro-
vavelmente os principais hormônios que regulam a lipólise. As cateco-
laminas ligam-se aos receptores β-adrenérgicos e α2-adrenérgicos na 
membrana das células de gordura (adipócitos).
Isto desencadeia uma cascata de sinais celulares que come-
ça pela ativação da adenilato ciclase (AC) que aumenta a adenosina 
monofosfato cíclica (AMPc) que ativa a proteína quinase dependente 
de AMPc que fi nalmente fosforila o HSL que e provoca a lipólise. Em re-
pouso, o nível baixo de catecolaminas plasmáticas liga-se aos recepto-
res α2 provocando um efeito inibitório na lipólise, enquanto que durante 
o exercício as catecolaminas plasmáticas aumentam e estimulam os 
receptores β-adrenérgicos que estimulam a lipólise (Arner et al., 1990). 
No entanto, durante intensidades muito elevadas de exercício, cateco-
laminas tem um efeito inibidor sobre a lipólise provavelmente, fazendo 
com que uma constrição na capilarização e o fl uxo sanguíneo para o 
tecido adiposo (Roberts et al, 1996;. Romijn et al, 1993). 
A insulina também regula a lipólise, embora seus efeitos du-
rante o exercício não sejam tão profundos, como quando em repou-
so, ou tão poderosos quanto às catecolaminas durante o exercício. Em 
repouso, a insulina inibe a lipólise (Jensen et al., 1989; Galbo, 1992), 
27
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
mas durante o exercício, a secreção de insulina diminui permitindo uma 
atividade lipolítica mais exacerbada (Wasserman et al., 1989).
Após a lipólise do tecido adiposo, os AGL são transportados 
para o músculo esquelético. Uma vez dentro dos músculos, os AGL 
são ligados à coenzima A (CoA) que forma o acil-CoA gordo que é en-
tão transportado através da membrana mitocondrial externa pela car-
nitinapalmitoiltransferase I (CPT-I) e fi nalmente transportado à matriz 
mitocondrial pela carnitina. Uma vez dentro da matriz mitocondrial, os 
ácidos graxos sofrem β-oxidação, onde o acil-CoA é degradado em 
AcetilCoA, que pode entrar no ciclo do ácido cítrico.
O músculo esquelético também contém pequenas gotículas li-
pídicas chamadas triglicérides intramusculares (IMTG) que são armaze-
nadas no citoplasma das células musculares esqueléticas próximas às 
mitocôndrias. Dependendo de diferentes circunstâncias, como exercício 
de resistência e baixo teor de glicogênio, o IMTG pode desempenhar 
um papel importante na contribuição ao metabolismo lipídico durante 
o exercício (Gollnick & Saltin, 1988), que dependendo da duração do 
exercício e disponibilidade de glicogênio, pode contribuir em grande 
medida para o metabolismo lipídios durante o exercício. 
METABOLISMO DE PROTEÍNAS
Embora não seja considerado um dos principais contribuintes 
para a energia durante o exercício, o metabolismo das proteínas du-
rante o exercício pode ser importante, especialmente dependendo da 
intensidade do exercício, tipo, duração e estado nutricional do atleta. As 
proteínas são compostas de aminoácidos e existem mais de 20 aminoá-
cidos e são divididas em dois grupos: não essenciais, que são aqueles 
que podem ser sintetizados no organismo e os aminoácidosessenciais, 
aqueles que precisam ser obtidos a partir da dieta. 
O metabolismo de aminoácidos é uma soma de mecanismos 
muito complexos e diferentes. O metabolismo de aminoácidos, apesar 
de representar uma pequena porcentagem da síntese total de ATP du-
rante o exercício, pode desempenhar um papel importante no metabo-
lismo e no desempenho intermediário, bem como na recuperação após 
o treinamento/competição.
Existem vários aminoácidos que desempenham um papel ativo 
durante a atividade física. Os aminoácidos podem fornecer entre 3% a 
10% da energia total durante o exercício, dependendo da intensidade e 
duração do exercício (Felig, 1973; Wahrenet al., 1973; White & Brooks, 
1983; Philips et al., 1993; Tarnopolsky e cols. , 1995). Embora essas 
porcentagens possam não ser muito altas, podem apresentar um papel 
muito importante no desempenho (verifi car) do exercício, especialmen-
28
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
te quando os níveis de glicogênio são baixos e, nesse caso, as contri-
buições para a energia a partir de aminoácidos serão maiores (Lemon 
&Mullin, 1980). Existem vários aminoácidos que são essenciais durante 
o exercício. A alanina é um aminoácido glicogênico, especialmente du-
rante o exercício de endurance e é sintetizado no músculo e, depois, 
exportado para o fígado, para ser convertido em glicose, através do 
chamado ciclo glicose-alamina (Felig, 1973). Leucina, isoleucina e va-
lina compõem os aminoácidos de cadeia ramifi cada (BCAA) e também 
podem desempenhar um papel importante durante o exercício. A leuci-
na é um aminoácido cetogênico, a isoleucina é tanto cetogênica quan-
to glicogênica, enquanto a valina é um aminoácido glicogênico. BCAA 
parece ser o tipo de aminoácidos mais usado pelo músculo durante o 
exercício. 
Como esses aminoácidos são blocos de construção muscular, 
o uso excessivo de aminoácidos como o que acontece durante exercí-
cios longos e juntamente com a diminuição do conteúdo de glicogênio, 
pode levar a uma excessiva degradação muscular e uma situação ca-
tabólica para os músculos que causam danos musculares prejudiciais 
para o desempenho. Portanto, uma suplementação de BCAA durante 
o exercício de resistência pode ter alguns efeitos poupadores sobre a 
utilização endógena de BCAA muscular e, portanto, diminuir as possibi-
lidades de dano muscular (MacLean et al., 1994).
IMPORTÂNCIA DE UMA NUTRIÇÃO ADEQUADA
Após discutir a bioenergética geral e o metabolismo dos ma-
cronutrientes e a utilização de seus substratos, podemos ver claramen-
te que a nutrição é uma parte fundamental do regime de treinamento 
de qualquer atleta. A ingestão de quantidades insufi cientes de calorias 
pode resultar na falta de macro e micronutrientes importantes. Isto é es-
pecialmente verdadeiro quando se trata de carboidratos. Infelizmente, 
muitas sociedades “demonizam” CHO e há vários livros e dietas afi r-
mando que dietas ricas em proteínas e/ou gorduras, juntamente com 
uma restrição CHO importante, são a maneira apropriada para um atle-
ta perder peso, ter uma dieta saudável e até melhorar o desempenho . 
No entanto, a maioria desses livros e dietas não tem evidências 
científi cas. Isto é especialmente verdadeiro para os atletas que restrin-
gem o CHO, pois, há uma enorme quantidade de evidências científi cas 
que mostram claramente que uma boa dieta CHO é crucial para manter 
o desempenho. Como discutido anteriormente, vários estudos mostram 
que a fadiga e a diminuição do desempenho estão associadas a dietas 
pobres em carboidratos causando depleção de glicogênioe oover-
training (Sherman, 1995; Sherman e Wimer, 1991; Snyder et al., 1995, 
29
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
Achten et al, 2004). 
Um problema potencial que muitos atletas com uma dieta po-
bre em carboidratos enfrentam é que, se os níveis de glicogênio são 
baixos ou há depleção de glicogênio, os músculos aumentam a utili-
zação de proteína e aminoácidos à medida que aumenta o precursor 
gliconeogênico (Tarnopolski et al., 1995; Lemon & Mullin , 1980) e como 
proteínas e aminoácidos são os blocos de construção do músculo, este 
último pode entrar em uma situação catabólica (ruptura muscular), como 
o músculo pode “comer-se para se alimentar”, aumentando a quantida-
de de proteínas e aminoácidos utilizados para fi ns energéticos. Essa 
situação pode levar a danos musculares e, além disso, pode levar ao 
overtraining crônico, já que foi demonstrado que o dano muscular limita 
e interfere no armazenamento e síntese de glicogênio (O’Reilly et al., 
1987; 
Costill et al., 1990) com uma dieta rica em CHO, seria difícil 
manter os estoques de glicogênio e, portanto, entrar em um círculo vi-
cioso que pode levar ao excesso de treinamento e diminuição do de-
sempenho.
Como resumo, é importante entender as respostas metabóli-
cas ao exercício e os diferentes padrões de utilização do substrato, a 
fi m de integrar adequadamente a nutrição, o metabolismo e o desem-
penho em atletas.
30
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
QUESTÕES DE CONCURSOS
QUESTÃO 1
Ano: 2015 Banca: Universidade Federal de Santa Catarina Órgão: 
UDESC PROVA:Nutrição
Toda energia para a manutenção dos seres vivos tem origem a par-
tir da degradação de moléculas orgânicas. No entanto, nos seres 
vivos, esta degradação não transfere a energia diretamente para os 
processos celulares, e sim para uma molécula que é utilizada em 
diferentes processos metabólicos das células.
Assinale a alternativa que contém o nome da molécula utilizada 
nos processos metabólicos celulares.
a) trifosfato de adenosina
b) glicose
c) glicídio
d) glucagon
e) glicina
QUESTÃO 2
Ano: 2014 Banca: Universidade Federal do Rio Grande do Sul Ór-
gão: PROGESP PROVA: Enfermagem 
As dores que acompanham a fadiga muscular têm como causa
a) A utilização de lipídeos como fonte de energia.
b) O acúmulo de oxigênio produzido pela respiração.
c) A perda da capacidade de relaxamento do músculo.
d) O acúmulo de ácido lático resultante da anaerobiose.
e) A utilização do gás carbônico resultante da fermentação. 
QUESTÃO 3
Ano: 2017 Banca: Instituto Federal do Ceará (IFCE / CEFET CE) 
Órgão: Instituto Federal do Ceará (IFCE / CEFET CE) PROVA: Edu-
cação Fisica
O gráfi co abaixo representa as vias energéticas predominantes e o 
tempo (duração) de uma atividade.
31
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
Com base no gráfi co, tendo como referência a duração e a intensi-
dade dos movimentos técnicos, acerca da via energética predomi-
nante na modalidade esportiva, é correto dizer-se que
A) Na corrida de maratona é o ATP, pois apresenta baixa intensidade e 
longa duração.
B) No salto em distância, é o sistema aeróbio, pois apresenta alta inten-
sidade e curta duração.
C) No arremesso do dardo, é o ATP + o ácido lático, pois apresenta alta 
intensidade e longa duração.
D) No saque por cima do voleibol, é o ATP, pois apresenta alta intensi-
dade e curta duração.
E) No saque do tênis é o ATP, pois apresenta alta intensidade e curta 
duração.
QUESTÃO 4. 
Ano: 2017 Banca: UFU Órgão: PROGEP PROVA: Educação Fisica
Após correr uma maratona, os atletas sentem dores e uma sensa-
ção de queimação nos músculos, causadas pelo esforço físico in-
tenso, e pelo acúmulo de grandes quantidades de uma certa subs-
tância nas células musculares.
Com relação ao descrito, considere as afi rmativas a seguir.
I – A dor é causada pelo excesso de ATP, produzido pela respiração 
celular
II – Devido à intensa atividade física desenvolvida, os músculos 
recebem quantidade insufi ciente de O2 e realizam fermentação.
III – A produção de ácido lático, responsável pelas dores e a quei-
mação nos músculos, durante a fermentação, acontece no citosol 
das células musculares.
Marque a alternativa correta.
a) II e III são corretas.
b) I e III sãocorretas.
c) I e II são corretas.
32
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
d) Apenas I é correta.
QUESTÃO 5
Inédita
Sobre bioenergética são feitas as seguintes afi rmações:
I. a hidrólise do ATP em ADP e fosfato livre fornece energia para 
muitas das atividades celulares;
II. a molécula de ATP é um nucleotídeo formada por um fosfato, 
uma pentose e três bases nitrogenadas;
III. a produção de novas moléculas de ATP depende de uma fonte 
de energia e é conhecida como fosforilação.
Estão corretas:
a) I, II e III.
b) I e II.
c) II e III.
d) Apenas I.
e) I e III.
QUESTÃO DISSERTATIVA – DISSERTANDO A UNIDADE 
ATP é sinônimo de energia? Discorra brevemente sobre esse assunto.
De acordo com a tabela abaixo, escolha um sistema energético e cite 
duas modalidades esportivas que se enquadrariam no sistema escolhi-
do e justifi que em relação às características físicas e bioquímicas dessa 
via bioenergética. 
QUESTÃO INÉDITA
O sistema aeróbio é particularmente adequado para a produção de ATP 
durante o exercício prolongado tipo resistência (endurance). Assinale a 
alternativa correta:
Nesse tipo de exercício, o principal fornecedor de ATP é o sistema 
anaeróbio.
Os sistemas do ácido lático e do ATP-CP contribuem, porém, apenas no 
início do exercício.
O atleta não precisara de ATP, pois, seu metabolismo já está adaptado.
 É raro o atleta, após 3 minutos de corrida, sentir principalmente um 
desconforto respiratório. 
Todas as alternativas anteriores estão corretas.
33
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
NA MÍDIA
Fisiculturista de 25 anos morre por dieta com excesso de proteína
Após 2 meses de pesquisas foi descoberta a causa da morte de uma 
fi siculturista de apenas 25 anos. Meegan Heff ord, que competia em 
eventos de fi siculturismo, morreu por “dieta excessiva de proteína”. De 
acordo com a rede CNN da Austrália, Meegan tinha uma defi ciência de 
metabolizar proteínas e sua dieta com teor elevado da substância aca-
bou levando a jovem à morte. Devido a desordem no metabolismo de 
proteína que impedia seu corpo de quebrar a proteína ingerida de forma 
adequada e fazia acumular nitrogênio em forma tóxica de amônia em 
seu corpo. Como sua dieta era praticamente apenas de proteína, sua 
situação se agravou e ela foi encontrada morta em seu apartamento.
Fonte: UOL
Data: 13 fev. 2019.
Leia a notícia na íntegra: 
https://esporte.uol.com.br/ultimas-noticias/2017/08/15/fi siculturista-de-
-25-anos-morre-por-dieta-com-excesso-de-proteina.htm
QUESTÃO NA PRÁTICA
Os esportes de resistência, como maratonas, provocam uma grande 
quantidade de estresse fi siológico em seus corpos, ativando tantas res-
postas fi siológicas e metabólicas. Tanto macro como micronutrientes 
são de grande importância para a regulação dessas respostas e, por-
tanto, para o desempenho. Com uma dieta bem balanceada, assegura-
mos que podemos fornecer ao metabolismo os macro e micronutrientes 
necessários para todas as funções fi siológicas durante o exercício, bem 
como durante e para a sua recuperação. De todos os macronutrientes, 
os carboidratos são de importância crucial para os atletas dessa modali-
dade esportiva, como ciclistas, devido à alta taxa de utilização diária e à 
capacidade muito pequena de armazenamento em nosso corpo (500g).
 Nosso corpo pode lidar com uma defi ciência dietética de muitos macro 
e micronutrientes por alguns dias, mas uma defi ciência de apenas 1-2 
dias de carboidratos para um ciclista competitivo pode ter um forte im-
pacto negativo no desempenho. Um ciclista competitivo deve ter uma 
boa dieta de CHO com até 7-12g / Kg / dia de CHO, tanto em dias de 
treinamento longos quanto intensos, bem como em dias de competição. 
(Costilet al, 1988 ; Achten et al, 2004, Halson et al 2004) É importante 
ter uma ingestão adequada de CHO durante todo o dia e especialmente 
durante o treinamento e competição.
34
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
Em relação à proteína diária necessária para um atleta de resistência, 
pesquisas atuais indicam que uma ingestão diária de proteína de 1,2 a 
1,4 g / d para atletas de resistência deve ser sufi ciente (Lemon, 2004). 
Alimentos de alta qualidade como produtos lácteos, ovos, carnes, pei-
xes e produtos de soja devem ser escolhidos. Dessa forma, o nutricio-
nista esportivo deve adequar a dieta desse atleta, de acordo com as 
individualidades de sua modalidade esportiva.
35
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
REGULAÇÃO DA TEMPERATURA CORPORAL
Termorregulação é um conjunto de sistemas de regulação da 
temperatura corporal dos seres vivos. Esta regulação é exercida atra-
vés da coordenação entre a produção chamada de termogênese e li-
bertação dessa energia, chamada de termodispersão do calor orgânico 
interno. Para manter a temperatura corporal adequada durante o exer-
cício, a evaporação através da sudorese é a principal forma de perda 
de calor (Figura 5). Porém, esse importante mecanismo fi siológico de 
manutenção da homeostase térmica, pode ocasionar perda signifi cativa 
de fl uidos corporais, causando a desidratação (Melo-Marins 2016). O 
conceito de termorregulação está intimamente associado à hidratação 
ou à concentração de água e outros eletrólitos (desidratação), como 
veremos especifi camente no próximo capítulo. 
TERMORREGULAÇÃO
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
36
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
Em ambientes quentes e úmidos, a evaporação do suor é redu-
zida e, consequentemente, a taxa de elevação da temperatura corporal 
é aumentada, levando a uma perda ainda maior de água (Carvalho, 
2014).
De acordo o Colégio Americano de Medicina do Esporte, al-
guns estudos mostram que a desidratação de 2% da massa corporal já 
torna o indivíduo hipoidratado e pode reduzir seu desempenho físico. A 
perda de 3% da massa corporal, além de prejudicar de forma acentuada 
o desempenho físico, pode ocasionar hipernatremia, que é concentra-
ção plasmática de sódio superior a 145 mEq/l e assim risco à saúde do 
atleta (Laitano, 2010; Laitano 2014).
A hipertermia irá piorar a performance do atleta ao reduzir a 
taxa de degradação do glicogênio muscular, ao aumentar a produção 
de radicais livres, reduzir o fl uxo sanguíneo muscular (aumento do fl uxo 
para a pele), provocar a desidratação ao estimular o mecanismo de 
fadiga central.
No exercício físico, nem toda a energia libertada pela hidrólise 
do ATP é utilizada na contração muscular. Apenas uma pequena parte 
dessa energia é utilizada no deslize dos miofi lamentos, uma vez que 
a maior parte é liberada sob a forma de calor. Alguns autores, relatam 
que, durante o exercício físico, apenas 20 a 30% da energia produzida 
pelo metabolismo será utilizada no trabalho muscular, sendo os 70 a 
80% restante transformados em calor.
Podemos concluir, erroneamente, que é um desperdício ener-
gético, porém, tal mecanismo é essencial para a vida do ser humano, 
que por ser um organismo homeotérmico, precisa manter uma tempera-
tura constante, 24 horas por dia, todos os dias da vida, uma vez que o 
funcionamento enzimático depende da temperatura corporal. 
37
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
Um exemplo, que pode facilmente ser observado é o aumento 
da temperatura corporal, pelo rubor nas bochechas (bochechas rosa-
das) que ocorre num indivíduo que realiza exercício extenuantes, oca-
siona maior degradação de ATP, aumento do calor e ativação dos meca-
nismos homeotérmicos de regulação que são localizados em uma área 
do cérebro, chamada de hipotálamo.
Figura 5 - Imagemde uma prática comum de corredores para manter a 
termorregulação.
Fonte: Rumo Certo (2014)
O sistema corporal para manter a temperatura dentro de limites 
fi siológicos (em torno de ~37 a 37.5˚C), realiza a transferência de calor 
do centro do corpo para a pele. Esse por sua vez pode ser dissipado 
através da radiação, condução, convecção, respiração e evaporação 
(Figura 6). 
A radiação é o processo pelo qual as superfícies de todos os 
38
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
objetos emitem calor na forma de ondas eletromagnéticas. O que deter-
mina os níveis de emissão das ondas é a temperatura da superfície que 
irradia o calor. O ganho ou perda de calor, por meio da radiação é con-
sequência da diferença da temperatura entre as superfícies próximas 
ao corpo (Widmaier; Raff ; Strang, 2006). Na condução, ocorre transfe-
rência de energia térmica durante a colisão entre moléculas adjacentes. 
O contato direto com superfícies mais quentes ou mais frias 
faz com que o corpo perca ou ganhe calor, por meio desse processo de 
troca de calor (Widmaier; Raff ; Strang, 2006). Na convecção ocorre a 
troca de calor devido à movimentação do ar ou água próximo do corpo. 
A convecção está sempre ocorrendo porque o ar quente é me-
nos denso e por conseqüência sobe, porém, ela pode ser grandemente 
facilitada por forças externas como o ventilador (Guyton; Hall, 2006; 
Widmaier; Raff ; Strang, 2006). Outro processo importante de dissipa-
ção de calor é a evaporação de água. Esta se dá através da pele e das 
membranas e é bem comum em atletas e indivíduos que realizam exer-
cício físico em ambientes quentes.
Não é o suor por si só que resfria a pele, e sim a sua evapo-
ração, assim, devemos evitar de secar o corpo com toalhas durante o 
exercício físico, pois, impede esse processo de evaporação, seja no 
exercício indoor ou outdoor. 
Para facilitar a evaporação, devemos nos exercitar em am-
bientes frios e com baixa umidade do ar. Nessa situação, a prática de 
exercícios físicos no período da manhã ou ao fi nal do dia são indicados, 
assim como aumentar a exposição da pele ao meio ambiente, como por 
exemplo, usar menos roupa, ou roupas adequadas com o conforto tér-
mico apropriados para o local e prática esportiva e, por último, praticar 
esporte em um ambiente mais ventilado, de acordo com a possibilidade 
desse controle e tolerância individual. 
39
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
Figura 6. Diferentes tipos de transferência de calor pelo corpo no es-
porte. 
Fonte: Cmap software (2019)
Na Maratona de Boston em 2002, entre os corredores que so-
freram com a hiponatremia, 73% deles ganharam peso durante a prova, 
constatou um estudo feito pela Universidade de Harvard. Vômito, fadiga 
e perda de coordenação motora estavam entre os sintomas. Três deles 
correram risco de morte depois da ingestão de aproximadamente três 
litros de água (Christopher et al., 2005).
PARA SABER MAIS:
Artigo: Hyponatremia among Runners in the Boston Marathon, 
na integra em https://www.nejm.org/doi/full/10.1056/nejmoa043901
O caso mais conhecido de hiponatremia na história do espor-
te aconteceu com a corredora suíça Gabrielle Anderson, na maratona 
das Olimpíadas de Los Angeles, em 1984. Uma quantidade pequena de 
sódio em seu corpo gerou alterações em seu sistema nervoso central, 
fazendo com que ela tivesse difi culdades visíveis para alcançar a linha 
de chegada (Figura 7). 
porte. 
40
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
Figura 7 - Gabrielle Anderson, um caso de superação no esporte, devi-
do uma hiponatremia. Olimpíadas de Los Angeles 1984.
Fonte:Super Esportes (2019)
PARA SABER MAIS: 
Artigo :
Termorregulação e equilíbrio hídrico no exercício físico: aspec-
tos atuais e recomendações. Disponível em: 
fi le:///C:/Users/Gabriela/Downloads/6570-39509-1-PB.pdf
Dissertação de mestrado completa 
https://www.lume.ufrgs.br/bitstream/hand
le/10183/13801/000655217.pdf?sequence=1
MECANISMOS ENVOLVIDOS NO CONTROLE DA TERMORREGU-
LAÇÃO
A temperatura do corpo é regulada, quase que exclusivamente, 
por mecanismos fi siológicos de feedback, que são controlados por meio 
dos centros termorreguladores, localizados no hipotálamo (Figura 8). 
Os estímulos para as respostas termorregulatórias, são prove-
nientes dos sinais aferentes dos receptores de temperatura periféricos, 
41
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
localizados na pele, receptores internos, localizados em alguns órgãos 
como a medula espinhal e centrais, localizados no Sistema Nervoso 
Central (SNC) (Romanovsky, 2007; Mekjavic e Eiken, 2006). 
Os sinais dos termossensores internos e centrais, são os 
principais reguladores das vinte e sete respostas autonômicas que 
controlam a temperatura corporal.Os termossensores, portanto, são 
fundamentais na defesa das temperaturas cerebral e interna (Mercer, 
2001). Quando o impulso integrado excede ou fi ca abaixo da faixa li-
miar de temperatura, ocorrem respostas termorreguladoras autônomas, 
que mantêm a temperatura do corpo na temperatura adequada. Tais 
impulsos são emitidos de receptores periféricos existentes na pele e 
em alguns tecidos profundos específi cos do corpo, como nas vísceras 
abdominais e em torno de grandes veias, no abdômen superior e tórax 
(Guyton e Hall, 2011).
Figura 8 - Esquema das vias de termorregulação corporal, em que os 
termorreceptores periféricos detectam as temperaturas na pele e nas 
vísceras e a reportam para o hipotálamo.
Fonte: Siemens lab(2019)
vísceras e a reportam para o hipotálamo.
Fonte: Siemens lab(2019)
42
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
RESPOSTAS FISIOLÓGICAS AO EXERCÍCIO NO CALOR
AUMENTO DA TEMPERATURA CORPORAL
A temperatura sofre uma grande variação sob as condições 
físicas e ambientais. O equilíbrio entre a produção e a perda do calor, 
que é resultante da ação dos centros termorreguladores, precisa manter 
a temperatura corporal em torno dos 37ºC. Na maioria dessas situa-
ções, o organismo não precisa acionar ações termorreguladoras para 
manter em equilíbrio sua temperatura central (Gallois, 2002; Guyton; 
Hall, 2006).
Quando o centro de termorregulação, localizado no hipotála-
mo, percebe que a temperatura corporal está alta ou abaixo, por exem-
plo, em corridas realizadas no litoral, rapidamente são acionados os 
mecanismos fi siológicos de controle de temperatura, que vão ocasionar 
o aumento ou diminuição da mesma. Quando o corpo está muito quen-
te, o sistema de controle de temperatura utiliza três mecanismos impor-
tantes para reduzi-lo (Guyton e Hall, 2011; Coutinho, 2005), são eles:
- Vasodilatação - Os vasos sanguíneos da pele tornam-se in-
tensamente dilatados, aumentando a circulação do sangue. O calor 
será perdido por convecção e/ou radiação. Esse mecanismo é capaz de 
aumentar a taxa de transferência de calor para a pele em até oito vezes. 
- Transpiração - Quando a temperatura do centro do corpo se 
eleva acima do nível crítico de 37 °C, as glândulas sudoríparas são 
acionadas, desta forma, a sudorese permite um aumento da taxa de 
evaporação corporal. Um aumento adicional de 1°C da temperatura cor-
poral provoca sudorese sufi ciente para remover 10 vezes a taxa basal 
de produção de calor corporal.
VASOS SANGUÍNEOS DA PELE
A pele desempenha um papel importante no processo de ter-
morregulação. Em resposta ao aumento ou diminuição das tempera-
turas ambiente ou interna, o fl uxo sanguíneo da pele é modifi cado, de 
acordo com os mecanismos de vasodilatação simpática e vasoconstri-
ção, respectivamente. O calor é dissipado do corpo quando o sangue 
é colocado próximo à superfície da pele. Isto é conseguido através da 
vasodilatação dos vasos sanguíneos da pele.
O sistema nervoso autônomo desempenha papelimportante 
no controle do fl uxo sanguíneo para a pele. A pele com pêlo é inerva-
da, tanto pelo nervo vasoconstritor noradrenérgico, quanto pelo nervo 
43
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
vasodilatador colinérgico, enquanto a peleglaba (mais grosa) presente 
nas palmas, solas e lábios, é inervada apenas pelas fi bras nervosas 
vasoconstritoras.
Em normotermia, há um nível basal de tônus vasoconstritor. Na 
pele a principal resposta ao calor é aumentar o fl uxo sanguíneo cutâ-
neo, através da vasodilatação passiva dos vasos sanguíneos, por meio 
da retirada da atividade nervosa simpática. A presença de numerosas 
anastomoses arteriovenosas na pele glabra pode levar a grandes mu-
danças no fl uxo sanguíneo para essas regiões, por exemplo, no calor, 
anastomoses arteriovenosas e o sangue fl ui diretamente da artéria para 
a veia, contornando arteríolas de alta resistência e alças capilares em 
pele não glandular, se a perda de calor convectiva resultante do rela-
xamento do tônus vasoconstritor for insufi ciente para resfriar o núcleo, 
então um aumento adicional no fl uxo sanguíneo da pele pode ocorrer 
por vasodilatação ativa, aumentando ainda mais a perda de calor por 
convecção. 
Essa vasodilatação ativa é, pelo menos em parte, em resposta 
à liberação de acetilcolina e outros co-transmissores dos nervos colinér-
gicos simpáticos e pode aumentar o fl uxo sanguíneo cutâneo. Várias 
hipóteses foram propostas com relação aos mecanismos envolvidos na 
vasodilatação ativa cutânea. Muito pouco é conhecido com certeza so-
bre os processos de controle. No entanto, foram propostos os seguintes:
1. A acetilcolina é a substância química mais importante para 
inicializar respostas vasodilatadoras ativas ao aquecimento do corpo, 
mas o(s) cotransmissor (es) parece(m) ser o principal responsável pela 
resposta global. Os candidatos incluem peptídeo intestinal vasoativo, 
substância P, histamina, prostaglandinas e ativação do receptor de po-
tencial transiente receptivo (TRP) V1.
2. Os nervos colinérgicos responsáveis pela sudorese podem 
ser os mesmos que controlam a vasodilatação ativa. Essa hipótese se 
origina do fato de que a vasodilatação ativa e a sudorese parecem ocor-
rer concomitantemente.
3. Parece haver um papel do óxido nítrico na vasodilatação 
ativa, uma vez que a resposta é atenuada pela inibição da óxido nítrico 
sintase.
GLÂNDULAS SUDORÍPARAS
A produção de suor e a evaporação subsequente são os prin-
cipais modos de perda de calor em humanos, quando a temperatura 
ambiente aumenta, assim como durante o exercício. De fato, o resfria-
mento decorrente da evaporação é o único mecanismo de perda de 
calor, quando a temperatura ambiente excede a temperatura do corpo. 
44
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
A exposição a um ambiente quente, ou exercício, eleva as tem-
peraturas do núcleo e da pele, o que contribui para o aumento da taxa 
de suor. O limite para a transpiração normalmente excede o limiar para 
a vasoconstrição em ± 0,2 ° C. No entanto, sabe-se que a sudorese 
começa dentro de segundos do início do exercício, antes de qualquer 
mudança mensurável na temperatura interna. Acredita-se que isso seja 
mediado por uma combinação de sinais do comando central e do refl e-
xo pressor do exercício.
O suor é liberado pelas glândulas endócrinas, que são distri-
buídas em grande número (1,6 a 4 milhões) em toda a superfície do 
corpo, com distribuições em regiões. A sudorese é mediada pela ati-
vação de fi bras colinérgicas simpáticas. A evaporação do suor permite 
que o calor seja transferido para o meio ambiente como vapor de água 
das vias respiratórias e da superfície da pele. O principal fator limitante 
na capacidade de um humano de manter a temperatura corporal diante 
de um desafi o térmico é a disponibilidade de água para a produção de 
suor. Elevados volumes de suor podem ser produzidos se uma pessoa 
se aclimatou ao calor, 2 a 3 l /h (2), em comparação com 1 l/h em in-
divíduos não aclimatados (Battes et al., 2008). A aclimatação ao calor 
aumenta o mecanismo de sudorese, e foi previamente associada à re-
distribuição da secreção de suor para os membros. Isso poderia ser de-
sejável, já que os membros têm uma relação área/massa de superfície 
relativamente grande. Uma elevação na sudorese e evaporação nesses 
locais poderia, portanto, melhorar a homeostase térmica. 
Com a aclimatação ao calor, há um limiar de temperatura cor-
poral mais baixo para o suor e a sensibilidade e capacidade da glândula 
sudorípara melhoram, portanto, para uma dada temperatura central, a 
taxa de suor aumenta (Satoo et al., 1990; Otter et al., 1997). Um aumen-
to da taxa de suor altera a composição do suor e está particularmen-
te associado ao esgotamento das concentrações plasmáticas de Na + 
e Cl−. No entanto, a aclimatização mostrou atenuar essa redução. É 
provável que isso esteja relacionado ao aumento nos níveis de renina 
e aldosterona que foram encontrados em indivíduos aclimatados, que 
produzem uma concentração mais baixa de Na + no suor (Nielson et 
al., 1997).
ADAPTAÇÕES COMPORTAMENTAIS.
Os mecanismos termorregulatórios fi siológicos têm capacida-
de fi nita. Enquanto a termorregulação comportamental não, portanto, 
mudanças no comportamento humano podem ser extremamente efi -
cazes em resposta a uma mudança na temperatura corporal. A termor-
regulação comportamental signifi ca que podemos conscientemente e 
45
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
intencionalmente alterar a troca de calor que ocorre com nossos am-
bientes. Por exemplo, podemos procurar abrigo de calor extremo ligan-
do o aquecimento, pegando um suéter, permanecendo na sombra, con-
sumindo bebidas geladas, etc.
Os termoceptores são estruturas periféricas do sistema 
nervoso que detectam alterações na temperatura corporal. Os neurônios 
sensíveis à temperatura, localizados nas vísceras abdominais, na me-
dula espinhal e no cérebro fornecem informações sobre a temperatura 
central, enquanto os receptores periféricos informam sobre a tempera-
tura da pele (Rhoades; Tanner, 2005; Widmaier; Raff ; Strang, 2006). Há 
termoceptores sensíveis ao frio (resfriamento) e ao calor (aquecimento), 
como já vimos nos itens anteriores.
A IMPORTÂNCIA DO ATLETA SE EXERCITAR NO CALOR
Os seres humanos geralmente encontram estresse térmico por 
meio de condições climáticas adversas, mas o estresse térmico pode 
resultar da superprodução de calor do corpo (por exemplo, durante o 
exercício ou febre). O exercício de si aumenta a temperatura corporal. 
Isto pode ser, em parte, devido a uma vasoconstrição cutânea 
inicial, juntamente com vasoconstrição em outros leitos vasculares mus-
culares não ativos (esplâncnico, renal, etc.), que resulta em mais débito 
cardíaco disponível para o músculo esquelético ativo. Assim, o exercício 
no calor representa um desafi o particular, pois, a perda de calor é mais 
difícil de manter. Está associada com fadiga precoce e decréscimo na 
capacidade de exercício e desempenho. Se acompanhada de uma alta 
umidade relativa, a situação é exacerbada. Isto se deve principalmente 
ao fato de que menos suor pode ser evaporado da superfície da pele 
em ambientes úmidos (a resposta da sudorese à aclimatação ao calor 
é descrita acima).
O desenvolvimento da fadiga durante o exercício no calor não 
está associado a um único fator, mas envolve a interação de muitos pro-
cessos fi siológicos (Nybo et al.,2004). Em altas intensidades de exer-
cício ou durante o exercício prolongado no calor, a frequência cardía-
ca aumenta e o volume sistólico diminui paralelamente ao aumento da 
temperatura central. Além disso, os platôs de fl uxo sanguíneo cutâneo 
a uma temperatura central de ∼38 °C. Portanto, além dessa tempera-
tura central, a capacidade do atleta de dissipar o calor é reduzida. Um 
46
B
IO
EN
ER
G
ÉT
IC
AE
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
confl ito circulatório é observado entre a pele e o músculo esquelético, o 
que contribui para a fadiga. Esta situação é agravada se acompanhada 
de perda substancial de suor e desidratação.
Treinamento ou repetidas sessões de exercício têm mostra-
do melhorar o desempenho do exercício, através de várias adaptações 
fi siológicas; as mais importantes são as alterações que facilitam o au-
mento do fl uxo sanguíneo periférico, mantendo a pressão arterial. O 
treinamento de resistência e a aclimatação ao calor demonstraram me-
lhorar a capacidade vasodilatadora.
Existem alterações no metabolismo energético ao se exercitar 
no calor. A fadiga ocorre mais precocemente e está associada à deple-
ção de glicogênio, enquanto a suplementação de carboidratos tem de-
monstrado melhorar a capacidade de exercício no calor. O exercício no 
calor está associado a alterações na função do sistema nervoso central 
e no acionamento motor, levando à fadiga central. O treinamento e a 
aclimatação ao calor são inestimáveis para atletas que se exercitam em 
ambientes quentes. Knodo e colaboradores em seus estudos, descre-
veram cinco adaptações fenotípicas ao calor: frequência cardíaca redu-
zida em carga fi xa, volume plasmático expandido, temperatura central 
mais baixa a uma carga de trabalho equivalente (aumentando assim 
o tempo até a fadiga), reabsorção de sal superior ao suor e elevação 
taxa de suor. Todas essas adaptações contribuem para o aumento do 
desempenho no exercício no calor.
OUTRAS CONSIDERAÇÕES PARA A ACLIMATAÇÃO NO 
CALOR
Alguns fatores corporais importantes, podem também alterar 
a estabilidade térmica, sendo a atividade muscular, independente da 
duração do exercício ou a intensidade dele. O exercício físico aumenta 
o metabolismo, elevando consideravelmente a produção de calor. Con-
forme a intensidade do esforço físico e as condições ambientais, a tem-
peratura corporal pode elevar-se a níveis que se tornem prejudicial à 
saúde do atleta (Kroemer; Grandjean, 2005)
A quantidade de calor que os tecidos geram em repouso e du-
rante a atividade varia de maneira diferente. O exercício intenso é o 
fator que produz o efeito mais signifi cativo sobre o metabolismo e a 
produção de calor. 
Em repouso, os músculos podem produzir até 25% do calor 
total do corpo, já ao se contraírem, a produção de calor pode aumen-
tar, devido a elevação da taxa metabólica. Curtos períodos de contra-
ção muscular máxima em qualquer um dos músculos, por exemplo, em 
um agachamento, pode liberar, por poucos segundos, até 100 vezes a 
47
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
quantidade de calor liberada pelo mesmo músculo em repouso. 
Para que não ocorram danos pelo acúmulo de calor, é preciso 
a ativação em harmonia das respostas termorregulatórias e comporta-
mentais que, integradas aos demais sinais podem resultar em diminui-
ção da intensidade do exercício ou na interrupção do esforço físico pelo 
atleta (Nybo E Nielsen, 2001).
O exercício muscular máximo pode aumentar a produção glo-
bal de calor em cerca de 50 vezes o normal durante poucos segundos. 
Já em indivíduos bem treinados, esse aumento pode ser de 20 vezes, 
o que representa um aumento de 2000% em relação ao metabolismo 
basal. 
PARA SABER MAIS:
Artigo: Distúrbios causados pelo frio e pelo calor, durante cor-
ridas de longa distância, disponível em
http://www.scielo.br/scielo.php?script=sci_arttext&pi
d=S1517-86921999000300009
RESPOSTAS FISIOLÓGICAS AO EXERCÍCIO NO FRIO
DIMINUIÇÃO DA TEMPERATURA CORPORAL
Os receptores de frio, são os mais abundantes e disparam im-
pulsos nervosos com maior frequência quando a temperatura diminui. 
Eles têm taxa de atividade a 25ºC, enquanto os receptores 
de calor são ativados preferencialmente em temperaturas de 45ºC. 
Temperaturas extremamente frias (“frio congelante”), que podem pro-
vocar o congelamento ou queimadura da pele, são mediadas pelos no-
ciceptores, que são receptores responsáveis pela sensação dolorosa 
do frio (Guyton; Hall, 2006; Kandel; Schwartz; Jessell, 2003). 
As terminações nervosas dos receptores para frio são inerva-
das por delgadas fi bras nervosas mielinizadas, enquanto as dos recep-
tores de calor são amielínicas, por isso sentimos mais as alterações tér-
micas no frio, do que no calor. As informações térmicas são conduzidas 
por essas fi bras principalmente para o tálamo e dali para o córtex cere-
bral, para o tronco encefálico e para o hipotálamo (Guyton; Hall, 2006; 
Rhoades; Tanner, 2005; Kandel; Schwartz; Jessell, 2003). Quando o 
48
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
corpo está muito com temperatura muito inferior, o sistema de controle 
de temperatura utiliza três mecanismos importantes para reaumentá-lo 
(Guyton e Hall, 2011; Coutinho, 2005) em uma situação de frio:
Diminuição da produção de calor: Os mecanismos que causam 
a produção de calor em excesso, como tremores e termogênese quími-
ca, são fortemente inibidos. (Guyton e Hall, 2011; Coutinho, 2005).
 Vasoconstrição: Os calibres dos vasos sanguíneos passam a 
ser reduzidos, diminuindo, assim, o fl uxo sanguíneo do interior para a 
superfície e, consequentemente, as perdas de calor por convecção. 
Piloereção: Também conhecido como cabelos eriçados ou “em 
pé”, o arrepio consiste em uma estimulação simpática que traz os cabe-
los para uma postura ereta, a fi m de proteger sob condições extremas 
de frio.
 Aumento da termogênese (produção de calor): A produção de 
calor pelo sistema metabólico é aumentada através da promoção de 
tremores , da produção de calor do sistema simpático, e secreção de 
alguns hormônios. Durante esse processo observa-se um aumento no 
metabolismo e, assim, redução da sensação térmica de frio.
VASOS SANGUÍNEOS DA PELE
Quando a vasoconstrição ocorre em resposta ao frio, o sangue 
é desviado da superfície da pele pelas veias mais profundas. O calor, 
dessa forma, é conservado, e um alargamento do gradiente entre a tem-
peratura central e periférica é observado. Em resposta ao frio, os nervos 
vasoconstritores simpáticos agem primariamente nos receptores α-no-
radrenérgicos, causando a contração do músculo liso dos vasos san-
guíneos e a vasoconstrição. Outros co-transmissores simpaticamente 
liberados também contribuem para essa vasoconstrição, como o ATP 
e o neuropeptídio Y (Bradley et al., 2013) os quais demonstraram con-
tribuir signifi cativamente para as respostas vasoconstritoras do tônus 
vascular cutâneo e ao resfriamento corporal humano. 
TECIDO ADIPOSO MARROM
O tecido adiposo marrom (TAM) é especializado no processo 
de termogênese sem tremores, onde a energia é gasta através do me-
tabolismo oxidativo para a produção de calor. Este tecido é termogênico 
e aumenta a taxa metabólica. Até recentemente, o TAM era considera-
do importante apenas em pequenos mamíferos e recém-nascidos. No 
49
B
IO
EN
ER
G
ÉT
IC
A
 E
 T
ER
M
O
R
R
EG
U
LA
Ç
Ã
O
 - 
G
R
U
P
O
 P
R
O
M
IN
A
S
entanto, a evidência para a ativação de TAM em humanos adultos em 
resposta ao frio surgiu recentemente (Nielsonet al., 1997; Saito et al., 
2009).
O papel metabólico desse tecido adiposo tem sido reconhecido 
na medida em que é considerado como um local potencial para drogas 
destinadas a alterar o gasto energético. O TAM poderia potencialmente 
ser um local terapêutico para o tratamento da obesidade. A atividade do 
sistema nervoso simpático, em resposta a estímulos dos termorrecep-
tores periféricos e centrais, pode estimular a termogênese da TAM. As 
catecolaminas que atuam nos receptores β3-adrenérgicos podem ativar 
uma proteína desacopladora na membrana mitocondrial interna. Esta 
proteína desacopladora, thermogenina, permite que o H + atravesse a 
membrana mitocondrial sem a produção de ATP. Sabe-se que a ativi-
dade do sistema nervoso simpático está aumentada no frio, e a termo-
gênese

Continue navegando