Buscar

Fisiologia da Audição

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 3 páginas

Prévia do material em texto

1. Anatomia do ouvido e fisiologia da audição
A ORELHA: AUDIÇÃO 
A orelha é um órgão sensorial especializado em duas funções distintas: audição e equilíbrio. Ela pode ser dividida em orelhas externa, média e interna, com os elementos neurais alojados nas estruturas da orelha interna e protegidos por elas.
Orelha externa
A orelha externa é constituída da orelha (aurícula) e do meato acústico externo (canal auditivo), fechado em sua extremidade interna por uma camada membranosa fina de tecido, chamada de membrana timpânica, ou tímpano. 
Orelha média
A membrana timpânica separa a orelha externa da orelha média, uma cavidade preenchida com ar que se conecta com a faringe através da tuba auditiva (tuba de Eustáquio). 
Orelha interna
Três pequenos ossos da orelha média conduzem o som do meio externo para a orelha interna: martelo, bigorna e estribo. Os três ossos estão conectados um ao outro por estruturas semelhantes a dobradiças. Uma das extremidades do martelo está fixada à membrana timpânica, e a base do estribo se prende a uma fina membrana, que separa a orelha média da orelha interna. A orelha interna possui duas estruturas sensoriais principais. O aparelho vestibular, com seus canais semicirculares, é o transdutor sensorial para o nosso sentido do equilíbrio. 
A cóclea da orelha interna possui os receptores sensoriais da audição. Em uma vista externa, a cóclea é um tubo membranoso que se enrola como uma concha de caracol dentro da cavidade óssea. Dois discos membranosos, a janela do vestíbulo ou janela oval (à qual o estribo se fixa) e a janela da cóclea ou janela redonda, separam o líquido que preenche a cóclea do ar que preenche a orelha média. Os ramos do nervo craniano VIII, o nervo vestibulococlear, vão da orelha interna até o encéfalo.
A audição é a nossa percepção do som
A questão clássica sobre a audição é “Se uma árvore cai na floresta sem ninguém para ouvir, ela emite som?” A resposta fisiológica é não, pois som, assim como dor, é uma percepção que resulta do processamento do cérebro de uma informação sensorial. A queda da árvore emite ondas sonoras, mas não existe som a menos que alguém ou alguma coisa esteja presente para processar e receber a energia sonora. 
O som é a interpretação do cérebro da frequência, amplitude e duração das ondas sonoras que chegam até as nossas orelhas. Nosso cérebro traduz a frequência das ondas sonoras (o número de picos das ondas que passam em um determinado ponto a cada segundo) no tom de um som.
A transdução do som é um processo com várias etapas 
A audição é um sentido complexo que envolve várias transduções. A energia das ondas sonoras no ar se torna vibrações mecânicas e, depois, ondas no líquido da cóclea. As ondas do líquido abrem canais iônicos nas células pilosas (ciliadas)*, os receptores da audição. O fluxo de íons para dentro das células gera um sinal elétrico que libera um neurotransmissor (sinal químico), que, por sua vez, dispara potenciais de ação nos neurônios auditivos primários.
As ondas sonoras que chegam à orelha externa são direcionadas para dentro do meato acústico externo e atingem a membrana timpânica, onde provocam vibrações na membrana (primeira transdução). As vibrações da membrana timpânica são transferidas ao martelo, à bigorna e ao estribo, nesta ordem. A disposição dos três ossos da orelha média conectados cria uma “alavanca” que multiplica a força da vibração (amplificação), de modo que muito pouca energia sonora é perdida devido ao atrito. Se um som é muito alto, podendo causar danos à orelha interna, os pequenos músculos da orelha média puxam os ossos para reduzir seus movimentos, diminuindo, assim, a transmissão sonora em algum grau. Quando o estribo vibra, ele empurra e puxa a fina membrana da janela oval à qual está conectado. As vibrações da janela oval geram ondas nos canais cheios de líquido da cóclea (segunda transdução). À medida que as ondas se movem pela cóclea, elas empurram as membranas flexíveis do ducto coclear, curvando as células ciliadas sensoriais, que estão dentro do ducto. A energia da onda se dissipa de volta para o ar da orelha média na janela redonda. O movimento do ducto coclear abre ou fecha canais iônicos na membrana das células ciliadas, gerando sinais elétricos (terceira transdução). Esses sinais elétricos alteram a liberação do neurotransmissor (quarta transdução). A ligação do neurotransmissor aos neurônios sensoriais auditivos inicia potenciais de ação (quinta transdução), que transmitem a informação codificada sobre o som pelo ramo coclear do nervo vestibulococlear (nervo craniano VIII) até o encéfalo. 
A cóclea é preenchida por líquido 
Como já mencionado, a transdução da energia sonora em potenciais de ação ocorre na cóclea da orelha interna. Desenrolada, a cóclea pode ser vista como três canais paralelos cheios de líquido: (1) a rampa do vestíbulo, ou escala vestibular; (2) o ducto coclear central, ou escala média; e (3) a rampa do tímpano, ou escala timpânica (FIG. 10.18). As rampas do vestíbulo e do tímpano são contínuas uma à outra e se conectam na extremidade da cóclea por uma pequena abertura, chamada de helicotrema. O ducto coclear é um tubo com extremidade cega, mas que se conecta ao vestíbulo através de uma pequena abertura. O líquido presente nas rampas do vestíbulo e do tímpano tem composição iônica similar à do plasma, sendo conhecido como perilinfa. O ducto coclear é preenchido com endolinfa, secretada pelas células epiteliais do ducto. A endolinfa é incomum por sua composição ser mais parecida à do líquido intracelular do que à do extracelular, possuindo alta concentração de K e baixa concentração de Na.
O ducto coclear possui o órgão espiral (órgão de Corti), que contém as células receptoras pilosas (ciliadas) e células de sustentação. O órgão espiral (de Corti) se situa sobre a membrana basilar e está parcialmente coberto pela membrana tectória, ambas tecidos flexíveis que se movem em resposta às ondas que percorrem a rampa do vestíbulo (Fig. 10.18). À medida que as ondas percorrem a cóclea, elas movimentam as membranas basilar e tectória, gerando oscilações para cima e para baixo, que curvam as células pilosas (ciliadas).
Quando as células pilosas se movem em resposta às ondas sonoras, seus estereocílios se curvam, primeiro em uma direção, depois na outra. Os estereocílios estão ligados uns aos outros por pontes proteicas, chamadas de filamentos de ligação. Os filamentos de ligação atuam como pequenas molas conectadas a comportas (portões) que abrem e fecham canais iônicos na membrana dos estereocílios.
Em repouso, a taxa é de 10% de liberação de neurotransmissor. Quando as ondas provocam uma deflexão na membrana tectória, de modo que os cílios se curvam em direção aos membros mais altos do feixe, os filamentos de ligação abrem um número maior de canais iônicos, e entram cátions (Ke Ca2) na célula, que, então, despolariza (Fig. 10.19b). Os canais de Ca2 dependentes de voltagem se abrem, a liberação de neurotransmissor aumenta, e os neurônios sensoriais aumentam sua frequência de disparo. Quando a membrana tectória empurra os estereocílios para longe dos membros mais altos, a tensão nas molas elásticas relaxa, e todos os canais iônicos se fecham. O influxo de cátions diminui, a membrana hiperpolariza, e menos neurotransmissor é liberado, reduzindo os potenciais de ação no neurônio sensorial (Fig. 10.19c). O padrão de vibração das ondas que chegam à orelha interna é, então, convertido em um padrão de potenciais de ação que vão para o SNC.
Os sons são processados primeiro na cóclea
A localização do som é um processo complexo que requer entrada sensorial de ambas as orelhas associada a uma computação sofisticada feita pelo encéfalo. Todavia, o processamento inicial do tom e da amplitude ocorre na cóclea de cada orelha. 
A codificação para o tom do som é primariamente uma função da membrana basilar. Próximo de onde se fixa, entre a janela oval e a janela redonda, essa membrana é rígida e estreita, mas se torna alargada e flexível à medida que se aproxima de sua extremidadedistal. 
As vias auditivas projetam-se para o córtex auditivo 
Após a cóclea transformar as ondas sonoras em sinais elétricos, os neurônios sensoriais transferem essa informação para o encéfalo. O nervo coclear (auditivo) é um ramo do nervo craniano VIII, o nervo vestibulococlear. Os neurônios auditivos primários projetam-se da cóclea para os núcleos cocleares do bulbo. Alguns desses neurônios conduzem informações que são processadas na temporização do som, e outros conduzem informações que são processadas como qualidade do som. Do bulbo, os neurônios sensoriais secundários projetam-se para dois núcleos superiores, um ipsilateral (no mesmo lado do corpo) e outro contralateral (no lado oposto). A divisão dos sinais gerados pelo som em dois tratos ascendentes significa que cada lado do cérebro recebe informação de ambas as orelhas. Esses tratos ascendentes fazem sinapses em núcleos no mesencéfalo e no tálamo, antes de se projetarem para o córtex auditivo. Vias colaterais enviam informações à formação reticular e ao cerebelo. 
A localização da origem de um som é uma tarefa integrada, a qual requer a entrada simultânea dos sinais de ambas as orelhas. A não ser que o som esteja vindo diretamente da frente da pessoa, ele não chegará ao mesmo tempo nas duas orelhas. O encéfalo registra a diferença no tempo de chegada do som às orelhas e usa uma computação complexa para criar uma representação tridimensional da origem do som.

Continue navegando

Outros materiais