Buscar

Fenda de Young

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 17 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 17 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 17 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Experimento da dupla fenda de Young
O primeiro representam diferentes circunstâncias de um mesmo tipo de experimento, isto é, do experimento da dupla fenda de Young. 
Sir Isaac Newton (1642-1727) defendia a hipótese de que a luz era constituída de corpúsculos. Os principais fenômenos óticos (reflexão e refração) podiam ser explicados com o uso da teoria corpuscular. Este modelo era combatido por Christiaan Huygens (1629-1695), que defendia a teoria ondulatória. No entanto, a autoridade científica de Newton fez prevalecer sua teoria por mais de um século. Por volta de 1801, uma bela experiência realizada por Thomas Young (1773-1829) resolveu a questão favoravelmente a Huygens. A experiência de Young provou que a luz era uma onda, porque os fenômenos da difração e da interferência, por ele descobertos, eram características exclusivamente ondulatórias. Veremos mais adiante, que a dualidade partícula-onda, proposta por de Broglie, sugeriu a possibilidade de ocorrência desses fenômenos para o caso de partículas.
	A minha forma preferida de visualizar o comportamento ondulatório é através de ondas geradas numa cuba de ondas, um dispositivo bastante usado nos laboratórios universitários e em alguns colégios. Ondas circulares são geradas quando a ponta de um bastão toca na água em iguais intervalos de tempo, conforme ilustra a figura ao lado. O detetor pode ser uma rolha de cortiça. A intensidade da onda, ou a energia transferida pela onda, é proporcional à altura alcançada pela rolha. A figura mostra um arranjo com duas fendas. Vejamos o que acontece se a fenda inferior for fechada.
	
	A distribuição de energia que chega no anteparo é dada pela curva vermelha. O formato desta curva varia conforme a largura da fenda, e o comprimento de onda (separação entre os círculos da figura). Se a largura diminuir, a onda "se espalha" ao passar pela fenda. É como se uma nova onda circular fosse "criada" na fenda.
	
	Fechando a fenda superior e abrindo a inferior, a distribuição de energia mantém seu formato, mas desloca-se para a posição em frente à fenda inferior. Vejamos o que acontece quando as duas fendas permanecem abertas.
	
	As curvas tracejadas (verde e vermelha) representam os resultados anteriores, enquanto a curva contínua (azul) representa o que se observa. Esta curva não apresenta uma relação simples com as anteriores. Por exemplo, não é simplesmente a soma nem a subtração das curvas anteriores. Diferentemente das curvas anteriores, esta curva obtida com as duas fendas abertas apresenta vários pontos onde a intensidade é nula. Entre estes pontos, a intensidade apresenta valores diferentes. Este foi o surpreendente resultado obtido por Young, quando ele fez este tipo de experiência usando a luz. O fenômeno responsável pelo resultado é denominado interferência, e a curva é usualmente denominada padrão de interferência.
Vejamos o que aconteceria com uma experiência similar realizada com partículas.
	
	Podemos usar balas atiradas contra fendas feitas num anteparo impenetrável. Isto é, as balas só ultrapassam o anteparo através das fendas. O detetor pode ser uma lata com areia. O experimento é realizado assim: o detetor é colocado em determinada posição enquanto a espingarda fica disparando. Ao final de determinado intervalo de tempo, conta-se o número de balas coletadas pelo detetor. A distribuição de balas atingindo diferentes posições é obtida pela repetição desse procedimento, com o detetor sendo colocado nas diversas posições.
	
	Com a fenda inferior bloqueada, a distribuição de balas atingindo o anteparo tem o formato da figura ao lado, centralizada no ponto em frente à fenda superior.
	
	Com a fenda superior bloqueada, a distribuição tem o mesmo formato da anterior, mas passa a ser centralizada no ponto em frente à fenda inferior.
	
	Com ambas as fendas abertas, a distribuição é a soma das anteriores.
Veja que este resultado é completamente diferente daqueles obtidos com ondas de água ou com luz. Isto é, as partículas não apresentam os fenômenos de difração e interferência. Portanto, como se trata de fenômeno exclusivamente ondulatório, Young concluiu que a luz é uma onda (conforme o modelo de Huygens) e não um conjunto de corpúsculos, conforme o modelo de Newton. 
	
Em 1905, para explicar o efeito fotoelétrico Einstein usou uma idéia similar a de Newton, segundo a qual, ao invés de pensarmos na luz como uma onda, deveríamos imaginá-la constituída de corpúsculos, denominados fótons. Com o sucesso da explicação do efeito fotoelétrico, ficou provado que a luz tem um caráter dualístico. Dependendo das circunstâncias, poderia ser vista como onda (apresentando, p.ex. o fenômeno da interferência e da difração), ou como partícula (apresentando o efeito fotoelétrico).
Completando o ciclo da dualidade partícula-onda, Louis de Broglie sugeriu o contrário, isto é, que uma partícula poderia apresentar comportamento ondulatório. De modo análogo ao caso da luz, o caráter ondulatório de uma partícula deveria ser comprovada através de uma experiência de difração ou interferência. O trabalho de de Broglie foi publicado em 1923, e já em 1927, Davisson e Germer realizaram uma experiência na qual se observava a difração de um feixe de elétrons através de um cristal de níquel. Embora esta tenha sido a primeira experiência comprovando o caráter ondulatório de uma partícula, ela não é uma experiência do tipo dupla fenda como a que Young realizou com a luz. Este tipo de experiência só foi realizada com elétrons em 1961, por Claus Jönsson.
Experimentos de Galileu
	O segundo experimento refere-se à queda dos corpos, e teria sido realizado por Galileu na torre de Pisa. Embora, de acordo com o historiador Alexandre Koyré, isso não passa de uma lenda, é interessante discutir o que pretendia Galileu com este tipo de experiência. O principal objetivo de Galileu era combater a hipótese de Aristóteles, segundo a qual a velocidade de queda de um corpo é proporcional a seu peso. Para Galileu, o peso não deveria ter qualquer influência na velocidade de queda. A comprovação seria simples: bastava jogar do alto da torre corpos com diferentes pesos e medir o tempo de queda. Há relatos na literatura de que bolas de 10 gramas e de 1 grama teriam sido lançadas, todas chegando ao solo ao mesmo tempo. Isso poderia ser facilmente observado se não houvesse a resistência do ar e outros fatores, como a forma e o material dos corpos lançados. Na verdade, a afirmação "todas chegando ao solo ao mesmo tempo" só seria rigorosamente verdadeira se a experiência fosse realizada no vácuo.
Galileu vislumbrou uma alternativa ao experimento da torre de Pisa para investigar a relação entre o peso de um corpo e sua velocidade de queda.
	
	
	
Experimento da gota de óleo de Millikan
Além do papel desempenhado no contexto do desenvolvimento científico do início do século, o experimento da gota de óleo de Millikan desempenha hoje papel importante no ensino da física moderna; trata-se de um dos clássicos experimentos freqüentemente realizados nos laboratórios de física moderna. Físico experimental reconhecidamente habilidoso, Millikan exerceu forte influência no desenvolvimento da ciência norte-americana, não apenas pela realização de pesquisa relevante, como também pela competência administrativa, conforme brevemente discutido a seguir. Entre todos os seus trabalhos, aqueles referentes ao experimento da gota de óleo e à comprovação da equação de Einstein para o efeito fotoelétrico apresentam significados especiais porque simbolizam o Prêmio Nobel ganho em 1923. O precursor na investigação da carga do elétron foi J.J. Thomson, que descobriu esta partícula em 1897. Com seu estudante C.T.R. Wilson, Thomson determinou a carga do elétron fazendo uso de uma câmara de bolhas, ou câmara de nuvens, desenvolvida por Wilson. O uso da câmara de Wilson para a determinação da carga do elétron fundamenta-se no fato de que íons gasosos servem como núcleos de condensação de vapor d’água. Em outras palavras, os íons são decorados por gotículas do vapor supersaturado.Os íons são produzidos com um feixe de raios X, ou com um feixe de raios gama emitidos por uma fonte radioativa.
Em 1851, Sir George Stokes mostrou que uma gota esférica, de raio a e densidade r, caindo sob a ação de um campo gravitacional g, num fluido uniforme de viscosidade h , atinge uma velocidade terminal uniforme dada por v = (2/9)(ga2r/h ). Sendo este movimento exatamente o mesmo daquele experimentado por cada gota ionizada na câmara de Wilson, Thomson usou a relação de Stokes para estimar o raio médio das gotículas. Não cabe aqui apresentar o trabalho de Thomson detalhadamente; ele é importante pela introdução da câmara de bolhas, e pelo uso da relação de Stokes, mas as dificuldades metodológicas imediatamente apontaram para a necessidade de aperfeiçoamentos. Para compreender essa necessidade e as motivações das tentativas seguintes, vejamos, mesmo que superficialmente, algumas etapas do método de Thomson. A carga total da nuvem de gotículas era medida com um eletrômetro, de modo que a carga de cada gotícula era obtida pela média; o número de gotículas era obtido através de um complicado processo de medidas e cálculos, começando pela medida da velocidade da nuvem e passando pelo uso da relação de Stokes. O melhor valor obtido por Thomson foi da ordem de 1.1x10-19 coulomb
Em 1903, outro estudante de Thomson, H.A. Wilson, implementou duas novidades nesse método. A primeira foi a decisão de observar apenas a parte superior de cada nuvem, porque consistia de gotículas menores e que se deslocavam mais lentamente. A segunda e mais importante novidade, foi a introdução de um campo elétrico na mesma direção do campo gravitacional. O tratamento matemático desse método é apresentado no livro de Anderson, não cabendo aqui repeti-lo. A carga do elétron obtida com este método oscilava em torno de 1.04x10-19 coulomb.
Millikan e seu estudante Begeman iniciaram, em 1907, a repetição do experimento de H.A. Wilson. A seqüência de tentativas de Millikan é dividida em três etapas, cada uma caracterizada por um método. Esses métodos foram enumerados por Holton como Método I (essencialmente o método de Wilson), Método II (gota d’água isolada com alto campo elétrico) e Método III (gota de óleo).
Com o Método I eles obtiveram, para a carga do elétron, uma relação formalmente idêntica à de Thomson-Wilson, com valor médio em torno de 1.3x10-19 coulomb. Uma fonte de erro muito importante nos métodos baseados na câmara de bolhas foi destacada por Rutherford, segundo o qual, a dificuldade de se levar em consideração o efeito da evaporação das gotículas de água resultava em valores superestimados para o número de gotículas e, conseqüentemente, em valores subestimados para a carga do elétron. Portanto, o problema crucial era reduzir o efeito da evaporação. A idéia imediata de Millikan foi utilizar um forte campo elétrico (obtido com uma tensão da ordem de 10 kV) para imobilizar a camada superior da nuvem de gotículas ionizadas e com isso acompanhar seu processo de evaporação. Qual não foi sua surpresa quando, ao ligar a bateria, a nuvem se dissipou completa e imediatamente, ao invés de ficar imobilizada como ele estava esperando! Observações sucessivas levaram Millikan a descobrir que depois da "explosão" da nuvem, algumas minúsculas gotículas permaneciam, proporcionando, pela primeira vez, a observação de gotas individuais; estava nascendo o Método II, na classificação de Holton. Millikan parece ter ficado extasiado com o que viu; gotas que iniciavam o movimento, depois paravam, e às vezes invertiam a direção do movimento quando o campo elétrico era desligado e depois ligado. Com a obtenção de aproximadamente 1.56x10-19 coulomb para a carga do elétron, Millikan e Begeman deveriam ficar mais do que satisfeitos. Todavia, o problema da evaporação continuava. Tentativas para resolver este problema desembocaram no experimento da gota de óleo, descrito a seguir com base no artigo de Fletcher. Para concluir essa fase do trabalho de Millikan, é muito importante destacar o fato de que, com a colaboração de Begeman, ele chegou à conclusão de que os valores das cargas das diversas gotículas eram sempre múltiplos exatos da menor carga que eles haviam obtido. Portanto, o resultado fundamental de que existe uma carga elementar, a carga do elétron, foi obtido com o Método II. O principal problema deste método era a rápida evaporação das gotículas de água. Vários materiais foram testados em substituição à água, entre as quais mercúrio e óleo. Por causa da facilidade de obtenção e de manuseio, o óleo foi selecionado, dando início ao desenvolvimento do Método III. 
	O arranjo experimental é esquematizado na figura ao lado. O atomizador de perfume foi usado para borrifar óleo de relógio na câmara acima do capacitor. Durante a pulverização algumas gotículas de óleo ionizam-se por atrito. Quando essas gotículas penetram no capacitor, ficam sob a ação do campo elétrico que há entre as placas do capacitor. Nos primeiros experimentos Fletcher investigou o efeito de um campo criado pela aplicação de um potencial de 1000 volts. Imediatamente observou (através do pequeno telescópio) que algumas gotículas subiam lentamente, enquanto outras desciam rapidamente, um resultado lógico para quem sabia que algumas gotículas estavam positivamente carregadas, e outras negativamente. Ligando e desligando a bateria na freqüência adequada, ele conseguia selecionar uma gotícula e mantê-la no seu campo de visão por um longo tempo. Com algumas medidas e o tratamento matemático utilizado por Millikan e Begeman, Fletcher obteve, com seu rústico equipamento, resultados bastante razoáveis.Logo depois Millikan encomendou uma montagem profissional", com a qual obteve o mais preciso valor para a carga do elétron, isto é, 1,59x10-19 C!
Experimento de Newton: decomposição da luz com um prisma
	O quarto experimento refere-se à decomposição da luz solar realizada por Newton. A experiência é extraordinariamente simples. Um prisma de vidro é suficiente. Como ilustra a figura ao lado, ao passar por um prisma, a luz solar, que é branca, se decompõe nas cores do arco-íris.
	
	No caso do arco-íris, são as gotículas de água que fazem o papel do prisma.
Newton demonstrou que combinando adequadamente dois ou mais prismas, é possível decompor e recompor a luz branca. A separação é possível porque cada cor tem um índice de refração diferente. Isto é, apresenta um desvio diferente quando passa de um meio (ar) para outro (vidro).
	
	
	
O Experimento de Cavendish
O experimento com a balança de torção, realizado por Cavendish, por volta de 1686, Isaac Newton chegou à conclusão que o movimento dos planetas e da lua, bem como dos corpos em queda livre, como uma maçã, poderia ser explicado pela sua lei da gravitação universal, cuja fórmula é
Nesta equação, m e M representam as massas dos corpos, enquanto d representa a distância entre elas. G é uma constante, conhecida como constante gravitacional. Muita gente conhece a lei pela sua expressão literal: os corpos se atraem na razão direta dos produtos das suas massas e na razão inversa do quadrado da distância entre eles. É provável que Newton tenha estimado o valor de G a partir da aceleração gravitacional de corpos em queda livre.
Em 1797 (um século depois da lei de Newton), Henry Cavendish descrito o equipamento antes de 1785, ano em que Charles Augustus Coulomb desenvolveu um equipamento similar para determinar sua famosa lei de interação entre cargas elétricas (veja mais sobre a lei de Coulombiniciou seus experimentos com a balança de torsão. Embora a história tenha consagrado seu nome em referência a este experimento, ele não foi o pioneiro. De acordo com Laurent Hodge, Cavendish credita John Michell pelo desenvolvimento do projeto. Não se sabe a data exata em que Michell construiu sua balança. No seu artigo, Cavendish (1798) diz que o projeto de Michell teve início "muitos anos atrás", mas ele não pôde concluí-lo antes da sua morte (1793). Numa nota de rodapé, Cavendish afirma que Michell havia-lhe).
Portanto,não se sabe quem foi o pioneiro na invenção da balança de torsão. Costuma-se creditar Michell e Coulomb.
A balança de Torsão
Duas pequenas massas são fixadas nas pontas de uma barra suspensa por um fio. Essas pequenas massas podem se deslocar. Duas outras massas (bolas maiores) são mantidas fixas nas proximidades das massas menores. Inicialmente, a distância entre as massas é d. A força de interação gravitacional provocará um deslocamento da massa menor em direção à massa maior. Este deslocamento causará uma torsão no fio que sustenta a barra. A medida do ângulo de torsão permite a determinação da constante da gravitação universal (G), presente na lei da gravitação universal de Newton (veja equação acima).
O Experimento de Eratóstenes
O experimento de Eratóstenes. A figura abaixo, extraída do site de Dennis P. Donovan, ilustra a engenhosa solução encontrada por Eratóstenes.
Eratóstenes, um geógrafo Grego (276-194 BC), sabia que durante o solstício do verão, os raios solares atingiam perpendicularmente a superfície de Siena (Egito) ao meio-dia. Neste mesmo instante, a inclinação dos raios solares era de 7,2° em Alexandria. Sabendo que os raios solares chegam à terra paralelamente, e que a distância entre Siena e Alexandria é 787 km, Eratóstenes usou uma simples regra de três para calcular o perímetro da terra. Isto é 
7,2 / 360 = 787 / X
Portanto, a circunferência da terra será X = 39350 km. Para se calcular o raio da terra, basta fazer X=2pR
 
Espalhamento de Rutherford
O nono experimento refere-se ao espalhamento de partículas alfa, observado por Ernest Rutherford quando ele fez incidir um feixe dessas partículas sobre uma folha de ouro. 
A surpresa do experimento foi que, ao invés de sofrerem pequenos desvios, muitas partículas apresentaram grandes desvios. Algumas até foram retroespalhadas. Mal comparando, é como se uma bala de revolver retornasse ao ser atirada contra uma folha de papel.
O resultado motivou Rutherford a propor, por volta de 1911, um modelo atômico alternativo ao de Thomson, até então considerado válido. O modelo de Thomson era conhecido como modelo do pudim de ameixa, porque consistia numa mistura de cargas positivas e negativas. As cargas negativas, o próprio Thomson havia descoberto em 1897, eram os elétrons, mas nada se sabia sobre a identidade das cargas positivas. 
Rutherford propôs um modelo planetário, com um centro muito pequeno, onde se concentrava toda a carga positiva e praticamente toda a massa do átomo, em torno do qual orbitavam os elétrons. Esta idéia foi posteriormente desenvolvida por Bohr e resultou no que hoje se conhece como modelo de Bohr
O Pêndulo de Foucault
Em 1600, Giordano Bruno foi condenado à fogueira pela Inquisição porque acreditava que a terra se movia em torno do seu eixo e em torno do sol. Trinta e três anos depois, Galileu Galilei só não teve o mesmo destino porque renunciou à sua convicção científica.
A dificuldade em confirmar a rotação da terra reside no fato de que se trata de uma rotação muito lenta (0,0007 rotações por minuto). Em 1851, o astrônomo francês Jean Bernard Leon Foucault realizou uma bela e simples experiência capaz de demonstrar a rotação da terra. Com uma corda de 67 metros, fixa no teto do Panteon de Paris, ele suspendeu uma esfera de ferro de 28 kg e imprimiu-lhe um movimento pendular.
Na seqüência, o plano do pêndulo passou a apresentar uma lenta rotação no sentido horário. Este movimento foi facilmente explicado a partir da suposição de que a terra gira em torno de seu eixo.
Este experimento ficou mais conhecido pelo nome do dispositivo usado, isto é, pelo pêndulo de Foucault.
Os espelhos de Arquimedes
Em setembro de 2008, estudantes de engenharia do M.I.T. vão recriar o lendário sistema de espelhos de Arquimedes que ele teria usado para incendiar os navios que sitiavam Siracusa. Voluntários?
Luciano, historiador do 2º século d.C., relata em sua obra Hippias que, durante a Segunda guerra Púnica, o brilhante Arquimedes, aquele sábio grego que ficou famoso por seu grito 'Eureka', teria tido papel fundamental na defesa de sua Siracusa contra os poderosos exército e marinha romanos, que só a conquistaram em 212 a.C., após três anos de sítio. Para isso, teria inventado várias armas de guerra, incluindo catapultas, a terrível 'Mão de Ferro', um 'Canhão a Vapor' e aquilo que ficou conhecido como o 'Raio da Morte' ou 'Raio de Calor' de Arquimedes.
Ao longo da história, vários historiadores e cientistas divergiram quanto à viabilidade do episódio do incêndio dos navios com os meios de que ele dispunha à época. Kepler, Naudeus e Descartes rejeitaram-no como falso, enquanto Diodorus Siculus, Luciano, Dion, Zonaras, Galeno, Anthemius de Tralles, Eustathias, Tzetzes e outros afirmaram que era verdadeiro.
Tzetzes afirmava que o sistema era formado por vários pequenos espelhos planos quadrados que podiam ser apontados de forma a convergir para um ponto, como uma lente convergente ou um espelho parabólico, do tipo usado em fornos solares, sendo assim capaz de reduzir a cinzas um navio que estivesse à distância de um tiro de flecha.
Bibliografia:
http://www.if.ufrgs.br/historia/top10.html
http://www.fisica-interessante.com/

Continue navegando